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Pairwise Discriminative Speaker Verification
in the I-Vector Space

Sandro Cumani, Niko Br̈ummer, Luḱǎs Burget, Pietro Laface,
Oldřich Plchot and Vasileios Vasilakakis

Abstract

This work presents a new and efficient approach to discriminative speaker verification in the i–vector space. We
illustrate the development of a linear discriminative classifier that is trained to discriminate between the hypothesis
that a pair of feature vectors in a trial belong to the same speaker or to different speakers. This approach is
alternative to the usual discriminative setup that discriminates between a speaker and all the other speakers. We use
a discriminative classifier based on a Support Vector Machine (SVM) that is trained to estimate the parameters of a
symmetric quadratic function approximating a log–likelihood ratio score without explicit modeling of the i–vector
distributions as in the generative Probabilistic Linear Discriminant Analysis (PLDA) models. Training these models
is feasible because it is not necessary to expand the i–vector pairs, which would be expensive or even impossible
even for medium sized training sets. The results of experiments performed on the tel-tel extended core condition
of the NIST 2010 Speaker Recognition Evaluation are competitive with the ones obtained by generative models,
in terms of normalized Detection Cost Function and Equal Error Rate. Moreover, we show that it is possible to
train a gender–independent discriminative model that achieves state–of–the–art accuracy, comparable to the one of
a gender–dependent system, saving memory and execution time both in training and in testing.

Index Terms

Speaker Recognition, I-vector, Discriminative training,Probabilistic Linear Discriminant Analysis, Support
Vector Machines, Large–scale training.

I. I NTRODUCTION

RECENT developments in speaker recognition technology have seen the success of systems based on a low–
dimensional representation of a speech segment, the so–called “identity vector” or i–vector [1], [2]. An

i–vector is a compact representation of a Gaussian Mixture Model (GMM) supervector [3], which captures most
of the GMM supervectors variability. The availability of low–dimensional features boosted the research interest
towards probabilistic generative models [4]. These techniques aim at decomposing the speaker and inter–session
variability components of i–vectors, estimating their distributions, and perform induction on the speaker identity in
a Bayesian framework. The most effective approaches in this framework are the Gaussian (G–PLDA) or Heavy-
Tailed Probabilistic Linear Discriminant Analysis (HT–PLDA) [4], and the Two-covariance model, a linear-Gaussian
generative model introduced in [5], [6]. PLDA models [7] not only have well founded probabilistic interpretations,
but have also the advantage of producing log–likelihood ratios which do not, in principle, require score normalization.
In [4] this has been confirmed in the case of telephone speech, for heavy-tailed distributions, whereas normalization
was needed for Gaussian distributions. A complete symmetryof the train and test segments is another interesting
characteristic of these approaches.

Besides generative models, remarkable success has been also obtained by discriminative systems based on Support
Vector Machines, usually in combination with Nuisance Attribute Projection [8], [9] for inter–session compensation.
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However, SVM–based systems have mostly been trained as one–versus–all classifiers, i.e., using the utterances of
a given speaker against the utterances from a background cohort of impostor speakers. This approach has a major
weakness: the available samples for the target speaker are often scarce, and can easily reduce to just one. Moreover,
in a scenario where a single enrollment and test utterance are available for a speaker, the two utterances play a
completely different role, which implies that the score fora given trial is not symmetric with respect to the segments.

In this work we present a new framework for discriminative speaker classification that aims at overcoming the
problems of the classical SVM approach while retaining most of the interesting characteristics of Bayesian systems,
namely almost calibrated scores and symmetry between enrollment and test utterances. In this approach we do not
model speaker classes, but we train a binary classifier which classifies a pair of utterances as belonging to either
the same speakeror different speakers[1]. In particular, the speaker verification score for a pair of i-vectors is
computed using a function having a form derived from the PLDA generative model. The parameters of the function,
however, are estimated using a discriminative training criterion. Discriminative training of a PLDA-like model for
speaker verification was originally proposed in [5], and somepreliminary work was done in [1] using as features
the speaker factors extracted using Joint Factor Analysis [10].

We show that the same functional form derived from PLDA can be obtained without making reference to the
distribution of the i–vectors, and that we can train an SVM that estimates the parameters of a second order
approximation of good symmetric score functions using an expansion of each i–vector pair. We also show that this
pairwise SVM corresponds to a second degree polynomial kernel SVM.

Experiments performed on a NIST SRE 2010 evaluation task [11] show that this new approach achieves state–
of–the–art performance with a scoring time comparable to the simplest i–vector based systems. Moreover, our
approach was directly used to train a gender–independent speaker recognition system, ignoring the gender labels
both in training and in test, with accuracy comparable to theone of gender–dependent systems trained on the same
data.

The outline of the paper is as follows: Section II briefly introduces the i–vectors, and Section III recalls the PLDA
approach and the two–covariance model, where both the speaker and the intra–speaker variability sub–spaces are
assumed to be full–rank. It also shows how to obtain a binary linear classifier in an appropriate nonlinearly expanded
space of i-vector pairs. In Section IV, using an expanded vector representing a pair of i–vectors in a trial, we derive
an SVM model. A fast solution to the computation of gradient and score, which are needed for efficient training
and scoring, is presented in Section VI. The experimental results comparing the performance of the discriminative
and generative models are given in Section VII, and conclusions are drawn in Section VIII.

II. I– VECTORS

I–vector based techniques represent the state–of–the–artin speaker verification [2], [12]. I–vectors provide an
elegant way of reducing large-dimensional input data. In this approach, a speech segment is mapped to a fixed small-
dimensional vector retaining most of the relevant information necessary to give state-of-the-art speaker recognition
performance. The mapping is obtained by modeling the sequence of feature vectors by a large GMM, the parameters
of which are constrained to lie in a low dimensional subspace. In particular, the i–vector model constrains the GMM
supervectors, representing both the speaker and inter–session characteristics of a given speech segment, to live in
a single subspace according to:

s = m+Tφ , (1)

wherem is the Universal Background Model (UBM) GMM mean supervector, with C GMM components of
dimensionF . T is a low-rank rectangular matrix, ofC×F rows andM columns, spanning the subspace including
important inter– and intra–speaker variability in the meansupervector space, andφ is a realization of a latent variable
Φ of sizeM with standard normal distribution. A Maximum-Likelihood estimate of matrixT is usually obtained
by minor modifications of the Joint Factor Analysis approach [10]. Given the sequence of features representing an
utterance,X , its i-vector is computed as the Maximum a Posteriori (MAP) point estimate of the variableΦ, i.e.,
the mean of the posterior distributionp(Φ|X ).

The main advantage of the i–vector representation is that theproblem of intersession variability can be deferred
to a second stage. The possibility of dealing in this second stage with low-dimensional vectors, rather than with
the high-dimensional supervectors of the GMM means, boosted the study of probabilistic generative models [4],
[6]. A procedure for extracting i-vectors has been described and effectively used in [2], [12].
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III. G ENERATIVE MODELS

Good speaker recognition accuracy has been obtained using i–vectors and simple LDA and cosine distance
scoring [2]. However, since the introduction of these low–dimensional features, the speaker recognition community
has focused on more accurate models for computing speaker detection scores directly from i–vectors. The generative
models analyzed in [7], [4] are among the best models for comparison of i–vectors. In this section we briefly recall
the PLDA framework and a simplified model that will be used for deriving the formulation of our discriminative
speaker verification approach.

A. PLDA

Probabilistic Linear Discriminant Analysis (PLDA) [7], [4] is one of the most successful models for i–vectors
comparison. PLDA assumes that the i–vector generation process can be described by means of a latent variable
probabilistic model where i–vectorφ is modeled as the sum of three factors, namely a speaker factor y, an inter–
session (channel) factorx and the residual noiseǫ as:

φ = m+U1y +U2x+ ǫ . (2)

MatricesU1 andU2 typically constrain the speaker and inter–session factorsto be of lower dimension than the
i–vectors space. The generation of an i-vector requires choosing a random speaker factory according to speaker
prior distributionp(y) and a random inter–session factorx according to a prior distributionp(x). The i-vector is
then the sum ofU1y+U2x, the mean vectorm and of the residual noiseǫ generated according to the distribution
p(ǫ).

PLDA estimates the matricesU1, U2, and the values of the hyper–parameters of possible parametric priors [4],
which maximize the likelihood of the observed i–vectors, assuming that i–vectors from the same speaker share the
same speaker factor, i.e., the same value for latent variable y.

The simplest PLDA model (G-PLDA) assumes a Gaussian distributionfor the prior parameters. However, in [4] it
is shown that ML estimation of the PLDA parameters under a Gaussian assumption fails to produce accurate models
for i-vectors. Thus, heavy–tailed distributions for the model priors have been proposed leading to the Heavy-Tailed
PLDA model, which however, is computationally expensive.
A simpler approach preserves the Gaussian distribution assumption, but incorporates a pre–processing step where
the vector dimensionality is possibly further reduced by LDA, and more importantly, within-class covariance and
length normalization is applied to the resulting patterns [13]. Using these dimension reduced and normalized i–
vectors, the performance of the Heavy–Tailed and Gaussian PLDA models is comparable, the latter being much
faster both in training and in testing.

B. Two-covariance model

Further model simplification is obtained by merging together the residual noise and the inter–session components,
assuming that the speaker and inter–session subspaces spanthe entire i–vector subspace. This simplified model is
referred to as the two–covariance model [5], [6]. An i-vector φ is assumed to be produced by a linear-Gaussian
generative modelM that accounts for a speakery and a Gaussian–distributed componentz, including inter–session
variability, as:

φ = y + z . (3)

If we assume that the speaker component is Gaussian–distributed as:

P (y|M) = N (y|µ,B−1) , (4)

whereB−1 is the between–speaker covariance matrix, and the distribution of the i–vector given the speaker identity
is also Gaussian:

P (φ|y,M) = N (φ|y,W−1) , (5)

whereW−1 is the within–speaker covariance matrix, then, given a setS = {φ1, . . . ,φn} of n i-vectors associated
to the same speaker, the posterior ofy is also normal [14]:

P (y|S,M) = N (y|L−1γ,L−1) , (6)
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and the parameters of the distribution are:

L = B+ nW γ = Bµ+W
∑

φ∈S

φ . (7)

C. Two–covariance scoring

The conditional likelihood of two i-vectors allows obtaining the speaker verification log–likelihood ratio score
between the “same–speaker” hypothesisHs and “different–speaker” hypothesisHd:

λ = log
P (φ1,φ2|Hs)

P (φ1,φ2|Hd)
, (8)

whereφ1,φ2 are two i-vectors that are scored.
The numerator probability is computed assuming that the i–vectorsφ1 andφ2 belong to the same speaker, i.e they
share a common value of the hidden variabley. According to Bayes rule this probability can be computed as:

P (φ1,φ2|Hs) =
P (φ1,φ2|y0,M)P (y0|M)

P (y0|φ1,φ2)
, (9)

wherey0 is any value which does not cause the denominator to be zero. Since the intersession variability components
of different utterances are assumed to be independent, i.e., the i–vectors are independent given the speaker variable,
(9) can be rewritten as:

P (φ1,φ2|Hs) =
P (φ1|y0,M)P (φ2|y0,M)P (y0|M)

P (y0|φ1,φ2)
. (10)

The denominator probability in (8) is computed, instead, assuming that the i–vectorsφ1 andφ2 belong to different
speakers, as:

P (φ1,φ2|Hd) = P (φ1)P (φ2) =

P (φ1|y0,M)P (y0|M)

P (y0|φ1,M)
·
P (φ2|y0,M)P (y0|M)

P (y0|φ2,M)
, (11)

where the first equality derives from the independence of the speaker factors, and the second equality from Bayes
rule.
Substituting (10) and (11) in (8) we get:

λ = log
P (y0|φ1,M) P (y0|φ2,M)

P (y0|M) P (y0|φ1,φ2,M)
. (12)

Using (4) and (6), and selectingy0 = 0, we finally get the log–likelihood ratio:

λ =
1

2
(log |Γ̃| − γ1

T Γ̃γ1 + log |Γ̃| − γ2
T Γ̃γ2

− log |B|+ µTBµ− log |Λ̃|+ γT
1,2Λ̃γ1,2) , (13)

where, according to (7):
Λ̃ = (B+ 2W)−1

Γ̃ = (B+W)−1

γ1,2 = Bµ+W(φ1 + φ2) γi = Bµ+Wφi .
(14)

Collecting in a constant̃k all the terms in the sum that are not a function ofγ1, γ2, andγ1,2, (13) can be rewritten
as:

λ =
1

2

(

k̃ + γT
1,2Λ̃γ1,2 − γ1

T Γ̃γ1 − γ2
T Γ̃γ2

)

(15)

with
k̃ = 2 log |Γ̃| − log |B̃| − log |Λ̃|+ µTBµ (16)
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Substituting (14) in (15) to make the role of the two i–vectorsin the log–likelihood ratio computation explicit, we
obtain the score:

s(φ1,φ2) =

1

2

(

(Bµ+W(φ1 + φ2))
T
Λ̃(Bµ+W(φ1 + φ2))

−(Bµ+Wφ1)
T
Γ̃(Bµ+Wφ1)

−(Bµ+Wφ2)
T
Γ̃(Bµ+Wφ2) + k̃

)

, (17)

which can be rewritten as:

s(φ1,φ2) = φT
1 Λφ2 + φT

2 Λφ1 + φT
1 Γφ1 + φT

2 Γφ2

+(φ1 + φ2)
T
c+ k . (18)

Thus, the speaker verification score is a quadratic function ofthe i–vector pair in a trial, where the original model
parameters are related toΛ,Γ, c andk according to:

Λ = 1

2
WT Λ̃W Γ = 1

2
WT (Λ̃− Γ̃)W

c = WT (Λ̃− Γ̃)Bµ k = k̃ + 1

2

(

(Bµ)T (Λ̃− 2Γ̃)Bµ
)

.
(19)

Since the two–covariance model is a particular case of the PLDA approach, where the dimensionality of the
speaker and channel spaces is full, its parameters,B,W, andµ can be trained by means of the same EM algorithm
that has been used for PLDA [4].

Another derivation, based on the two–covariance model leading to the same formulation has been illustrated in
[15].

D. Expanded vector linear classifier

To demonstrate that the log–likelihood ratio scores(φ1,φ2) of (18) can be computed as a dot–product in an
i–vector pairs expanded space, we recall that the computation of the bilinear formxTAy can be expressed in terms
of the Frobenius inner product asxTAy = 〈A,xyT 〉 = vec(A)Tvec(xyT ), wherevec(·) is the operator that stacks
the columns of a matrix into a vector and〈A,B〉 denotes the dot–product between matricesA andB Hence, the
expression for the speaker verification log-likelihood ratio score (18) can be rewritten as:

s(φ1,φ2) = 〈Λ,φ1φ
T
2 + φ2φ

T
1 〉+ 〈Γ,φ1φ

T
1 + φ2φ

T
2 〉

+ cT (φ1 + φ2) + k . (20)

By stacking the parameters as:

w =







vec(Λ)
vec(Γ)

c

k






=







wΛ

wΓ

wc

wk







(21)

and expanding an i-vector pair as:

ϕ(φ1,φ2) =







vec(φ1φ
T
2 + φ2φ

T
1 )

vec(φ1φ
T
1 + φ2φ

T
2 )

φ1 + φ2

1






=







ϕΛ(φ1,φ2)
ϕΓ(φ1,φ2)
ϕc(φ1,φ2)
ϕk(φ1,φ2)







(22)
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s(φ1,φ2) can be written as the dot–product of a vector of weightsw (the model hyper–parameters) and an expanded
vectorϕ(φ1,φ2) representing a trial:

s(φ1,φ2) = SΛ(φ1,φ2) + SΓ(φ1,φ2)

+ Sc(φ1,φ2) + Sk(φ1,φ2)

= wT
ΛϕΛ(φ1,φ2) +wT

ΓϕΓ(φ1,φ2) +

wT
c ϕc(φ1,φ2) +wT

k ϕk(φ1,φ2)

= wTϕ(φ1,φ2) . (23)

E. Taylor approximation of the speaker verification score

In this section, we show that it is possible to discriminate between same–speaker and different–speaker trials,
without having to explicitly model the distributions of i-vectors, i.e., without making reference to the two-covariance
model.

The same expansionϕ(φ1,φ2) defined in (22) can be obtained as a second order Taylor expansion of a speaker
verification score. Let’s assume that the speaker verification score is an analytic functions(Φ) of the i–vector pair
Φ = (φ1,φ2), invariant to i–vector swapping, i.e.,s(φ1,φ2) = s(φ2,φ1). The Taylor expansion fors, around a
point Φ̂, is:

s(Φ) =

+∞∑

k=0

((

Φ− Φ̂
)

·∇
)k

s|
Φ̂

k!
, (24)

where∇ is the vector of differential operators

∇ =

(
∂

∂Φ1

, . . . ,
∂

∂Φd

)

, (25)

andd is the dimension of the i–vector pair.
In order to preserve the symmetry of the Taylor polynomials without having to further constrain the score function
we consider Taylor series around symmetric points, i.e.,Φ̂ = (φ0,φ0) for someφ0. In particular, let’s consider
the second order Taylor expansion fors(Φ) around the point̂Φ = 0:

s(Φ) = s(Φ̂) + (Φ ·∇s|
Φ̂
) +ΦT (H(s)|

Φ̂
)Φ , (26)

whereH(s) is the Hessian of functions(Φ). If we define:

H(s)|
Φ̂

=

[
Γ Λ

Λ Γ

]

∇s|
Φ̂

= [ c c ] (27)

s(Φ̂) = k ,

with a symmetricΛ, we obtain the same score formulation as in (18). It is worth noting that the structure imposed
by (27) arises naturally from the symmetry of the score function s(Φ) and from the symmetry of the expansion
point Φ̂. It does not depend on the particular choice ofΦ̂ = 0. It is possible to prove (see Appendix A) that, for any
choice of a symmetriĉΦ all Taylor expansion polynomials fors(Φ) at Φ̂ are symmetric, and that the coefficients
of the Taylor expansion ofs(Φ) at Φ̂ have exactly the structure of (27).

Since the second order Taylor approximation of the scoring function around a symmetric point has the structure
described in (18), the pairwise discriminative training approach, which is illustrated in the next section, can be
interpreted as a procedure that estimates the parameters ofthe second order approximation of a good score function,
according to the SVM optimization criterion.

IV. D ISCRIMINATIVE CLASSIFIERS

Using the expanded vectorϕ(φ1,φ2) representing a trial, pairwise discriminative training can be performed
by estimating the weightsw in (23). We estimate these weights by means of a linear discriminative classifier,
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e.g. a Support Vector Machine. A Support Vector Machine [16], [17], [18] is a binary classifier which estimates
the hyperplane that best discriminates two given classes ofpatterns according to a maximum separation margin
criterion. The separation hyperplane is obtained by solvingthe problem:

w∗ = argmin
w

1

2
λ‖w‖2 +

1

n

n∑

i=1

max
(
0, 1− ζiw

Txi

)
, (28)

wheren is the number of training patterns,xi ∈ X denotes a (d–dimensional) training pattern with associated
label ζi ∈ {−1,+1}, and λ is a regularization factor. The second term in this expression is the empirical risk
evaluated on the training set, whereas the first term — the squaredL2 norm of the separating hyperplanew — is
a regularization contribution, which is related to the generalization capability of the model [17]. The regularization
factor λ allows tuning the trade–off between the margin and the empirical risk. The latter is the sum of so–called
hinge (L1) loss function:

lL1(i) = max(0, 1− ζiw
Txi) . (29)

The minimization of (28) gives the maximum soft–margin classifier. The SVM is a linear classifier, however, a
non–linear classifier can be obtained by means of the so called“kernel trick” [19] where every dot product is
replaced by a nonlinear kernel function, or as in our case, bymeans of a non–linear feature expansion. In fact,
the feature mapping (22) defines a linear kernel that is equivalent to a second degree inhomogeneous polynomial
kernel:

K(x1,x2) = (xT
1 x2 + 1)

2
, (30)

wherex1 = [φaφb] andx2 = [φw φz] define two different speaker recognition trials. The kernel

K(x1,x2) = K([φaφb], [φw φz])

= (φT
aφw + φT

b φz + 1)
2

(31)

can be rewritten as:

K(x1,x2) =φT
aφwφ

T
wφa + φT

b φzφ
T
z φb+

2φT
aφwφ

T
z φb + 2φT

aφw + 2φT
b φz + 1

=〈φaφ
T
a ,φwφ

T
w〉+ 〈φbφ

T
b ,φzφ

T
z 〉 + (32)

2〈φaφ
T
b ,φwφ

T
z 〉+ 2φT

aφw + 2φT
b φz + 1 .

Defining the feature mapping:

ϕ̃(φ1,φ2) = vec([φ1 φ2 1][φ1 φ2 1]
T ) ∼

















vec(φ1φ
T
2 )

vec(φ2φ
T
1 )

vec(φ1φ
T
1 )

vec(φ2φ
T
2 )

φ1

φ1

φ2

φ2

1

















, (33)

where∼ is used to denote equivalence of vectors ignoring the order of their elements, we can conclude that the
kernelK(x1,x2) is the dot–product of two expanded vectors:

K(x1,x2) =〈[φaφb1][φaφb1]
T , [φwφz1][φwφz1]

T 〉

=ϕ̃(φaφb)
T ϕ̃(φwφz) . (34)
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Looking at the log–likelihood in (18) and halving its (unknown) parameterc as c̃ = c/2, so that the linear term
of the log–likelihood becomes2c̃T (φ1 + φ2), the feature expansion given in (22) becomes:

ϕ(φ1,φ2) =







vec(φ1φ
T
2 + φ2φ

T
1 )

vec(φ1φ
T
1 + φ2φ

T
2 )

2 (φ1 + φ2)
1







(35)

and it is easy to verify that the two expansions:

ϕ(φa,φb)
Tϕ(φw,φz) = ϕ̃(φa,φb)

T ϕ̃(φw,φz) (36)

are equivalent, i.e., correspond to the same kernel.
Often, SVM classifiers are trained using a solver of the dual problem, where a Gram matrix needs to be evaluated.

The Gram matrix contains the dot–products between every pairof training examples. Since our training examples
are i–vector pairs, the size of the Gram matrix —O(n4) due to the square ofn2 i–vector pairs — would be
unacceptably large. Therefore, we train an SVM by solving the primal problem using a general solver (see Section
V), and an efficient evaluation of loss function gradient thatallow both memory and computational resources to be
constrained.

Although the G–PLDA and the pairwise SVM expressions are formally equivalent, an important difference has
to be highlighted considering the hyper–parameters that are trained. The parameters estimated in G–PLDA (and
two–covariance) model are constrained, due to the positivedefiniteness constraints of their covariance matrices. In
the pairwise discriminative training approach, instead, no parameter constraints are imposed, except for the ones
arising from the regularization of the optimization function. Thus, the latter approach is more flexible and does not
make a priori assumptions about the i–vector distribution.

It is also worth noting that the same task can be performed by Logistic Regression (LR), another widely used
linear classifier, which allows estimating class posterior probabilities given a set of patterns [18]. Normalizing the
loss function of LR by the number of patternsn, and including a regularization factorλ

2
‖w‖2, the regularized LR

objective functionfLR(ŵ) is:

fLR(ŵ) =
λ

2
‖ŵ‖2 +

1

n

n∑

i=1

log
(

1 + e−ζiŵ
T x̂i

)

, (37)

which is similar to the SVM objective function. SVM and LR optimization can be seen as the solution of a particular
instance of the unconstrained convex regularized risk minimization problem:

E(w) = argmin
w

1

2
λ ‖w‖2 +

1

n

n∑

i=1

ℓ(w,xi, ζi) (38)

with loss function
ℓL1(i) = max(0, 1− ζiw

Txi) (39)

and
ℓLR(i) = log

(

1 + e−ζiŵ
T x̂i

)

, (40)

respectively. The SVM optimizes the margin separation between the classes, whereas LR minimizes the cross–
entropy error function.

In the following we will illustrate our solutions and reportresults for the SVM classifier, but the same con-
siderations apply to LR, just changing the loss function. The results of some experiments comparing these two
discriminative classifiers have been reported in [15].

V. PAIRWISE SVM TRAINING

Since our training patterns are all possible pairs of i–vectors in the training set, their number grows asO(n2). The
feature mapping described in Section III-D produces mapped features havingO(d2) components, thus the global
dataset size would beO(n2d2). Caching the complete kernel matrix is impractical even forrelatively small sized
datasets because it would requireO(n4) memory. In [20] we have shown that SVM training of the i–vectorpairs
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by means of a dual solver requires either keeping in memory the complete dataset of mapped features (O(n2d2)),
or mapping the feature on–line, with a complexityO(n2d2) for each iteration. Since in our experimentsd = 400
andn is approximately 20000, a standard dual solver approach is not viable.
Training is feasible, instead, by using a primal solver because, as we show in Section VI, it is possible to efficiently
evaluate the loss function and its gradient with respect tow over the set of all training trials inO(n2d+nd2) time,
without the need to expand the i–vectors. Due to the small size of the i–vectors, the dataset of training utterance
can easily be loaded in main memory. The evaluation of loss functions and gradients in these algorithms requires
matrix–by–matrix multiplications of large matrices (n×n), however it is not necessary to store the complete matrices
in main memory because the computations can be performed through block decomposition of the matrices.

An analysis of large-scale SVM training algorithms suited tospeaker recognition tasks [20] allowed us to select,
among the primal solvers, the Bundle Methods for Regularized Risk Minimization (BMRM) [21], [22], which offer
a general and easily extensible framework for solving convex unconstrained regularized risk minimization problems.
In particular, we trained our SVM using the Optimized CuttingPlane Algorithm (OCAS) approach proposed in
[23], [22], which is an extension to BMRM that shows better and smoother convergence properties.
An important advantage of these methods is that they do not require the loss function to be differentiable in the
whole domain.

VI. EFFICIENT SCORE AND GRADIENT COMPUTATION

Using the OCAS technique, the SVM parametersw are optimized by evaluating the loss function and a sub–
gradient of its error function (38):

∇E(w) =
1

n

∑

φi,φj

∂ℓ(φi,φj)

∂s(φi,φj)

∂s(φi,φj)

∂w
+ λw . (41)

The use of sub–gradients for optimization [24] is necessary because the hinge loss function is not differentiable
everywhere. A sub–gradient for the SVM hinge loss function is:

∂ℓL1(φi,φj)

∂s(φi,φj)
=

{

0 if ζi,j s(φi,φj) ≥ 1

−ζi,j otherwise,
(42)

whereζi,j ∈ {−1,+1} is the label of the i–vector pair(φi,φj). The derivative of the score with respect to the
classifier parameters is simply the expanded trial vector:

∂s(φi,φj)

∂w
=

∂

∂w
wTϕ(φi,φj) = ϕ(φi,φj) . (43)

The evaluation of the loss function and its gradient requires, in principle, a sum over all the expanded i–vector pairs
in the training set. Since their number isn2, which can easily reach the order of hundred of millions for typical
training sets, these evaluations would be not effective or even feasible because the complexity would beO(n2d2).
In the next section, however, we show that these computations can be done without an explicit full expansion of
all the i-vector pairs, with a complexity that reduces toO(n2d+ nd2).

A. Fast scoring

In order to obtain effectively the loss contributions of alltraining pairs, we need a fast procedure for computing
the scores of all the training i–vector pairs, obtaining thematrix of the scores of every i–vector against each other.

Given a trained classifier, a verification score for a trial paircan be computed by means of the expanded vector
ϕ(φi,φj) and the dot–product in (22) and (23). However, a much more efficient solution in terms of memory
and computation can be obtained using (18). In particular, let D = [φ1φ2 . . .φn] be a matrix includingn stacked
i-vectors, and letSΘi,j = SΘ(φi,φj) denote the score matrix for all possible trials related to componentΘ of w,
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whereΘ ∈ {Λ,Γ, c, k}. From (23) and (18) the score matrices can be evaluated as:

SΛ(φi,φj) = φT
i Λφj + φT

j Λφi ⇒ SΛ = 2 DTΛD

SΓ(φi,φj) = φT
i Γφi + φT

j Γφj ⇒ SΓ = S̃Γ + S̃Γ

T

Sc(φi,φj) = cT (φi + φj) ⇒ Sc = S̃c + S̃c
T

(44)

Sk(φi,φj) = k ⇒ Sk = k · 1 ,

where
S̃Γ = [dΓ . . . dΓ

︸ ︷︷ ︸

n

] S̃c = [dc . . . dc
︸ ︷︷ ︸

n

] (45)

and
dΓ = diag(DTΓD) dc = DT c . (46)

The operator diag returns the diagonal of a matrix as a column vector, and1 is ann× n matrix of ones.
No explicit expansion of i-vectors is therefore necessary for this evaluation.

B. Loss function evaluation

Denoting byS = SΛ + SΓ + Sc + Sk the sum of the partial score matrices, the SVM loss function can be
obtained as:

ℓL1(D,Z) =
∑

i,j

max(0, 1− ζi,jw
Tϕ(φi,φj)

= 〈1,max(0,1− (Z ◦ S)〉 , (47)

where0 is ann× n matrix of zeros,Z is then× n matrix of the trial labelsζi,j for each i–vector pair(φi,φj),
and◦ is the element-wise matrix multiplication operator.

C. Gradient evaluation

The sub–gradient of the loss function can be evaluated from its derivative with respect to them-th dimension
of w as:

∂ℓ

∂wm

=
∑

i,j

∂ℓ(w, (φi,φj), ζi,j)

∂(wTϕ(φi,φj))

∂wTϕ(φi,φj)

∂wm

=
∑

i,j

gi,j
∂si,j
∂wm

=
∑

i,j

gi,jϕ(φi,φj)m , (48)

wheregi,j is the derivative of the hinge loss function with respect to the scoresi,j = wTϕ(φi,φj):

gi,j =

{

0 if ζi,jsi,j ≥ 1

−ζi,j otherwise.
(49)

Considering the i–vector expansion (22), the loss functiongradient (48) can be written as:

∇ℓ =







∇Λ ℓ

∇Γ ℓ

∇c ℓ

∇k ℓ






=









vec
(
∑

i,j gi,j

(

φiφ
T
j + φjφ

T
i

))

vec
(
∑

i,j gi,j

(

φiφ
T
i + φjφ

T
j

))

∑

i,j gi,j (φi + φj)
∑

i,j gi,j









. (50)

Defining G the matrix of the elementsgi,j , and taking into account that it is symmetric, the terms of the sub–
gradient of the loss function, related to a componentΘ of w, can be expressed in terms of dot–products and
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Fig. 1: minDFC08 and minDCF10 as a function of the speaker subspace dimensionality for the female and male
speakers

element–wise matrix products as:

∇ℓ =







2 vec
(
DGDT

)

2 vec
(
[D ◦ (1A G)]DT

)

2 [D ◦ (1A G)] 1B
1TB G 1B







, (51)

where1A is aM × n matrix of ones (M is the i–vector dimension) and1B is a sizen column vector of ones.
Again, no explicit expansion of i-vectors is necessary for this evaluation.

TABLE I: Comparison of the performance of G–PLDA with and without i–vector length normalization and PSVM

i–vector
System

Female Male
length normalization EER (%) minDCF08 minDCF10 EER (%) minDCF08 minDCF10

no G–PLDA 3.51 0.15 0.39 2.28 0.12 0.43
yes G–PLDA 2.10 0.10 0.35 1.24 0.07 0.28
no PSVM 2.21 0.10 0.34 1.96 0.08 0.26

D. Estimation of the regularization factor

Training a risk minimization problem (38) entails the selection of an appropriate value for the regularization
factor λ. Different approaches have been proposed to estimate a goodfactor, such as cross–validation, or fitting
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TABLE II: EER and minDCFs for PSVM on SRE2010 tests with 400 and 600 dimension i–vectors

i–vector type Model
Gender Female Male
System EER minDCF08 minDCF10 EER minDCF08 minDCF10

GD GD 400 GD 2.21 % 0.109 0.360 1.73 % 0.081 0.303
GI GD 400 PGI 2.49 % 0.115 0.369 1.84 % 0.084 0.298
GI GI 400 GI 2.51 % 0.115 0.382 1.82 % 0.087 0.309

GD GD 600 GD 2.32 % 0.106 0.342 1.76 % 0.077 0.290
GI GD 600 PGI 2.59 % 0.103 0.358 1.82 % 0.082 0.274
GI GI 600 GI 2.51 % 0.108 0.383 1.80 % 0.078 0.307

the models for all possible regularization factors [25]. After a few cross-validation search strategies were tried, we
found that the simple heuristic factor proposed as the default regularization parameter in SVMLight [26] is sufficient
to produce accurate models. It has the advantage that it can be easily computed from the training data as:

C =
1

nλ
=

(

1

n

n∑

i=1

‖xi‖

)
−2

, (52)

wherexi is one of then patterns in the training set{X}. In our approach a patternxi is an i–vector pair. Looking at
(34) and (31), by replacingφw andφz with φa andφb, respectively, the norm of the expanded featuresϕ(φ1,φ2)
for the i–vector pair(φ1,φ2) can be computed as:

‖ϕ(φ1,φ2)‖ = φT
1 φ1 + φT

2 φ2 + 1 . (53)

Thus the regularization parameterλ can be set so that:

1

nλ
=




1

n2

n∑

i=1

n∑

j=1

‖ϕ(φi,φj)‖





−2

=




1

n2

n∑

i=1

n∑

j=1

(
φT
i φi + φT

j φj + 1
)





−2

(54)

=

(

1 +
2

n

n∑

i=1

‖φi‖
2

)
−2

.

VII. E XPERIMENTAL RESULTS

The i-vector extractor used for the first set of experiments is based on 60-dimensional cepstral features and a
2048-component full covariance GMM. The UBM and i-vector extractor are trained on NIST SRE 2004, 2005
and 2006, Switchboard and Fisher data. The PLDA systems and discriminative classifiers have been trained using
i-vectors with dimensiond =400 ord = 600, respectively, extracted from NIST SRE 2004, NIST SRE 2005, NIST
SRE 2006, Switchboard II Phases 2 and 3, and Switchboard CellularParts 1 and 2.

Table I presents the results for the extended condition 5 (tel–tel) from NIST SRE 2010 evaluation in terms of
percent Equal Error Rate and normalized minimum Detection Cost Function (minDCF) as defined by NIST for
SRE08 and SRE10 evaluations [11].

The system denoted as G–PLDA without length normalization is based on a generatively trained PLDA model
with a 120–dimensional speaker variability subspace, and full channel variability subspace. For the system denoted
as G–PLDA with length normalization, which is our reference, we perform in sequence within-class covariance
normalization [27] and length normalization of the i–vectors [13]. This configuration was found to give the best
minDCF10, which was the primary performance measure in NIST SRE2010 evaluation focusing on low false
alarm rates.
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In the Pairwise SVM (PSVM) system, the lack of normalization of the i-vector dimensions would affect the
regularization term1

2
λ‖w‖2 in the SVM objective function (28). Thus, to make SVM regularization effective, we

normalize the i–vectors so that they have identity within-speaker covariance matrix.
In these conditions, the behavior of the two systems is similar (and much better than G–PLDA without i–vector

length normalization [13]).
Since the G–PLDA with length-normalized i–vectors performs slightly better than PSVM, we performed another

set of experiments to assess the effects of size of the speaker variability subspace on G–PLDA accuracy. Figure 1
shows the minDFC08 and minDCF10 as a function of the speaker variability subspace dimension for the female
and male speakers separately. We can observe in these figures that the dimension of the speaker variability subspace
must be carefully tuned because it affects system performance. No tuning is necessary in our pairwise SVM models
because we always estimate full–rankΛ andΓ matrices.

A. Gender–independent pairwise SVM

State–of–the–art text–independent speaker recognition systems are designed to achieve best performance when
the gender label is known both at training and testing time. Gender information, however, is not available in a
number of real applications. Although the speaker gender can be estimated from the trial data, this preliminary
classification is a potential source of accuracy degradation.

The interpretation of pairwise discriminative training illustrated in Section III-E provides the rationale for a
straightforward approach to gender–independent pairwisediscriminative training. If we consider the most elaborated
generative models, such as Heavy-Tailed [4] or Mixtures of PLDA [28], we can notice that they differ only in the
formal expression of their log–likelihood ratio score function. Since in pairwise SVM training we directly optimize
a second order approximation of a good score function, a gender–independent SVM can be implemented by training
a single system with pooled gender i–vectors, without the need for gender labels both in training and in testing. The
gender prior is implicitly built into the SVM solution via theproportions of males and females in the training data,
thus some care might be required in case of very unbalanced male and female training sets. The PLDA mixture
solution has the advantage (at least in principle) that the user can specify this prior externally at run-time, if the
user knows, for example, that females may be scarce in a certain application. In practice however, calibration of the
gender likelihoods relative to the prior may cause the user’s prior not to have much effect. A gender–independent
system has two benefits: a larger amount of training data can beused for off-line estimation of the UBM and of the
speaker and inter–session sub–spaces, moreover its modelsrequire less memory and computation during testing.
Memory is saved because there is no need to keep separate gender models, and unless the knowledge of the gender
is a–priori known, a gender detector is needed for a gender–dependent system.

It is worth noting that from the experiments with GD systems,reported in Table I, we know that the pairwise
SVM system and the PLDA systems using the same GD i–vectors give comparable performance. We did not train,
however, a GI PLDA system using GI i–vectors because the results given [28] for similar telephone tests, show
that it is necessary to use mixtures of PLDA models to reach the performance of a GD PLDA system trained
with the same GI i–vectors. We focused, thus, only on pairwise SVM systems using GI i–vectors, to assess their
performance in a fully GI speaker verification task. In particular, we trained three types of PSVM systems using
i–vectors of 400 and 600 dimensions, respectively:

• a fully gender–dependent (GD) system, where both i–vector extraction and SVM training is gender–dependent,
• a partially gender–independent (PGI) system, where the i–vectors are gender–independent, whereas two SVMs

are trained using GD segments,
• a totally gender–independent (GI) system, where both i–vector extraction and SVM training is performed

without using gender labels.

For GD and PGI systems gender labels are provided at test time,while for the GI system no gender information
is used to score the trials.
The results for these models, reported in Table II on the same extended tel-tel SRE10 evaluation set1, show that a
fully GI system, using both 400 or 600 GI i–vectors, gives comparable performance to a partially gender independent

1The GD results of Table II are different with respect to the the ones given in Table I because the list for training matrixT included two
additional datasets: Part 1 and 2 of the Fisher English Corpus.



10.1109/TASL.2013.2245655 14

system, which needs the gender labels at test time, and is competitive with the more expensive GD models, which
of course not only use GD models but also GD i–vectors. Thus, the relative loss of performance observed with
respect to the GD systems is due to the use of GI i–vectors, notto model deficiency.

VIII. C ONCLUSIONS

In this work we presented a novel framework for discriminative training of speaker verification systems, where
a trial is represented, as in the PLDA approach, by an i–vector pair, and the task is discrimination between
same–speaker and different–speaker classes. This pairwiseSVM approach provides a more natural paradigm to
speaker verification compared to the classical one–vs–all discriminative training. We showed that this technique
has strong connections with the state–of–the–art generative models, but does not need to explicitly model the i–
vector distribution. Rather, it can be interpreted as a procedure that estimates the parameters of a second order
approximation of a good score function, or simply as a pairwise second degree polynomial kernel classifier in the
i–vector pairs space.

We addressed and solved the time and memory issues raised by anäıve quadratic expansion of the i–vector pairs
for an efficient computation of the loss function gradients and of the verification scores.

A fully Gender–Independent discriminative system has beentrained which achieves, using GI i–vectors, an
accuracy comparable to the one offered by similar Gender–Dependent systems, with the advantage of not requiring
two separate models nor gender knowledge.

While some issues are still open, for example extensions of the model to deal with more than a pair of utterances
or large–scale training, pairwise discriminative training provides models that allow fast scoring of test utterances
achieving state–of–the–art performance.

APPENDIX A

Proposition 1: For Φ̂0 = (φ0,φ0), all Taylor polynomials ofs(Φ) at Φ̂0 are symmetric with respect to i–vector
swapping.

Proof: Sinces is symmetric, the functionsf(φ1,φ2) = s(φ1,φ2) andg(φ1,φ2) = s(φ2,φ1) are equal and,
therefore, have the same Taylor polynomials for any given order. LetT f

p , T g
p andT s

p denote thep–th order Taylor
polynomials forf , g ands, respectively. We haveT s

p (φ1,φ2) = T f
p (φ1,φ2) = T g

p (φ1,φ2) = T s
p (φ2,φ1), thus the

Taylor polynomials fors(φ1,φ2) at Φ̂ = (φ0,φ0) are symmetric for anyp.

Proposition 2: The coefficients of the first and second order Taylor expansion ofs(Φ) at Φ̂ = (φ0, φ0) have the
symmetric structure given in (27).

Proof: To derive the structure of the Taylor coefficients given in (27), we first consider the Taylor series ofs
aroundΦ̂ = 0:

s(Φ) =

+∞∑

k=0

(Φ · ∇)ks|0
k!

= k + φT
1 c1 + φT

2 c2 + φT
1 Aφ1 + φT

1 Bφ2

+ φT
2 Cφ1 + φT

2 Dφ2 +

+∞∑

k=3

(Φ · ∇)ks|0
k!

. (55)

We can rewrite the first three terms of the series as:

H(s)|0 =

[
A B

C D

]

∇s|0 = [ c1 c2 ] (56)

s(0) = k .

From the symmetry of the Hessian it directly follows thatA andD are symmetric and thatC = BT .
In order to prove thatc1 = c2, A = D, andB is also symmetric, we consider the Taylor expansion ofs around

Φ̂0, computed inΦ = (φ1,φ2) and in the symmetric point̄Φ = (φ2,φ1). Sinces is symmetric, in these two
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points the series has the same value. In particular,

s(Φ̄) = k + φT
2 c1 + φT

1 c2 + φT
2 Aφ2 + φT

2 Bφ1

+ φT
1 Cφ2 + φT

1 Dφ1 +

+∞∑

k=3

(
Φ̄ · ∇

)k
s|0

k!
. (57)

SinceB = CT , we have thatφT
aBφb +φT

b Cφa = 2φT
aBφb for anyφa,φb. Therefore, combining (55) and (57)

we get:

k + φT
1 c1 + φT

2 c2 + φT
1 Aφ1 + 2φT

1 Bφ2

+ φT
2 Dφ2 +

+∞∑

k=3

(Φ · ∇)ks|0
k!

=

k + φT
2 c1 + φT

1 c2 + φT
2 Aφ2 + 2φT

1 B
Tφ2

+ φT
1 Dφ1 +

+∞∑

k=3

(
Φ̄ · ∇

)k
s|0

k!
(58)

The equality (58) holds for any choice ofΦ only if all coefficients of the two polynomials are equal, i.e., if c1 = c2,
A = D, andB is symmetric.

Finally, consider a generic symmetric pointΦ̂0 = (φ0,φ0), and leth(φ1,φ2) = s(φ1+φ0,φ2+φ0). The Taylor
expansion ofh around0 has, by definition, the same coefficients of the Taylor series for s aroundΦ̂0. Moreover,
h is symmetric, therefore the Taylor coefficients of its secondorder Taylor polynomial have the same structure as
in (27).
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