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Abstract

The main goal of this Thesis, is the study of the thermodynamic properties of strongly
interacting and dense nuclear matter, away from the nuclear ground state. This analysis
constitutes one of the most interesting aspect and one of the major tasks in the modern
high-energy nuclear physics.
The �rst part of this dissertation, addresses the phenomenological and theoretical study of
the nuclear matter equation of state, under the extreme conditions reached in high energy
heavy ion collision experiments and in astrophysical object, such as for example neutron
stars.
Of particular interest is the determination of the microscopic hadronic and quark-gluon
plasma equation of state in the framework of a relativistic mean �eld theory and in regime
of high density and temperature. This is realized by means of a theoretical-computational
approach and comparing the results with the recent experimental data obtained from the
relativistic heavy ion collisions experiments. We adopt and develop a method based on the
so-called non-extensive statistical mechanics to derive momentum and energy distribution
functions to simply evaluate the physical quantities, taking into account of the correlations
among the strongly interacting particles of the medium.
Decon�nement phase transition is investigated by applying the Gibbs condition on a system
of two (B, C) or three (B, C, S) conserved charges, by requiring the global conservation of
each charges in the total phase. A multi-component system, in fact, implies a global and not
a local charge conservation. Therefore, the charge densities ρB, ρC and ρS are �xed only as
long as the system remains in one of the two pure phases. In the mixed phase, the charge
concentration in each of the regions of one phase or the other may be di�erent.

We also study the strangeness production at �nite temperature and baryon density
by means of an e�ective relativistic mean-�eld model, with the inclusion of the full baryon
octet and the meson degrees of freedom. In this context, lightest pseudo-scalar (π, K,
K, η, η

′
) and vector mesons (ρ, ω, K∗, K

∗
, ϕ) are introduced in the QHD-Lagrangian

density through an e�ective chemical potential depending on the self-consistent interaction
between baryons. Hence, the obtained results are compared with those of minimal coupling
scheme. The di�erent meson ratios, strangeness production and possible kaon condensation
are deeply investigated.

Finally, in the last part of this dissertation, we investigate the possible thermodynam-
ical instabilities in a warm (T ≤ 50 MeV) and dense nuclear medium (ρ0 ≤ ρB ≤ 3ρ0),
where a phase transition from nucleonic matter to resonance-dominated ∆ matter can take
place. This analysis is performed by requiring the global conservation of baryon and electric
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charge numbers in the framework of a relativistic equation of state. Similarly to the liquid-
gas phase transition, we show that the nucleon-∆ matter phase transition is characterized by
both mechanical instability (�uctuations on the baryon density) and by chemical-di�usive
instability (�uctuations on the charge concentration) in asymmetric nuclear matter. We
then perform an investigation and a comparative study on the di�erent nature of such in-
stabilities and phase transitions.
In this context, the liquid-gas phase transition is also investigated in the framework of nonex-
tensive statistical e�ects and in the last part of this analysis we also investigate the possible
onset of strangeness-di�usive instability (�uctuation on the strangeness density) in a hot
(70 ≤ T ≤ 140 MeV) and dense nuclear medium (ρ0 ≤ ρB ≤ 4ρ0).

The goal of this thesis, is therefore a deeper knowledge of the proprieties of nuclear
matter at high density and �nite temperature, with the study and the implementation of
the nuclear equation of state through e�ective models (non-extensive statistical mechanics
and e�ective relativistic mean-�eld model), through which overcome some theoretical and
experimental di�culties in the determination of the physical parameters of the system.
Finally, the study of the thermodynamical proprieties of strongly interacting nuclear matter,
away from the nuclear ground state, allow us to deal and respond to one of the major
questions of modern high-energy nuclear physics.
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Introduction

The determination of the properties of nuclear matter as functions of density and temper-
ature, is a fundamental task in nuclear and subnuclear physics.
In this context, heavy-ion collision experiments, open the possibility to investigate strongly
interacting compressed nuclear matter by exploring in the laboratory the structure of the
QCD phase diagram [1, 2, 3, 4].

In the early 1960's, with the construction of the �rst proton accelerators with energies
well above the threshold for anti-proton production, a veritable zoo of new particles and
resonances was discovered [5]. Gell-Mann [6] and Neeman [7] noticed that particles sharing
the same quantum numbers (spin, parity) follow the symmetry of the mathematical group
SU(3) which is based on 3 elementary generators, up, down, strange (u, d, s), with spin 1/2
and fractional electrical charge, [8, 9] which Gell-Mann called quarks. Mesons are described
as states made of a quark-anti-quark (q̄q) pair and baryons as states of 3 quarks (qqq). This
led to the prediction of a new baryon (Ω−), as a state of (sss) quarks, with strangeness −3,
which was observed shortly thereafter [10]. However, the Ω− had a problem: 3 identical s
quarks in the same state, apparently violating the Pauli Exclusion Principle. To avoid this
problem, it was proposed [11] that quarks come in 3 colors, i.e. distinguishing characteristics
which would allow 3 otherwise identical quarks to occupy the same state (formally, para-
Fermi statistics of rank 3). A major breakthrough was the realization that the real SU(3)
symmetry was not the original 3 quarks uds (now called �avor), but the 3 colors; and that
color-charged gluons are the quanta of the asymtotically-free strong interaction which binds
hadrons [12].
Following this line, from the early 1970's, it was generally accepted that the nucleon was
not an elementary particle, but was composed of a substructure of 3 valence quarks con�ned
into a bound state by a strong interaction, Quantum Chromo Dynamics (QCD), which is
mediated by the exchange of color-charged vector gluons [12]. In sharp distinction to the
behavior of the uncharged quanta of quantum electrodynamics (QED), the color-charged
gluons of QCD interact with each other. This leads to the property of asymptotic freedom
[13, 14], the reduction of the e�ective coupling constant at short distances, and is believed
to provide the con�nement property at long distances where the quarks and gluons behave
as if attached to each other by a color string.
In the following decades, by increasing of the energy of the relativistic heavy ion collision
experiments, other quark degrees of freedom have been discovered. For example, the �rst
charmed particle (a particle containing a charm quark) to be discovered was the J/ψ meson,
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Name Mass (MeV) q B J I3
Up (u) 1.5-3.3 +2/3 +1/3 +1/2 +1/2

Down (d) 3.5-6 -1/3 +1/3 +1/2 +1/2
Strange (s) 80-150 -1/3 +1/3 +1/2 0
Charm (c) 1150-1350 +2/3 +1/3 +1/2 0
Bottom (b) 4100-4400 -1/3 +1/3 +1/2 0
Top (t) ≈173000 +2/3 +1/3 +1/2 0

Table 1: Quarks mass, charge (q), baryon number (B), angular momentum (J) and isospin
number (I3).

in the early 1970's. It was detected by a team at the Stanford Linear Accelerator Center
(SLAC), led by Burton Richter [15], and one at the Brookhaven National Laboratory (BNL),
led by Samuel Ting. [16]. The 1974 discovery of the J/ψ (and thus the charm quark) ushered
in a series of breakthroughs which are collectively known as the November Revolution.
At present, quarks appear as the real degrees of freedom of hadrons and are present in six
�avors (up, down, strange, charm, beauty and top), represented through the SU(3) gauge
group, obtained by taking the color charge to de�ne a local symmetry. In Tab. (1) we report
the main quarks quantum numbers.

In order to study the properties of nuclear matter at �nite temperature and baryon
density, is of great importance to develop statistical approaches in order to treat the com-
plexity of the many-body nuclear interactions. In this context, the relativistic mean-�eld
theory are especially suitable for the description of hadronic matter. The nuclear force is
mediated by the exchange of mesons and the coupling constant of the model are related with
the bulk proprieties of nuclear matter. Furthermore, in the mean �eld approximation, we
suppose the medium static and uniform, therefore, the quantum �uctuation of the mesons
�elds are removed and we can express them as classical �eld through their expectation values
[17]
In this sense, the relativistic mean �eld theory, will provide a relativistically covariant theory
of hot and dense hadronic matter.
However, the extraction of information about the equation of state (EOS) at di�erent dens-
ities and temperatures by means of intermediate- and high-energy heavy-ion collisions is a
very di�cult task and can be realized only indirectly by comparing the experimental data
with di�erent theoretical models, such as, for example, �uid-dynamical models. The EOS at
density below the saturation density of nuclear matter (ρB ≈ 0.153 fm−3) is relatively well
known due to the large amount of experimental nuclear data available. At larger density
there are many uncertainties; the strong repulsion at short distances of nuclear force makes,
in fact, the compression of nuclear matter quite di�cult. Furthermore, in relativistic heavy-
ion collisions the baryon density can reaches values of a few times the saturation nuclear
density and/or high temperatures.
In these conditions, phase transition phenomena in the hot and dense �reball created during
the collisions may take place [1]. However, since the process of decon�nement and the equa-
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tion of state (EOS) of hot and dense nuclear matter can in principle be described by QCD,
such a theory is highly non-perturbative in the energy density range involved in relativistic
heavy-ion collisions. The generated quark-gluon plasma (QGP) in the early stages of the
collisions does not at all resemble a quasi-ideal gas of quarks and gluons because strongly
dynamical correlations are present, including long-range interactions [18, 2, 19]. Therefore,
in the absence of a converging method to approach QCD at �nite density one has often to
resort to e�ective and phenomenological model investigations to obtain qualitative results.

For this reason, in Chapters 2, 3 and 4, we will study and implement the nuclear equa-
tion of state in the context of an e�ective statistical model, known as nonextensive statistical
mechanics. This model, was �rstly proposed by Tsallis [20, 21, 22], in order to deal systems
where strong dynamical correlation, long-range color interaction and memory e�ects are
presents. In this direction, in the last years, several authors have outlined the possibility
that experimental observations in relativistic heavy ion collisions can re�ect nonextensive
statistical behaviors [23, 24, 25, 26, 27, 28, 28, 29].
The nonextensive statistical mechanics, will also be used in Chapter 3, in order to study the
mechanical and the thermodynamical proprieties of protoneutron stars. In this context, a
detailed study of the �nite-temperature equation of state of a β-stable matter in presence
and in absence of hyperons and trapped neutrinos will be made.
As we will show in Chapters 2, 3 and 4, the onset of nonextensive statistical e�ects should
strongly a�ect the �nite temperature and density nuclear EOS [30, 31, 32, 33, 34, 35, 36, 37].
In fact, by varying temperature and density, the EOS re�ects in terms of the macroscopic
thermodynamical variables the microscopic interactions of the di�erent phases of nuclear
matter.
Therefore, the variation in the thermodynamical proprieties of the nuclear equation of state,
together with the alteration in the particles concentration, due to the variation in the many-
body interaction at microscopic level, may be important indicators of the possible onset of
nonextensive e�ects in the nuclear medium.

Another of the major research �elds of modern physics, at the energy of relativistic
heavy ion collision experiments, regard the production of strange particles (hyperons and
strange mesons), �rst discovered more than a quarter of century ago [38, 39].
In this context, especially in the last years, there was a growing interest in the study of the
kaons and anti-kaons proprieties in �nite nuclear matter as well as in compact stars.
As known, strange particles interact with the hadronic medium not only by collisions but
also by potential interaction. At �nite densities, this interaction is commonly investigated
by extending the chiral perturbation theory to the SU(3) sector. This procedure allowed to
predict how the K+ mesons are modi�ed in matter but failed for the description of the K−

properties. The K− spectra, in fact, carry a very complex information on the system which
to reproduce is a challenge for every theoretical approach.
What makes the situation even more complicated is the very complex potential interaction
with the hadronic environment. In contradistinction to the K+ mesons, K− can produce ba-
ryonic resonances in the nuclear medium which render mean �eld approaches very tricky and
require self-consistent multi-channel Br¨uckner G-matrix calculations. These calculations
have not reached stable conclusions yet and the depth of the K− N potential as a function
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of the nuclear density is still very much debated. To this regard, recent analysis of kaonic
atom data leads to the real part of anti-kaon optical potential close to UK− = −180±20MeV
at the saturation nuclear matter density [40, 41, 42, 43, 44, 45]. Contrariwise, chiral-models
and coupled-channel G-matrix theory, seem to suggest a strength of the optical potential
close to UK− = −(50÷ 80) MeV [46, 47, 48].
If the interaction is strong enough, a kaon condensate could be created, with important
implication for the nuclear equation of state, in particular in astrophysical systems. In this
direction, many studies have shown the possibility that these particles may condensate in
neutron stars, whereas the situation seems to be more uncertain in the physical conditions
reachable in relativistic heavy ion collision [49, 50, 51, 52, 40, 53].
These uncertainties in the estimation of the anti-kaon potential depth, imply some di�-
culties in the calculation of the e�ective kaon mass in-medium. Furthermore, di�erent mean
�eld models predict negative or imaginary e�ective kaon mass at su�ciently large values
of the σ-meson �eld, responsible of the medium range attraction [44, 45, 54]. Regarding
this, due to overcome these theoretical and experimental di�culties in order to determinate
the correct coupling constants to the meson-�elds, in Chapter 1.4.1, we introduce a self
consistent formulation, taking into account an e�ective chemical potential depending on the
self-consistent interaction between baryons. From a phenomenological point of view, we can
take into account the meson degrees of freedom by adding their one-body contribution to the
thermodynamical potential, that is, the contribution of an ideal Bose gas with an e�ective
chemical potential µ∗j , depending self-consistently from the meson �elds. In this way, the
hadronic system is still regarded as an ideal gas but here we have a (quasifree) meson gas
with an e�ective chemical potential that contains the self-consistent interaction of the meson
�elds. To this regard, the future CBM (Compressed Baryonic Matter) experiment of FAIR
(Facility of Antiproton and Ion Research) at GSI Darmstadt, will be of great importance to
create compressed baryonic matter with a high net baryon density and �nite temperature
[55, 56, 57, 58] and make possible an accurate analysis of the proprieties of kaons and, more
in general, of the strangeness production at high baryon density.

Finally, in the last part of this dissertation, we investigate the thermodynamical prop-
erties of strongly interacting nuclear matter away from the nuclear ground state. This
constitutes, one of the most interesting aspects and one of the most di�cult task of modern
high-energy physics.
At this regard, it is generally accepted that the nuclear multifragmentation, observed in
intermediate-energy nuclear reactions, is indicating a nuclear liquid-gas phase transition
[59].
More speci�cally, nuclear transport models predict that, after the projectile and target touch
themselves, a fast compression stage (≈ 20fm/c) starts and light particles are emitted (pre-
equilibrium emission). The system subsequently expands, correlations develop, and after a
few tens of fm/c surfaces appear inside the inhomogeneous medium. Once the fragment
surfaces are separated by a distance overcoming the nuclear interaction range, inter-fragment
interactions are inhibited and the chemical and energetic fragment content is �xed (freeze-
out stage). These fragments are typically not in their ground state, and they undergo a
slow light particles decay in vacuum, in some hundreds of fm/c. Finally, after a time of
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the order of nanoseconds ≈ 1014 fm/c, the �nal (cold) products impinge on the detecting
system, keeping the same identity reached after the secondary decays [60].
At present, the liquid-gas phase transition was experimentally observed at intermediate-
energy in many nuclear reactions [61, 62], for temperature of the order of T ≈ 10 MeV and
baryon density below the nuclear saturation density.

Furthermore, by increasing of the temperature of the system, many other degrees of
freedom appear. In particular, at moderate temperature (20 < T ≤ 50 MeV) and hight
baryon density (ρB ≤ 3ρ0), a state of high density resonance matter may be formed and the
∆(1232)-isobar degrees of freedom are expected to play a central role in relativistic heavy
ion collisions and in the physics of compact stars [63, 64, 65, 66, 67]. In this context, trans-
port model calculations and experimental results indicate that an excited state of baryonic
matter is dominated by the ∆-resonance at the energy from AGS to RHIC [68, 69, 70, 71].
In order to study the thermodynamical proprieties of the nuclear medium, for this range of
temperatures and baryon densities, many theoretical works have been done in the frame-
work of nonlinear Walecka model. In this context, in symmetric nuclear matter, it has been
predicted that a phase transition from nucleonic matter to ∆-excited nuclear matter can
take place and the occurrence of this transition sensibly depends on the ∆-meson coupling
constants [72, 73].
As for the case of the liquid-gas phase transition, in presence of only one conserved "charge"
(baryon number), the region of the phase transition develops when the incompressibility
becomes negative and therefore only mechanical instabilities (�uctuations in the baryon
density) is present.
However, the information coming from experiments with heavy ions in intermediate and
high-energy collisions is that the nuclear equation of state, depends on the energy beam but
also sensibly on the electric charge fraction of the colliding nuclei, especially at not too high
temperature [74, 75].
For this reason, in this thesis, we investigate the thermodynamical proprieties of the liquid-
gas and of the ∆-matter phase transition, in a binary system, where both the baryon number
(B) and the electric charge (C) are conserved, following and developing the very relevant
results obtained by Müller and Serot [76]
In this context, a relevant aspect of a system with two conserved charges (baryon and isospin
numbers) is that the phase transition is of second order from the viewpoint of Ehrenfest�s
de�nition. At variance with the so-called Maxwell construction for one conserved charge,
the pressure is not constant in the mixed phase and therefore the incompressibility does
not vanish [76, 77]. Such feature plays a crucial role in the structure and in the possible
hadron-quark phase transition in compact star objects [78, 79]. Moreover, for a binary sys-
tem with two phases, the binodal coexistence surface is two dimensional and the instabilities
in the mixed liquid-gas phase arise from �uctuations in the charge concentration (chemical
instability) and in the baryon density (mechanical instability) [76, 80, 81, 82].
Finally, we would like to present a preliminary study of the proprieties of the nuclear envir-
onment at high temperature (T > 70 MeV) and baryon density (ρB > 2ρ0), where strange
particles start to be abundantly produced. In this context, during the extreme conditions
reached in relativistic heavy ion collision experiments, a net strangeness excess could be
generated and chemical �uctuation in the strangeness concentration may take place.
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This in-depth analysis of the thermodynamical proprieties of strongly interacting nuclear
matter, will be made in Chapter 5. Phase transitions will be investigated in the framework
of nonlinear relativistic Walecka type model, by requiring the Gibbs conditions on the global
conservation of baryon number, net electric charge and strangeness number.
The analysis will be done through e�ective models and, due to the simplicity of the system
(only two degrees of freedom are present), we will also analyze the possible in�uence of
nonextensive e�ects on the liquid-gas phase transition.
In this sense, the future CBM (compressed baryonic matter) experiment of the FAIR (Fa-
cility of Antiproton and Ion Research) project at GSI Darmstadt will make it possible to
create compressed baryonic matter with a high net baryon density [55, 58, 57], allowing the
experimental identi�cation of such phase transitions and a precise measure of the strange-
ness production and of the quark-gluon plasma phase transition at high temperature and
�nite baryon density.
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Chapter 1

Lagrangian formalism and relativistic

mean-�eld equation of state

In this chapter, we introduce the basic formalism of quantum hydrodynamics, in the frame-
work of nonlinear relativistic mean-�eld model and we are planning to investigate the nuclear
equation of state, at �nite temperature and baryon density, through statistical and e�ect-
ive models. In this context, strangeness production, at high temperature and �nite baryon
density, will be investigated by e�ective relativistic mean-�eld model.

1.1 Lagrangian formalism

The Lagrangian formalism is one of the main tools of the description of the dynamics
of a vast variety of physical systems including systems with �nite (particles) and in�nite
number of degrees of freedom (strings, membranes, �elds). As known, Lagrangian mechanics
does not contain any new physics, but is simply an alternative expression of the physical
laws governing the equations of motion of objects. It is based on the action principle, a
fundamental theoretical concept which, in particular, for more than a century has been a
leading principle for the construction and development of the theory of fundamental (electro-
magnetic, weak, strong and gravitational) interactions of elementary particles based on
Quantum Field Theory.
The form of the action determines the equations of motion (Euler-Lagrange equations) of the
physical system, its symmetries and (via Noether's theorem) the corresponding conserved
quantities, the integrals of motion.

In order to be able to study the proprieties of nuclear matter at �nite density and
temperature, the lagrangian formalism is the natural candidate to obtain a relativistic and
covariant formulation of the equation of motion of the system. In fact, the Lagrangian
density is a lorentz scalar (it has the dimension of lengh−4 (fm−4)) and because it is construct
only from the scalar functions of the �elds and their derivatives, its relativistic covariance is
manifest.
In particular, in the �eld theory, the Lagrangian would be de�ned in terms of the Lagrangian
density as: L = [ϕ(x), ∂µϕ(x)], where ϕ(x) is the �eld operator. In this context, the equation
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of motion is obtained in the usual way, from the minimization of the action S applied to the
lagrangian density L, and it gives:

S =

∫ t2

t1

d4xL[ϕ(x), ∂µϕ(x)] . (1.1)

The variation of the action is given by:

δS =

∫ t2

t1

d4x{∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)}

=

∫ t2

t1

d4x{(∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
)δϕ+ ∂µ(

∂L
∂(∂µϕ)

δϕ)}

=

∫ t2

t1

d4x(
∂L
∂ϕ

− ∂µ
∂L

∂(∂µϕ)
)δϕ(x) . (1.2)

So, the relative equation of motion (Euler-Lagrangian equation) for the �eld ϕ(x), can be
written as [17]:

∂L
∂ϕ(x)

− ∂µ
∂L

∂(∂µϕ(x))
= 0 . (1.3)

If L = [ϕ(x), ∂µϕ(x)] depends on several �elds, we obtain n-equation of motion associated
to this Lagrangian (one for each �eld).

Furthermore, by Noether's theorem, it is possible to demonstrate the invariance of the
lagrangian density under rotation and spatial translation, due to the presence of conserved
quantities (currents).
In particular, the theorem states that, if a generic �eld transformation ϕα(x) → ϕ

′
α(x

′
) =

ϕα(x) + δϕα(x) is continuous and the Lagrangian density is invariant under this transform-
ation, then the following equation (Noether equation) must be satis�ed and a conserved
quantity (current) must exist:

Jµ
j (x) ≡

L
∂(∂µϕi)

F j
i , (1.4)

where δϕi = λjF
j
i represent a continuous symmetry transformation of the �eld ϕi and λj

are in�nitesimal parameters that are space-time independent [17]. The conserved quantities
(currents) take the form: ∂µJ

µ
j = 0. In this sense the Lagrangian formalism is manifestly

covariant under the Lorentz group, due to the presence of space-time symmetries.

1.2 Quantum hadrodynamics I

Quantum hadrodynamics I (QHD-I), also known as the σ-ω model, is the original and
simplest parameter set of QHD. In this model, the nuclear force is mediated by the exchange
of two mesons: a neutral isoscalar-scalar sigma (σ) mesons and a neutral isoscalar-vector
omega (ω) mesons. These mesons have been found to be the most important in describing
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the properties of nuclei and nuclear matter [17]. In this context, the scalar meson gives rise
to a strong attractive central force and a spin-orbit force in the nucleon-nucleon interaction,
while the vector meson gives rise to a strong repulsive central force and a spin-orbit force
(with the same sign as the spin-orbit force of the scalar meson) [83]. Therefore, the nucleon-
nucleon interaction is described by two �elds, the baryon-scalar meson �eld and the baryon-
vector meson �elds. No charged mesons are included in this parameter set (i.e. the electric
properties of the baryons are not considered) and the masses of the proton and neutron
are taken to be equal in QHD-I. Hence, in this simple model, the only degrees of freedom
introduced are protons, nucleons and mesons and all the hadrons are regarded as point-like
particles.

In constructing the Lagrangian density it was assumed that the neutral scalar mesons
coupled to the scalar density ψψ of the baryon �eld and that the neutral vector mesons
coupled to the conserved baryon current ψγµψ [17, 84]. In this context, the interaction part
of the Lagrangian density, which incorporate the meson-nucleon coupling constant, can be
written as:

Lint = gσσ(x)ψψ − gωωµ(x)ψγ
µψ , (1.5)

where x ≡ xµ ≡ (t, x, y, z) and the sign over the �elds are arbitrary. Now, adding the
interaction part to the free Lagrangian of nucleons and mesons, we obtain the total QHD-I
Lagrangian density (in natural units) [17, 84]:

LN = ψ̄(x)[γµ (i∂
µ − gωω

µ(x))− (M − gσ σ(x))]ψ(x)

+
1

2
(∂µσ(x)∂

µσ(x)−m2
σσ

2(x)) +
1

2
m2

ω ωµ(x)ω
µ(x)− 1

4
Fµν(x)F

µν(x) , (1.6)

where

• ωµ denotes the vector meson �eld,

• σ denotes the scalar meson �eld,

• mσ and mω the di�erent meson masses and M denotes the nucleon bare mass,

• gσ and gω the scalar and vector coupling constants,

• Fµν = ∂µFν(x)− ∂νFµ(x)

The equations of motion can be derived, as usual, from the Euler-Lagrange equation:

∂L
∂ϕ(x)

= ∂µ
∂L

∂(∂µϕ(x))
, (1.7)

Using this equation, we obtain a set of n coupled di�erential equations of motion for the
meson �elds and the dirac equation of motion for nucleons (where n is the number of degrees
of freedom of the system), given by:

∂µ∂
µσ(x) +m2

σσ(x) = gσψ̄(x)ψ(x) , (1.8)

∂µF
µµ +m2

ωω
ν(x) = gωψ̄(x)γ

µψ(x) , (1.9)

[γµ(i∂
µ − gωkω

µ)− (M − gσ σ(x))]ψ(x) = 0 , (1.10)
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where scalar (σ) and vector (ω) mesons are coupled respectively with ψ̄(x)ψ(x) and ψ̄(x)γµψ(x).
Furthermore, in the Dirac equation (1.10), the term (Mk − gσk σ) represents the e�ective
mass of the nucleon due to the attractive interaction of the σ meson �eld.

At this point, in order to resolve this set of non-linear di�erential equations, we intro-
duce two approximations in the relativistic mean-�eld theory.
The �rst one is known as relativistic mean �eld approximation (RMF). Here, nucleons (more
in general hadrons) behave as noninteracting particles, moving in a mean �eld generated
by mesons �elds (in our analyze σ, ω and ρ mesons). The second one is known as no-sea
approximation, where we neglect the contribution of the vacuum polarization (Dirac sea) at
the mean �eld level.
These approximations allow us to easily resolve the set of non-linear coupled equations (1.8)�
(1.10), since, in the stationary un uniform state, all the time derivatives and all the space
vector components of densities and �elds vanish (the quantum �uctuation of the mesons
�elds are removed and we can express them as classical �eld through their expectation
values [17]).

In the relativistic mean-�eld approximation within QHD, the meson �eld operators
are therefore replaced by their ground state (|Ψ⟩) expectation values, which are classical
�elds, in the following way [17, 84]:

σ → ⟨Ψ|σ|Ψ⟩ = σ ,

ωµ → ⟨Ψ|ωµ|Ψ⟩ = δµ0ω0 . (1.11)

For a stationary and uniform system σ and ω0 will be constants and space-time independent.
Furthermore, the spatial components of ωµ will vanish, since the baryon �ux is zero and the
system is at rest, whereas, the particle �led operators remain operators. This implies that
baryon operators must be evaluated by operating on the ground state. Therefore, they
normal ground state expectation values can be written as:

ψ̄(x)ψ(x) → ⟨Φ| : ψ̄(x)ψ(x) : |Φ⟩ = ⟨ψ̄ψ⟩ ,
ψ̄(x)γµψ(x) → ⟨Φ| : ψ̄(x)γµψ(x) : |Φ⟩ = ⟨ψ̄γ0ψ⟩ , (1.12)

where the spatial component vanished due to the hypothesis of stationarity and uniformity
of the system.

Therefore, in the RMF approximation, the equation of motion of the meson �elds and
of the Dirac equation for the nucleons, reduce to:

m2
σσ = gσ⟨ψ̄ψ⟩ ,

m2
ωω0 = gω⟨ψ̄γ0ψ⟩ ,

[iγµ∂
µ − gωγ

0ω0 − (M − gσσ)]ψ = 0 , (1.13)

where ⟨ψ̄γ0ψ⟩ and ⟨ψ̄ψ⟩ stays respectively for the vector and scalar baryon density, that, in
the statics and uniform limit, are given respectively by the well know equations (see [17]):

ρB ≡ ⟨ψ̄γ0ψ⟩ = 4

∫ k

0

dk

(2π3)
=

2k3

3π2
, (1.14)
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and (ψ̄ψ)k = ∂E(k)/∂m:

ρSB ≡ ⟨ψ̄ψ⟩ = 2

π2

∫ k

0
k2dk

m− gσσ√
k2 + (m− gσσ)2

, (1.15)

where k is the 3-vector momentum of the particle and e(k) = gωω0 − E(k) is the Dirac
eigenvalues, with E(k) =

√
k2 + (m− gσσ)2.

In the relativistic mean �eld approximation, the QHD-I Lagrangian density take the
form:

LRMF = ψ̄[iγµ ∂
µ − gωγ

0ω0 − (M − gσ σ)]ψ − 1

2
m2

σσ
2 +

1

2
m2

ω ω
2
0 . (1.16)

From the above Lagrangian, through the use of the energy-momentum tensor, we can obtain
the corresponding relativistic equation of state (EOS).
The energy-momentum tensor is given, as usual, by:

Tµν =
∂L

∂(∂µϕα)
∂νϕα − Lηµν , (1.17)

(where ϕα is the generic �eld operator) that give us:

(Tµν)RMF = iψγµ∂νψ − ηµν(−1

2
m2

σσ
2 +

1

2
m2

ωω
2
0) . (1.18)

In this context, the energy density (ε) and the pressure (P ) for QHD-I Lagrangian
density, results:

ε = ⟨T 00⟩

= ⟨iψγ0∂0ψ − (−1

2
m2

σσ
2 +

1

2
m2

ωω
2
0)⟩

= ⟨iψγ0∂0ψ⟩+
1

2
m2

σσ
2 − 1

2
m2

ωω
2
0 , (1.19)

P =
1

3
⟨T ii⟩

=
1

3
⟨iψγi∂iψ + (−1

2
m2

σσ
2 +

1

2
m2

ωω
2
0)⟩

=
1

3
⟨iψγi∂iψ⟩ −

1

2
m2

σσ
2
+

1

2
m2

ωω
2
0 , (1.20)

where the �rst term in the energy density ⟨iψγ0∂0ψ⟩, refers to the contribution of occupied
nucleon momentum states, that is given by (see [17]):

⟨ψγ0k0ψ⟩ =
2

π2

∫ k

0
k2dke(k)

= gωω0ρ+

∫ k

0
k2dk

√
k2 + (m− gσσ)2

= m2
ωω

2
0 +

2

π2

∫ k

0
k2dk

√
k2 + (m− gσσ)2 . (1.21)
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and ⟨iψγi∂iψ⟩ = ∂E(k)/∂k gives:

⟨iψγi∂iψ⟩ =
2

π2

∫ k

0
k2dk

k4√
k2 + (m− gσσ)2

dk . (1.22)

Therefore, the equation of state take the form:

ε = +
1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

γ

2π3

∫ kf

0
dk

√
k2 + (M − gσσ)2 , (1.23)

P = −1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

1

3
(
γ

2π3

∫ kf

0
dk

k4√
k2 + (m− gσσ)2

) , (1.24)

and the RMF equations of motion for the meson �elds reduce to:

σ =
gσ
m2

σ

⟨ψ̄ψ⟩ = gσ
m2

σ

γ

2π2

∫ k

0
k2dk

m− gσσ√
k2 + (m− gσσ)2

, (1.25)

ω0 =
gω
m2

ω

⟨ψ̄γ0ψ⟩ =
gω
m2

ω

ρB , (1.26)

where γ is the degenerancy spin factor (γ = 2 for nucleons).
The coupling constants of QHD-I are �tted to reproduce the proprieties of saturation

nuclear matter, in general, ρB = 0.153 fm−3 and binding energy of B/A = −16.3 MeV
[17]. Unfortunately, this parameterizations produces too high a value of the nuclear matter
compressibility (K). For this reason, in 1977 J. Boguta and A. R. Bodmer proposed that
self-couplings of the scalar meson �eld should be included in the Lagrangian density and the
coupling constants re-adjusted to reproduce K more accurately [85].
Another implementation of the model is the introduction of the charged (iso-vector) vector
rho meson triplet (ρ0, ρ±), that have its source in the isospin current ψ(x)γµ

−→
t ψ(x), where−→

t is the isospin operator of the nucleon. Since protons and neutrons practically only di�er
in terms of their isospin projections, the rho mesons are included to distinguish between
these baryons and to give a better account of the symmetry energy [17]. (As these vector
meson are charged, the reaction between a rho meson and a proton will di�er from the
reaction between a rho meson and a neutron). Therefore, ρ mesons introduce an additional
restoring energy that favors isospin symmetry as manifested in the valley of beta stability
in nuclear physics. This restoring produces a quadratic term in the deviation from isospin
symmetry and so favor symmetric systems. Furthermore, ρ mesons are introduced in a
similar fashion as the other mesons in QHD: the free Lagrangian density describing the
vector �eld is included in the QHD Lagrangian density as well as a coupling between the
rho meson and the conserved isospin density [17, 84, 86].

1.3 Non-linear walecka type model

Because we are going to investigate a �nite temperature and density nuclear matter, we
need to a more complex and complete relativistic mean �led model, which include all the
baryons octet, mesons degrees of freedom and leptons (if presents). This is particulary valid
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M (MeV) C B S t3
p 939 1 1 0 1/2
n 939 0 1 0 -1/2
Λ 1115.70 0 1 -1 0
Σ+ 1189.37 1 1 -1 1
Σ0 1192.64 0 1 -1 0
Σ− 1197.45 -1 1 -1 -1
Φ0 1314.86 1 1 -2 1/2
Φ− 1321.71 1 1 -2 -1/2

Table 1.1: Baryons masses and quantum numbers (note that the nucleon mass in TM1 is
set equal to 938MeV)

ρ0 K M∗
N

MN
αsym

gσN
mσ

gωN
mω

gρN
mρ

a b c
(fm−3) (MeV) (MeV) (fm) (fm) (fm) (fm−1)

GM2 0.153 300 0.78 32.5 3.025 2.195 2.189 0.01656 0.01328 -
GM3 0.153 240 0.78 32.5 3.151 2.195 2.189 0.04121 -0.002442 -
TM1 0.145 281 0.63 36.9 3.871 3.178 2.374 0.00717 0.00006 0.00282

Table 1.2: Proprieties of nuclear matter and nucleon coupling constants of the parameters
sets used in the work. The energy per particle is E/A = 16.3 MeV, calculated at the
saturation density ρ0 with a compression modulus K and e�ective mass M∗

N (the nucleon
mass MN is �xed to 939 MeV for GM2 and GM3, and MN = 938 MeV in the TM1
parameters set). The symmetry energy is denoted by asym.

above the nuclear saturation density, where the presence of many kinds of hadronic degrees
of freedom must be taken into account.
In this context, we introduce the hyperon degrees of freedom to the baryon Lagrangian
density. Hyperons (Λ, Σ+, Σ0, Σ−, Ξ−, Ξ0) are hadrons composed by one or more strange
quarks, with di�erent electric charge and strangeness number (see Tab. 1.1). Like the others
hadrons, they participate to the nuclear force mediated by the exchange of mesons, but are
unstable particles and decay in nucleons plus mesons and leptons (it depends on the kind
of hyperon)

In this study, we investigate the nuclear medium in the context of non-linear relativistic
Walecka type mean-�eld models, using the parameter set marked as GM2, GM3 and TM1 of
Tab. 1.2. In this context, the nuclear force is mediated by the exchange of virtual isoscalar
scalar (σ), isoscalar vector (ω) and isovector vector (ρ) meson �elds [87, 86, 85].

The most general QHD-baryons Lagrangian density, that describes the GM2, GM3
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and TM1 parameter sets, can be written as:

LB =
∑
B

ψB [i γµ ∂
µ − (MB − gσB σ)− gωB γµ ω

µ − gρB γµ t⃗ · ρ⃗ µ]ψB

+
1

2
(∂µσ∂

µσ −m2
σσ

2)− U(σ) +
1

2
m2

ω ωµω
µ +

1

4
c (g2ωB ωµω

µ)2

+
1

2
m2

ρ ρ⃗µ · ρ⃗ µ − 1

4
FµνF

µν − 1

4
G⃗µνG⃗

µν , (1.27)

where the sum runs over the full baryons octet (p, n, Λ, Σ+, Σ0, Σ−, Ξ−, Ξ0), MB is the
baryons vacuum mass and t⃗ is the isospin operator which acts on the ith-baryons.
The �eld strength tensors for the vector mesons are given by the usual expressions Fµν ≡
∂µων − ∂νωµ, G⃗µν ≡ ∂µρ⃗ν − ∂ν ρ⃗µ, and U(σ) is the nonlinear potential of σ meson

U(σ) =
1

3
a(gσNσ)

3 +
1

4
b(gσNσ)

4 , (1.28)

introduced by Boguta and Bodmer in order to obtain a reasonable compression modulus for
equilibrium normal nuclear matter [88, 85].
For TM1 parameter set, we have also taken in consideration the additional self-interaction
ω-meson �eld, c(g2ωNωµω

µ)2/4, suggested by Bodmer [89] to get a good agreement with
Dirac-Br̈uckner calculations at high density and to achieve a more satisfactory description
of the properties of �nite nuclei in the mean-�eld approximation.

As discussed in Section 1.2, in the RMF approach, baryons are considered as Dirac
quasi-particles moving in classical meson �elds and the �eld operators are replaced by their
expectation values. As a consequence the �eld equations in a mean �eld approximation are

(iγµ∂
µ −M∗

B − gωBγ
0ω − gρBγ

0t3ρ)ψB = 0 , (1.29)

m2
σσ + ag3σBσ

2 + bg4σNσ
3 =

∑
i

gσiρ
S
i , (1.30)

m2
ωω + cg4ωBω

3 =
∑
i

gωiρ
B
i , (1.31)

m2
ρρ =

∑
i

gρit3iρ
B
i , (1.32)

where σ = ⟨σ⟩, ω = ⟨ω0⟩ and ρ = ⟨ρ03⟩, are the nonvanishing expectation values of meson
�elds, the index i runs over the considered baryon particles and the e�ective mass of the ith
baryon is de�ned as

M∗
i =Mi − gσiσ . (1.33)

In Fig. 1.1, we show the behavior of the nucleon e�ective mass in the three aforementioned
models at T = 0 MeV and y = ρC/ρB = 0.5. As we can observe, M∗

N is very sensitive to the
particular choice of the parameter set of the Lagrangian density. In particular, for TM1,
we observe a very strong reduction of the nucleon e�ective mass, also at low baryon density,
due to the strong attractive interaction of the σ-�elds.
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Figure 1.1: E�ective nucleon mass at zero temperature and y = 0.5 for GM2, GM3 and
TM1 parameter set.

The ρBi and ρSi are the baryon density and the baryon scalar density, respectively.
They are given by

ρBi = γi

∫
d3k

(2π)3
[ni(k)− ni(k)] , (1.34)

ρSi = γi

∫
d3k

(2π)3
M∗

i

E∗
i

[ni(k) + ni(k)] , (1.35)

where γi = 2Ji + 1 is the degeneracy spin factor (γi = 2 for baryons) and ni(k) and ni(k)
are the fermion particle, antiparticle distributions function, given by

ni(k) =
1

exp(E∗
i (k)− µ∗i )/T + 1

, (1.36)

ni(k) =
1

exp(E∗
i (k) + µ∗i )/T + 1

. (1.37)

The baryon e�ective energy is de�ned as Ei
∗(k) =

√
k2 +Mi

∗2 and the e�ective
chemical potentials µ∗i are given in terms of the meson �elds as follows

µ∗i = µi − gωiω − gρit3iρ , (1.38)

where µi are the thermodynamical chemical potentials µi = ∂ε/∂ρi.
The thermodynamical quantities are obtained from the minimization of the baryon

grand potential ΩB. More explicitly, the pressure PB = −ΩB/V and the energy density εB
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Figure 1.2: Pressure as a function of the baryon density (left panel) and energy density
(right panel) at zero temperature and y = 0.5, for GM2, GM3 and TM1 parameter set.
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Figure 1.3: Energy per baryon versus baryon density at zero temperature and y = 0.5 for
GM2, GM3 and TM1 parameter set.

of baryons, can be written as

PB =
1

3

∑
i

γi

∫
d3k

(2π)3
k2

E∗
i (k)

[ni(k) + ni(k)]−
1

2
m2

σ σ
2 − U(σ)

+
1

2
m2

ω ω
2 +

1

4
c (gωN ω)4 +

1

2
m2

ρ ρ
2, (1.39)

εB =
∑
i

γi

∫
d3k

(2π)3
E∗

i (k) [ni(k) + ni(k)] +
1

2
m2

σ σ
2 + U(σ)

+
1

2
m2

ω ω
2 +

3

4
c (gωN ω)4 +

1

2
m2

ρ ρ
2 . (1.40)

At this regard, in Fig 1.2, we show respectively the baryonic Pressure as a function
of the baryon density (left panel) and energy density (right panel) at zero temperature
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xσ∆ xσΣ xσΞ
GM2 0.606 0.328 0.322
GM3 0.606 0.328 0.322
TM1 0.616 0.447 0.319

Table 1.3: Ratio of the scalar σ-meson coupling constants for hyperons: xσY = gσY /σN

and y = 0.5. As one can easily observe, TM1 parameter set make the pressure sti�er in
the range of baryon density interesting for the relativistic heavy ion collision experiments
(0 < ρB < 4ρ0), whereas at very high density, GM2 and GM3 parameter set make the
pressure harder. Note, however, that above ρB > 4ρ0, phase transition phenomena in the
hot and dense �reball created during the collisions may take place and therefore the system
can not be in pure hadronic phase (see Chapter 4).
Finally, in Fig. 1.3, we report the energy per baryon as a function of the baryon density at
T = 0 MeV and y = 0.5. We observe again a remarkable di�erence in the three parameter
set, however, at ρB = ρ0, is well visible the minimum of the energy per baryon, which cor-
responds, for each parameter set to a binding energy of B.E. = −16.3 MeV.

The implementation of the model with the inclusion of the full octet of baryons (see
Tab. 1.1), comes from the determination of the corresponding meson-hyperon coupling
constant that have been �tted to hypernuclar proprieties at the nuclear saturation density.
In this context, it is possible to determinate the corresponding isoscalar-vector (gωY ) and
isovector-vector (gρY ) meson-hyperon coupling constant, using the simple SU(6) quark model
[90, 91, 54, 92, 93]. This formalism allow us to obtain the following set of coupling constant:

1

3
gωN =

1

2
gωΛ =

1

2
gωΣ = gωΞ , (1.41)

gρN =
1

2
gρΣ = gρΞ gρΛ = 0 . (1.42)

The scalar σ-meson hyperon coupling constant (gσY ), is determined from the analysis of
the potential depth of the corresponding hyperon in normal dense matter, obtained in the
recent experiments [93, 94, 95, 96]:

UN
Λ = −28MeV, UN

Σ = 30MeV, UN
Ξ = −18MeV . (1.43)

In this context we obtain the following set of σ-hyperons coupling ratio, expressed as the ra-
tio of the hyperon versus the nucleon sigma-coupling constant xσY = gσY /gσN . The results
are reported in the Tab (1.3) for the di�erent choices of parameters set using in this study.
Naturally, hyperons, start to be abundantly produced only at high temperature, therefore
at moderate temperature (T < 50 MeV) their contribution to the nuclear EOS is negligible.

Finally, in order to obtain a correct description of the nuclear medium at �nite temper-
ature and density, we have to require the conservation of three charges: the baryon number
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(B), the electric charge (C) and the strangeness number (S). At high temperature, in fact,
strangeness production can not be neglected and must be take in consideration. In this
context each conserved charge is described by a conjugate chemical potential, therefore the
system is described by three independent chemical potentials: µB, µC and µS , respectively
the baryon, electric and strange chemical potential.
The chemical potential of a particle of index i can be written as:

µi = biµB + ciµC + siµS , (1.44)

where bi, ci and si are, respectively the baryon, the electric charge and the strangeness
quantum number of the particle i-th.

Furthermore, at a given temperature temperature, all the aforementioned equations
must be evaluated self-consistently by requiring the conservation of the baryon, electric
charge fraction, and strangeness numbers. This implies that, at a given baryon density (ρB),
a given elctric charge fraction y (ρC = yρB) and a given strangeness fraction z (ρS = zρB),
the chemical potentials (µB, µC , µS) are determinated by the following set of equations:

ρB =
∑
i

biρi(T, µB, µC , µS) , (1.45)

ρC =
∑
i

ciρi(T, µB, µC , µS) , (1.46)

ρS =
∑
i

siρi(T, µB, µC , µS) , (1.47)

where the sum extends over all hadrons that carrying the respective quantum number (bi,
ci, si). Note that the total strangeness fraction of the system is usually set equal to zero
(z = 0). This is almost always true, but, if the quark-gluon plasma is produced during the
relativistic heavy collision, the net strangeness of the hadronic or quark phase may not be
conserved, although the total net strangeness for both the phases will be conserved. [90]

1.3.1 ∆-isobars degrees of freedom

Delta baryons are a family of subatomic hadrons constituted by a triplet of quark up and
down, in di�erent combination (therefore they do not carrying strangeness). They are
present in 4-isobars (∆++, ∆+, ∆0, ∆−) of electric charge +2, +1, 0 and −1, with a bare
mass close to 1232 MeV and a spin and isospin projection of 3/2 (all the quarks have the
spin axis pointing in the same direction), see Tab. (1.4).
At low energy, they are instable and decay via the strong force generally in nucleons plus
pions (it depends by the electric charges of the speci�c isobars), in a typical life-time of
10−24 seconds.
Like the others baryons, ∆'s are sensitive to the nuclear interaction, mediated by the ex-
change of virtual isoscalar scalar (σ), isoscalar vector (ω) and isovector vector (ρ) meson
�elds.

In regime of �nite values of density and temperature, a state of high density resonance
matter may be formed and the ∆(1232)-isobar degrees of freedom are expected to play a
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M (MeV) C B S t3
∆++ 1232 2 1 0 3/2
∆+ 1232 1 1 0 3/2
∆0 1232 0 1 0 3/2
∆− 1232 -1 1 0 3/2

Table 1.4: ∆'s masses and quantum numbers.

central role in relativistic heavy ion collisions and in the physics of compact stars [63, 64, 65,
66, 67]. In particular, transport model calculations and experimental results indicate that an
excited state of baryonic matter is dominated by the ∆-resonance at the energy from AGS to
RHIC [68, 69, 70, 71]. However, the formation of resonances matter contributes essentially
to baryon stopping, hadronic �ow e�ects and increase strangeness particles production at
higher temperature [97].

The QHD-Lagrangian density concerning the ∆'s degrees of freedom can be written
as [73]

L∆ = ψ∆ ν [iγµ∂
µ − (M∆ − gσ∆σ)− gω∆γµω

µ]ψν
∆ , (1.48)

where ψν
∆ is the Rarita-Schwinger spinor for ∆-isobars (∆++, ∆+, ∆0, ∆−). The equation of

motion for ∆'s and σ, ω and ρ meson �elds are obtained, as usual, from the Euler-Lagrange
equation (1.3).
The Dirac equation of motion take the form:

(iγµ∂
µ −M∗

∆ − gω∆γ
0ω)ψ∆ = 0 , (1.49)

where M∗
∆ =M∆ − gσ∆ is the ∆'s e�ective mass.

In this context, the contribution of the ∆-isobars to σ, ω and ρ meson �elds, is obtained by
adding to eq.s (1.30)�(1.32), the contribution of ∆-isobars weighted for the corresponding
meson-∆ coupling constants. The EOS and the scalar and vector baryon density, are ob-
tained respectively from eq.s (1.34), (1.35) and (1.39), (1.40), weighted for the corresponding
degeneracy spin factor γ∆ = 2J∆ + 1 = 4.

In this context, it is important to remark that the meson-∆ coupling constants are
only known with a certain uncertainty. This suggest us to consider in this work, only the
corresponding coupling-constant with the σ and ω meson �elds, more of which are explored
in the literature [73, 98, 99].
In Chapter 5, we will deeply study the �nite temperature and dense nuclear medium in
presence of ∆-isobar degrees of freedom, and and we will investigate the possible phase
transition from nucleon �uid to resonant-dominant ∆-matter.

1.4 Mesonic degrees of freedom

As known, mesons are a family of subatomic particles composed of a quark and an anti-quark.
They are hadrons and therefore sensitive to the strong force mediated by the exchange of
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π K η η
′

K∗ ρ ω ϕ

M 140 494 547 958 892 771 782 1020
C 0, ±1 0, ±1 0 0 0, ±1 0, ±1 0 0
B 0 0 0 0 0 0 0 0
S 0 ±1 0 0 ±1 0 0 0
t3 0, ±1 ±1/2 0 0 ±1/2 0, ±1 0 0

Table 1.5: Mesons quantum number and vacuum masses (given in MeV).

virtual isoscalar scalar (σ), isoscalar vector (ω) and isovector vector (ρ) meson �elds, like
the baryons.
All mesons are unstable, with lifetimes ranging from 10−8 second to less than 10−22 seconds,
in particular charged mesons decay (sometimes through intermediate particles) to form elec-
trons and neutrinos. Uncharged mesons may decay to photons.
Historically, mesons are important because, for example, through the study of the J/ψ de-
cay, it was possible to discover a new quark (charm) and, furthermore, through the study
of the kaons, it was possible to demonstrate the violation of the parity during the weak
reaction. The CP violation is currently under investigation also in B-mesons (which contain
bottom quarks).
Especially at low baryon density and high temperature, their contribution to the total ther-
modynamical potential (and, consequently, to the other thermodynamical quantities) be-
comes very important. Furthermore, kaon degrees of freedom (K+, K−, K0, K

0
and K∗+,

K∗−, K∗0, K
∗0
) carrying also strangeness quantum number and for therefore, they may

play a crucial role in the physics of a relativistic heavy ion collision experiments.
For this reason, in this section, we implement the hadronic Lagrangian density introducing
the contribution of the mesons degrees of freedom.

1.4.1 E�ective relativistic mean �eld model

Let us now introduce the contribution of the lightest pseudo-scalar (π, K, K, η, η
′
) and

vector mesons (ρ, ω, K∗, K
∗
, ϕ) to the nuclear equation of state, Tab. (1.5).

It is known that, in many cases, the coupling constants of the mesons with the mesons-
�elds are only known with a bad approximation. For this reason, in this section, we show an
alternative formulation of the problem, that overcome the large uncertainty of the meson-
coupling constant present in literature, taking into account of an e�ective chemical potential
depending on the self-consistent interaction between baryons.
From a phenomenological point of view, we can take into account the meson degrees of
freedom by adding their one-body contribution to the thermodynamical potential, that is,
the contribution of an ideal Bose gas with an e�ective chemical potential µ∗j , depending
self-consistently from the meson �elds [67].
In this way, the hadronic system is still regarded as an ideal gas but here we have a (quasi-
free) meson gas with an e�ective chemical potential that contains the self-consistent inter-
action of the meson �elds.
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The value of the meson e�ective chemical potential µ∗j is obtained from the "bare" one given
in eq. (1.44) and subsequently expressed in terms of the corresponding e�ective baryon one
respecting the strong interaction. More explicitly, for π+ meson we have µπ+ = µC ≡ µp−µn,
where µC is the electric charge chemical potential. Thus, the corresponding e�ective pion
chemical potential can be written as

µ∗π+ ≡ µ∗p − µ∗n

= µp − µn − 2 gρNρ . (1.50)

where the last equivalence follows from Eq.(1.38). Therefore, the ρmeson �eld couples to the
total isospin density, which receives a contribution from nucleons and pions. Analogously
for the kaons, setting xωΛ = gωΛ/gωN , we have:

µ∗k+(k∗+) ≡ µ∗p − µ∗Λ(Σ0)

= µp − µΛ − (1− xωΛ)gωNω − 1

2
gρNρ , (1.51)

µ∗k0(k∗0) ≡ µ∗n − µ∗Λ(Σ0)

= µn − µΛ − (1− xωΛ)gωNω +
1

2
gρNρ . (1.52)

Other strangeless neutral mesons have a vanishing chemical potential.
Their one-body contribution to the thermodynamical quantities can then be easily

found. In particular, the pressure PM , the energy density εM and the particle density ρMj
of the j-the meson are:

PM =
1

3

∑
j

γj

∫
d3k

(2π)3
k2

E∗
j (k)

gj(k) , (1.53)

εM =
∑
j

γj

∫
d3k

(2π)3
E∗

j (k) gj(k) , (1.54)

ρMj = γj

∫
d3k

(2π)3
gj(k) , (1.55)

where the sun runs over all meson particles and γj = 2Jj + 1 is the degeneracy spin factor
of the j-th meson (γ=1 for pseudoscalar meson and γ = 3 for vector ones). Note that
the contribution of the particles and anti-particles is take separately, in particular in the
boson particle distribution gj(k) the contribution of anti-boson is obtained by substituting
µ∗j → −µ∗j in the boson particles distribution function:

gj(k) =
1

exp[(Ej(k)− µ∗j )/T − 1]
, (1.56)

where Ej(k) =
√
k2 −m2

j and mj is the bar mass of the j-th meson.
In presence of mesons it is also important take in consideration the possible onset of

Bose condensation. In particular, if |µ∗j | ≤ mj the condensation may take place. However,
in the range of temperatures and baryon densities explored in this thesis, such condition is
never reached.
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1.4.2 Chiral models

In this investigation we also analyze the mesonic contribution to the nuclear equation of
state, following the classical approach, that incorporate the meson degrees of freedom to the
hadronic lagrangian density through a direct coupling of the mesons to the mesons �elds.
In this context, we concentrate our analysis in particular on the lightest pseudo-scalar K
mesons (K+ and K−). This is because we are particular interested in the study of the
strangeness production at high temperature and baryon density, where the contribution of
the lightest strange mesons may play an important rule (see Tab. 1.5).
In this context, the Kaon Lagrangian density can be written in terms of minimal coupling
scheme, as follow [40, 44, 45, 100]

LK = D∗
µΦ

∗DµΦ−m∗2
KΦ∗Φ , (1.57)

where Dµ = ∂µ + igωKωµ + igρKτ3Kρµ is the covariant derivative of the meson �eld, m∗
K =

mK−gσKσ is the e�ective kaon mass and τ3K is the third component of the isospin operator.
In order to obtain the correspondent meson-kaon vector coupling constant, we use the

well known formalism obtained through the quark model and isospin counting rules and we
obtain gωK = gωN/3 and gρK = gρN . The scalar gσK coupling constant, can be determined
from the study of the real part of the anti-kaon optical potential, at the saturation nuclear
density, in a symmetric nuclear matter, by setting UK− = −gσKσ − gωKω.

In this investigation we set the anti-kaon optical potential equal to UK− = −50 MeV,
−100 MeV and −160 MeV, based on recent theoretical calculations and experimental meas-
urements [40, 41, 43, 44, 45, 46, 47, 48, 101]. For these values of the anti-kaon potential
depth, we obtain the following kaon optical potentials (UK+ = −gσKσ + gωKω, where the
sign + in the ω-�eld, is due to the G-parity): UK+ = 47 MeV, −3 MeV and −63 MeV,
respectively for UK− = −50 MeV, −100 MeV and −160 MeV, at the saturation nuclear
density. In this approach we neglect the contribution of the neutral kaons (K0 and K

0
)

because of the large uncertainty in literature on their coupling constants with the meson
�elds.

The kaon-�eld equations are obtained in the usual way, from the minimization of the
corresponding kaons thermodynamic potential ΩK , with respect to the σ, ω and ρ meson
�eld. In the relativistic mean �eld approximation, the Euler-Lagrangian equation (1.3) gives:

m2
σσ = gσK (ρSK + ρcK) , (1.58)

m2
ωω = gωK ρK , (1.59)

m2
ρρ = gρK (ρK+ − ρK−) , (1.60)

as for baryons, σ = ⟨σ⟩, ω = ⟨ω0⟩ and ρ = ⟨ρ03⟩ are the nonvanishing expectation values
of mesons �elds. Furthermore the kaon contribution to the mesons �elds must be added
to that of the baryon component of the �eld equation of motions, given in eq.s (1.30) and
(1.31)�(1.32).

In this context, the kaons vector and scalar density (ρK and ρSK), assume the form
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[100]

ρK = 2ξ2(µK −X0) +

∫
d3p

(2π)3
[nK(p)− nK(p)] , (1.61)

ρSK =

∫
d3p

(2π)3
m∗

K√
p2 +m∗2

K

[nK(p) + nK(p)] , (1.62)

where we set µK = µK+ (given in eq. 1.44), X0 = gωKω0 + gρKρ0 and ξ is the order
parameter, obtained from the minimization of the thermodynamical potential ΩK (naturally
for ξ = 0 we have no condensation). The corresponding boson particle, anti-particle (K+,
K−) distribution function are given by

nK(p) =
1

exp[(ω+(p)− µK)/T ]− 1
, (1.63)

nK(p) =
1

exp[(ω−(p) + µK)/T ]− 1
, (1.64)

where ω±(p) =
√
p2 +m∗

K ± gωKω0+ gρKτ3Kρ0 stays respectively for kaons and anti-kaons
e�ective energy and the sign (±gωKω0) is due to the G-parity.

The kaon vector density in Eq.(1.61), can be viewed therefore as the sum of a "con-
densate" and a "thermal" contribution:

ρK = ρcK(ξ) + ρTK(T ) . (1.65)

The total hadronic pressure and energy density, are given naturally as the sum of the
baryons plus the kaons component, where PK and εK are given respectively by:

PK = ξ2[(µK −X0)
2 −m∗2

K ]− T

∫
d3p

(2π)3
{ln[1− e−β(ω+−µK)]

+ ln[1− e−β(ω−+µK)]} , (1.66)

εK = ξ2[m∗2
K + µ2K −X2

0 ] +

∫
d3p

(2π)3
[ω+nK(p) + ω−nK(p)] . (1.67)

Finally, we would like to point out that the condition for the onset of the kaon condensation,
is given by [100]

ξ[µK − ω+(0)][µK + ω−(0)] = 0 , (1.68)

therefore, for a s-wave condensation at p = 0, we obtain, respectively, µK+ = ω+ for K+

and µK− = ω− for K− (naturally when the condensate is not present, ξ = 0).

1.5 Strangeness production at �nite temperature and baryon

density

We would like to present now, a detailed discussion of the strangeness production at �nite
temperature and baryon density, by means of the e�ective relativistic mean �eld model 1.4.1
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and the comparison of the obtained results with that of the chiral formulation exposed in
Section 1.4.2.
In this context, we are particularly interested in the study of the kaon and anti-kaon pro-
duction, in the regime of relativistic heavy ion collision experiments as well as in compact
stars (hyperons degrees of freedom are include in the hadronic Lagrangian density following
the prescription of Section 1.3).
This study, may help us to well determinate the real part of the anti-kaon optical poten-
tial, currently a�ected by big uncertainties, due to the di�culty of �nding out its value
from the experimental results at the nuclear saturation density. As partial discussed in
the introduction, a stronger attractive potential depth should in fact favor the formation
of the condensation, but, on the other hand, a sti�er or softer equation of state (EOS)
should help or not the condensation itself. At this regard, the analysis of kaonic atom data
leads to the real part of anti-kaon optical potential close to UK− = −180 ± 20 MeV at the
saturation nuclear matter density [40, 41, 42, 43, 44, 45]. Contrariwise, chiral-models and
coupled-channel G-matrix theory, seem to suggest a strength of the optical potential close
to UK− = −(50 ÷ 80) MeV [46, 47, 48]. These uncertainties in the estimation of the anti-
kaon potential depth, imply some di�culties in the calculation of the e�ective kaon mass
in-medium. Moreover, di�erent mean �eld models predict negative or imaginary e�ective
kaon mass at su�ciently large values of the σ-meson �eld, responsible of the medium range
attraction [44, 45, 54]. At this regard, the future CBM (Compressed Baryonic Matter) ex-
periment of FAIR (Facility of Antiproton and Ion Research) at GSI Darmstadt, will be of
great importance to create compressed baryonic matter with a high net baryon density and
�nite temperature [55, 56, 57, 58] and make possible an accurate analysis of the proprieties
of kaons and, more in general, of the strangeness production at high baryon density.

Here, we investigate the strangeness production at �nite isospin density (y = 0.4) and
zero net strangeness (z = 0), using the e�ective relativistic mean �eld model and the chiral
one.
In particular, we focused our analyze in the range of temperature and baryon density reach-
able in high energy heavy ion collisions with particular attention to the physical conditions
relevant for the future CBM experiment at FAIR. At this stage, the possible formation of
a mixed phase or decon�nement phase transition to a quark-gluon plasma is not take in
consideration. Whereas our attention is pointed in exploring the strangeness production of
a hadronic system and the possible onset of the kaon condensation for the two aforemen-
tioned models. In this context, other strangeless mesons are not considered in our analysis,
because they do not sensibly a�ect the strangeness production but they contribute mainly
to the total pressure and energy density.

This study is based on the results obtained in [102, 103, 104]

1.5.1 Hadronic equation of state and main results

The analyze is performed in the framework of relativistic mean �eld theory. In particular,
the nuclear medium is investigated at �nite temperature and baryon density, by requiring
the conservation of the baryon number (B), electric charge (C) and strangeness number (S).
In this context the meson-nucleon couplings constant (gσN , gωN , gρN ) are �xed to reproduce
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the parameters set marked as GM3 of Tab. 1.2.
Due to the high temperature and high baryon density achieved by the system, the

hadronic Lagrangian density take the form:

LH = LB + LK , (1.69)

where LB stands for the full octet of baryons (p, n, Λ, Σ+, Σ0, Σ−, Ξ−, Ξ0) eq. (1.27) and
LK corresponds to the kaon meson degrees of freedom (K+, K−) eq. (1.57).

As already discussed in the previous section, especially due to the large uncertainties
in the measure of the anti-kaon optical potential, here we presents a comparative study of
the strangeness production in hadronic matter, comparing the results obtained through the
e�ective relativistic mean �eld model, exposed in section 1.4.1, with that of the chiral one,
obtained through a direct coupling of the kaons with the meson �elds, widely exposed in
section 1.4.2.

The baryon scalar density, the vector density and the EOS are obtained following the
eq.s (1.34), (1.35) and (1.39)�(1.40) whereas the kaons, anti-kaons scalar and vector density
and the corresponding EOS are obtained respectively the eq.s (1.61), (1.62) and (1.66)�
(1.67). In the e�ective relativistic mean �eld model, the vector density and the EOS are
instead given by eq.s (1.55) and (1.53)�(1.54).
Naturally, the total pressure and energy density, are given by the sum of the baryons and
the mesons component, calculated in one of the two aforementioned approaches .

1.5.2 Kaons to anti-kaons ratio.

To start this numerical investigation, we report in Fig. 1.4, the kaon to anti-kaon ratio
K+/K− as a function of baryon density and of the temperature, for di�erent values of the
anti-kaon optical potential. As expected, the ratio results to be very sensitive to the choices
of the anti-kaon potential depth. At �xed temperature and by increasing the baryon density,
we observe a continuous growing in the K+/K− ratio for moderate values of UK− , whereas
in presence of a strong attractive potential, the ratio decreases after reaching the nuclear
saturation density, mainly due to the strong reduction of the kaon e�ective mass.

In this context it is interesting to observe that the results obtained in the minimal
coupling scheme for a moderate potential depth (UK− = −50 MeV), as suggested by recent
self-consistent calculations based on chiral Lagrangian [47, 48] and coupled-channel G-matrix
theory [46], are very close to those of the e�ective relativistic mean �eld model. Contrariwise,
in absence of kaon interaction (dot dashed line) and especially at higher baryon density, we
observe a strong increase in the K+/K− ratio. This e�ect is mainly due to the absence of an
e�ective kaon mass and chemical potential. In Fig. 1.5, we show the variation of the kaon
to anti-kaon ratio as a function of the temperature at a �xed baryon density ρB = ρ0, where
ρ0 is the nuclear saturation density. It is possible to observe again a good correspondence
between the two approaches for a moderate value of the anti-kaon optical potential. In
presence of a free kaons gas, there is a strong enhancement in the K+/K−, due to the
absence of the σ and ω �elds self-interaction. The contribution of ρ-meson �eld appears
to be instead negligible for this choice of parameter set (y = 0.4) and especially at higher
temperature, where anti-kaons are abundantly produced and the K+/K− rapidly decreases.
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Figure 1.4: Kaon to anti-kaon ratio as a function of baryon density at a �xed temperature
T = 120 MeV. The solid lines correspond to the results obtained in the e�ective relativ-
istic mean �eld model, the dashed lines correspond to di�erent values of anti-kaon optical
potential and the dot-dashed lines to a non-interacting free kaon gas.
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Figure 1.5: The same of Fig. 1.4 as a function of temperature at a baryon density �xed to
the nuclear ρ0.
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Figure 1.6: Strangeness concentration as a function of baryon density at a �xed temper-
ature T = 120 MeV. The solid lines correspond to the results obtained in the e�ective
relativistic mean �eld model, the dashed lines correspond to di�erent values of anti-kaon
optical potential and the dot-dashed lines to a free kaon gas.

Such a sensible di�erence in the kaon to anti-kaon ratio can be considered as a relevant
feature for the determination of the real part of the anti-kaon optical potential, in the future
relativistic heavy ion collision experiments at high baryon density.

1.5.3 Strangeness concentration and kaons condensation.

To better clari�es the role played by strange particles in the nuclear medium, we report in
Fig. 1.6, the strangeness concentration YS of kaons (K+) and anti-kaons (K−), hyperons
(Y ) and anti-hyperons (Y ) as a function of the baryon density. The total strangeness is �xed
to zero. As expected, almost all the strangeness fraction is carried by kaons and hyperons,
whereas K− and anti-hyperons play a marginal role, contributing only at low baryon density
and high temperatures.

The results obtained through the relativistic mean �eld model, are in very good agree-
ment with the minimal coupling scheme, when we set UK− = −50 MeV. In absence of kaon
interaction (free kaon gas, dot dashed lines), at low baryon density, the kaon strangeness
concentration is close to that of the relativistic mean �eld model, whereas, at higher ρB it
converges to that of the e�ective minimal coupling scheme obtained for UK− = −160 MeV.
Instead, anti-kaons strangeness fraction do not show an appreciable variation in absence of
meson-�eld interaction.

In the following �gure 1.7, we show the strangeness dependence of the system at
the nuclear saturation density ρ0 for a wide range of temperatures. As one can see, the
strangeness concentration is practically negligible below T = 60 MeV. Strange particles
start to be abundantly produced above T = 80 MeV and the corresponding anti-particles
are produced at higher temperatures. The free kaon gas case is also reported. In this
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Figure 1.7: The same of Fig. 1.6 as a function of temperature at a �xed baryon density
ρB = ρ0.

context, it is relevant to note that, for a choice of UK− = −50 MeV, the results obtained
in the minimal coupling scheme are very close to those of the relativistic mean �eld one,
because in this case the e�ective kaon mass is very close to the bare one. At the increasing
of the anti-kaon optical potential, the e�ective kaon mass rapidly decreases, deviating from
the behavior of the relativistic mean �eld model.

Before concluding, we would like to present a brief analyze of the condition for the
onset of the kaon condensation, for a wide range of temperatures and baryon densities, in
the two aforementioned models, considering UK− = −50 and −160 MeV. At this purpose,
in Fig. 1.8 , we report the threshold condition for the onset of the kaon and anti-kaon
condensation (ω+ = µK+ for K+ and ω− = µK− for K−) at p = 0 (s-wave condensation) as
a function of baryon density and at the lower temperature at which strange particles start to
be produced (T = 80MeV). As one can easily observe, the kaon/anti-kaon chemical potential
µK± is always lower than the corresponding kaon/anti-kaon threshold energy ω±, therefore
the condition for the onset of the condensation is never reached. However, it is interesting to
note that, for UK− = −160 MeV, µK+ approaches ω+, but they do not come close enough to
allow the formation of the condensation. Note also that for UK− = −50 MeV, the minimal
coupling curves are perfectly overlapping to that of the e�ective relativistic one. In absence
of the kaon interaction, the e�ective kaon energy is obviously constant and equal to the kaon
mass (ω± = mK). The chemical potential is close to that of the minimal coupling scheme
for UK− = −160 MeV, hence also in this case the threshold condition for the onset of the
condensation is never reached.

Analogously, in Fig. 1.9, we show the variation of the kaon and anti-kaon e�ective
energy and chemical potential for a very wide range of temperatures at the maximum baryon
density explored in this work (ρB = 4 ρ0). It is interesting to observe that both kaon and
anti-kaon e�ective energies seem to be very little a�ected by variation of the temperature,
contrariwise kaon and anti-kaon chemical potentials show a little increase at higher temper-
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Figure 1.8: Kaon and anti-kaon e�ective energy ω±(p = 0) and chemical potential as a func-
tion of baryon density at T = 80 MeV, for free kaons gas (dot-dashed lines), in the e�ective
relativistic mean �eld model (solid lines) and in the minimal coupling scheme (dashed lines)
for UK− = −160 and −50 MeV.
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Figure 1.9: The same of Fig. 1.8 as a function of the temperature at ρB = 4ρ0.
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ature (such a feature persists also by increasing the isospin asymmetry y). This behavior
seems to suggest that in relativistic heavy ion collision kaons can never reach the threshold
condition for the onset of the condensation. Such a result appears to be in agreement with
the predictions of very recent transport models [53]. The situation is of course di�erent
in systems like neutron stars, where the total strangeness is not conserved and the kaon
condensation can take place [49, 50, 51, 40].

1.5.4 General consideration

In conclusion, the results obtained in the relativistic mean-�eld model and in the chiral one,
are in good agreement when we choice a moderate value of the anti-kaon optical potential
(UK− = −50 MeV), as suggested by recent self-consistent calculation based on chiral Lag-
rangian and G-matrix theory [46, 47, 48]. In this condition, the kaon to anti-kaon ratio
and the strangeness fraction become very close to those of the e�ective relativistic mean
�eld model. Contrariwise, when we take in consideration a stronger potential depth (e.g.
UK− = −160 MeV), the results appear to be signi�cantly di�erent, mainly due to the strong
variation in the kaon e�ective mass in the meson-exchange model.
Furthermore, in absence of kaon in-medium interaction, the kaon to anti-kaon ratio rapidly
diverges by the results obtained in the meson exchange and the relativistic mean �eld model,
mainly due to the absence of the contribution of the σ and ω �eld into the kaon mass and
chemical potential. The kaon strangeness concentration is also sensibly modi�ed taking a
behavior intermediate between that of the relativistic mean �eld model, at low baryon dens-
ity and the minimal coupling scheme at UK = −160 MeV, for higher values of ρB. Whereas
anti-kaons strangeness fraction do not show an appreciable variation in absence of meson-
�eld interaction. The strong di�erence in the kaon to anti-kaon ratio, could therefore be
considered as a relevant feature in the determination of the real part of the anti-kaon optical
potential, especially in relativistic heavy ion collisions at high baryon density [55, 57, 58].

Finally, we have also analyzed the possible onset of the kaon condensation in regime
of density and temperature reachable in relativistic heavy ion collisions. We have found that
the kaons chemical potential is always less then the corresponding kaon threshold energy
ω±). This matter of fact seems to suggest, in agreement with the results obtained within
modern transport codes [53], that kaon condensation does not take place at any temperature
and density in those systems in rapid evolution, like the relativistic heavy ion collision, where
the zero net strangeness condition is conserved.

1.6 Quark-gluon plasma equation of state

In the last years, there was an increasing theoretical and experimental evidences that, during
the condition reached in a relativistic heavy ion experiment, baryons are forced to stay
so close one to another that they would overlap. Therefore, at large densities or high
temperature, constituent quarks are shared by neighboring baryons and should eventually
become mobile over a distance larger than the typical size of one baryon. This means that
quarks become decon�ned and the real degrees of freedom of strongly interacting matter
instead of baryons.
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Unfortunately it is not possible to directly study the QGP state, due to the rapid time
evolution (≈ 10−22 sec) of the �reball and the consequent rehadronization process, but it
is possible to make some prediction about its proprieties through some physical observable,
such as for example the strangelet production (the s-s̄ separation mechanism in the hadron
and in the quark phase during the phase transition) and the enhancement of strange particle
production during the rehadronization [105, 106].
Furthermore, from a theoretical point of view, lattice calculation predict a critical phase
transition from hadronic matter to quark-gluon plasma (QGP) at temperature Tc of about
170 MeV, corresponding to a critical energy density εc ≈ 1 GeV/fm3 [107]. At �nite baryon
chemical potential a rapid-cross over of the thermodynamics observable around a quasi-
critical temperature and a �rst order phase transition is excepted.

In our investigation, we analyze the quark-gluon plasma (QGP) equation of state
through the well know and simple MIT-Bag model.
The relative Lagrangian density can been written as:

LMit =
∑
q

ψ̄q[iγµ ∂
µ −mq]ψq −B , (1.70)

where q is the quark �avor (u, d, s), mq is the quark vacuum mass (mu = md = 0 MeV and
ms = 150 MeV) and B is the bag pressure.

In this context, all the non-perturbative e�ects are simulated by the bag constant
B which represents the pressure of the vacuum. Furthermore, it is well known using the
simplest version of the MIT bag model, at moderate temperatures the decon�nement trans-
ition takes place at very large densities if the bag pressure B is �xed to reproduce the critical
temperature computed in lattice QCD. On the other hand there are strong theoretical in-
dications that at moderate and large densities (and not too large temperatures) diquark
condensates can form, whose e�ect can be approximately taken into account by reducing
the value of the e�ective bag constant [108].
A phenomenological approach can therefore be based on a bag constant depending on the
baryon chemical potential, as proposed in Ref [109]. We have adopted a parametrization of
the form

Beff =
B0 −B∞

1 + e
µB−µ0

a

+B∞ , (1.71)

where we have set B1/4
0 = 254 MeV (bag constant at vanishing µB), B

1/4
∞ = 160 MeV

(bag constant at very large µB), µ0 = 600 MeV and a = 320 MeV. The above values have
been obtained by requiring that, at vanishing chemical potential, the critical temperature
is about 170 MeV, as suggested by lattice calculations [107], while the other constraint is
the requirement that the mixed phase starts forming at a density slightly exceeding 3 ρ0
(see Fig. 1.10) for a temperature of the order of 100 MeV (as suggested by hydrodynamical
calculations [110]).

Following this line, the pressure, energy density and baryon number density for a
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relativistic Fermi gas of quarks can be written, respectively, as [111]

P =
γf
3

∑
f

∫ ∞

0

d3k

(2π)3
k2

ef
[nf (k) + nf (k)]−Beff , (1.72)

ε = γf
∑
f

∫ ∞

0

d3k

(2π)3
ef [nf (k) + nf (k)] +Beff , (1.73)

ρ =
γf
3

∑
f

∫ ∞

0

d3k

(2π)3
[nf (k)− nf (k)] , (1.74)

where the quark degeneracy factor for each �avor (f = u, d, s) is γf = 6 and nf (k), nf (k)
are the particle and antiparticle quark distributions function:

ni(k) =
1

exp(Ef (k)− µf )/T + 1
, (1.75)

ni(k) =
1

exp(Ef (k) + µf )/T + 1
, (1.76)

where Ef (k) =
√
k2f +m2

f and µf is the quark chemical potential, given by eq. (1.44).

Let us remark that, in this investigation, light quarks (u, d) are considered as massless
particles, while for strange quarks (s, s̄) we consider a �nite mass of ms = 150MeV .
Similar expressions for the pressure and the energy density can be written for gluons, treating
them as a massless Bose gas with zero chemical potential. Explicitly, we can calculate the
Pg and energy density εg for gluons as

Pg =
γg
3

∫ ∞

0

d3k

(2π)3
k

exp(Ef (k)− µf )/T − 1
, (1.77)

εg = 3Pg , (1.78)

with the gluon degeneracy factor γg = 16.
In the Fig. 1.10, we report the pressure of the system as a function of the baryon

density at di�erent temperatures using the GM3 parameter set for the hadronic phase and
the simple MIT Bag model with two quarks �avors and B1/4 = 190 MeV, for the quarks
phase. Gluons are also taken in consideration through Eq.s (1.77) and (1.78).
Although the simplest version of the MIT bag model considered in this example, appears
to be not fully appropriate to describe the nuclear medium, especially at high temperature
and density, due to the absence of a Bag parametrization of the form of Eq. (1.71), we
can anyhow observe the dependence of the QGP decon�nement phase transition from the
temperature of the system. For example, at T = 130 MeV, the QGP phase is present around
ρB = 1.4ρ0, whereas, at lower temperature, the decon�nement phase transition to QGP is
achieved at very high baryon density. At zero baryon density the decon�nement phase
transition is expected to exist only at higher temperature (Tc ≈ 170 MeV), or alternatively,
in the inner core of compact object, such as for example neutron stars, the condition can be
reached also at T = 0 MeV, due to the high baryon density present in its core.
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Figure 1.10: Pressure as a function of the baryon density at y = 0.5 for GM3 parameter set
and MIT-Bag model with two quarks �avors and B1/4 = 190 MeV.

Furthermore, since one has to employ the fermion (boson) distributions, the results
are not analytical, even in the massless quark approximation. Hence a numerical evaluations
of the integrals in Eq.s (1.72)�(1.74) and (1.77) must be performed.

1.7 Major conclusions

In this chapter, we have presented a detailed discussion of the Lagrangian formalism in the
context of relativistic mean-�eld model, where the nuclear force is mediated by the exchange
of virtual isoscalar-scalar (σ), isoscalar-vector (ω) and isovector-vector (ρ) meson �elds.
In this context, we have developed and implemented the nuclear EOS at �nite temperature
and baryon density, in the framework of non-linear relativistic Walecka type models. Fur-
thermore, we have introduce the meson degrees of freedom through an e�ective formulation
where the e�ective chemical potential depends on the self-consistent interaction between
baryons (section 1.4.1). In this context, we have also introduced and analyzed the mesons
contribution to the hadronic Lagrangian density, through a more traditional approach, in
which the kaons are direct coupled with the meson �elds.
We have also analyzed the strangeness production at �nite temperature and baryon density,
comparing the results obtained in the e�ective relativistic formulation of section 1.4.1 with
that of the minimal coupling scheme of section 1.4.2. We have found a good correspondence
between the two models for a moderate attractive value of the anti-kaon optical potential
(UK− = −50 MeV). Furthermore, in agreement with the results obtained within modern
transport codes [53], we have found that kaon condensation does not take place at any
temperature and density in those systems in rapid evolution, like the relativistic heavy ion
collision, where the zero net strangeness condition is conserved.
Finally, we have introduced the MIT Lagrangian density, in order to treat the QGP phase
transition during the relativistic heavy ions collision experiments.
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In this context, we have proposed two simply phenomenological approaches, one with a
constant Bag, and another one based on a bag constant depending on the baryon chemical
potential, as proposed in Ref [109].

The hadronic Lagrangian density and the MIT Bag model, will be used in the next
Chapters in order to obtain the EOS and the thermodynamical proprieties of high com-
pressed nuclear matter experiments, in a range of temperatures and baryon densities rel-
evant in the future CBM (compressed baryonic matter) experiment of the FAIR (Facility
of Antiproton and Ion Research) project at GSI Darmstadt [55, 58, 57]. However, in this
direction, interesting results have already been obtained at low energy at the CERN Su-
per Proton Collider (SPS) and are foreseen at a low-energy [112, 113, 114]. Finally, we
will explore the mechanical and thermodynamical structure of proto-neutronstars, under
β-stability condition in Chapter 3.
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Chapter 2

Nonextensive statistical mechanics

In this chapter, we present the most important features of the so called nonextensive stat-
istical mechanics, that is an implementation of the common Boltzmann-Gibbs statistics and
it can be considered as an appropriate basis to deal with physical phenomena where strong
dynamical correlations, long-range interactions and microscopic memory e�ects take place.

2.1 Introduction

As known, one of the major challenges in the modern physics is the determination of the
physical proprieties and of the equation of state (EOS) of a strongly interacting systems at
high temperature and �nite baryon density.
In this context, the physics of relativistic heavy ion collisions, where the matter can reaches
a value of few times the nuclear saturation density, is a goldmine of problems in statistical
mechanics and thermodynamics due to a large average number of particles involved and pos-
sible phase transition phenomena in the hot and dense �reball created during the collisions
[1].
For example, although in principle the process of decon�nement phase transition and the
equation of state of quark-gluon matter can be described by quantum chromodynamics, in
the last years, there is an increasing evidence that, in energy density range reached in re-
lativistic heavy-ion collisions, non-perturbative e�ects in the complex theory of QCD are not
negligible [107]. For this reason, the generated QGP immediately after the collision, does
not at all resemble a quasi-ideal gas of quarks and gluons presenting strongly dynamical
correlations, including long-range interactions [1, 115, 18, 2, 19].

In this context, the nonextensive statistical mechanics, proposed �rstly by Tsallis,
appears as a natural candidate in order to investigate physical phenomena where strong
dynamical correlations, long-range interactions and microscopic memory e�ects take place
[20, 21, 22, 25]. A considerable variety of physical applications involve a quantitative agree-
ment between experimental data and theoretical models based on Tsallis thermostatistics.
The existence of nonextensive statistical e�ects, therefore, should strongly a�ects the �nite
temperature and density nuclear EOS [116, 117, 27]. In fact, by varying temperature and
density, the EOS re�ects in terms of the macroscopic thermodynamical variables the micro-
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scopic interactions of the di�erent phases of nuclear matter.
Furthermore, under the phase transition, long range correlation and �uctuation in the tem-
perature and in the others thermodynamical variables can be important and, in this situ-
ation, standard statistics constitute only a very strong approximation for the system.

2.2 Nonextensive statistical mechanics

Here, we present a brief discussion of the main features of the nonextensive mechanics. The
importance of develop a phenomenological new and powerful statistical approach to the
thermodynamics, is of great importance in order to obtain a connection between variables
such as for example the temperature, pressure, energy of the system and the macroscopic
world. This is particularly valid under the extreme condition reached during the relativistic
heavy ion collision experiments or in the inner core of dense and hot compact objects, where
strongly dynamical correlations, including long-range interactions, may take place.
In this context, from a theoretical point of view, it is important to resume �rstly the basic
properties of the Boltzmann-Gibbs (BG) formulation of statistical mechanics, that provide
a magni�cent tool in order to treat a very di�erent kinds of physical phenomenons.
The basis of the BG statistics, is the following expression of the entropy:

SBG ≡ −k
W∑
i=1

pi ln pi , (2.1)

with

W∑
i=1

pi = 1 , (2.2)

where pi is the probability associated with the ith microscopic state of the system, and k is
Boltzmann constant. In the particular case of equiprobability, i.e., pi = 1/W (∀i), Eq. (1)
yields the celebrated Boltzmann principle:

SBG = k lnW . (2.3)

From now on, and without loss of generality, we shall take k equal to unity.
In presence of continuous variables, BG entropy could be written as

SBG ≡ −
∫
dx p(x) ln p(x) (x ∈ Rd), (2.4)

with ∫
dx p(x) = 1 . (2.5)

In particular, for a quantum system, BG statistics take the form:

SBG ≡ −Trρ ln ρ , (2.6)
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with

Trρ = 1 , (2.7)

ρ being the density operator or matrix. When the W ×W matrix ρ is diagonalized, it shows
the set {pi} in its diagonal.

Although of its tremendous power and usefulness, the BG concepts and statistical
mechanics appear to be not universally applicable. Indeed, there is a plethora of natural
and arti�cial systems (see, for instance, [21] and references therein) for which they do not
provide the adequate mathematical frame for handling physically relevant quantities. This
fact started being explicitly recognized at least as early as in 1902 by Gibbs himself, where he
addresses anomalies related to systems such as gravitation. A formalism becomes therefore
desirable which would address such anomalous systems. A vast class of them (although
surely not all of them) appears to be adequately discussed within a generalization of the
BG theory, frequently referred to as nonextensive statistical mechanics. This theory was
�rst introduced by Tsallis, in 1988 [118] and then re�ned in 1991 [119] and 1998 [120]. It is
based on the following generalization of SBG:

Sq ≡
1−

∑W
i=1 p

q
i

q − 1
(q ∈ R; S1 = SBG) . (2.8)

Expressions (2.4) and (2.6) are respectively generalized into

Sq ≡
1−

∫
dx [p(x)]q

q − 1
, (2.9)

and

Sq ≡
1− Tr ρq

q − 1
(2.10)

In this context, through eq. (9), the equiprobability condition (i.e., pi = 1/W, ∀i),
yields

Sq = lnqW , (2.11)

with the q-logarithm function de�ned as [20, 22]

lnq x ≡ x1−q − 1

1− q
(x ∈ R; x > 0; ln1 x = lnx) , (2.12)

and its inverse function (de�ned as q-exponential), given by:

eq(x) ≡ [1 + (1− q)x]1/(1−q) . (2.13)

The generalized entropy has, therefore, the usual properties of positivity, equiprobab-
ility, concavity and irreversibility and preserves the whole mathematical structure of ther-
modynamics (Legendre transformations). The real parameter q determines the degree of
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non-additivity exhibited by the entropy form (2.9) and in the limit q → 1, becomes additive
and reduces to the standard Boltzmann-Gibbs entropy.

To better clarify this aspect and have a complete formulation of the nonextensive
statistical mechanics, we have to optimize the Sq (given in eq. (2.8)), introducing the
concept of energy in the aforementioned formalism. In this context, the best way to do so, is
using the so called canonical ensamble, where the system is typically described by a quantum
Hamiltonian, and it is characterized by the spectrum of energies {Ei} (i = 1, 2, ...,W ) de�ned
as the eigenvalues associated with the Hamiltonian and its boundary conditions.
Here, the internal energy of the nonextensive system is given, in analogy to that of the
Gibbs formalism (

∑W
i=1 piEi = UBG), by:∑W

i=1 p
q
iEi∑W

i=1 p
q
i

= Uq , (2.14)

or equivalently: (
∑W

i=1 p
q
i (Ei − Uq) = 0).

The functional take instead the form:

Φq ≡ Sq + α
[ W∑
i=1

pi − 1
]
− β

[ W∑
i=1

pqi (Ei − Uq)
]
, (2.15)

where α and β are the Lagrange parameters (their signs have been chosen using the standard
notation) and the extremizing condition δΦq/δpj = 0 yields

pj =
( q
α

)1/(1−q)
e
−β(Ej−Uq)
q (j = 1, 2, ...,W ) . (2.16)

In this way, from the condition of eq. (2.2), we can eliminate the parameter α and therefore
�nd the generalized weight:

pi =
e
−β(Ei−Uq)
q

Zq
(i = 1, 2, ...,W ) , (2.17)

where β = 1/T and the q-generalized partition function is de�ned as follows:

Zq(β) ≡
W∑
j=1

e
−β(Ej−Uq)
q . (2.18)

This probability distribution corresponds to a maximum (minimum) of Sq for q > 0
(q < 0). For q = 0, the entropy is constant, namely S0 = W − 1, and the distribution is
given by pi = [1−β(Ei−U0)]/

∑W
j=1[1−β(Ej−U0)]. Moreover, for q < 1, the q-exponential

function presents a natural high-energy cuto�, hence the states for which [1−β(Ei−U0)] < 0
do not contribute.

A fundamental feature of Tsallis generalized thermostatistics, is the concept of non-
additivity of the entropy (2.8). In fact, if we have two statistically independent subsystems
A e B, described, respectively, by individual probability density f (A) and f (B) and we call
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f (A+B)(xA,xB) = f (A)(xA) f
(B)(xB) the joint probability density of a composite system

A+B, the nonadditive (nonextensive) character of Sq is summarized in the relation [22]

Sq[f
(A+B)] = Sq[f

(A)] + Sq[f
(B)])

+(1− q)Sq[f
(A)]Sq[f

(B)] . (2.19)

In the limit q → 1, the above equation reduces to the well-known additivity (extensivity)
relation of the Boltzmann-Gibbs logarithmic entropy. Here, the word nonextensive should be
associated with the fact that the total energy of long-range-interacting mechanical systems
is nonextensive, in contrast with the case of short-range-interacting systems, whose total
energy is extensive in the thermodynamical sense [22].

The second crucial assumption on nonextensive statistics is the introduction of the
q-mean value (or escort mean value) of a physical observable A(x) [118, 20, 21, 22]:

⟨A⟩q =
∫
A(x) [f(x)]qdΩ∫

[f(x)]qdΩ
. (2.20)

The probability distribution can be obtained maximizing the measure Sq under appro-
priate constraints related to the previous q-mean value de�nition. In this context, we want
to remark that the Tsallis classical distribution can be seen as a superposition of Boltzmann
distributions with di�erent temperature which have a mean value corresponding to the tem-
perature appearing in the Tsallis distribution. The nonextensive q parameter is related to
the �uctuation in the temperature and describes the spread around the average value of the
Boltzmann temperature [121]. Unfortunately, in many occasion, is not possible to calcu-
late the value of the non extensive q parameter a priori, especially due to the unknown or
extremely complex microscopic dynamics of the systems. In this cases, q can be obtained
through the �tting of experimental data.

Following the above prescriptions, it is possible to obtain the associate quantum mean
occupation number of particles species i in a grand canonical ensemble. For a dilute gas of
particles and for small deviations from the standard statistics (q ≈ 1), it can be written as
[122, 123]

ni =
1

ẽq(β(Ei − µi))± 1
, (2.21)

where β = 1/T , the sign (±1) stays for fermions and bosons respectively, and ẽq(x) is the
q-exponential function given in the eq. (2.13). At this regards, let us remember that, with
this prescription, when q < 1, the above distribution has a natural high-energy cuto�, which
implies that the energy tail is depleted, therefore we have to require that the solution satisfy
the condition of [1 + (1 − q)x] ≥ 0. Contrariwise, when q is greater than 1, the cuto� is
absent and the energy tail of the particle distribution (for fermions and bosons) is enhanced.

For this reason, we found more suitable to adopt a di�erent prescription, based on
the so called mirror re�ection and proposed by Wilk (for details see Ref [33] and reference
therein).
In this context the high energy cuto� is absente and the solution are given respectively by:
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for q > 1

ẽq(x) =

{
[1 + (q − 1)x]1/(q−1) if x > 0;

[1 + (1− q)x]1/(1−q) if x ≤ 0,
(2.22)

and, for q < 1,

ẽq(x) =

{
[1 + (q − 1)x]1/(q−1) if x ≤ 0;

[1 + (1− q)x]1/(1−q) if x > 0
. (2.23)

where x = β(E−µ) and eq. (2.23), is obtained using the mirror re�ection of equation (2.22).
Naturally, for q → 1 the above quantum distribution reduces to the standard Fermi-Dirac
and Bose-Einstein distribution. Let us observe that, nonextensive statistical e�ects vanishes
approaching to zero temperature. On the other hand, the nonextensive statistics entails a
sensible di�erence on the power-law particle distribution shape in the high energy region
with respect to the standard statistics. For this reason, nonextensive e�ects is expected to
play an important role in the �nite temperature and high baryon density PNS evolution, as
well will show in Chapter 3. In our numerical investigation, we limit ourself to consider only
small �uctuations from q = 1 and observe the variation in the thermodynamical quantities
of the system.

2.3 Nonextesive equation of state

As partially discussed in the previous sections, in presence of high density and high tem-
perature nuclear medium, nonextensive e�ects may play an important role in the physics of
the relativistic heavy ion collision and may alter sensibly the thermodynamical quantities.
In this context, as said in in the Introduction and in Section. 2.1, the nonextensive stat-
istical mechanics, proposed �rstly by Tsallis, can be considered as an appropriate basis
to deal with physical phenomena where strong dynamical correlations, long-range interac-
tions and microscopic memory e�ects take place [20, 118, 21, 22, 25]. In particular, in
the last years, there was a growing interest into high energy physics applications of nonex-
tensive statistics and several authors have outlined the possibility that experimental ob-
servations in relativistic heavy ion collisions can re�ect nonextensive statistical behaviors
[23, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 35, 34, 36, 37].
Unfortunately, the extraction of experimental information about the EOS of matter at large
densities and temperatures at intermediate and high energy heavy-ion collisions is very
complicated and can be realized only indirectly by comparing the experimental data with
di�erent theoretical models, such as, for example, �uid-dynamical models [124]. Related
to this aspect, it is relevant to observe that a relativistic kinetic nonextensive theory [125]
and a nonextensive version of a hydrodynamic model for multiparticle production processes
have been proposed [126]. Very recently, nonextensive statistical e�ects on the hadronic
EOS have been investigated by means of a Walecka type relativistic mean �eld model [123].
Furthermore, a nonextensive version of Nambu-Jona-Lasinio model [33] and the e�ects on
color superconducting phase for two quark �avors due to a change to Tsallis statistics have
been studied [30].
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In this section, we implement the nuclear equation of state, introduced in the Chapter
1, in the context of nonextensive statistical mechanics and we show the most important
mathematical and physical consequences of this formalism.

2.3.1 Nonextesive hadronic equation of state

In the framework of nonextensive statistical mechanics, the hadronic Lagrangian density of
eq. (1.27) is not changed, but, as reported in the section 2.2, the baryon density (ρBi ), the
scalar density (ρSi ), the pressure (PB) and the energy density (εB) are strongly modi�ed.
In fact, by varying temperature and density, the EOS re�ects in terms of the macroscopic
thermodynamical variables the microscopic interactions of the di�erent phases of nuclear
matter.

Using the formalism introduced in the previous section, and in particular the eq.s
(2.21)�(2.22) and (2.23), in the hypothesis of q > 1 and β(E∗

i (k) − |µ∗i |) > 0, the baryon
and scalar density (eq.s (1.34) and (1.35)) assume the form:

ρBi = γi

∫
d3k

(2π)3
[ni(k)− ni(k)] , (2.24)

ρSi = γi

∫
d3k

(2π)3
M∗

i

E∗
i

[nqi (k) + n q
i (k)] . (2.25)

where q is the nonextensive parameter and ni(k) and ni(k) are the q-deformed particles,
anti-particles distribution function:

ni(k) =
1

[1 + (q − 1)β(E∗
i (k)− µ∗i )]

1/(q−1) + 1
, (2.26)

ni(k) =
1

[1 + (q − 1)β(E∗
i (k) + µ∗i )]

1/(q−1) + 1
. (2.27)

In this context, the baryon e�ective mass (M∗
i =Mi−gσiσ) is also modi�ed by the presence

of nonextensive e�ects, due to the variation in ρSi , that acts on the scalar meson �eld σ.
The equation of motion of the meson �elds (1.30)�(1.31) and (1.55), are in fact sensibly
to the presence of nonextensive e�ect, due to their coupling with the baryon and scalar
density. Therefore, even in presence of small deviation from the standard BG statistics, the
baryons-�elds interaction is sensibly altered and this re�ects on the macroscopic proprieties
of the system.

Following this formalism, the pressure PB and the energy density εB given in eq.
(1.39) and (1.40), become:

PB =
1

3

∑
i

γi

∫
d3k

(2π)3
k2

E⋆
i (k)

[nqi (k) + nqi (k)]−
1

2
m2

σ σ
2 − U(σ) +

1

2
m2

ω ω
2

+
1

4
c (gωN ω)4 +

1

2
m2

ρ ρ
2 , (2.28)

εB =
∑
i

γi

∫
d3k

(2π)3
E⋆

i (k) [n
q
i (k) + nqi (k)] +

1

2
m2

σ σ
2 + U(σ) +

1

2
m2

ω ω
2

+
3

4
c (gωN ω)4 +

1

2
m2

ρ ρ
2 . (2.29)
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Figure 2.1: Energy density (left panel) and pressure (right panel) versus baryon chemical
potential for di�erent values of temperature and q.

Naturally, all the above equation must be solved in a self-consistent way. Hence, the
presence of nonextensive statistical e�ects in�uences the many-body interaction mediated
by the meson �elds.
As an example, in Fig. 2.1, we report the hadronic pressure and energy density as a function
of the baryon chemical potential µB at di�erent values of the nonextensive parameter at
y = 0.4. The di�erent behavior of P and ε re�ects essentially the nonlinear combinations
of the meson �elds and the di�erent functions under integration in Eq.s (2.28) and (2.29).
Concerning the pressure, we show that it becomes sti�er by increasing the non-extensive q
parameter. On the other hand, the behavior of the energy density presents features very
similar to the σ �eld one. At low µB, nonextensive e�ects make the energy density greater
with respect to the standard case. At medium-high µB, the standard (q = 1) component of
the energy density becomes dominant, this e�ect is essentially due to the reduction of the
σ �eld for q > 1. The intersection point depends, naturally, on the physical parameters of
the system.

Finally, let us note that, under the presence of nonextensive e�ects, the mesonic EOS
changes in a phenomenological similar way to that of the baryons ones.
For example, in the e�ective relativistic mean-�eld formulation, the pressure (PM ), the
energy density (εM ) and the mesons density (ρMj ) of eq.s (1.53) and (1.54)�(1.55) , becomes

PM =
1

3

∑
j

γj

∫
d3k

(2π)3
k2

E∗
j (k)

gqj (k) , (2.30)

εM =
∑
j

γj

∫
d3k

(2π)3
E∗

j (k) g
q
j (k) , (2.31)

ρMj = γj

∫
d3k

(2π)3
gj(k) , (2.32)

where gqj (k) is the q-deformed boson distribution function, given in eq. (2.21). Again, if we
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choice a value of q > 1 and x = β(E − µ∗) > 0 we obtain:

gj(k) =
1

[1 + (q − 1)β(Ej(k)− µ∗j )]
1/(q−1) + 1

. (2.33)

The corresponding anti-boson distribution function is naturally given by substituting (µ∗ →
−µ∗). Similar expressions for the Chiral model.

2.3.2 Nonextesive MIT-Bag model

As mentioned in the introduction, the process of decon�nement phase transition and the
equation of state of quark-gluon matter can in principle be described by quantum chromo-
dynamics. However, in energy density range reached in relativistic heavy-ion collisions, non-
perturbative e�ects in the complex theory of QCD are not negligible [107]. For this reason,
the generated QGP in the early stages of the collisions does not at all resemble a quasi-ideal
gas of quarks and gluons because strongly dynamical correlations are present, including long-
range interactions [1, 115, 18, 127, 19]. In the absence of a converging method to approach
QCD at �nite density, one often turns to (e�ective) model investigations [128, 129, 130, 131].
At this regards, a non extensive formulation of the quark-gluon plasma equation of state,
seems to be an appropriate basis in order to deal such physical phenomenons otherwise
di�cult tractable using the standard BG formulation of statistical mechanics.

In the framework of nonextensive e�ects, in analogy to the results obtained for the
nonextensive hadronic EOS, the MIT-Bag Lagrangian density does not change, but following
the equations (2.21)�(2.22) and (2.23), the quark and anti-quark distribution function of eq.s
(1.75)�(1.76), for q > 1 and β(E∗

i (k)− |µ∗i | > 0, become:

nf (k) =
1

[1 + (q − 1)(Ef (k)− µf )/T ]1/(q−1) + 1
, (2.34)

nf (k) =
1

[1 + (q − 1)(Ef (k) + µf )/T ]1/(q−1) + 1
, (2.35)

therefore, the pressure (P ), the energy density (ε) and the baryon density (ρ), assume the
form:

P =
γf
3

∑
f

∫ ∞

0

d3k

(2π)3
k2

ef
[nqf (k) + nqf (k)]−Beff , (2.36)

ε = γf
∑
f

∫ ∞

0

d3k

(2π)3
ef [n

q
f (k) + nqf (k)] +Beff , (2.37)

ρ =
γf
3

∑
f

∫ ∞

0

d3k

(2π)3
[nf (k)− nf (k)] , (2.38)

where, again, the sum runs over the doublet (f = u, d) or the triplet of quarks (f = u, d, s),
γf = 6 is the quark degeneracy spin factor and Beff is the bag factor given in eq. (1.73).
Note that the e�ective Bag parametrization used here, is also sensibly to the presence of
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Figure 2.2: Pressure of the quark gluon phase as a function of baryon chemical potential for
di�erent values of temperature and q.

nonextensive e�ects depending on the baryon chemical potential µB. This dependence does
not take place if we use a constant value of the vacuum pressure B.

Similar expression can be written for gluons. Explicitly the nonextensive pressure Pg

and energy density εg for the q-deformed Bose gas gives:

Pg =
γg
3

∫ ∞

0

d3k

(2π)3
k

[1 + (q − 1) k/T ]q/(q−1) − 1
, (2.39)

εg = 3Pg , (2.40)

with the gluon degeneracy factor γg = 16.
In Fig. 2.2, we report an example of the relevance of the non extensive e�ects on

the QGP equation of state. As in the case of hadronic phase, the pressure is signi�cantly
increased even for small deviations from standard statistics. Here we show the total pressure
as a function of the baryon chemical potential for massless quarks and gluons, for di�erent
values of q and at �xed value of y = 0.4. The bag constant is set equal to B1/4=190 MeV.
Let us note that, since one has to employ the fermion (boson) nonextensive distributions,
the results are not analytical, even in the massless quark approximation. Hence a numerical
evaluations of the integrals in Eq.s (2.36)�(2.38) and (2.39) must be performed.

2.4 Major conclusions

In this Chapter we have presented the most important features of the so called nonextensive
statistical mechanics and we have shown the relevance of implement the nuclear EOS in
the framework of nonextensive statistical mechanics, in particular in systems where strong
dynamical correlations, long-range interactions and microscopic memory e�ects may take
place [20, 21, 22, 25].
In this context, in Fig.s 2.1 and 2.2, we have reported same preliminary examples, of how
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the presence of non extensive e�ects, may alter the hadronic and QGP equation of state,
even in presence of small deviation of standard BG statistics.
This formalism will be amply used in Chapters 3 and 4, where we will analyze, respectively,
the mechanical and thermodynamical proprieties of protoneutron stars and the decon�ne-
ment phase transition from hadron matter to quark-gluon plasma, at �nite temperature and
baryon density, comparing the results obtained through the standard BG statistics with that
of the nonextensive case.
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Chapter 3

Nonextensive statistical e�ects in

protoneutron stars.

In this Chapter, we want to present a study of the bulk proprieties of protoneutron stars in
the framework of nonextensive statistics. In this context an accurate analysis of the beta-
stable EOS in presence and in absence of trapped neutrino, both for nucleonic and hyperonic
protoneutron stars, will be made.

3.1 Introduction

As known from the literature, a protoneutron star (PNS) is born immediately after the
gravitational collapse of a massive star (M ≈ 10 ÷ 20 M⊙). During the �rst seconds of its
evolution a PNS is a very hot, lepton rich and beta-stable object, with a temperature of a few
tens of MeV and a lepton concentration typical of the pre-supernova matter [132]. Nearly
all of its binding energy is in the form of neutrinos trapped inside the stellar structure. In
particular, neutrinos at the star core are basically of the νe type and have a typically energy
of about Eν ≈ 200 ÷ 300 MeV [133]. Shortly after the PNS formation, during the cooling,
neutrinos escape through the star structure and bring out in few seconds nearly all of its
binding energy. The total luminosity of this process depends from several factors, the most
important are the total mass of the compact object and the neutrino opacity. During this
process, called Kelvin-Helmholtz epoch, the PNS evolves in a quasi hydrostatic equilibrium,
from a lepton rich and hot object to a cold neutrino-free compact star [134]. From a measure
of neutrinos luminosity and average energy, which are the most important astrophysical
observable in the study of the stellar structure, it is in principle possible to deduce the
total binding energy and, therefore, the total baryonic mass of the star [135]. However,
neutrinos are not only important probes in the study of newborn PNS, but have also relevant
consequences on the chemical composition and in the maximum mass of the compact object.
The presence of neutrinos in fact alters signi�cantly the chemical composition of the star,
varying the formation threshold of di�erent particle species (in general the appearance of
non-leptonic negative particles is delayed when neutrinos are present). The changes in the
maximum mass, due to neutrinos trapping, are normally greater than those due to �nite
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temperature e�ects [133, 134, 135, 136].
From a more theoretical point of view, it appears evident that the knowledge of the

nuclear EOS plays a crucial role in the determination of the structure and in the evolution of
the PNS [137, 138, 108, 139]. The processes related to strong interaction should in principle
be described by quantum chromodynamics. However, in the energy density range reached
in the compact stars, strongly non-perturbative e�ects in the complex theory of QCD are
not negligible. The central core of a compact star does not at all resemble a quasi-ideal
gas of hadrons because strongly dynamical correlations are present, including long-range
interactions [140, 141, 142]. In the absence of a converging method to approach QCD at
�nite density one often turns to (e�ective and phenomenological) model investigations.

In this sense, as exposed in Chapter 2, nonextensive statistical mechanics seems to
be the natural candidate in order to deal such physical phenomenons. In fact, as remarked
in Chapter 4, the existence of nonextensive e�ects, strongly a�ects the �nite temperature
and density nuclear EOS. In this direction, especially in the last years, several authors have
outlined the relevance of nonextensive statistical mechanics e�ects in high energy physics
and astrophysical problems [143, 144, 145, 146, 23, 121, 26, 147, 148, 149, 24, 127, 111, 125,
150, 151, 28, 152, 153, 154, 155, 156].

From a phenomenological point of view, this Chapter is based on the investigate of the
relevance of nonextensive statistical e�ects on the main physical properties of PNS and their
related astrophysical implications. At this scope, we are going to explore di�erent stages of
the PNS evolution, where nonextensive e�ects are expected to play an important role. The
�rst stage corresponds to an entropy per baryon equal to one, in which neutrinos are trapped
and strongly in�uence the chemical composition of the PNS. After a short time, of about
10÷15 s, the temperature of the PNS fast rises up until it reaches a value of T ≃ 45÷80MeV,
it depends again on the chemical composition [157]. This stage is called deleptonization era
and corresponds to the maximum heating and entropy per baryon (s = 2). This is the phase,
at high temperature and high baryon density, in which the presence of nonextensive e�ects
may alter more sensibly the thermodynamical and mechanical proprieties of the PNS. In
this numerical investigation will be take in consideration only an hadronic composition of
the PNS, without considering the possible formation of a mixed hadron-quark phase region
or a quark core inside it. This choice is principally due to the fact that the presence of
trapped neutrinos delays the on-set of strange particles and also possible formation of quark
matter [133, 134]. As a consequence, the appearance of a mixed phase or a quark core could
be shifted at the end, or nearly at the end of the deleptonization era [158].

This chapter is based on the results obtained in [35].

3.2 Nonextensive hadronic equation of state and beta-stability

condition

The equation of state and the structure of the PNS is analyzed through the relativistic
mean �eld theory, in the framework of nonextensive statistical mechanics. In this context
we adopt the Wilk prescription, exposed in section 2.2 and the analysis is performed both
for a super-extensive (q > 1) eq.(2.22) and for a sub-extensive (q < 1) eq. (2.23) case.
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As reported in section 2.2, the use of the Wilk prescription, avoid the high energy cuto�
present in the Tsallis distribution, when q < 1.

In this context, before starting to analyze the PNS structure, it is important estab-
lish the chemical composition of the compact object. This is possible knowing that, the
concentrations of the di�erent constituents in the stellar interior are determined by the re-
quirements of electric charge neutrality and equilibrium under weak interaction processes
(chemical equilibrium), strange number is not conserved:

B1 → B2 + l+ ν̄l, B2 + l → B1 + νl , (3.1)

where B1 and B2 are baryons, l are leptons and νl (ν̄l) are the associate neutrinos (anti-
neutrinos).

At this point it is important to underline that, because in the �rst stages of PNS
evolution neutrinos are trapped inside the stellar structure, the lepton number per baryon
YL of each lepton �avor must be conserved on dynamical scales [133, 135, 136]. Therefore,
in this analysis, the conservation of the lepton number is obtained by imposing the following
condition:

YL = Yl + Yνl = (ρl + ρνl)/ρB , (3.2)

where ρl, ρνl and ρB are the lepton, neutrino and baryon number densities, respectively
(electrons and muons �avors).
At this regard, recent gravitational collapse calculations of the core of massive stars, indicate
that, at the onset of trapping, the electron lepton fraction is close to YLe = Ye + Yνe =
0.4. In addition, as the trapping in supernova occurs when the collapsing core reaches
densities where no muons exist, we can impose YLµ = Yµ + Yνµ = 0. For this reason,
because we are particularly interested in the �rst stages of PNS evolution, when the stellar
temperature is particularly high and nonextensive e�ects are expected to alter more sensibly
the thermodynamical and mechanical proprieties of the PNS, we can neglet in this numerical
calculation the contribution of muons. Therefore, the leptonic component of the PNS,
reduces to electrons and electronic neutrinos (anti-neutrinos) only.

For matter where nucleons and hyperons are the relevant hadronic degrees of freedom,
the chemical equilibrium conditions can be explicitly written as

µΛ = µΣ0 = µΞ0 = µn , (3.3)

µΣ− = µΞ− = µn + µe , (3.4)

µp = µΣ+ = µn − µe ; (3.5)

ρp + ρΣ+ − ρΣ− − ρΞ− − ρe = 0 , (3.6)

where the lepton chemical potential is determined as usual by eq. (1.44). This guaranties
the β-stability condition.
Furthermore, in case of trapped neutrinos, the new equalities are obtained by the replace-
ment of µe → µe−µνe . The total entropy per baryon is calculated using s = (SB+Sl)/(TρB),
where SB = PB + εB −

∑
i=B µiρi and Sl = Pl + εl −

∑
i=l µiρi, and the sums are extended

over all the baryons and leptons species.
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The total Lagrangian can therefore be written as:

Ltot = LB + Ll

=
∑
B

ψ̄B[iγµ∂
µ − (MB − gσBσ)− gωBγµω

µ − gρBγ
µτ⃗ · ρ⃗µ]ψB

+
1

2
(∂µσ∂

µσ −m2
σσ

2)− U(σ) +
1

2
m2

ωωµω
µ +

1

2
m2

ρρ⃗µ · ρ⃗ µ

− 1

4
FµνF

µν − 1

4
G⃗µνG⃗

µν +
∑
l

ψ̄l[iγµ∂
µ −ml]ψl , (3.7)

where LB stands for the full octet of baryons (p, n, Λ, Σ+, Σ0, Σ−, Ξ−, Ξ0) eq. 1.27 and
Ll corresponds to the leptons degrees of freedom (e−, νe and νe).

The β-stable EOS and the scalar and vector baryon density are given as usual by the
set of eq.s (2.24), (2.25) and (2.29)�(2.28).

Finally the leptonic contribution to the stellar EOS are calculated using the expres-
sions for non-interacting relativistic fermions, which are well known from the literatures.

Once the composition of β-stable matter is determined, we can compute the total
energy density and the total pressure as follow: ε = εB + εl and P = PB + Pl.

Here and in the following, we focus our investigation on considering the so-called GM3
parameter set of Tab. 1.2 (even if comparable results can be obtained in other parameter
sets). The implementation of hyperon degrees of freedom comes from determination of
the corresponding meson-hyperon coupling constants that have been �tted to hypernuclear
properties and their speci�c values for the GM3 parameter set, as explained in section 1.3.

3.3 Protoneutron star structure

The stable con�guration of a relativistic and non-rotating protoneutron star can be obtained
from the well-known hydrostatic equilibrium equations of Tolman, Oppenheimer, and Volkov
(Shapiro and Teukolsky 1983) for the pressure P and the enclosed mass m, it takes the form:

dP (r)

dr
= −Gm(r)ε(r)

r2

[1 + P (r)
ε(r) ][1 +

4πr3P (r)
m(r) ]

1− 2Gm(r)
r

, (3.8)

dm(r)

dr
= 4πr2ε(r) , (3.9)

once the EOS P (ε) is speci�ed, being ε the total energy density (G is the gravitational
constant). For a chosen central value of the energy density, the numerical integration of eq.s
(3.8) and (3.9) provides the mass-radius relation.
Furthermore, in this analyze, the protoneutron star crust is not taken in consideration, due
to its negligible in�uence on the main mechanical and thermodynamical properties of the
compact object.

An important annotation regards the concept of stellar mass. In fact, the mass of the
totality of the particles in a star is called baryon mass (MB). Anyway, we generally call
stellar mass, what is in reality the gravitational mass of the star MG, hereafter M . The
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di�erence between the gravitational mass and the baryon mass is in general negative and
it is called binding energy of the star (B.E.). Normally, the gravitational binding is of the
order of 100 MeV per nucleon in star near the mass limit, about 10 times bigger then the
corresponding binding energy by strong force in nuclei.

3.4 Thermodynamical and mechanical proprieties of PNS

As brie�y mentioned in the section 3.1, this analysis focus on the relevance of possible
nonextensive statistical e�ects during the �rst PNS evolution phases. We can ideally divide
the evolution into three phases. The �rst, at the beginning, in which neutrinos are trapped
and the entropy per baryon is assumed �xed to s = 1 and YL = 0.4. A second phase,
after about 10÷ 15 sec, which corresponds to the maximum heating of the star and neutri-
nos are free (s = 2, Yνe = 0). Finally, a third phase of cold-catalyzed PNS (s = 0, Yνe = 0)
[157, 159, 160], where T→ 0MeV. Regarding the relevance of nonextensive statistical e�ects,
the most important phase corresponds to the maximum heating, in which the presence of
nonextensive statistical e�ects may play a crucial role in the determination of the PNS chem-
ical composition and related thermodynamical proprieties. In this work we limit ourselves
to consider only a small variations from the standard statistics (from q = 0.97 to q = 1.03).

3.4.1 PNS EOS and thermodynamical proprieties

In Fig. 3.1, we show the temperature as a function of the baryon density (in units of the
saturation nuclear density ρ0 = 0.153 fm−3) and for di�erent values of the nonextensive
parameter, in absence (np) and in presence (npH) of hyperons. We limit our analysis in
the �rst two phases: in the left panel, the �rst leptonic rich state (s = 1, YL = 0.4) and, in
the right panel, the maximum heating phase (s = 2, Yνe = 0). Indeed in the cold-catalyzed
phase (s = 0, Yνe = 0), the temperature is very low (fews MeV), and nonextensive statistical
e�ects may be neglected. In both previous cases, we observe a reduction in temperature
in presence of a sub-extensive statistics (q < 1) and a general increase for q > 1. This
e�ect is more remarkable when hyperons are present and for higher values of entropy for
baryon. For example, in the maximum heating phase, in presence of hyperons and for
q = 1, the temperature is about T ∼= 37 MeV at baryon density ρB = 5ρ0, whereas, for
q = 1.03 and q = 0.97, it is approximately equal to T ∼= 51 MeV and T ∼= 21 MeV,
respectively. Note also that, when hyperons are present, for s = 1 and YL = 0.4, the system
evolves in a quasi isothermal con�guration above ρB = 2.5 ÷ 3 ρ0. The di�erent behavior
in the stellar temperature have important consequences in the PNS evolution and in its
particles concentration. Finite temperature properties of matter at high density in�uence the
di�usion of neutrinos, being the neutrino mean free paths strongly temperature dependent
[135, 159]. In particular, neutrino opacity is very sensitive to the inner temperature (in
general proportional to T 2) and, therefore, this would a�ect sensibly the cooling of the
PNS, making it longer when q > 1, and shorter when q < 1. This matter of fact could
have important consequences on the neutrino luminosity, because its drop is associated with
the end of this cooling process [134]. Consequently, an alteration in the Kelvin-Helmholtz
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Figure 3.1: Temperature as a function of the baryon density (in units of the saturation
nuclear density ρ0) for di�erent values of q, entropy per baryon and neutrino fraction (left
panel: s = 1, YL = 0.4 and right panel: s = 2, Yνe = 0). The labels np and npH stand for
nucleons and nucleons plus hyperons.

epoch, that does not correspond to the predict direct or modi�ed URCA process, could be
an indication of nonextensive statistical e�ects.

In Fig. 3.2, is reported the dependence of the pressure from the baryon density, for
di�erent values of q, in the initial phase: s = 1, YL = 0.4 (left panel) and in the maximum
heating phase: s = 2 and Yνe = 0 (right panel). With the appearance of hyperons, around
ρB = 3 ρ0, we have a general softening of the EOS. However, due to the low temperature
achieved in this phase (see Fig. 3.1), nonextensive statistical e�ects do not change signi�c-
antly the total pressure of the PNS. The situation is somewhat di�erent when we analyze the
maximum heating phase. In such a condition, the temperature is higher and nonextensive
statistical e�ects are more relevant, especially when hyperons are present.

As it is well known, the softening of the EOS, due to the appearance of additional
fermionic degrees of freedom in the form of hyperons, leads to higher central densities. This
matter of fact is, however, in�uenced from the presence of nonextensive statistical e�ects.
To better focalized this aspect, in Fig. 3.3, is plotted the central baryon density ρc in the
PNS core corresponding to a total baryon mass MB (in units of the solar mass M⊙). The
case q > 1 (q < 1) implies a general reduction (increase) of the central density at �xed total
baryon mass. This e�ect is emphasized in the maximum heating condition (right panel). In
particular, for q > 1 and until MB ≈ 1.7M⊙, the central densities of hyperons stars (npH)
are lower than the ones corresponding to the standard (q = 1) nucleons-only stars (np). This
feature, together the variation of the temperature, can be very relevant in the determination
of the speci�c heat of the stellar matter and, as a consequence, on the neutrino di�usion
[135].

3.4.2 PNS chemical composition

In addition to the considerations of section 3.4.1, we want now study the chemical compos-
ition of the PNS. Firs o� all, we investigate the lepton chemical potentials in di�erent PNS
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Figure 3.2: Total pressure as a function of baryon density (in units of the saturation nuclear
density) for di�erent values of q in the lepton rich case: s = 1 and YL = 0.4 (left panel) and
in the maximum heating phase: s = 2 and Yνe = 0 (right panel). The labels np and npH
stand for nucleons and nucleons plus hyperons matter, respectively.
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Figure 3.3: Central baryon density ρc (in units of the saturation nuclear density) corres-
ponding to a total stellar baryon mass MB in the lepton rich phase (left panel) and in
the maximum heating phase (right panel). The labels np and npH stand for nucleons and
nucleons plus hyperons matter, respectively.
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Figure 3.4: Lepton chemical potentials in lepton rich matter as a function of the baryon
density (in units of the nuclear saturation density). The labels np and npH stand for
nucleons and nucleons plus hyperons matter, respectively.

conditions, because they strongly in�uence the deleptonization process [135, 136]. At this
scope, in Fig. 3.4, we show the lepton chemical potentials in lepton rich matter (s = 1 and
YL = 0.4) in absence (np) and in presence (npH) of hyperon degrees of freedom (higher
curves for the electron chemical potential µe and lower curves for the neutrino chemical
potential µνe). For clarify, we report only the case q > 1 compared to the standard (q = 1)
results. It is interesting to observe that for a nucleons-only EOS, super-extensive statistical
e�ects imply a general reduction of the electron and neutrino chemical potentials respect to
the standard case. Otherwise, in presence of hyperons, a sensible reduction of the electron
chemical potential is not accompanied by a reduction of the neutrino chemical potential
which retains very similar values to the standard case at high baryon density. Such a fea-
ture could have important consequence on the di�usion of the electron neutrinos inside the
PNS.

Moreover, the neutrino mean free paths and the matter speci�c heat depend sensitively
on the composition; under degenerate conditions even modest changes to the composition
signi�cantly alter the neutrino scattering and absorbtion mean free paths. It is, therefore,
relevant to investigate how nonextensive statistical mechanics in�uences particle composi-
tions in di�erent PNS epochs. In Fig. 3.5, we report the particle concentrations for s = 1
and YL = 0.4 in absence (left panel) and in presence (right panel) of hyperons for di�er-
ent values of q. It is well known that the presence of trapped neutrinos signi�cantly alter
the protons and the electrons abundance and strongly in�uence the threshold of hyperons
formation [133, 135, 136]. In absence of hyperons, nonextensive statistical e�ects do not
play a signi�cantly role, in fact the particle concentrations are almost the same. The situ-
ation changes when we include hyperon degrees of freedom. The presence of sub-extensive
e�ects (q < 1) slightly lowers the neutrinos concentration, while increases the neutrons and
the electrons ones. Moreover, hyperons start later and their concentration are in general
decreased, excepted for the Λ particles ratio, which becomes greater after ρB > 4 ρ0 respect
to the standard case. Otherwise, in case of super-extensive statistical e�ects (q > 1), we can
observe a general reduction in the neutrons and the electrons fractions and a small increase
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Figure 3.5: Particle concentrations Yi without (left panel) and with hyperons (right panel)
as a function of the baryon density for s = 1 and YL = 0.4.

of the neutrinos and the hyperons concentrations, with important e�ects on the softening
of the EOS.

In the Fig. 3.6, particle concentrations for the maximum heating phase (s = 2,
Yνe = 0) are reported. In this condition, due to the higher temperature achieved in the stellar
matter, nonextensive statistical e�ects become more relevant and, consequently, particle
concentrations change signi�cantly. When q < 1, we observe a reduction in the protons
and the electrons concentrations and an increase of the neutrons fraction. Whereas, in
the super-extensive case (q > 1), we have a lower neutrons fraction and an increase of the
protons and electrons concentrations. When hyperons are included, Fig. 3.6, right panel,
we have two main consequences. Firstly, with the absence of neutrinos, the hyperons on-set
is shifted at low baryon densities, below 2 ρ0. Secondly, as a consequence, the electrons and
the protons concentrations decrease sensibly with respect to the initial lepton-rich regime
(s = 1, YL = 0.4). Therefore, the absence of neutrinos in the stellar matter implies a strong
softening of the EOS. In presence of sub-extensive statistics (q < 1), hyperons start later
with respect to the standard case (q = 1), and have in general a bigger concentration at
high baryon density. The other way round takes place for super-extensive statistics (q > 1).

Finally, to better understand the role of nonextensive statistical e�ects on hyperons
formation in the PNS core, in Fig. 3.7, we report the total hyperons concentration (strange-
ness per baryon) as a function of the stellar baryon mass (in units of M⊙) in the lepton rich
(left panel) and in the maximum heating (right panel) epoch. Although, for q > 1, hyperons
are present at lower baryon densities with respect to the standard case (q = 1) and a greater
hyperons concentration at lower baryon masses is present, we have a signi�cant reduction at
higher baryon masses, especially in case of the maximum heating condition. For q < 1, we
have instead the opposite e�ect: a reduction of the hyperons fraction at low baryon masses
and an enhancement at high baryon masses. These features, principally due to the behavior
of Λ particles concentration as a function of the baryon density (see Fig.s 3.5 and 3.6),
could imply relevant phenomenological consequences on the evolution of the PNS. In fact,
it is known that hyperons signi�cantly increase the neutrino scattering and absorption cross
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Figure 3.6: The same of Fig. 3.5 for the maximum heating phase (s = 2 and Yνe = 0).
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Figure 3.7: Hyperons concentration ρs/ρB (strangeness per baryon) as a function of the
baryon mass MB in the lepton rich (left panel) and in the maximum heating phase (right
panel).

sections [135]. Furthermore, the central densities of hyperons stars become progressively
larger than that of purely nucleon stars and the evolution timescale of hyperons stars results
to be slightly larger because of the smaller mean free path of hyperonic matter. Larger
central densities and higher electron neutrino energies, reached in hyperonic PNS, increase
the neutrino opacity, temporarily reducing the loss of neutrinos from the stellar core and
allow to sustain a higher luminosity at late times.

3.4.3 M-R relation and PNS structure

Let us now discuss the most important changes in the mechanical proprieties of the PNS in
presence of nonextensive e�ects, during the �rst phases of its evolution.
At this regards, in the Table 3.1, we report the maximum gravitational (baryonic) masses (in
units ofM⊙) and the corresponding values of radius and central baryon density, for di�erent
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Figure 3.8: Stellar baryon mass MB (in units of solar mass M◦) as a function of the central
baryon density (in units of ρ0), for di�erent values of q, for nucleons and hyperons stars. In
the left and right panel, we report respectively the lepton rich and the maximum heating
phase.

PNS con�gurations. We have taken in consideration di�erent values of the nonextensive
q-parameter, entropy per baryon and leptons concentration, in absence (np) and in presence
(npH) of hyperons.

As we have already remarked, nonextensive statistical e�ects result to be most relevant
when hyperons are present and the maximum heating phase is achieved (s = 2, Yνe = 0). In
fact, when the entropy per baryon is equal to one and the matter is lepton rich, the di�erence
in the maximum mass is very small both with and without hyperons. Moreover, immediately
after the deleptonization, nonextensive statistical e�ects become more important, especially
in presence of hyperons. The maximum mass is in general decreased when we consider a
sub-extensive statistics (q < 1), and increased when q > 1.

This behavior, appear much more evident in Fig. 3.8, where we have analyzed the
mass-radius relation, for di�erent values of nonextensive parameter and di�erent chemical
composition of PNS. Here, we can observe the role played by the nonextensive e�ects on
the stellar structure. In particular, in presence of sub-extensive statistics, we observe a
remarkable reduction of the stellar radius and consequently, an increase of the central baryon
density, as already reported in Fig. 3.3 and in Tab. 3.1. Contrariwise, in presence of super-
extensive e�ects, we observe a general softening of the EOS and a consequently increase of
the PNS radius.

Furthermore, in the presence of hyperons, when the stellar core contains non-leptonic
negative charges, the maximum masses of neutrino-trapped stars result to be signi�cantly
larger than for low temperatures and for lepton poor matter. Hence, there exists a win-
dow of initial masses for which the star becomes unstable to gravitational collapse during
deleptonization and a black hole can take place [133, 135, 136]. We can see that the forma-
tion of such a metastable phase strongly depends on the presence of nonextensive statistical
e�ects and the window of metastability grows with the value of the nonextensive index q.
In particular, for q > 1, we still have a very large value of the maximum baryonic mass in
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Table 3.1: Maximum gravitational (baryonic) masses Mmax (in units of M⊙) and corres-
ponding values of radius R and central baryon density ρc in absence (np) and in presence
(npH) of hyperons for di�erent values of the nonextensive parameter q. The results are
reported for di�erent values of entropy per baryon and leptons concentration. For complete-
ness, the values for the cold-catalyzed phase (s = 0, Yνe = 0) for q = 1 are also reported
(nonextensive statistical mechanics does not play any role in this last regime).

np npH

q s = 1, YL = 0.4 s = 2, Yνe = 0 s = 1, YL = 0.4 s = 2, Yνe = 0

Mmax = 1.96 (2.20) Mmax = 2.06 (2.34) Mmax = 1.75 (1.93) Mmax = 1.55 (1.69)
0.97 R=10.52 km R=11.37 km R=11.11 km R=12.39 km

ρc = 7.33 ρ0 ρc = 6.50 ρ0 ρc = 6.84 ρ0 ρc = 5.59 ρ0
Mmax = 1.97 (2.21) Mmax = 2.09 (2.38) Mmax = 1.76 (1.94) Mmax = 1.59 (1.74)

1.00 R=10.69 km R=11.80 km R=11.41 km R=12.75 km
ρc = 7.23 ρ0 ρc = 6.17 ρ0 ρc = 6.62 ρ0 ρc = 5.44 ρ0

Mmax = 1.98 (2.23) Mmax = 2.15 (2.47) Mmax = 1.78 (1.96) Mmax = 1.71 (1.90)
1.03 R=10.81 km R=12.39 km R=11.56 km R=13.34 km

ρc = 7.15 ρ0 ρc = 5.75 ρ0 ρc = 6.51 ρ0 ρc = 5.05 ρ0

s = 0, Yνe = 0 s = 0, Yνe = 0

Mmax = 2.05 (2.39) Mmax = 1.57 (1.76)
1.00 R=11.11 km R=12.35 km

ρc = 6.91 ρ0 ρc = 5.66 ρ0

the maximum heating phase (s = 2, Yνe = 0), signi�cantly larger than the one in the cold
catalyzed condition (where nonextensive statistical e�ects do not play any role). Therefore,
for nucleons-only stars, a black hole could form only after the core bounce, because the max-
imum mass supported by neutrino-free stars is bigger than that supported for neutrino-rich
case. Whereas, in presence of hyperons, a black hole can take place also after the delepton-
ization era because of the realization of a metastable phase, which becomes more relevant
in presence of super-extensive statistical e�ects.
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3.5 Major conclusions

In this Chapter we have investigated the physical properties of the PNS in the framework
of a relativistic mean �eld theory based on nonextensive statistical mechanics, characterized
by power-law quantum distributions. In this context we have studied the �nite temperature
EOS in β-stable matter in absence and in presence of hyperons and trapped neutrinos.
From a phenomenological point of view, we have considered the nonextensive index q as
a free parameter, even if, in principle, it should depend on the physical conditions inside
the PNS, on the �uctuation of the temperature and be related to microscopic quantities
(such as, for example, the mean interparticle interaction length). In this context, let us
remember that, in the di�usional approximation, a value q ̸= 1 implies the presence of an
anomalous di�usion among the constituent particles (the mean square displacement obeys
to a power-law behavior < x2 >∝ tα with α ̸= 1).

We have shown that nonextensive statistical e�ects could play a crucial role in the
structure and in the evolution of the PNS also for small deviations from the standard
Boltzmann-Gibbs statistics. As expected, nonextensive statistical e�ects result to be par-
ticularly important during the maximum heating phase (s = 2, Yνe = 0), while become less
relevant during the initial lepton rich state (s = 1, YL = 0.4) and negligible in the cold
catalyzed phase (s = 0, Yνe = 0), due to the low temperatures achieved.

We have studied the relevance of nonextensive statistical e�ects: i) in the temperature
behavior as a function of the baryon density, ii) in the softening of the EOS and, consequently,
in the central baryon densities reached in the PNS core at �xed baryon mass, iii) in the
lepton chemical potentials, iv) in the particle concentrations, in the hyperons formation and
in the strangeness per baryon at �xed total baryon mass, v) in the maximum gravitational
and baryonic masses. Such a variation of physical quantities, respect to the standard case,
can imply important consequences on the determination of the matter speci�c heat, on the
neutrino mean free path inside the stellar core and, consequently, in the neutrino opacity
and luminosity.

We have considered both cases of sub-extensive (q < 1) and super-extensive (q > 1)
statistical e�ects which entail a sensible di�erence on the power-law particle distribution
in the high energy region. When the entropic q parameter is smaller than one, the energy
tail of the particle distribution is depleted, otherwise, when q is greater than one, the en-
ergy tail is enhanced. In the PNS context, the physical meaning of the di�erence between
a sub-extensive or a super-extensive statistical behavior is re�ected in di�erent and well
distinguishable phenomenological PNS properties. For q < 1, we have a reduction in tem-
perature at �xed baryon density with respect to the standard case (q = 1). Especially in
the maximum heating phase, the EOS becomes slightly softer and higher central baryon
densities at �xed total baryon mass are reached, in�uencing the neutrino di�usion during
the deleptonization process. In the case of sub-extensive e�ects, hyperons start later but
have a bigger concentration at high baryon density, allowing to sustain a higher neutrino
luminosity at late times. The other way round takes place in the case of q > 1. We have an
increase of the temperature as a function of the baryon density and lower central densities
at �xed baryon mass are reached. The hyperons on-set is shifted at lower baryon densities
and a greater hyperons concentration at low baryon masses is present. On the other hand,
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a signi�cant reduction of the hyperons concentration at high stellar masses take place, con-
tributing to a lower luminosity at late times. Moreover, we have shown that, in presence of
super-extensive statistical e�ects and hyperon degrees of freedom, it is favored the realiza-
tion of a metastable phase, with an enhancement of a possible black hole formation after
the deleptonization era.
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Chapter 4

Nonextensive statistical e�ects and

strangeness production in hot and

dense nuclear medium.

In this Chapter we are planning to investigate the decon�nement phase transition from had-
ron matter to quark-gluon plasma, at �nite temperature and baryon density, through e�ect-
ive models (nonextensive statistical mechanics and e�ective relativistic mean �eld model).

4.1 Introduction

As we have pointed out in the previous Chapters, relativistic heavy-ion collisions provide the
unique possibility to explore in laboratory nuclear matter under extreme regimes in which
the baryon density can reach values of a few times the saturation nuclear density and/or
high temperatures. In these conditions, phase transition phenomena in the hot and dense
�reball created during the collisions can take place [1]. Various results from QCD inspired
models indicate that, increasing the baryon chemical potential in the phase diagram, a
region of non-singular but rapid cross-over of thermodynamic observable around a quasi-
critical temperature, leads to a critical endpoint (CEP), beyond which the system shows a
�rst order phase transition from con�ned to decon�ned matter (second order by Ehrenfest
de�nition and therefore continuous). The existence or exclusion of a CEP has not yet been
con�rmed by QCD lattice simulations. Actually, there are some extrapolation techniques
to �nite chemical potentials, although the precise location of the CEP is still a matter of
debate [161, 162]. Such a CEP can be in principle detected in future high-energy compressed
nuclear matter experiments such as FAIR at GSI in Darmstadt [55] and NICA at JINR in
Dubna [163]. In this direction interesting results have been obtained at low SPS energy and
are foreseen at a low-energy scan at RHIC [112, 113, 114].
Therefore, although in principle the process of decon�nement and the equation of state
(EOS) of hot and dense nuclear matter can be described by QCD, such a theory is highly
nonperturbative in the energy density range involved in relativistic heavy-ion collisions.
The generated quark-gluon plasma (QGP) in the early stages of the collisions does not at all

79



resemble a quasi-ideal gas of quarks and gluons because strongly dynamical correlations are
present, including long-range interactions [18, 2, 164]. Therefore, the implementation of the
nuclear EOS through e�ective models is of great importance in order to take in consideration
such phenomenons.

For this reason, in this Chapter, we will investigate the decon�nement phase transition
from hadrons to QGP in the framework of nonextensive statistical mechanics, exposed in
the Chapter 2.
In this context, we investigate two di�erent scenarios. In the �rst one, we explore the
situation realized in heavy-ion collision experiments at not too high energy, where �nite
temperature and high compressed baryon density are generated. Under this condition, a
large fraction of strangeness cannot be produced and, therefore, we will limit ourselves to
study the decon�nement transition from hadronic matter to up and down quark matter
[165, 166, 167]. We expect that, in the range of temperature and density considered, the
presence of strange particles does not signi�cantly a�ect the main conclusions regarding the
relevance of nonextensive statistical e�ects to the nuclear EOS.
In the second scenario, we investigate the nuclear equation of state at higher temperature
and �nite baryon density. In this situation the strangeness production can not be neglected
and strange particles are expected to play an important role in the physics of the system.
For this reason, in order to have a complete description of the degrees of freedom of the
nuclear medium at this energy, we implement the nuclear EOS including all the baryons
octet and the lightest scalar and vector mesons, through the e�ective formulation exposed
in Section. 1.4.1.

This chapter is based on the results obtained in [34, 36, 168, 169].

4.2 Gibbs formalism

As brie�y mentioned in the Introduction, with increasing the baryon chemical potential, the
phase diagram is characterized by a rapid crossover of thermodynamic observable around a
quasi-critical temperature with a CEP, beyond which the system shows a �rst order phase
transition from con�ned to decon�ned matter. Since it occurs over a very narrow range of
temperatures, for several practical purposes the transition can still be considered of �rst
order. Indeed, the lattice data with 2 or 3 dynamical �avors, are not precise enough to
unambiguously disentangle the di�erence between the two situations. Moreover, the aim
of this study is to show the relevance of nonextensive statistical e�ects in a �nite range
of temperature and baryon density relevant for compressed baryonic matter experiments
rather than the ultrarelativistic regime at vanishing baryon chemical potential. Thus, by
considering the decon�nement transition at �nite density, a mixed phase can be formed,
which is typically described using two separate equations of state: one for the hadronic phase
and another one for the quark-gluon phase (as reported respectively in the paragraphs 2.3.1
and 2.3.2). In order to study the phase transition from hadronic matter to QGP, we apply the
Gibbs conditions to systems with more than one conserved charge, by requiring the global
conservation of the baryon number (B), electric charge (C) and zero net strangeness (S).
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The structure of the mixed phase is therefore obtained by imposing the following conditions

µ
(H)
B = µ

(Q)
B , µ

(H)
C = µ

(Q)
C , µ

(H)
S = µ

(Q)
S , (4.1)

P (H)(T, µB, µC , µS) = P (Q)(T, µB, µC , µS) , (4.2)

ρB = (1− χ)ρHB (T, µB, µC , µS) + χρQB(T, µB, µC , µS) , (4.3)

ρC = (1− χ)ρHC (T, µB, µC , µS) + χρQC(T, µB, µC , µS) , (4.4)

ρS = (1− χ)ρHS (T, µB, µC , µS) + χρQS (T, µB, µC , µS) , (4.5)

where ρH(Q)
B , ρH(Q)

C and ρ
H(Q)
S are, respectively, the baryon, the electric charge and the

strange densities in the hadronic (H) and in the quark (Q) phase and χ = V Q/V is the
fraction volume of quark-gluon matter in the mixed phase.

Whereas, the energy density of the hadrons and quarks during the mixed phase is
given by:

ε = (1− χ)εH(T, µB, µC , µS) + χεQ(T, µB, µC , µS) . (4.6)

In this context it is important to note that the pressure, during the mixed phase, is not
generally constant. This is because it depends from the energy density through the rela-
tionship P = −∂E/∂V and therefore, due to the non linearity of ε, the pressure normally
varies during the phase transition.
Therefore, at �xed T and µB, the charge µC and strangeness µS chemical potentials are
obtained by �xing the total electric charge y (for example, y = 0.4 for lead-lead heavy ion
collisions) and the total strangeness neutrality by the conditions (ρC = yρB and ρS = 0)

Another important aspect it that the presence of more than one conserved charge
implies a global and not local charge conservation, therefore the charge densities ρB, ρC
and ρS are �xed only as long as the system remains in one of the two pure phases. In the
mixed phase, the charge concentration in each of the regions of one phase or the other may
be di�erent. As we will see, this feature plays a crucial role on the strangeness production
during the mixed phase of hadron and quark-gluon matter.

Concluding, decon�nement phase transition (transition to quark-gluon plasma phase)
is a �nite-temperature transition (crossover in the most recent terminology) from a multi-
scale con�nement phase to an ordered phase. There is no agreement yet if the decon�nement
is true phase transition or a smooth crossover. Ordered (free) behavior is reached only at
asymptotically large temperatures.

4.3 Nonextensive statistical e�ects in the hadron to quark

gluon plasma phase transition

In the �rst part of this analyze, we study the decon�nement phase transition from hadron
matter to quark-gluon plasma at not to high energy.
Under this condition, a large fraction of strangeness cannot be produced and, therefore,
we will limit ourselves to study the decon�nement transition from hadronic matter to up
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and down quark matter [165, 166, 167]. In this context we study how nonextensive stat-
istical e�ects in�uence, from a phenomenological point of view, the nuclear EOS and, as
a consequence, the relative phase transition at �nite temperature and density reachable in
high-energy heavy-ion collisions.
We expect that, in the range of temperature and density considered in this analyze, the
presence of strange particles does not signi�cantly a�ect the main conclusions regarding the
relevance of nonextensive statistical e�ects to the nuclear EOS.
Under this assumption, the system is described by two independent conserved charges (B
and C) and therefore the Gibbs construction is obtained without requiring the conservation
of the strangeness.
Furthermore, due to the not so high temperature achieved in the system and because here
we are only interested in exploring the in�uence of the nonextensive statistical e�ects on the
nuclear EOS and in particular in the variation of the �rst critical density, we can avoid the
use of the Bag parametrization of eq. (1.73) and we can set the vacuum pressure at constant
value (B1/4 = 190MeV ).

In the second part of this analyze, we will consider a more energetic event, where
strange particles are abundantly produced. In this context, we implement the hadronic EOS
including all the baryon octet, ∆-isobars degrees of freedom and the lightest pseudo-scalar
(π, K, K, η, η

′
) and vector mesons (ρ, ω, K∗, K

∗
, ϕ), through the e�ective formulation

exposed in (1.4.1). Furthermore, the MIT-Bag model is implemented including the strange
quark �avor and, due to the high energy and temperature achieved during the relativistic
heavy ion collision, we adopt the Bag parametrization exposed in eq. (1.73).

Before starting this analyze, we would like to remember that, in the mixed phase, due
to the high dimensionality of the system (two or three conserved charges) the concentration
in each of the regions of one phase or the other may be di�erent. Their values are restricted
only by the conservation of the total charge numbers and strangeness (normally set equal to
zero). The essential point is that conservation laws in chemical thermodynamics are global,
not local.

4.4 Two quark �avors

In this section, we analyze the relativistic equation of state in the framework of nonextensive
statistical e�ects, using the GM2 parameter set of Tab. 1.2 and the hadronic Lagrangian
density of eq. (1.27).
In this context, due to the range of temperatures and baryon density considered in this
analyze, the only degrees of freedom relevant for the system are nucleons, quarks up and
down and pions, introduced through the e�ective formulation exposed in section (1.4.1).
The hadronic Lagrangian density assume the form:

LQHD = LN + Lqfm , (4.7)

where Lqfm is related to a (quasi) free gas of pions with an e�ective chemical potential given
by eq. (1.50). Hence, the equation of motion for pions are given by eq.s (2.30)�(2.31) and
(2.32).
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Figure 4.1: The σ meson �eld as a function of baryon chemical potential for di�erent values
of temperature (in units of MeV) and q.

Furthermore, the equation of motion, the scalar and vector baryon density for the
hadronic phase are given, respectively, by the set of eq.s (2.24)�(2.25) and (2.28)�(2.29).
Naturally for q → 1 and/or low temperature, the q−deformed quantum distribution function
(eq.s (2.26) and (2.27)), reduces to the standard and well known Fermi-Dirac and Bose-
Einstein distribution function (eq.s 1.34 and 1.35).
The nonextensive EOS and vector density for the quark phase, are instead given by eq.s
(2.36)�(2.37) and (2.38). Gluons are also take in consideration, following the eq.s (2.39) and
(2.40).
The corresponding extensive equations for hadrons, pions and quarks are given in Chapter
1.

4.4.1 Nonextensive meson �elds

Let us start our numerical investigation by considering the behavior of σ, ω and ρ meson
�elds at a �xed value y = 0.4, for di�erent values of temperature and nonextensive parameter
q. Because meson �elds have their source in the baryon and scalar density, which are very
sensible to the behavior of the mean occupation number, all meson �elds appear to be
signi�cantly changed in presence of nonextensive e�ects.

In Fig.s 4.1, 4.2 and 4.3 we show, respectively, the σ, ω and ρ meson �eld as a function
of the baryon chemical potential µB. It is interesting to observe that at lower µB, in presence
of nonextensive e�ects, the value of the meson �elds are signi�cantly increased for all values
of temperature respect to the standard case, the other way round happens for σ at higher
µB. This important feature is due to the fact that, as already remarked in Section 2.2,
for q > 1 and �xed baryon density (or µB), the (normalized) mean occupation function is
enhanced at high values of its argument and depressed at low values. Being the argument of
the mean occupation function xi = β(E∗

i −µ∗i ), in the integration over momentum (energy),
at lower µB (corresponding to lower values of the e�ective particle chemical potential µ∗i )
the enhanced Tsallis high energy tail weighs much more that at higher µB where depressed
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Figure 4.2: The ω meson �eld as a function of the baryon chemical potential for di�erent
values of temperature and q.

low energy e�ects prevail and the mean occupation number results to be bigger for the
standard Fermi-Dirac statistics. Concerning the antiparticle contribution, the argument of
ni is xi = β(E∗

i + µ∗i ) and the Tsallis enhancement at high energy tail is favored also at
higher µB. At the same time, higher temperatures (where antiparticle contribution are more
relevant) reduce the value of the argument of ni and ni, favoring the extensive distribution.
These e�ects are much more evident for the scalar density ρS (self-consistently related to the
σ meson �eld) where appears (ni)q and particle and antiparticle contributions are summed.
The same e�ect involves also the nucleon e�ective mass M∗ = M − gσσ, which becomes,
respect to the standard case, smaller for lower values of µB and bigger for higher values,
with very relevant consequences for the hadronic EOS 1.

The situation is di�erent for ω, because it has its source in the baryon density ρB
where appears ni and particle and antiparticle contributions are subtracted Fig. 4.2. At
lower temperatures (T = 60 MeV), antiparticle contributions are negligible and we have a
behavior similar (although less evident) to the σ �eld. At higher temperatures (T = 120
MeV), the contributions of antiparticle increase and nonextensive e�ects vanish at higher
µB. Finally, in Fig. 4.3, we report the behavior of the ρ meson �eld which depends from the
isospin density (let us remember that we have �xed y = 0.4). Similar arguments as done
for the ω meson applies also in this case. The valuable increasing of its absolute value, also
for weakly asymmetric nuclear matter, makes ρ meson very relevant in the hadronic EOS,
especially at not too large µB.

4.4.2 Nonextensive EOS and phase diagram

As reported in the Fig.s (2.1) and (2.2) of Chapter 2, even for small deviation from the
standard BG statistics, we can observe a strong enhancement in the hadronic and quark

1In Ref. [123], the nucleon e�ective mass as a function of temperature always diminishes respect to
standard statistics, this behavior is a consequence of the fact that it is plotted only at ρB = 0.
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Figure 4.3: The ρ meson �eld as a function of baryon chemical potential for di�erent values
of temperature and q.
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Figure 4.4: Pressure versus baryon chemical potential in the mixed phase for di�erent values
of temperature and q.

pressure, for moderate values of temperature and also at low µB.
The increasing of the pressure is an important factor in order to achieve the condition of
decon�nement phase transition from hadronic matter to QGP. In this context, we e are
particularly interested in the lower baryon density (baryon chemical potential) border, i.e.
the �rst critical transition density ρIcr (µ

I
cr), in order to check the possibility of reaching such

conditions in a transient state during a heavy-ion collision at relativistic energies. We do
that using the Gibbs formalism exposed in section 4.2 (naturally the strangeness number is
set equal to zero).
At this regards, in Fig. 4.4, we report the pressure as a function of baryon chemical po-
tential for di�erent values of nonextensive q parameter and temperatures, for y = 0.4 and
B1/4 = 190 MeV. It is well evident that, in presence of nonextensive e�ects, the onset of
the mixed phase region is strongly anticipated, this e�ect is more evident at the increasing
of the temperature. Therefore, in presence of nonextensive e�ects, the values of the critical
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Figure 4.5: Pressure as a function of baryon density (left panel) and energy density (right
panel) in the mixed phase for di�erent values of q. The temperature is �xed at T = 90 MeV.

densities result to be sensibly reduced with respect to the standard case. This matter of
fact is more evident in Fig. 4.5, where we report the pressure at T = 90 MeV as a function
of baryon density (in units of nuclear saturation density ρ0 = 0.153 fm−3) (left panel) and
energy density (right panel). It is interesting to observe that pressure as a function of baryon
density (or energy density) is sti�er in the pure hadronic phase for q > 1 but appears a strong
softening in the mixed phase. This feature results in signi�cant changes in the incompress-
ibility and may be particularly important in identifying the presence of nonextensive e�ects
in high energy heavy ion collisions experiments. Related to this aspect, let us observe that
possible indirect indications of a signi�cative softening of the EOS at the energies reached
at AGS have been discussed several times in the literature [124, 109, 170, 171, 172].

Related to this aspect, in Fig. 4.6, we would like to show the relative phase diagram
from nuclear matter to QGP, in the T − ρB plane, for di�erent values of q. The curves
labeled with ρIcr and ρIIcr represent, respectively, the beginning and the end of the mixed
phase. For q > 1, both the �rst and the second critical densities are sensibly reduced, even
if the shape of the mixed phase is approximately the same. Furthermore, let us remember
that, although an e�ective bag parametrization is necessary to treat more energetic heavy
ion collision, where high temperature condition is reached, here we are only interested in the
exploring the e�ects of nonextensive e�ects on the nuclear EOS. Therefore, in this simple
study we limit our investigation to a restricted range of temperature and baryon density,
particular relevant for high energy compressed nuclear matter experiments.

Finally in left and in the right panel of Fig. 4.7, we show respectively the variation of
the �rst critical baryon density as a function of the Bag constant and of the temperature,
for di�erent values of q. Obviously, by increasing the bag constant we have a corresponding
increase of ρIcr. However, this e�ect depends on the temperature and the nonextensive
parameter q. In fact, as appears in the right panel of Fig. 4.7, for T = 60MeV we can see
only a little reduction in the �rst critical density also for large deviations from the standard
statistics; on the other hand, the reduction becomes more pronounced at larger temperatures
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Figure 4.6: Phase diagram T − ρB for di�erent values of q. The curves labeled with ρIcr and
ρIIcr indicate, respectively, the beginning and the end of the mixed phase.
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Figure 4.7: Variation of the �rst transition baryon density as a function of the bag constant
(left panel) and nonextensive index q (right panel) for di�erent temperatures.
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T = 60 MeV ρIcr/ρ0 ρIIcr /ρ0 µIcr [MeV] µIIcr [MeV]
q = 1.00 5.75 9.10 1503 1569
q = 1.05 5.56 8.88 1472 1537
q = 1.10 5.33 8.65 1437 1502

T = 90 MeV ρIcr/ρ0 ρIIcr /ρ0 µIcr [MeV] µIIcr [MeV]
q = 1.00 3.41 5.09 1123 1170
q = 1.05 2.77 4.46 1034 1068
q = 1.10 1.91 3.69 916 927

T = 120 MeV ρIcr/ρ0 ρIIcr /ρ0 µIcr [MeV] µIIcr [MeV]
q = 1.00 0.45 1.93 588 616
q = 1.05 0.20 1.33 383 396
q = 1.10 0.08 0.71 184 201

Table 4.1: Critical baryon densities and baryon chemical potentials at the beginning (index
I) and at the end (index II) of the mixed phase for di�erent values of temperature and
nonextensive parameter q.

We conclude this section presenting in Table 4.1, the critical baryon density and baryon
chemical potential at the beginning (index I) and at the end of the mixed phase (index II)
for di�erent values of temperature and q.

The performed analyze con�rm the fact that, in presence of nonextensive e�ects, the
nuclear EOS are strongly modi�ed and the condition for the decon�nement phase transition
is also strongly varied. In fact, by varying temperature and density, the EOS re�ects in terms
of the macroscopic thermodynamical variables the microscopic interactions of the di�erent
phases of nuclear matter. In particular, although pressure as a function of baryon density is
sti�er in the hadronic phase, we show that a strong softening in the mixed phase takes place
in the presence of nonextensive statistics. Such behavior implies an abrupt variation in the
incompressibility and could be considered as a signal of nonextensive statistical e�ects in
high-energy heavy-ion collisions.
These facts con�rm the importance of consider the possible onset of nonextensive statist-
ical e�ects (as for eg. long range color interaction, memory e�ects and strong dynamical
correlations) during relativistic heavy ion collision experiments.

4.5 Three quark �avors

We are now ready to extend our numerical investigation to more energetic relativistic heavy
ion collision experiments. In particular, we are interested in exploring higher degrees of
freedom of the system. For this reason, we include in our numerical investigation all the
baryons octet (n, p, Λ, Σ+, Σ0, Σ−, Ξ−, Ξ0), ∆-isobar degrees of freedom (∆++, ∆+, ∆0,
∆−), and the lightest pseudo-scalar (π, K, K, η, η

′
) and vector mesons (ρ, ω, K∗, K

∗
, ϕ),

through the e�ective mean �eld model exposed in section 1.4.1.
In this context, due to the high temperature achieved during the phase transition from had-
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rons to QGP, we use the Bag parametrization of eq. (1.73). Furthermore, the system is now
described by three independent conserved charges (B, C, S). Therefore, the thermodynam-
ical equilibrium and the mixed phase, are obtained by imposing the condition of eq.s (4.1),
(4.2), (4.3), (4.4), (4.5).

The analyze is performed using the parameter set marked as GM3 of Tab. 1.2 , hence
the hadronic Lagrangian density can be written as:

LQHD = LB + L∆ + Lqfm , (4.8)

where LB is related to the baryons octet eq. (1.27), L∆ is relative to ∆-isobars degrees of
freedom eq. (1.48) and Lqfm is related to a (quasi) free mesons gas with an e�ective chemical
potential given by eq. (1.50).

The nonextensive equation of motion, the scalar and vector baryon density for baryons
and ∆'s, are given by the set of eq.s (2.24)�(2.25) and (2.28)�(2.29), naturally weighed for
the corresponding degeneracy spin factor γi = 2Ji+1 (γoctet = 2 and γ∆ = 4). Furthermore,
in the e�ective relativistic mean �eld models, the equation of motion for mesons are given,
as usual, by the set of eq.s (2.30)�(2.31) and (2.32). Finally, as for the case of two �avors,
the nonextensive quark EOS and the quark density are given by the set of equations (2.36)�
(2.37) and (2.38). Gluons are also take in consideration, following the eq.s (2.39) and (2.40).
The corresponding extensive equations are given in sections (1.3, 1.4.1 and 1.6).

4.5.1 Nonextensive EOS and phase diagram

Let us start our numerical investigation by reporting in �gure 4.8 the variation of the pressure
as a function of baryon density (in units of nuclear saturation density ρ0 = 0.153 fm−3),
at T = 120 MeV and for di�erent values of q. Here and in the following we �x the value
y = 0.4. In presence of nonextensive statistical e�ects the pressure results to be considerably
increased even for small deviation from the Boltzmann-Gibbs statistics. It is interesting to
observe that the pressure presents a strong softening in the mixed phase even if the Gibbs
conditions on the phase transition are applied. At this temperature, such a behavior results
to be more pronounced by increasing the value of the nonextensive entropic parameter q
with a larger range of baryon density involved in the mixed phase region. This matter of
fact, already present in absence of strange particle degrees of freedom (section 4.4, �gure
4.5), implies an abrupt variation in the incompressibility and results much more evident here
due to the additional strangeness conservation constraint. In this context let us observe that
indirect indications of a remarkable softening of the EOS at energies reached at AGS have
been already outlined [124].

In �gure 4.9, we report the phase diagram in the T − ρB plane for di�erent values
of the nonextensive parameter q. The curves labeled with ρIcr and ρ

II
cr denote, respectively,

the beginning and the end of the mixed phase. In presence of nonextensive statistical
e�ects the phase diagram results signi�cantly modi�ed and a remarkable lowering of the
critical maximum temperature at vanishing baryon density ρB is present. This result is in
according to previous investigations where, by �tting the experimental observable at q > 1,
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Figure 4.8: Pressure as a function of baryon density (in units of the nuclear saturation
density ρ0) at T = 120 MeV and for di�erent values of nonextensive parameter q.

the temperature (or slope) parameter T is usually less that the one obtained in the standard
Boltzmann-Gibbs statistics (q = 1) [151, 28, 27, 26].

4.5.2 Particle concentration and strangeness fraction

Let us now explore in more detail the particle concentrations for di�erent values of the
nonextensive parameter q. In �gure 4.10, we report the most relevant net particle ratios
(Yi = ρi/ρB) as a function of baryon density at T=120 MeV. In presence of nonextensive
statistical e�ects (right panel), the net particle concentrations are sensibly modi�ed even
for small deviations from the standard statistics. In particular, we observe in the hadronic
phase a strong reduction of the neutron and proton fractions and a considerable increase in
the hyperon and in the meson concentrations, also at moderate baryon densities.

To better understand the relevance of the nonextensive statistical e�ects in presence of
strange matter, we show in �gure 4.11 the strangeness fraction YS for baryons (B), mesons
(M), strange quarks (s) and their antiparticles as a function of baryon density at a �xed
temperature of T=120 MeV. For q = 1 (left panel), in the hadronic phase (χ = 0), the
total strangeness is carried almost completely by mesons (kaons, mainly K+ and K0) and
baryons (hyperons), although at low baryon density anti-mesonsM (anti-kaons, mainly K−

and K0) bring a non-negligible fraction of strangeness. At the beginning of the mixed phase
(ρB ≈ 3 ρ0) the onset of s and s quarks rapidly dominates the strangeness ratio and the
contribution of the other particle fractions becomes gradually less relevant.

In presence of nonextensive statistical e�ects (right panel) the situation is quite dif-
ferent. Here we observe a strong enhancement in all strange-particle concentrations and, in
particular, the contribution of anti-baryons B (anti-hyperons) becomes relevant and com-
parable to anti-mesons and baryons.

This behavior is also evident in �gure 4.12, where the strangeness fractions in the
hadron and in the mixed phase as a function of the temperature at ρ = 3 ρ0 are shown
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Figure 4.9: Phase diagram in the T − ρB plane for di�erent values of q.
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Figure 4.10: Particles concentration as a function of baryon density at T = 120 MeV and
for q = 1 (left panel) and q = 1.1 (right panel).
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Figure 4.11: Strangeness fractions of baryons (B), mesons (M), strange quarks (s) and their
antiparticles as a function of baryon density in the pure hadronic phase, mixed phase and
quark phase at T=120 MeV for q = 1 (left panel) and q = 1.1 (right panel).
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Figure 4.12: Strangeness fractions as a function of temperature in the pure hadronic and
mixed phase at ρB = 3 ρ0 for q = 1 (left panel) and q = 1.1 (right panel).

(quark phase is not reported in this �gure). As expected, by increasing the temperature all
the strange particle densities are sensibly enhanced. Furthermore, in both panels we observe
a peak at the end of the hadronic phase and a rapid decrease at the beginning of the mixed
phase, due to the onset of the strange quarks.

At this regard, in �gure 4.13, we show the variation of the baryon chemical potential
µB (left panel) and the strangeness chemical potential µS (right panel) as a function of
temperature at �xed ρB = ρ0 and for di�erent values of q. As expected, for a multicomposed
strange hadronic matter, µS is positive and decreased with T at a �xed ρB. It is interesting
to observe the di�erent behavior of µS at lower and higher temperatures in the presence
(q ̸= 1) and in absence (q = 1) of nonextensive statistical e�ects.

The strong enhancement of the strange hadrons, in presence of nonextensive statistical
e�ects, is a direct consequence of the normalized mean occupation function ni because, for
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Figure 4.13: Variations of the baryon chemical potential µB (left panel) and the strangeness
chemical potential µS (right panel) as a function of temperature at ρB = ρ0 and for di�erent
values of q.

q > 1 and �xed baryon density (or µB), it is enhanced at high values of its argument and
depressed at low values. In particular, as reported in the previous section 4.4.1, the argu-
ment of the mean occupation function xi = β(E∗

i − µ∗i ), in the integration over momentum
(energy), at lower µB (corresponding to lower values of µ∗i ) the enhanced nonextensive high
energy tail weighs much more that at higher µB where depressed low energy e�ects prevail
and the mean occupation number results to be bigger for the standard Fermi-Dirac statist-
ics. Concerning the antiparticle contribution, the argument of ni is xi = β(E∗

i + µ∗i ) and
the nonextensive enhancement at high energy tail is favored also at higher µB. As a con-
sequence, the formation of antiparticles, as well as strange particles, results to be enhanced
in presence of nonextensive statistical e�ects. At the same time, higher temperatures reduce
the value of the argument of ni and ni, reducing the e�ect of the nonextensive distribution
function.

These properties change signi�cantly the behavior of the σ meson �eld and, therefore,
the e�ective baryon mass which is related by the relation: M∗

i = Mi − gσiσ. In fact, for
q > 1, M∗

i becomes smaller at low baryon density (and higher temperature) and bigger at
�nite densities ρB ≥ 0.2 ρ0 (and lower temperature) [173]. This e�ect appears to be much
more signi�cant as a percentage for lighter baryons, therefore, at �nite baryon densities,
the nucleons e�ective mass is enhanced compared to the standard case (q = 1) with a
percentage signi�cantly greater than the hyperons e�ective masses. This matter of fact
favors the formation of hyperons compared to that of nucleons at a �xed baryon density
and in presence of nonextensive statistical e�ects. Moreover, being the strangeness number
globally conserved, an increase of hyperon particles implies, in the pure hadron phase, a
corresponding increase of strange meson particles in order to satisfy the condition of zero
net strangeness.

93



4.5.3 Quark anti-quark strangeness ratio

At the scope of better focalize the role of nonextensive statistical e�ects in the strangeness
production during the mixed phase, in �gure 4.14, we report the strange to anti-strange
quark ratio ρs/ρ s as a function of the baryon density, at di�erent values of the volume
fraction of quark matter χ in the quark-gluon phase along the phase transition, i.e., for a
continuously varying temperature. In this context, let us point out again that, due to the
Gibbs conditions, into the mixed phase, the net strangeness in each separate phase need not
vanish although the total net strangeness is zero. This matter of fact is evident in �gure 4.14.
In the left panel (q = 1), especially at the beginning of the mixed phase (χ = 0.1), there is
a remarkable excess of quark s with respect to s, with a maximum value around ρB ≈ 3 ρ0.
This means that in absence of nonextensive statistical e�ects, during the phase transition,
there is a large antistrangeness (s) content in the hadron phase while quark-gluon plasma
retains a large net strangeness (s) excess. This distillation mechanism, already known in
literature, may result in "strangelet" formation, i.e. metastable droplets of strange-quark
matter, which could imply a unique signature for quark-gluon plasma formation in relativistic
heavy-ion collisions [105, 106].

In presence of the nonextensive statistical e�ects (right panel), there is a very di�erent
behavior with a ratio ρs/ρ s slightly less than one at lower baryon density (ρB < 2 ρ0),
whereas the other way round occurs at higher ρB with a comparable behavior to the q = 1
case but with an excess of s quarks less pronounced. Similar behavior can be observed
in �gure 4.15, where the same ratio as a function of the temperature is also reported. Of
course, at �xed χ, low temperatures imply high densities and viceversa.

As previous discussed, this behavior is a consequence of the power-law behavior of
the mean occupational distribution for q > 1: the formation of antihyperons and kaons
(mainly K+, K0) turns out to be disadvantaged at low baryon density and very high tem-
perature and, viceversa, favored at high baryon density and low/intermediate temperature,
compared to the standard case (q = 1). Although particles with strangeness and anti-
strangeness content are strongly enhanced in presence of nonextensive statistics, the ratio
strangeness/antistrangeness results depleted due to an enhancement of antiparticles produc-
tion at �nite temperature.

4.5.4 Strangeness mesons production

In agreement with the previous results, in �gure 4.16, we report the K+/K− ratio in the
hadronic phase as a function of baryon density at T = 120 MeV (left panel) and as a
function of temperature at ρB = 3 ρ0 (right panel). For q = 1 and �xed temperature, the
K+/K− ratio increases with continuity by increasing the baryon density until it reaches
the �rst critical density around (ρB ≈ 3 ρ0), after that a strong enhancement of the ratio
occurs in the mixed phase region. This a consequence of the antistrangeness (s) excess in
the hadronic phase at the beginning of the mixed phase. For the same reason the K+/K−

ratio decreases by increasing the temperature until the beginning of the mixed phase with
an abrupt increase of the ratio. On the other hand, for q > 1, the kaon to anti-kaons ratio is
depleted with respect to the standard case (q = 1), due to the increase of the antiparticles
production. Furthermore, the strong variation of the ratio during the mixed phase transition
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Figure 4.14: Ratio of strange to anti-strange quarks in the quark phase, as a function of
the baryon density at di�erent values of the volume fraction of quark-gluon matter χ in the
mixed phase for q = 1 (left panel) and q = 1.1 (right panel).
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Figure 4.15: The same of �gure 4.14 as a function of the temperature

at q = 1 results to be very smoothed in presence of nonextensive statistical e�ects.
In presence of nonextensive statistical e�ects, the strong enhancement in density of

strange particles compared to non-strange can be further observed in �gure 4.17 where the
K+/π+ ratio is reported as a function of baryon density at T = 120 MeV (left panel) and as
a function of temperature at ρB = 3 ρ0 (right panel). For q = 1.1, there is a strong increase
of the ratio, while it does not present discontinuities at the beginning of the mixed phase,
unlike the case q = 1 where a much more antistrangeness excess is present. Finally it is
interesting to observe for q = 1.1 a continuous decreasing trend of the ratio as a function of
temperature at �xed baryon density.

Therefore, in presence of non extensive e�ects, strange particles are abundantly pro-
duced even at moderate temperature and the anti-particles concentration is strongly in-
creased. In particular, for q > 1, the phase transition is characterized by an antistrangess
content in the hadron phase while the QGP retains a net strangeness excess at large densities
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Figure 4.16: Kaon to antikaon ratio as a function of baryon density (left panel) and tem-
perature (right panel) for di�erent values of q in the hadronic phase.
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Figure 4.17: The same of �gure 4.16 for the K+/π+ ratio.
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(ρB ≥ 2 ρ0) and intermediate temperatures (T ≈ 100÷120 MeV), while the other way round
occurs at low densities and high temperature. This matter of fact is essentially due to the
power law behavior of the mean occupational distribution function which weights di�erently
low and high energy states at di�erent baryon densities and temperatures.

The possibility of separating strange from antistrange matter in the hadron-QGP
phase transition can lead to a very signi�cant enrichment of strange quarks in the QGP
at high baryon density and intermediate temperature. In fact, in the hadronic sector of
the mixed phase, the K+ and K0 are enhanced and the hyperons are suppressed. Being
mesons much lighter than nucleons and their resonances, they carry away entropy, energy
and antistrangeness and, therefore, the prompt kaon emission cools and charges the system
with �nite net strangeness, leading to an even stronger enhancement of the s quarks in the
quark phase. This feature, which also depends strongly on the value of the strange particle
densities, favors the formation of metastable or stable droplets of strange quark matter
which would contain approximately the same amount of u, d and s quarks. The evidence of
such a state of quark matter could be related to the existence of exotic hadron states, like
a H-dibaryon state, a deeply bound 6-quark state predicted by Ja�e more than thirty years
ago [174]. Although many experimental searches for the H-dibaryon were carried out and
so far no convincing signal was found [175], very recently evidence for a bound H-dibaryon
was claimed based on lattice QCD calculations [176, 177].

In presence of nonextensive statistical e�ects, the separation of strange and antistrange
quarks in the hadron-QGP mixed phase turns out to be less pronounced than in the standard
case due to a more symmetric presence of particle and antiparticle at intermediate temper-
atures. On the other hand, for q > 1, the strangeness fractions YS (and, consequently, the
densities of strange particles) result to be much greater compared to the q = 1 case. This
matter of fact could be crucial in the formation and survival of strange quark matter droplets
in relativistic heavy ion collisions at high compressed baryonic matter.

4.6 Major conclusions

To summarize, in this Chapter we have studied the main features of the nuclear EOS in the
hadronic and quark-gluon phase and the possible formation of a consequent mixed phase
in presence of nonextensive statistical e�ects. We have focused our investigation in regime
of �nite temperature and baryon chemical potential, reachable in high-energy heavy-ion
collisions, for which the decon�nement phase transition can be still considered of the second
order by Ehrenfest de�nition (therefore continuous). From a phenomenological point of view,
the nonextensive index q is considered here as a free parameter, even if, actually should not be
treated as such because, in principle, it should depend on the physical conditions generated in
the reaction, on the �uctuation of the temperature and be related to microscopic quantities
(such as, for example, the mean interparticle interaction length, the screening length and
the collision frequency into the parton plasma). We have restricted our investigation for
small deviations from the standard statistics and for values q > 1 because, as quoted in the
Introduction, these values were obtained in several phenomenological studies in high energy
heavy ion collisions. In this context, it is relevant to observe that by �tting experimental
observable at q > 1, the temperature (or slope) parameter T is usually minor of the one
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obtained in the standard Boltzmann-Gibbs statistics (q = 1) [27, 26]. This feature is also
present in the considered nuclear equation of state because, at �xed energy per particle E/N ,
we obtain for q > 1 lower values of temperature respect to the standard case. Moreover, let
us remember that, in the di�usional approximation, a value q > 1 implies the presence of
a superdi�usion among the constituent particles (the mean square displacement obeys to a
power law behavior ⟨x2⟩ ∝ tα, with α > 1) [178].

In the �rst part of the work (Section. 4.4), we have investigated the hadronic equa-
tion of state at not to high temperature, assuming that, for this range of temperatures and
baryon densities, the presence of strange particles do not signi�cantly a�ect the main con-
clusions regarding the relevance of nonextensive statistical e�ects to the nuclear EOS. We
have then imposed the Gibbs conditions on the global conservation of baryon number and
electric charge fraction and we have studied the phase transition from hadronic matter to
QGP.
We have shown that, also in presence of small deviations from standard Boltzmann-Gibbs
statistics, the meson �elds and, consequently, the EOS appear to be sensibly modi�ed. We
have then analyzed the QGP proprieties using the MIT Bag model, showing that, also in
this case, the EOS becomes sti�er in presence of nonextensive e�ects. Finally, we have show
that nonextensive e�ects play a crucial role in the decon�nement phase transition. Moreover,
although pressure as a function of baryon density is sti�er in the hadronic phase, we have
shown that a strong softening in the mixed phase takes place in presence of nonextensive
statistics. Such a behavior implies an abruptly variation in the incompressibility and could
be considered as a signal of nonextensive statistical e�ects in high energy heavy ion collisions.

In the second part of this Chapter (Section. 4.5), we have studied an e�ective nuclear
EOS in the framework of nonextensive statistical e�ects at �nite temperature and baryon
density. By requiring the Gibbs conditions on the global conservation of the baryon number,
electric charge fraction and zero net strangeness. Our investigation is focalized in regime
of �nite temperature and baryon density relevant for future compressed baryonic matter
experiments.

We have shown that strange particles are abundantly produced even at moderate
temperature and the anti-particles concentration is strongly increased in presence of nonex-
tensive statistical e�ects. For q > 1, the phase transition is characterized by an antistrangess
content in the hadron phase while the QGP retains a net strangeness excess at large densities
(ρB ≥ 2 ρ0) and intermediate temperatures (T ≈ 100÷120 MeV), while the other way round
occurs at low densities and high temperature. This matter of fact is essentially due to the
power law behavior of the mean occupational distribution function which weights di�erently
low and high energy states at di�erent baryon densities and temperatures.

The possibility of separating strange from antistrange matter in the hadron-QGP
phase transition can lead to a very signi�cant enrichment of strange quarks in the QGP
at high baryon density and intermediate temperature. In fact, in the hadronic sector of
the mixed phase, the K+ and K0 are enhanced and the hyperons are suppressed. Being
mesons much lighter than nucleons and their resonances, they carry away entropy, energy
and antistrangeness and, therefore, the prompt kaon emission cools and charges the system
with �nite net strangeness, leading to an even stronger enhancement of the s quarks in the
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quark phase. This feature, which also depends strongly on the value of the strange particle
densities, favors the formation of metastable or stable droplets of strange quark matter
which would contain approximately the same amount of u, d and s quarks. The evidence of
such a state of quark matter could be related to the existence of exotic hadron states, like
a H-dibaryon state, a deeply bound 6-quark state predicted by Ja�e more than thirty years
ago [174]. Although many experimental searches for the H-dibaryon were carried out and
so far no convincing signal was found [175], very recently evidence for a bound H-dibaryon
was claimed based on lattice QCD calculations [176, 177].

In presence of nonextensive statistical e�ects, the separation of strange and anti-
strange quarks in the hadron-QGP mixed phase turns out to be less pronounced than in
the standard case due to a more symmetric presence of particle and antiparticle at inter-
mediate temperatures. On the other hand, for q > 1, the strangeness fractions YS (and,
consequently, the densities of strange particles) result to be much greater compared to the
q = 1 case. This matter of fact could be crucial in the formation and survival of strange
quark matter droplets in relativistic heavy ion collisions at high compressed baryonic matter
and can be considered an important feature for the experimental identi�cation of the on-set
of nonextensive statistical e�ects in the nuclear medium.
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Chapter 5

Chemical and mechanical instability

in a �nite temperature and dense

nuclear matter.

In this last Chapter, we are planning to investigate the chemical and mechanical instability
in a �nite temperature and dense nuclear medium, with particular attention to the liquid-gas
and nucleon-∆-matter phase transition and the possible onset of strangeness instability at
hight temperature and �nite baryon density.

5.1 Introduction

We conclude this Thesis work, with a detailed study of the thermodynamical properties of
strongly interacting nuclear matter away from the nuclear ground state. This research �eld,
constitutes one of the most interesting aspects of the experiments on heavy-ion collisions
and one of the major tasks of modern high energy nuclear physics.
In this direction, many e�orts were focused on searching for possible phase transitions in
such collisions. At low temperatures (T ≤ 10 MeV) and subnuclear densities, a liquid-gas
type of phase transition was �rst predict theoretically [179, 180, 181] and later observed
experimentally in a nuclear multifragmentation phenomenon at intermediate-energy nuclear
reactions [61, 62].

Because nuclei are made of neutrons and protons, the nuclear liquid-gas phase trans-
ition is in a binary system where one has to deal with two independent proton and neutron
chemical potentials for baryon number and electric charge conservation. This was made be
taking in consideration a very detailed study of Müller and Serot [76] focused on the main
thermodynamic properties of asymmetric nuclear matter in the framework of a relativistic
mean �eld model.

A relevant aspect of a system with two conserved charges (baryon and isospin numbers)
is that the phase transition is of second order from the viewpoint of Ehrenfest′s de�nition.
At variance with the so-called Maxwell construction for one conserved charge, the pressure is
not constant in the mixed phase and therefore the incompressibility does not vanish [76, 77].
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Such feature plays a crucial role in the structure and in the possible hadron-quark phase
transition in compact star objects [78, 79]. Moreover, for a binary system with two phases,
the binodal coexistence surface is two dimensional and the instabilities in the mixed liquid-
gas phase arise from �uctuations in the proton concentration (chemical instability) and in
the baryon density (mechanical instability) [76, 80, 81, 82].

As already discussed in the previous Chapters and in the Introduction, although the
equation of state (EOS) at density below the saturation nuclear matter is relatively well
known due to the large amount of experimental nuclear data available, at larger density
there are many uncertainties; the strong repulsion at short distances of nuclear force makes,
in fact, the compression of nuclear matter quite di�cult. However, in relativistic heavy-ion
collisions the baryon density can reach values of a few times the saturation nuclear density
ρ0 and/or high temperatures.
In this condition, a state of high density resonance matter may be formed and the ∆(1232)-
isobar degrees of freedom are expected to play a central role in relativistic heavy ion collisions
and in the physics of compact stars [63, 64, 65, 66, 67]. Transport model calculations and
experimental results indicate that an excited state of baryonic matter is dominated by the
∆-resonance at the energy from AGS to RHIC [68, 69, 70, 71]. In this direction, very
interesting results have been obtained at low energy at the CERN Super Proton Collider
(SPS) and at low-energy scan at BNL Relativistic Heavy Ion Collider (RHIC) [112, 113, 114].
Moreover, in symmetric nuclear matter and in the framework of a non-linear Walecka model,
it has been predicted that a phase transition from nucleonic matter to ∆-excited nuclear
matter can take place and the occurrence of this transition sensibly depends on the ∆-meson
coupling constants [72, 73].
The information coming from experiments with heavy ions in intermediate- and high-energy
collisions is that the EOS depends on the energy beam but also sensibly on the electric
charge fraction y of the colliding nuclei, especially at not too high temperature [74, 75].
Moreover, the study of nuclear matter with arbitrary electric charge fraction results to be
important in radioactive beam experiments and in the physics of compact stars.

In this last Chapter, we are planning to study the hadronic equation of state (EOS) at
�nite temperature and density by means of a relativistic mean-�eld model with the inclusion
∆-isobars and pion degrees of freedom, by requiring the Gibbs conditions on the global
conservation of baryon number and net electric charge. We will also deeply investigated the
liquid-gas phase transition both in the extensive and nonextensive context.
Finally, we will present a preliminary study of the possible onset of strangeness di�usional
instability, in a multi-component system with two (B, S) and three (B, C and S) conserved
charges, over a wide range of baryon density ρ0 < ρB < 4ρ0 and for T > 70 MeV.

The main goal of this Chapter is therefore the research and the investigation of the
possible phase transitions in the nuclear medium, over a very wide range of temperatures
and baryon densities, through the study of the mechanical and chemical instabilities.

This chapter is based on the results obtained in [88, 182].
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5.2 Hadronic equation of state

In order to make a complete description of the possible phase transitions in the nuclear
medium, at the increasing of the temperature and baryons density, we have to take in
consideration di�erent degrees of freedom in the Lagrangian density.
For this reason, we dived this analyze in three parts.

• The �rst one, at low temperature and baryon density (T ≈ 10 MeV and ρB ≤ 1ρ0),
where the relevant degrees of freedom are nucleons and a liquid-gas phase transition
is expected.

• A second part, at higher temperature and baryon density (T ≤ 50 MeV and ρ0 ≤
ρB ≤ 3ρ0), where a phase transition from nucleonic matter to resonance-dominated ∆-
matter is expected and the relevant degrees of freedom of the system become nucleons,
∆-isobars and pions.

• Finally, we study the possible on-set of strangeness instability at higher temperature
and �nite baryon density (70 MeV < T < 140 MeV and ρ0 ≤ ρB ≤ 4ρ0), where
the relevant degrees of freedom are nucleons, pions and strange particles (hyperons
and strange mesons), introduced through the e�ective relativistic mean �eld model of
section 1.4.1 and the chiral one of section 1.4.2.

In this numerical investigation, the meson-nucleon coupling constants and the other
parameters (a, b, c) of the Lagrangian density (1.27) will be �xed to the parameters set
marked as TM1 of Tab. (1.2).

The analyze of the liquid-gas phase transition is performed by requiring the conser-
vation of the baryon number (B) and the electric charge (C), requiring the Gibbs stability
condition for the phase coexistence regions. The scalar and vector baryon density and the
nuclear EOS are given as usual by eq.s (1.34), (1.35) and (1.39)�(1.40).

The analyze of the ∆-matter phase transition is instead more complicated, primarily
due to the presence of ∆-isobars. As known, there is no relativistic quantum theory for
the ∆ as a spin 3/2 �eld without any inconsistency when imposing other �elds such as
the ones with electromagnetic interaction [183]. Anyway, as exposed in Section 1.3.1 and
following the Rarita-Schwinger formalism, the spin 3/2 particle, described by means of a
vector spinor state, has o�-shell spin 1/2 sector. To incorporate ∆-isobars in the framework
of e�ective hadron �eld theories a formalism was developed treating ∆ analogously to the
nucleon, taking only the on-shell ∆s into account and the mass of the ∆s are substituted
by the e�ective one in the RMF approximation [184, 185]. The ∆ Lagrangian density, take
therefore the form of eq. (1.48).
Following the prescription of Section (1.3), (1.3.1) and (1.4.1), the relevant equations for
baryons are given by equations (1.34), (1.35) and (1.39)�(1.40), whereas, for mesons, by eq.s
(1.53)�(1.55). Let us observe that the contribution of the lightest non-strange mesons (pions)
may not be neglected in regime of temperature and density achieved during the possible ∆-
matter phase transition. Taking into account eq. (1.50), from a phenomenological point of
view, we can consider the pion degrees of freedom by adding their one-body contribution
to the thermodynamical potential, that is, as discussed in Section 1.4.1, the contribution of
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an ideal Bose gas with an e�ective pion chemical potential µ∗π, depending self-consistently
from the meson �elds.

Of course, this naive phenomenological approach cannot incorporate the very com-
plex πN∆ interaction at �nite temperature and baryon density and a more realistic chiral
symmetric model should be implemented. On the other hand, as we will see in Section 5.5,
such an e�ective nuclear EOS has the noticeable advantage of simplifying the very complex
numerical analysis involved in seeking of thermodynamic instabilities and in the construc-
tion of the mixed phase. Due to this matter of fact, it would be prudent to consider the
following results as a preliminary study, that will be investigated in more detail in future,
for example with the introduction of a ρ-∆ coupling constant.
In this context, let us observe that, for the range of temperatures and baryon densities
considered in this investigation (T ≤ 50 and ρB ≤ 3 ρ0), the contribution of strange had-
rons, due to their very low concentration, can be in a good approximation neglected. In
fact, unlike compact stars in β-stability regime, since weak-decays cannot take place dur-
ing the short life-time of high density system, the only possibility of producing strangeness
is through associated production but, in the scenario we are discussing, this process has
been shown to be very ine�cient [186, 165] and, therefore, the study of the possible phase
transition can be limited to two conserved charges.

Finally, strangeness instability is investigated in a very high temperature and dense
nuclear medium of two (B and S) and three (B, C and S) conserved charges. The inclusion
of strange particles (hyperons and strange mesons), was made following the prescription of
section 1.3 and through the e�ective formulation exposed in section 1.4.1 and the chiral
model of section 1.4.2.

The hadronic pressure and energy density are given by the sum of the baryon (B) and
meson (M) contribution: ε = εB + εM and P = PB + PM .

5.3 Phase transition and stability condition

5.3.1 Two conserved charges (B and C)

As already stated, we are dealing with the study of a multi-component system at �nite
temperature and density with two conserved charges: baryon number (B) and electric charge
(C). For such a system, the Helmholtz free energy density F can be written as

F (T, ρB, ρC) = −P (T, µB, µC) + µBρB + µCρC , (5.1)

with

µB =

(
∂F

∂ρB

)
T,ρC

, µC =

(
∂F

∂ρC

)
T,ρB

. (5.2)

In a system with N di�erent particles, the particle chemical potentials are expressed as
the linear combination of the two independent chemical potentials µB and µC and, as a
consequence,

∑N
i=1 µiρi = µBρB + µCρC . Therefore, the number of particles may change

during a process and, at variance of density and temperature, di�erent particle degrees of
freedom may be relevant in the description of the system (for example, at low temperature
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and density, we have protons and neutrons only, while at higher temperature and density
other kind of particles, such as ∆-isobars, can appear). What it is actually relevant for the
thermodynamical description under consideration are only the two conserved charges and
not the number of di�erent particles constituent the system.

In general, a system can exist in a number of di�erent phases, each of which exhibit
quite di�erent macroscopic behavior. The single phase that is realized for a given set of
independent variables is the one with the lowest free energy. In a system with two conserved
charges, it is possible to have Nmax = 4 phase coexistence regions in thermodynamical
equilibrium [187, 188], even if we have found no evidence for the existence of more than two
phases in the regime investigated in this study. By assuming the presence of two phases
(denoted as I and II, respectively), the system is stable against the separation in two
phases if the free energy of a single phase is lower than the free energy in all two phases
con�guration. The phase coexistence is given by the Gibbs conditions

µIB = µIIB , µIC = µIIC , (5.3)

P I(T, µB, µC) = P II(T, µB, µC) . (5.4)

Therefore, at a given baryon density ρB and at a given net electric charge density ρC = y ρB,
the chemical potentials µB are µC are univocally determined by the following equations

ρB = (1− χ) ρIB(T, µB, µC) + χρIIB (T, µB, µC) , (5.5)

ρC = (1− χ) ρIC(T, µB, µC) + χρIIC (T, µB, µC) , (5.6)

where ρI(II)B and ρI(II)C are, respectively, the baryon and electric charge densities in the low
density (I) and in the higher density (II) phase and χ is the volume fraction of the phase
II in the mixed phase (0 ≤ χ ≤ 1).

An important feature of this conditions is that, unlike the case of a single conserved
charge, the pressure in the mixed phase is not constant and, although the total ρB and ρC
are �xed, baryon and charge densities can be di�erent in the two phases, according to Eq.s
(5.15) and (5.16).

For such a system in thermal equilibrium, the possible phase transition can be char-
acterized by mechanical (�uctuations in the baryon density) and chemical instabilities (�uc-
tuations in the electric charge density). As usual the condition of the mechanical stability
implies

ρB

(
∂P

∂ρB

)
T, ρC

> 0 . (5.7)

By introducing the notation µi,j = (∂µi/∂ρj)T,P (with i, j = B,C), the chemical stability
can be expressed with the following conditions [188]

µB,B > 0 , µC,C > 0 ,

∣∣∣∣µB,B µB,C

µC,B µC,C

∣∣∣∣ > 0 . (5.8)

In addition to the above conditions, for a process at constant P and T , it is always satis�ed
that

ρB µB,B + ρC µC,B = 0 , (5.9)

ρB µB,C + ρC µC,C = 0 . (5.10)
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Whenever the above stability conditions are not respected, the system becomes un-
stable and the phase transition take place. The coexistence line of a system with one
conserved charge becomes in this case a two dimensional surface in (T, P, y) space, enclosing
the region where mechanical and di�usive instabilities occur.

5.3.2 Strangeness stability condition

At higher temperature, when strangeness degrees of freedom become important, the Helm-
holtz free energy density takes the form:

F (T, ρB, ρC , ρS) = −P (T, µB, µC , µS) + µBρB + µCρC + µSρS , (5.11)

with

µB =

(
∂F

∂ρB

)
T,ρC

, µC =

(
∂F

∂ρC

)
T,ρB

, µS =

(
∂F

∂ρS

)
T,ρS

. (5.12)

In a system with three conserved charges, at mostNMax = 5 phase in thermodynamical
equilibrium can coexist [187]. However, as for the LG and ∆-matter phase transition, we do
not �nd any evidence of more then two phases.
In this context, the Gibbs condition for the phase coexistence becomes:

µIB = µIIB , µIC = µIIC , µIS = µIIS , (5.13)

P I(T, µB, µC , µS) = P II(T, µB, µC , µS) . (5.14)

Therefore, at a given baryon density ρB and at a given net electric charge density ρC = y ρB
and strangeness density ρS = z ρB, the chemical potentials µB, µC and µS are univocally
determined by the following equations

ρB = (1− χ) ρIB(T, µB, µC , µS) + χρIIB (T, µB, µC , µS) , (5.15)

ρC = (1− χ) ρIC(T, µB, µC , µS) + χρIIC (T, µB, µC , µS) , (5.16)

ρS = (1− χ) ρIS(T, µB, µC , µS) + χρIIS (T, µB, µC , µS) , (5.17)

where ρI(II)B , ρI(II)C and ρ
I(II)
S are, respectively, the baryon, the electric charge and the

strangeness densities in the low density (I) and in the higher density (II) phase and χ is
the volume fraction of the phase II in the mixed phase (0 ≤ χ ≤ 1).

In this context, analogously to eq. (5.8), the chemical stability condition can be
written as:

µB,B > 0 , µC,C > 0 , µS,S > 0 ,

∣∣∣∣∣∣
µB,B µB,C µB,S

µC,B µC,C µC,S

µS,B µS,C µS,S

∣∣∣∣∣∣ > 0 , (5.18)

where, for a process at constant P and T , we obtain

ρB µB,B + ρC µC,B + ρS µS,B = 0 , (5.19)

ρB µB,C + ρC µC,C + ρS µS,C = 0 , (5.20)

ρB µB,S + ρC µC,S + ρS µS,S = 0 . (5.21)
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The mechanical stability condition, is always given by eq. (5.7).
Finally, we will explore the possible onset of strangeness instability in the hadronic

system, by requiring the conservation of only two charges (B and S), under the assumption
that, at higher temperature, the e�ects of isospin asymmetry becomes less relevant. There-
fore, in analogy to eq.s (5.9) and (5.24), we can write the stability conditions for a process
at constant P and T , as:

ρB µB,B + ρS µS,B = 0 , (5.22)

ρB µB,S + ρS µS,S = 0 . (5.23)

As for the LG case or the ∆-matter phase transition, whenever the above stability conditions
(eq.s 5.19�5.23) are not respected, the system becomes unstable and a phase transition is
expected.

5.4 Liquid-gas phase transition

As already stated in the previous sections, in regime of low temperature and baryon density,
relevant in the liquid-gas phase transition, only proton and neutron degrees of freedom take
place. In this simple case, for example, Eq.(5.9) can be written as

y

(
∂µp
∂y

)
T,P

+ (1− y)

(
∂µn
∂y

)
T,P

= 0 , (5.24)

where y = ρp/ρB. Because we are working with a proton fraction 0 < y ≤ 0.5, the chemical
stability conditions (5.8) are therefore satis�ed if(

∂µp
∂y

)
T,P

> 0 or

(
∂µn
∂y

)
T,P

< 0 , (5.25)

(due the validity of Eq.(5.24), the �rst above condition implies the second one and viceversa).
As already observed, in presence of two conserved charges the liquid-gas phase trans-

ition can be characterized by mechanical and chemical instabilities [76]. In order to better
put this feature in focus, we report in Fig. 5.1 the pressure as a function of baryon density
for various values of the electric charge fraction y at �xed temperature T = 10 MeV. The
continuous lines correspond to the solution obtained with the Gibbs construction, whereas
the dashed lines are without correction. For a proton fraction y > 0.2 a mechanical instabil-
ity is present, whereas for y < 0.2 the system becomes unstable only under chemical-di�usive
instability.

The presence of chemical unstable regions are much better evident in Fig. 5.2, where
we show the proton and neutron chemical potentials for various isobars at constant tem-
perature, as a function of the proton asymmetry. Below P = 0.25 MeV/fm3, the system
becomes unstable because of the presence of regions of negative (positive) slope for µp (µn).

In order to study the phase coexistence of the system, in the Fig. 5.3, we show the
binodal section as a function of the proton asymmetry y at T = 10 MeV. Following the
same notation of Ref. [76], the binodal surface is divided in two branches by a critical
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Figure 5.1: Pressure as a function of baryon density for various values of the proton fraction.
The continuous/dashed lines correspond to the solution obtained with/without the Gibbs
construction.

T=10 MeV

a
b

c
d

e

a

b

c
d

e

Μn

Μp

0.0 0.1 0.2 0.3 0.4 0.5
y870

880

890

900

910

920

930

940

Μ @MeVD

Figure 5.2: Proton and neutron chemical potential as a function of the proton fraction y for
various isobars (P=0.25,0.20,0.15,0.10,0.075 MeV/fm3) (lines from a to e) at T=10 MeV.
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Figure 5.3: Binodal section at T = 10 MeV, with in evidence the critical point (CP), the
point of maximum asymmetry (MA) and the point of equal equilibrium (EQ). In the left
and right panel are reported the evolution of the mixed phase for two di�erent system
con�gurations (see the text for details).

point (CP) and a point of equal equilibrium (EQ) at y = 0.5, where protons and neutrons
have the same concentration. The left branch of the diagram represents the initial phase
con�guration of the system at lower density (gas phase, I) and the second branch, at higher
density, corresponds to the �nal phase con�guration (liquid phase, II).

The binodal surface encloses the area where the system undergoes to the phase trans-
ition. The mixed phase region extends up to small values of the proton asymmetry, whereas
the mechanical instability region ends around y ≃ 0.2, in agreement with the results of Ref.
[76].

During the isothermal compression, the system evolves through con�guration at con-
stant y and meets the �rst branch in a point A. At this point the system becomes unstable
and an in�nitesimal phase in B appears at the same temperature and pressure of A. In
this context, let us remember that, although the proton asymmetry is globally conserved,
this is not true for the single phase. In particular, for an asymmetric nuclear system is
energetically favorable to separate into a liquid phase (less asymmetric) and a gas phase
(more asymmetric), than into two phases with equal proton fraction.

If the point A have a value of yA greater than the corresponding values yCP of the CP
(as in the left panel of Fig. 5.3), the system ends the phase transition in the liquid phase (in
the point C). On the other hand, as already observed in Ref. [76], if the system has been
prepared in a very asymmetric con�guration with yA′ < yCP (right panel of Fig. 5.3), it
undergoes to a retrograde phase transition. A second liquid-phase in B

′
is formed but after

reaching a point of maximum volume fraction χmax < 1, the system returns to its initial
gas phase in the point C

′
. Note that, this kind of phase transition is possible only for a

multi-component system and in this case, is purely di�usive.
In order to better characterize the evolution of the two phases, in Fig. 5.4, the

volume fraction χ of the second phase during the phase transition is showed. By increasing
the asymmetry parameter of the system under consideration (at lower values of y), the
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Figure 5.4: Evolution of the volume fraction χ of the second phase as a function of the
baryon density, for system with di�erent values of y at T = 10 MeV.

maximum density achieved during the mixed phase decreases, until the system undergoes
to a retrograde phase transition (for y < 0.15).

5.4.1 Nonextensive liquid-gas phase transition

A very interesting aspect of the LG phase transition, due to the low degrees of freedom
of the system (only protons and nucleons are presents in our analyze), is the possibility of
study such phase transition in the framework of non extensive e�ects.
In this case, as amply discussed in Chapter (2), the particle thermal distribution function
take the form of eq. (2.21) and using the Wilk prescription, we obtain the eq.s (2.22) and
(2.23). In this context, the baryon and scalar density and the EOS for the nuclear Lagrangian
(1.27), take the form of eq.s (2.24)�(2.25) and (2.28)�(2.29).

The condition for the onset of mechanical and chemical instability are obviously the
same of the extensive case, exposed in sections 5.3 and 5.4.1.

The main goal of this analyze, is therefore, to put in evidence the relevance of the
possible onset of nonextensive e�ect in a warm nuclear medium at low baryon density,
condition reached during the liquid-gas phase transition.
In particular, in the following, we compare the results obtained for a very small deviation
form the standard statistics (q = 1.02) to that of the extensive case.

In this context, as amply discussed in Chapters 2 and 4, the relevance of nonextensive
e�ect are bigger as higher is the temperature of the system. However, although during the
LG phase transition the temperature of the system is typically of the order of 10 MeV, in
presence of nonextensive e�ects, the pressure and the isobars are sensibly modi�ed( this is
probably due to the possible onset of strong-dynamical correlation during the phase trans-
ition process).

This is well evident in Fig. 5.5 and Fig. 5.6, where we report, respectively, the pressure
as a function of the baryon density for di�erent values of y and q and various isobars as a
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function of y in the extensive and nonextensive case.
In particular, in the left panel of Fig. 5.5, we show the variation in the nuclear EOS in
presence (dashed lines) and in absence (continuous lines) of nonextensive e�ects, for di�erent
values of y. As can be observed, also in presence of small deviation from the standard BG
statistics, the nuclear EOS appears sti�er, favoring in this way the phase transition. In the
right panel of the same graphic, we report the the Gibbs construction (continuous lines)
for the nonextensive case. Again, below y = 0.2, although the system becomes mechanical
stable, it continues to undergoes to a phase transition due to a region of chemical instability.
To better clarify the role played by nonextensive e�ect during the LG phase transition, we
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Figure 5.5: Pressure as a function of the baryon density for di�erent proton fraction at
T = 10 MeV, in presence and in absence of nonextensive e�ects (left panel) and for q = 1.02
(right panel), with and without Gibbs correction, continuous and dashed lines respectively.
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Figure 5.6: Proton and neutron chemical potential as a function of the proton fraction y for
various isobars (P = 0.35, 0.15, 0.10 MeV/fm3) (lines from a to c) at T = 10 MeV and q = 1
and q = 1.02.
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show in Fig. 5.6, the neutrons and protons chemical potential isobars, at q = 1 (continuous
lines) and q = 1.02 (dashed lines).
Here, we observe again a strong variation of such isobars in particular at P = 10 MeV/fm3,
where a strong region of chemical instability, over a wide range of charge asymmetry fraction
is present. However, although a remarkable di�erence in the shape of such isobars, we do
not observe a signi�cantly variation in the shape of the binodal diagram, and therefore in
the region of mechanical and chemical instability.
This is well evident in Fig 5.7, where we report the binodal section at T = 10 MeV in the
extensive (continuous line) and nonextensive (dashed line) case.
The two diagrams are almost the same, apart for the fact that, in presence of nonextensive
e�ects, the instability region ends at an higher pressure (P ≈ 27 MeV/fm3) and the system
achieved a less asymmetric charge con�guration. Instead, the point of equal equilibrium
and the region of retrograde phase transition, are not strongly modi�ed. This is because at
low baryon density (pressure) for these low values of the temperature, nonextensive e�ects
play only a marginal rule and therefore does not change considerably the thermodynamical
proprieties of the system.
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Figure 5.7: Binodal section at T = 10 MeV, with in evidence the critical point (CP), the
point of maximum asymmetry (MA) and the point of equal equilibrium (EQ), at T = 10
MeV, for q = 1 and q = 1.02.

In order to better characterize the evolution of the two phases, in Fig. 5.7, we report, in
analogy to Fig. 5.4, the volume fraction χ of the second phase during the phase transition.
It does not change sensibly from the corresponding one at q = 1, except for the lower
value of the second critical density at which the LG phase transition ends, both for normal
and retrograde phase transition. In particular, by increasing the asymmetry parameter of
the system (at lower values of y), the maximum density achieved during the mixed phase
decreases, until the system undergoes to a retrograde phase transition (for y < 0.16), almost
the same value of the extensive case. Finally, in Fig. 5.9, we report the phase diagram
in presence and in absence of nonextensive e�ects, respectively marked with dashed and
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Figure 5.8: Evolution of the volume fraction χ of the second phase as a function of the
baryon density, for system with di�erent values of y at T = 10 MeV and q = 1.02.
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Figure 5.9: Phase diagram of the liquid-gas phase transition for y = 0.5 and y = 0.3 for
the extensive (continuous curves) and non extensive case (dashed curves). The lines labeled
with I and II, delimitate the �rst and second critical density of the coexistence regions,
respectively.

continuous lines and for two di�erent proton fractions (y = 0.5 and y = 0.3).
As one can easily observe, the most important e�ect in presence of small deviations from
the standard statistics, regards the redaction of the critical temperature. In particular, in
presence of nonextensive e�ects, it is lowered of about 1.8 MeV at y = 0.5 and of about 2.4
MeV at y = 0.3. This implies a reduction in the �rst and second critical density at moderate
temperature. In this sense, the presence of nonextensive e�ects favor the phase transition,
anticipating the onset of the MP and the formation of the liquid phase.
Furthermore, we would like to stress that, at very low temperature for a �xed y, the extensive

113



and nonextensive formulation converge to the same values of baryon density, therefore the
presence of nonextensive e�ects become negligible.
The reduction in the critical temperature, together with the reduction in the �rst and
second critical density, can be considered as important indication of the possible onset of
nonextensive e�ects in the nuclear medium.

5.5 ∆-matter phase transition

5.5.1 General considerations

By increasing the temperature and the baryon density during the high energy heavy ion
collisions (T ≈ 50 MeV and ρ0 ≤ ρB ≤ 3 ρ0), a multi-particle system with nucleons, ∆-
isobar and pion degrees of freedom may take place. The ∆ QHD-Lagrangian density and
the EOS are de�ned in Chapter 1.3.1.

To better understand the relevance of ∆-isobars and the dependence of the EOS on
the meson-∆ coupling constants (xσ∆ = gσ∆/gσN , xω∆ = gω∆/gωN ), in Fig. 5.10, we report
the energy per baryon as a function of the baryon density at zero temperature and y = 0.5,
for di�erent values of xσ∆ and xω∆ = 1. Let us note that, by increasing the value of xσ∆, a
second minimum on the energy per baryon appears.

Following Ref. [98], in setting xσ∆ and xω∆, we have to require that:

i) the second minimum of the energy per baryon lies above the saturation energy of normal
nuclear matter, i.e., in the mixed ∆-nucleon matter only a metastable state can occur;

ii) there are no ∆-isobars present at the saturation density;

iii) the scalar �eld is more (equal) attractive and the vector potential is less (equal) repulsive
for ∆s than for nucleons, in accordance with QCD �nite-density calculations [99].

In this context, it is proper to remember that QCD sum-rule predictions for the scalar
self-energy are sensitive to the unknown density dependence of four-quark condensates and
due to this, there is no certainly reliable information about the coupling constant of the
∆-isobars with scalar mesons.

Of course, the choice of couplings that satis�es the above conditions is not unique but
exists a �nite range of possible values (represented as a triangle region in the plane xσ∆-xω∆)
which depends on the particular EOS under consideration [98]. Without loss of generality,
in the following we can limit our investigation to move only in a side of such a triangle region
by �xing xω∆ = 1 and varying xσ∆ from unity to a maximum value compatible with the
aforementioned conditions. As can be observed in Fig. 5.10, for the TM1 parameter set,
such a maximum value corresponds to xmax

σ∆ = 1.33, while the value xIIσ∆ = 1.27 corresponds
to the appearance of the second minimum on the energy per baryon with the formation of a
metastable state. Analogue behaviors can be obtained with other EOS parameters set (see,
for example, Ref. [67] for more details).

In Fig. 5.11, we show in symmetric nuclear matter the relative nucleon (solid lines)
and the ∆-isobar (dashed lines) density fraction (Yi = ρi/ρB), versus the baryon density at
T = 0 and T = 50 MeV, for di�erent values of xσ∆. We observe that ∆-matter becomes
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Figure 5.10: The energy per baryon versus baryon density at zero temperature and y = 0.5
with (a) without ∆; (b) xσ∆ = 1.10; (c) xσ∆ = 1.15; (d) xσ∆ = 1.20; (e) xσ∆ = 1.27; (f)
xσ∆ = 1.30; (g) xσ∆ = 1.33.

dominant with respect to the nucleon concentration at high baryon density and such e�ect
is signi�cantly anticipated by increasing the temperature 1.

In analogy with the liquid-gas case, we are going to investigate the existence of a
possible phase transition in the nuclear medium by studying the presence of instabilities
(mechanical and/or chemical) in the system.

As already observed in the previous sections, during a phase transition with two
conserved charges, the electric charge fraction y = ρC/ρB is not locally conserved in the
single phase but only globally conserved. Therefore, during the compression of the system,
the appearance of particles with negative electric charge (such as ∆−) could, in principle,
shift the di�usive instability region to negative values of y, even if the system is prepared
with a positive y. Such feature has no counterpart in the liquid-gas phase transition and,
as we will see, it turns out to be very relevant in order to properly determine the instability
region through the binodal phase diagram.

Taking into account that Eq.(5.24) becomes in this case(
∂µB
∂y

)
T,P

+ y

(
∂µC
∂y

)
T,P

= 0 , (5.26)

the chemical stability condition is satis�ed if

(
∂µC
∂y

)
T,P

> 0 or



(
∂µB
∂y

)
T,P

< 0 , if y > 0 ,

(
∂µB
∂y

)
T,P

> 0 , if y < 0 .

(5.27)

1Let us remark that the range of baryon density reported in Fig.s 5 and 6 has been chosen in order to
better show the e�ects of di�erent xσ∆ couplings on the formation of ∆-isobars at high baryon density. As
we will see, the presence of thermodynamic instabilities will be relevant at lower values of baryon density
(ρB ≤ 3 ρ0).
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Figure 5.11: The relative nucleons (solid lines) and ∆ (dashed lines) densities as a function
of the baryon density for di�erent values of temperature with (a) xσ∆ = 1.2; (b) xσ∆ = 1.27;
(c) xσ∆ = 1.33.

It is relevant to observe that for the value xσ∆ = 1, we do not �nd any mechanical
or di�usive instability. Contrariwise, by increasing the xσ∆ coupling ratio, mechanical and
chemical instabilities take place. In particular, in the range: 1 < xσ∆ ≤ 1.1, instabilities are
restricted to very low values of temperature and electric charge fraction, but for xσ∆ > 1.1,
such instabilities start to be much more relevant and extend to higher values of T and y.
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Figure 5.12: Pressure as a function of baryon density for T = 30 MeV (left panel)
and T = 50 MeV (right panel) with xσ∆ = 1.3. Letters from a to f correspond to
y = 0.5, 0.4, 0.3, 0.2, 0.1, 0, respectively.

5.5.2 Mechanical and chemical instability: main results

To better clarify the role played by the σ-∆ coupling constant, we report in Fig. 5.12, the
pressure as a function of the baryon density at T = 30 MeV (left panel) and T = 50 MeV
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Figure 5.13: Baryon (left panel) and electric charge (right panel) chemical potential isobars
as a function of y at T = 50 MeV and xσ∆ = 1.3. The curves labeled a through g have
pressure P=9,7,6,5,4,3,2 MeV/fm3, respectively.

(right panel), for di�erent values of y and xσ∆ = 1.3. In this context it is interesting to
observe that at T = 50 MeV and below y = 0.3, the system becomes mechanically stable,
but, in a similar manner to the liquid-gas case, is chemically unstable. This important
feature can be better observed in the Fig. 5.13, where we report the baryon and electric
charge chemical potential isobars as a function of y, at �xed temperature T = 50 MeV and
xσ∆ = 1.3.

From the analysis of the above chemical potential isobars, we are able to construct
the binodal surface relative to the nucleon-∆ matter phase transition. In Fig. 5.14, we show
the binodal section at T = 50 MeV and xσ∆ = 1.3.

The right branch (at lower density) corresponds to the initial phase (I), where the
dominant component of the system is given by nucleons. The left branch (II) is related to the
�nal phase at higher densities, where the system is composed primarily by ∆-isobar degrees
of freedom (∆-dominant phase). In presence of ∆-isobars the phase coexistence region
results very di�erent from what obtained in the liquid-gas case, in particular it extends up
to regions of negative electric charge fraction and the mixed phase region ends in a point of
maximum asymmetry with y = −1 (corresponding to a system with almost all ∆−-particles,
being antiparticles and pions contribution almost negligible in this regime).

Repeating the reasoning made for the liquid-gas phase transition, we analyze the
phase evolution of the system during the isothermal compression from an arbitrary initial
point A, indicated in Fig. 5.14. In this point the system becomes unstable and starts to be
energetically favorable the separation into two phases, therefore an in�nitesimal ∆-dominant
phase appears in B, at the same temperature and pressure. Let us observe that, although
in B the electric charge fraction is substantially negative, the relative ∆− abundance must
be weighed on the low volume fraction occupied by the phase II near the point B (χ ≈
0). During the phase transition (0 < χ < 1), each phase evolves towards a con�guration
with increasing y, in contrast to the liquid-gas case, where each phase evolves through a
con�guration with a decreasing value of y (with the exception of the gas phase after the
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Figure 5.14: Binodal section at T = 50 MeV and xσ∆ = 1.3.

maximum asymmetry point).
In order to better understand the evolution of the two phases in the mixed phase,

we report in Fig. 5.15 the volume fraction χ of the ∆-matter phase as a function of the
baryon density. Unlike the liquid-gas case, by decreasing the electric charge fraction y of
the system under consideration, the mixed phase involves a greater region of baryon density
and extends below the nuclear saturation density.

In the previous example we have consider a �xed value of temperature. The maximum
temperature at which the system becomes mechanically stable depends from the particular
value of the electric charge fraction. For example, at y = 0.3, is about Tmax = 49.5 MeV
and at y = 0.5, it is about Tmax = 50.6 MeV. Furthermore, when y = 0.5, the end of the
mechanical instability region, obviously, corresponds to the end of the mixed phase region.
This is not longer true in presence of two conserved charges. Due to the presence of a
di�usive instability region, the mixed phase can extend to slightly higher temperature with
respect to the maximum temperature achieved in the symmetric case. Although this feature
involves small di�erences in temperature, is interesting from a conceptual point of view to
investigate this aspect in more detail. At this purpose, in Fig. 5.16, we show the pressure as
a function of the baryon density and the Gibbs construction (continuous lines) for various
values of the electric charge fraction, xσ∆ = 1.3 and T = 51 MeV (dashed lines are without
Gibbs construction). In this case the system is always mechanically stable, while it results
unstable for the presence of the chemical-di�usive instability up to y = 0.35.

At lower temperatures the mixed phase region becomes more relevant at higher values
of y. This feature can be seen in Fig. 5.17 where the binodal section (left panel) and
the isothermal pressure as a function of the baryon density (right panel) is reported at
T = 40 MeV and xσ∆ = 1.3. The Gibbs construction corresponds to the curve from A
to C; the isothermal curves in B and D (with yB ̸= yD) are also reported. In this case,
we assume that the system is initially prepared in the low-density (nucleonic) phase with
y = 0.3, corresponding to the point A. During the compression each phase evolves following
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Figure 5.15: Volume fraction of the ∆-matter phase as a function of the baryon density, for
system with di�erent values of y.
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Figure 5.16: Pressure as a function of baryon density at di�erent values of y, from y = 0.5
(label a) to y = 0 (label f). The continuous/dashed lines correspond to the solution obtained
with/without the Gibbs construction.
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Figure 5.17: Binodal section at T= 40 MeV and xσ∆ = 1.3, with in evidence the point of
equal equilibrium. Right panel: the corresponding isothermal curves, with in evidence the
Gibbs construction (curve from the point A to C) at y = 0.3 and the isotherms of the points
B and D.

the corresponding curve up to the points C and D, where the system leaves the instability
region in the ∆-matter phase.

In Fig. 5.18, we show the Gibbs construction (continuous lines) to the EOS at y = 0.3,
xσ∆ = 1.3 and for di�erent temperatures. By decreasing the temperature, the instability
region extends over a wide range of baryon density. In particular, below T = 40 MeV, the
phase transition starts slightly below the nuclear saturation density.

In order to better characterize the evolution of the system during the isothermal
compression of the nuclear medium, we report in Fig. 5.19, the evolution of particles density
(in fm−3) before, during and after the phase transition (the dark dashed lines delimits the
region of the MP).
In the left panel of Fig. 5.19, we show the particle density as a function of the total baryon
density, respectively in the �rst phase ρIi = (1 − χ)ρIi (continuous lines) and in the second
phase ρIIi = χρIIi (dashed lines). ∆'s particles are negligible in the phase I, but start to
be abundantly produced when the system enters in the mixed phase and a II in�nitesimal
phase, at the same pressure, but in a very asymmetric con�guration appears.
In the right panel, we report the total particle density ρi = (1−χ)ρIi +χρIIi as a function of
ρB. ∆-isobars start to be the dominant component of the system around ρB ≈ 2ρ0, and ∆−

becomes the most populated state, due to the high asymmetric con�guration reached by the
system during the phase transition. Note also the linear grow of ∆'s after have reaching the
nuclear saturation density.

As already observed, the mixed phase structure results strongly a�ected not only by
the temperature, but also by the particular choice of the xσ∆ coupling. In fact, by decreasing
the σ-∆ coupling constant, the mixed phase region shifts to lower temperatures. To better
clarify this aspect, we study the phase transition for xσ∆ = 1.22 and T = 20MeV (at T = 50
MeV, the system results to be mechanically and chemically stable).

In Fig. 5.20, left panel, we report the pressure as a function of the baryon density for
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Figure 5.18: Isotherms at constant y = 0.3 and xσ∆ = 1.3, for various values of temperatures.
The solid/dashed lines represent the EOS obtained with/without Gibbs construction.
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Figure 5.19: Left panel: particles density as a function of the baryon density in the �rst
(continuous lines) and second (dashed lines) phase. Right panel: total particles density as a
function of ρB (T = 40 MeV, y = 0.3 and xσ∆ = 1.3). The black dashed lines delimits the
beginning and the end of the MP.
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Figure 5.20: Left panel: pressure as a function of the baryon density for di�erent values of
y from y = 0.5 (label a) to y = 0 (label f), with in evidence the instability regions (Gibbs
construction in the continuous lines). Right panel: the binodal diagram, with in evidence
the point of equal equilibrium and the two critical points. In both the instability sectors a
region of retrograde phase transition is present.

di�erent values of y. The continuous lines correspond to the Gibbs construction in the region
of instability of the EOS. For this choice of parameters, the binodal section (right panel) is
very di�erent with respect to the previous cases and two separate regions of instability are
present. The �rst one extends at lower pressure and it is present only for small value of y,
where both mechanical and di�usive instabilities are present. Let us observe that in this
lower region, for y > yCP , the system undergoes to a retrograde phase transition, likewise to
the liquid-gas phase transition. The upper region of instability extends at greater pressures
and higher values of y, where mechanical and di�usive instabilities are both present. Also in
this second region, on the left of the CP, a retrograde phase transition can occur. However,
in this particular case the system is already in a ∆-dominant phase and, at the end of the
mixed phase, in which ∆-isobars are partially converted into nucleons, it quickly returns to
the ∆-matter phase.

Finally, in Fig. 5.21, we report the phase diagram, in the extensive formulation, with in
evidence the coexistence regions of the liquid-gas (at q = 1) and the nucleon-∆ matter phase
transition for y = 0.3 and 0.5 (xσ∆ = 1.3). The two coexistence regions are well separated
and the features of the two phase transitions are signi�cantly di�erent. In fact, for the
liquid-gas, asymmetric nuclear matter implies a reduction of the second critical density and
of the critical temperature Tc. Contrariwise, for the ∆-dominant phase transition, we have
a slightly increase of the critical temperature and a signi�cant reduction of the �rst critical
density. In particular at moderate temperatures (T ≈ 30÷ 40 MeV), the system begins the
mixed phase at a baryon density of the order of ρ0. This behavior could be phenomenological
relevant in order to identify such phase transition in heavy ion collision experiments.
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Figure 5.21: Phase diagram of the liquid-gas and the nucleon-∆ matter phase transition for
y = 0.3 (dashed curves) and y = 0.5 (continuous curves). The lines labeled with I and II,
delimitate the �rst and second critical density of the coexistence regions, respectively.

5.6 Strangeness instability

Before concluding this Chapter, we would like to present a preliminary study of the propri-
eties of strongly interacting nuclear matter at high temperature and baryon density, where
strange particles start to be abundantly produced. In fact, during the extreme condition
reached in a relativistic heavy ion collision experiment, a net strangeness excess could be
generated and chemical �uctuation in strangeness density may take possible.
In particular, in this section, we are planning to investigate the possible onset of strange-
ness di�usional instability (�uctuation in the strangeness density) at T > 70 MeV and
ρ0 < ρB < 4ρ0, in a multi-component system with three (B, C, S) and two (B, S) con-
served charges.
In this context, we study the nuclear system under di�erent values of strangeness fraction
−0.5 < z < 0.5, in order to check the possible onset of strangeness di�usional instability in
the nuclear medium.

We want to stress that, in this analyze, we do not take in consideration the possible
decon�nement phase transition to QGP, as we have done in Chapter. 4, but we treat the
nuclear system as if it was in pure hadronic phase.

In this context, in analogy to what obtained in presence of two conserved charges (B
and C), for the liquid-gas and ∆-matter phase transition, we construct the mechanical and
chemical stability condition. In particular, for a system of two conserved charges (B, S),
taking into account that eq. (5.8) becomes

(
∂µB
∂z

)
T,P

+ z

(
∂µS
∂z

)
T,P

= 0 , (5.28)
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the chemical stability condition is satis�ed if

(
∂µS
∂z

)
T,P

> 0 or



(
∂µB
∂z

)
T,P

< 0 , if z > 0 ,

(
∂µB
∂z

)
T,P

> 0 , if z < 0 .

(5.29)

Analogously, in presence of three conserved charges, eq. (5.8) becomes(
∂µB
∂z

)
T,P

+ y

(
∂µC
∂z

)
T,P

+ z

(
∂µS
∂z

)
T,P

= 0 , (5.30)(
∂µB
∂y

)
T,P

+ y

(
∂µC
∂y

)
T,P

+ z

(
∂µS
∂y

)
T,P

= 0 , (5.31)

and the condition for the chemical stability reads

(
∂µS
∂z

)
T,P

> 0 and



(
∂µB
∂z

)
T,P

> or < 0 ,

(
∂µC
∂z

)
T,P

> or < 0 ,

(5.32)

and

(
∂µC
∂y

)
T,P

> 0 and



(
∂µB
∂y

)
T,P

> or < 0 ,

(
∂µS
∂y

)
T,P

> or < 0 ,

(5.33)

so the mixed derivatives can be both positive or negative, independently by the value of z
and y, whereas ∂µS/∂z and ∂µC/∂y, must be always positive.

The mechanical stability condition is obviously given by eq. (5.7).

5.6.1 Strangeness instability (three conserved charges)

.
The analyze is performed using the e�ective relativistic formulation of Section. 1.4.1

and the Chiral one of Section 1.4.2 and by �xing the nucleon meson coupling constant to
TM1 parameter sets of Tab. 1.2.
In this analysis the relevant degrees of freedom of the system are the baryons octet (n, p,
Λ, Σ+, Σ0, Σ−, Ξ−, Ξ0) and the lightest pseudo-scalar (π, K, K, η, η

′
) and vector mesons

(ρ, ω, K∗, K
∗
, ϕ).

Strange particles are in fact abundantly produced at higher temperature and baryon density
and, during the extreme condition reached in the relativistic heavy ion collision experiments,
chemical �uctuation in strangeness density may be possible, generating in this case a region
of chemical instability.
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For this reason we analyze the nuclear medium, in the pure hadronic phase, over a very
wide range of temperatures (70MeV < T < 140MeV) and baryon densities (ρ0 < ρB < 4ρ0).
Anyway, for this range of parameter set, we do not �nd any mechanical or chemical instability
regions.

Therefore, in agreement with eq.s (5.32) and (5.33), we conclude that, in presence of
three conserved charges, there are no regions of mechanical or chemical instability in the
range of temperature and baryons density explored in this study.

5.6.2 Strangeness instability (two conserved charges)

.

In presence of two conserved charges (B and S), we limit ourself to consider a small
number of degrees of freedom of the system, without losing of generality.
In this sense, we analyze the nuclear medium through the e�ective relativistic formulation
and the minimal coupling scheme, considering only the baryons octet (n, p, Λ, Σ+, Σ0, Σ−,
Ξ−, Ξ0), the pions and the K+ and K− strange mesons in both the models (in the minimal
coupling scheme pions are included as a free bose gas). The anti-kaon coupling constant is
�xed to UK− = −160 MeV and UK− = −50 MeV.

In this condition, as for the previous case, we do not �nd any mechanical instabil-
ity region over the range of temperatures (70 MeV < T < 140 MeV) and baryon densities
(ρ0 < ρB < 4ρ0) explored here, eq. (5.29) is always satis�ed.
However, especially for moderate temperature T ≈ (70÷ 80) MeV and high baryon density
(2÷ 3ρ0) we found a region of chemically instability for moderate values of z ≈ 0.4.
In this region the system becomes instable due to �uctuations of strangeness density, there-
fore eq. (5.29) is not respected and the system is expected to undergoes to a phase transition.

In Fig. 5.22, we report an example of such instability region for the Chiral model.
In analogy to the LG case and the ∆ matter phase transition (Fig.s 5.2 and 5.13 ), here
we report various isobars at T = 70 MeV and UK− = −50 MeV. At the increasing of the
temperature, the region of chemical instability rapidly moves to higher values of z and after
disappear. Contrariwise, by increasing of the baryon density, the chemical instability region
moves to lower z. In presence of a stronger attractive potential depth UK− , we observe a
strong reduction in µB and µS and at UK− = −160 MeV the instability region cease to
exists in the range of strangeness density explored in this study.

A similar behavior is obtained for the e�ective relativistic formulation. Unfortunately,
in this case, due to the absence of an e�ective mass, the kaons condensate just before the
onset of strangeness di�usional instability.
We would like to underline that this is only a preliminary study, anyway, from the above
considerations, strangeness di�usional instability seems to be present in systems with two
conserved charges, over a region of moderate temperature and hight baryon density. By
increasing of the temperature, strange particles are abundantly produced, but the conditions
for the onset of chemical instability moves to higher z and after disappear.
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Figure 5.22: Baryon (left panel) and strange (right panel) chemical potential isobars as a
function of z at T = 70 MeV and di�erent pressure P = (85, 50, 25) MeV/fm3 (label from a
and c).

5.7 Major conclusions

The main goal of this Chapter is to show the possible existence of chemical and mechanical
instability at �nite temperature and dense nuclear matter. At this scope we have �rstly
studied the relativistic nuclear EOS for the liquid-gas phase transition and with the inclusion
of ∆-isobars, by requiring the global conservation of baryon and electric charge numbers,
through the Lagrangian density 1.27 and TM1 parameter set Tab. (1.2) .
In this context, we have also investigated the nuclear medium at low temperature and baryon
density in presence of nonextensive e�ects and we have compared the obtained results with
that of extensive case, showing a remarkable reduction of the critical temperature and of
the �rst and second critical density, especially in presence of asymmetric matter.
Similarly to the liquid-gas phase transition in a warm and low density nuclear matter, also
a nucleon-∆ matter phase transition can occur at higher temperature and density (T ≤ 50
MeV, ρ ≈ 1 ÷ 3 ρ0). We have shown that for asymmetric nuclear matter both mechanical
and chemical instability take place. This latter plays a crucial role in the characterization
of the phase transition and can also imply very low values of the electric charge fraction y
during the mixed phase region.

The nucleon-∆ matter phase transition depends signi�cantly on the value of the σ-∆
coupling constant and we have seen that the presence of instabilities may become relevant
from a phenomenological point of view only for a limited range of the possible xσ∆ couplings.

Whether metastable ∆-excited nuclear matter exists or not is still a controversial
issue because little is actually known about the ∆-coupling constants with the scalar and
vector mesons, even if QCD �nite-density sum rule results predict a larger net attraction
for a ∆-isobar than for a nucleon in the nuclear medium [99]. Although we have seen that
instabilities are already present for xσ∆ > 1, they become phenomenological more relevant
at greater values of xσ∆, involving larger region of mixed phase and greater values of the
electric charge fraction.
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The analysis of the instability regions with di�erent ∆-coupling constants turns out
to be not trivial from the numerical point of view, especially at lower values of xσ∆ where
a complex structure of the mixed phase can be formed. For example, we have shown that,
in the case of xσ∆ = 1.22, two separate regions of instability are present. Moreover, the
case xσ∆ = 1.3 has been studied for di�erent values of temperature and we have seen that
in asymmetric nuclear matter the mixed phase transition involves a large range of baryon
density.

Similarly to the liquid-gas phase transition, the nucleonic and the ∆-matter phase
have a di�erent electric charge fraction in the mixed phase. The electric charge fraction
in the nucleonic phase re�ects a system with higher values of y than the ∆-matter phase.
In the liquid-gas phase transition, the process of producing a larger neutron excess in the
gas phase is referred to as isospin fractionation [62, 81, 82]. A similar e�ects can occur
in the nucleon-∆ matter phase transition essentially due to a ∆− excess in the ∆-matter
phase with lower values of y. As already observed, due to the uncertainty on the meson-∆
coupling constants, we have not considered in this investigation the coupling of the ∆ with
the isovector ρ-meson �eld, because much less explored in literature. We have veri�ed that
the presence of such a coupling could further increase the isospin asymmetry in the mixed
phase and lower the critical temperature of the nucleon-∆ matter phase transition.

In this context, it is proper to observe that Coulomb interaction and �nite size e�ects,
not considered in this study, can signi�cantly alter the structure of the phase transition.
Moreover, as already observed, we outline that our e�ective EOS cannot incorporate the
complex πN∆ dynamics and should be very interesting to investigate the presence of chem-
ical and mechanical instabilities in the framework of a more realistic chiral hadronic EOS.
Taking also into account the large uncertainty on the possible values of ∆-meson �eld coup-
lings, it is caution to highlight at this stage the pedagogical character of this study.

Many e�ects discussed in this paper may be more evident at low values of y, obtainable
in principle with radioactive ion beam facilities. On the other hand, it is rather unlikely,
at least in the near future, that neutron rich nuclei can be accelerated to energies larger
than a few GeV per nucleon. However, some precursor signals of the considered instabilities
could be observed even in collisions of stable nuclei at intermediate energies. For example,
in Ref. [74], the simulation of the reaction 238U+238U (average y = 0.39), at 1 A GeV
and semicentral impact parameter b = 7 fm, shows that a rather exotic nuclear matter
can be formed in a transient time of the order of 10 fm/c, with baryon density up to 3 ρ0,
T ≤ 50 ÷ 60 MeV and y ≈ 0.35 ÷ 0.40. Such conditions would meet fully the nucleon-∆
mixed phase region (see Fig. 5.21).

A possible signature of the nucleon-∆ matter phase transition could be �nd via ob-
servables particularly sensitive to the expected di�erent isospin content of the two phases.
For example, at the AGS energies, the ∆-resonance was predicted to be the dominant source
for pions of small transverse momenta [63]. In this case, an increase of the negative pions π−

of small trasverse momenta at a greater asymmetry of the beam could be a good indicator
of a ∆ isospin fractionation e�ect.

Finally, we have presented a preliminary study of the possible onset of strangeness
di�usional instability, in an hadronic system, at high temperature and over a wide range
of baryon densities. In this context, we have found no mechanical or chemical instability
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regions for a system of three conserved charges (B, C and S). Whereas, in presence of two
conserved charges (B and S), we have showed the onset of a chemical-di�usive instability
region around z ≈ 0.4, for temperature and baryon density of the order of T ≈ 70 MeV and
ρB = (2 ÷ 3)ρ0 and UK− = −50 MeV. The system is very sensitive to the changes of the
temperature, in particular by increasing of the T and/or of the anti-kaon potential depth,
the di�usive instability region rapidly disappear, whereas by increasing of ρB the instability
region is shifted at lower z, with possible signature in high energetic and high compressed
relativistic heavy ion collision experiments.
Future studies will be necessary in order to better estimate the possible onset of strangeness
instability in relativistic heavy ion collision experiments or in the core of compact objects.
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Chapter 6

Conclusions

In the present dissertation, we have analyzed the proprieties of strongly interacting nuclear
matter at high baryon density and �nite temperature.
In this condition, due to the complexity of the microscopic many-body interaction, which
determine the macroscopic thermodynamical variables and EOS, is of fundamental import-
ance to develop statistical approaches and introduce some approximations (mean-�eld and
no-sea approximations) in order to treat the complexity of such interactions. To this regard,
in Chapter 1, we have introduced the Lagrangian formalism, in the framework of non-linear
relativistic mean-�eld theory, where the nuclear interaction is mediated by the exchange of
virtual isoscalar - scalar (σ), isoscalar - vector (ω) and isovector - vector (ρ) meson �elds
[87, 86, 85] and the coupling constants of the model are related with the bulk proprieties of
nuclear matter (Tab. 1.2). Quantum hadron dynamics (QHD), constitute in this sense, a
relativistic covariant theory of hot and dense hadronic matter.
However, as has been showed, the extraction of information about the equation of state
(EOS) at di�erent densities and temperatures, by means of intermediate and high-energy
heavy-ion collisions, is a very di�cult task and can be realized only indirectly by compar-
ing the experimental data with di�erent theoretical models, such as, for example, �uid-
dynamical models. In this condition and in the absence of a converging method to approach
QCD at �nite density and temperature, one has often to resort to e�ective and phenomen-
ological models investigations to obtain qualitative results.
The study and the implementation of such e�ective models (e�ective relativistic mean-�eld
model and nonextensive statistical mechanics) is one of the major results of this thesis.

E�ective relativistic mean-�eld model, has been introduced in section 1.4.1, in order
to include in the hadronic Lagrangian density, the contribution of the lightest pseudo-scalar
(π, K, K, η, η

′
) and vector mesons (ρ, ω, K∗, K

∗
, ϕ), through an e�ective chemical po-

tential depending on the self-consistent interaction between baryons. This approach, allows
us to overcome some theoretical and experimental di�culties in the measure of the mesons
coupling constants. Following this scheme, we have analyzed the strangeness production
at �nite temperature and baryon density, with particular attention to the kaon and anti-
kaon production, comparing the obtained results with that of the minimal coupling scheme
of section 1.4.2. We have found a good correspondence between the two models for mod-
erate value of the anti-kaon optical potential (UK− = −50 MeV), as suggested by recent
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self-consistent calculation based on chiral Lagrangian and G-matrix theory [46, 47, 48]. In
particular, we have showed that, the strong di�erence in the kaon to anti-kaon ratio, could
be considered as a relevant feature in the determination of the real part of the anti-kaon
optical potential, in the range of temperature and density reached in the future compressed
baryonic matter (CBM) experiment of facility of antiproton and ion research (FAIR) at GSI
[55, 57, 58]. Finally, we have found that the kaons chemical potential is always less then the
corresponding kaon threshold energy (ω±). This matter of fact seems to suggest, in agree-
ment with the results obtained within modern transport codes [53], that kaon condensation
does not take place at any temperature and density in those systems in rapid evolution, like
the relativistic heavy ion collision, where the zero net strangeness condition is conserved.

The implementation of the nuclear equation of state with e�ective and phenomeno-
logical model, appears particularly important during the extreme condition reached in the
relativistic heavy ion collision experiments, where QCD become highly non-perturbative and
strongly dynamical correlations, memory e�ects and long-range color interactions can take
place [18, 2, 19].
Regarding this and in agreement with several authors and experimental observations [23, 24,
25, 26, 27, 28, 28, 29], in Chapter 2, we have introduced and implemented the nuclear EOS in
the framework of nonextensive statistical mechanics, proposed �rstly by Tsallis [20, 21, 22].
Following this line, in Chapter 4, we have presented a detailed study of the decon�nement
phase transition from hadron matter to quark-gluon plasma, in regime of �nite temperature
and baryon density, reachable in high-energy heavy-ion collisions, for which the decon�ne-
ment phase transition can be considered of the �rst order.
Let us remember that, in this numerical investigation, we have considered the nonextensive
index q as a free parameter, even if, in principle, it should depends on the physical con-
ditions generated in the reaction, on the �uctuation of the temperature and be related to
microscopic quantities (such as, for example, the mean interparticle interaction length, the
screening length and the collision frequency into the parton plasma).
The mixed phase has been obtained by applying the Gibbs conditions to systems of more
than one conserved charge (Section 4.2) by requiring the global conservation of the baryon
number (B), electric charge (C) and strangeness number (S). Let us remark that, one of the
most important aspect of a multi-component system, implies a global and not a local charge
conservation. Therefore, the charge densities ρB, ρC and ρS are �xed only as long as the
system remains in one of the two pure phases. In the mixed phase, the charge concentration
in each of the regions of one phase or the other may be di�erent.

Following this line, we have showed that, even in presence of small deviation from the
standard BG statistics, the meson �elds and, consequently, the EOS appear to be sensibly
modi�ed. In fact, by varying temperature and density, the EOS re�ects in terms of the
macroscopic thermodynamical variables the microscopic interactions of the di�erent phases
of nuclear matter. In particular, although pressure as a function of baryon density is sti�er
in the hadronic phase, we have found a strong softening in the mixed phase in the presence
of nonextensive statistics. Such behavior implies an abrupt variation in the incompressibility
and could be considered as a signal of nonextensive statistical e�ects in high-energy heavy-
ion collisions. Furthermore, the �rst and second critical densities are in general reduced,
favoring in this way the formation of the mixed phase and consequently, the decon�nement
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phase transition to quark gluon plasma.
One of the most important results obtained in this analysis, was to demonstrate the strong
enhancement of strange particles and anti-particles, at high temperatures T = (120 ÷ 170)
MeV and baryon densities ρB = (1 ÷ 3)ρ0. In particular, we have found that, in presence
of nonextensive e�ects, the phase transition is characterized by an antistrangeness con-
tent in the hadron phase while the QGP retains a net strangeness excess at large densities
(ρB ≥ 2 ρ0) and intermediate temperatures (T ≈ 100 ÷ 120 MeV), while the other way
round occurs at low densities and high temperature. The separation of strange and anti-
strange quarks in the hadron-QGP mixed phase turns out to be less pronounced than in the
standard case due to a more symmetric presence of particle and antiparticle at intermediate
temperatures. On the other hand, for q > 1, the strangeness fraction YS (and, consequently,
the density of strange particles) results to be much greater compared to the q = 1 case.
This matter of fact, as explained, is essentially due to the power law behavior of the mean
occupational distribution function which weighs di�erently low and high energy states at
di�erent baryon densities and temperatures.
Therefore, the possibility of separating strange from antistrange matter in the hadron-QGP
phase transition, can lead to a very signi�cant enrichment of strange quarks in the QGP at
high baryon density and intermediate temperature. In fact, in the hadronic sector of the
mixed phase, K+ and K0 are enhanced and the hyperons are suppressed. Being mesons
much lighter than nucleons and their resonances, they carry away entropy, energy and an-
tistrangeness and, therefore, the prompt kaon emission cools and charges the system with
�nite net strangeness, leading to an even stronger enhancement of the s quarks in the quark
phase. This feature, which also depends strongly on the value of the strange particle dens-
ities, favors the formation of metastable or stable droplets of strange quark matter which
would contain approximately the same amount of u, d and s quarks. The evidence of such
a state of quark matter could be related to the existence of exotic hadron states, like a
H-dibaryon state, a deeply bound 6-quark state predicted by Ja�e more than thirty years
ago [174]. Although many experimental searches for the H-dibaryon were carried out and
so far no convincing signal was found [175], very recently evidence for a bound H-dibaryon
was claimed based on lattice QCD calculations [176, 177].
This matter of fact could be crucial in the formation and survival of strange quark matter
droplets in relativistic heavy ion collisions at high compressed baryonic matter.

The in�uence of nonextensive e�ects, has also been investigated at �nite temperat-
ure and in β-stable nuclear matter, in presence and in absence of hyperons and trapped
neutrinos, in astrophysical systems (Chapter 3). In this context, we have analyzed the
mechanical and thermodynamical proprieties of strongly interacting nuclear matter over a
wide range of temperatures and baryon densities. We have found a strong variation in the
main physical parameter of the PNS in presence of nonextensive e�ects. In particular, using
the Wilk prescription [33], when q < 1 we have found a remarkable reduction in the stellar
temperature at �xed baryon density with respect to the standard case (q = 1). Especially
in the maximum heating phase, the EOS becomes slightly softer and higher central baryon
densities at �xed total baryon mass are reached, in�uencing the neutrino di�usion during
the deleptonization process. In the case of sub-extensive e�ects, hyperons start later but
have a bigger concentration at high baryon density, allowing to sustain a higher neutrino

131



luminosity at late times. The other way round takes place in the case of q > 1. We have an
increase of the temperature as a function of the baryon density and lower central densities
at �xed baryon masses are reached. The hyperons on-set is shifted at lower baryon densities
and a greater hyperons concentration at low baryon masses is present. On the other hand,
a signi�cant reduction of the hyperons concentration at high stellar masses take place, con-
tributing to a lower luminosity at late times. Furthermore, we have found that, in presence
of super-extensive statistical e�ects and hyperon degrees of freedom, it is favored the real-
ization of a metastable phase, with an enhancement of a possible black hole formation after
the deleptonization era (Tab 3.1).

Finally, in the last part of this dissertation (Chapter 5), we have concentrated our
analysis on a detailed study of the thermodynamical proprieties of strongly interacting and
dense nuclear matter. This constitutes, one of the most interesting aspects and one of the
most di�cult tasks of modern high-energy nuclear physics.
In this context, we have investigated a multi-component system, with two (B and C) and
three conserved charges (B, C and S), over a wide range of temperatures (0 < T < 140
MeV) and baryon densities (0 < ρB < 4ρ0), looking for the possible onset of mechanical
and chemical instability (�uctuation of the baryon density and in the electric or strangeness
density, respectively) associated to di�erent phase transitions in the nuclear medium.
This was made following the very detailed study of Müller and Serot [76]. In agreement with
other previous works [76, 72, 73, 164], we have found two di�erent types of phase transitions.
The �rst one, at low temperatures (T ≤ 10MeV) and subnuclear densities, where a nucleonic
liquid-gas phase transition was �rst predicted theoretically [179, 180, 181] and later observed
experimentally in a nuclear multifragmentation phenomenon at intermediate-energy nuclear
reactions [61, 62]. A second one, at higher temperature and baryon density (T ≤ 50 MeV
and ρ0 ≤ ρB ≤ 3ρ0), from a nucleonic �uid to a resonance-dominated ∆-matters.
We have then generalized and extended these studies in presence of asymmetric nuclear
matter and, in the simple case of the LG phase transition, we have also explored such phase
transition in presence of nonextensive e�ects, showing that, despite to the low temperature
at which it takes place, the nuclear isobars and the phase diagram are sensibly modi�ed.
As amply discussed in Chapter 5, the relevant aspect of a multi-component system, is that
the phase transition is of second order from the viewpoint of Ehrenfests de�nition. In par-
ticular, the system is stable against the separation in two phases, until the free energy of a
single phase is lower than the free energy in all two phases con�guration. In this condition,
the mixed phase is obtained in the usual way, by applying the Gibbs condition and by re-
quiring the global conservation of each charge in the total phase.
Furthermore, in agreement with [76], we have shown that, in presence of asymmetric nuclear
matter, a phase transition can occur not only via mechanical instability, but also via chem-
ical/di�usive instability, even if the system results mechanically stable. This fact determines
a strong variation in the phase diagram, in fact, in presence of an isospin asymmetry, the
critical temperature and the critical density of the liquid-gas phase transition are sensibly
reduced and the phase transition is favored.

Furthermore, by increasing of the temperature of the system, we have shown that new
degrees of freedom appear. In this condition, the implementation of the nuclear equation of
state, with the inclusion of the∆-isobars and pions, allowed us to explore the phase transition
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and the instability regions over a wider range of baryon densities and temperatures. In this
context, as for the LG case, we have shown that, for asymmetric nuclear matter, both
mechanical and chemical instabilities take place. The latter plays a crucial role in the
characterization of the phase transition and can also imply very low values of the electric
charge fraction y during the mixed-phase region. The binodal diagram, in fact, extends
up to very negative region of charge fraction, corresponding to a system with almost all
∆−-particles, being antiparticles, strange hadrons and pions contribution almost negligible
in this regime. The strong ∆− excess in the ∆-matter phase, is phenomenologically similar
to the isospin fractioning process which produced a larger neutron excess in the gas phase
of the LG phase transition [62, 81, 82].
Anyway, the analysis of the instability regions with di�erent∆-coupling constants, was found
to be not trivial from the numerical point of view, especially at lower values of xσ∆ where a
complex structure of the mixed phase can be formed. For example, we have shown that, for
xσ∆ = 1.22, two di�erent regions of instability are present. Conversely, below xσ∆ < 1.1,
such instabilities are restricted to very low values of temperature and electric charge fraction
and therefore do not contribute signi�cantly to the nuclear medium proprieties.

In this context, it is proper to observe that Coulomb interaction and �nite size e�ects,
not considered in this study, can signi�cantly alter the structure of the phase transition.
Moreover, as already observed, we outline that our e�ective EOS cannot incorporate the
complex πN∆ dynamics and should be very interesting to investigate the presence of chem-
ical and mechanical instabilities in the framework of a more realistic chiral hadronic EOS.
Anyway, in the framework of e�ective relativistic mean-�eld model, we have obtained signi-
�cant results, especially for moderate and hight values of xσ∆ = (1.2 ÷ 1.3). In particular,
the case xσ∆ = 1.3 has been extensively studied for di�erent values of temperature, showing
that, in asymmetric nuclear matter, the mixed phase transition is sensibly modi�ed and
involves a larger range of baryon density. In particular, we have observed a signi�cant re-
duction of the �rst critical density and a slight increase of the critical temperature. This
is because, the region of di�usive instability, extends above the maximum temperature at
which the system becomes mechanically stable and this determines an increase of the mixed
phase region. Furthermore, at moderate temperature and for strong asymmetric nuclear
matter (T ≈ 30 MeV and y ≈ 0.3), we have found that the system begins the mixed phase
at a baryon density of the order of nuclear saturation density ρ0. This behavior could be
phenomenologically relevant in order to identify such phase transition in heavy ion collision
experiments.

Many e�ects discussed in this analysis can be more evident at low values of y, ob-
tainable in principle with radioactive ion beam facilities. On the other hand, it is rather
unlikely, at least in the near future, that neutron rich nuclei can be accelerated to energies
larger than a few GeV per nucleon. However, some precursor signals of the considered in-
stabilities could be observed even in collisions of stable nuclei at intermediate energies. For
example, in Ref. [74], the simulation of the reaction 238U+238U (average y = 0.39), at 1 A
GeV and semicentral impact parameter b = 7 fm, shows that a rather exotic nuclear matter
can be formed in a transient time of the order of 10 fm/c, with baryon density up to 3 ρ0,
T ≤ 50 ÷ 60 MeV and y ≈ 0.35 ÷ 0.40. Such conditions would meet fully the nucleon-∆
mixed phase region (see Fig. 5.21).
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Furthermore, a possible signature of the nucleon-∆ matter phase transition could be found
via observables particularly sensitive to the expected di�erent isospin content of the two
phases. For example, at the AGS energies, the ∆-resonance was predicted to be the dom-
inant source for pions of small transverse momenta [63]. In this case, an increase of the
negative pions π− of small trasverse momenta at a greater asymmetry of the beam could be
a good indicator of a ∆ isospin fractioning e�ect.

Finally, we have also explored the possible onset of strange-di�usive instability at
high temperature and �nite baryon density. We have found that, for a binary system of
two conserved charges (B and S), a di�usive instability region appears around z ≈ 0.45,
for temperature and baryon density of the order of T ≈ 70 MeV and ρB = (2 ÷ 3)ρ0. At
the increasing of the temperature, the region of chemical instability rapidly moves to higher
values of z and after disappears, on the contrary, by increasing of the baryon density, the
chemical instability region moves to lower z.
We have found no indication of chemical or mechanical instability region for a system of
three conserved charges (B, C, S).

I am con�dent that the future CBM (compressed baryonic matter) experiment of the
FAIR (Facility of Antiproton and Ion Research) project at GSI Darmstadt will make it
possible to create compressed baryonic matter with a high net baryon density [55, 58, 57],
allowing the experimental identi�cation of such phase transitions and a precise measure of the
strangeness production and of the quark-gluon plasma phase transition at high temperature
and �nite baryon density.
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