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Earth-Observation Satellite Mission
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Delft University of Technology, 2629 HS Delft, The Netherlands
and
S. Corpino?
Politecnico di Torino, 10129 Torino, Italy

In this paper. a methodology for postoptimality studies to assess the robustness of the Pareto-optimal solutions
computed with a multi-objective optimization algorithm is presented. The proposed Pareto-robust optimization
approach is based on factorial design for sampling the design region in the neighborhood of the Pareto-optimal
solutions. It allows for estimating a metric for the Pareto robusiness and contributes to improving convergence of the
known Pareto-front toward the true Pareto front. Further, sensitivity analysis of the performance and response
surfaces in the neighborhood of the optimal selutions are computed without additional computational cost. The
proposed approachis applied to two validation test cases and to the design of a satellite Earth-observation mission for
disaster monitoring. The results show that the Pareto-robust optimization approach can correcily detect Pareto-
robust solutions on the Pareto front, and that it provides additional Pareto-optimal solutions at the same time,
eventually improving the original known Pareto front. In the case of the Earth-observation mission, the study
demonstrates the possibility to enable and promote tradeoffs among the engineering team members to obtain an
effective decision-making process. The solution identified as the most Pareto-robust one can be considered quite
uncommon hut still very reasonable due to the assumptions, presenting a satellite in a nonsun-sy nchronous medium
Earth orbit.

Nomenclature
D = aperture diameter of the optical instrument, m
di-.-) = Euclidean distance operator
E(-) = expected value operator
f(x) = vector of the objective functions
g = inequality constraint
h = equality constraint
h = satellite altitude above the Nadir point, m
PF = Pareto front
PR = Pareto robustness
S; = sensitivity index of the regression-model factor
V() = variance operator
X = design vector
X adir = ground spatial resolution at satellite Nadir, m
X; = design variable i
X_; = design vector without the design variable x;

response of the regression model
regression coefficients

radiation wavelength, m

design space

objective space

= degree of constraint violation
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I. Introduction

N THE last decades, the task of designing space systems has

experienced a trend of increasing complexity. This is mainly
caused by the demand for development time and cost reduction,
while maintaining high quality standards. One of the main objectives
during the design is to set the levels of design factors (variables)
such that the performances of interest (i.e., the objectives) are opti-
mized, the requirements are met, and the constraints are not violated.
Generally speaking, the design factors can be either continuous or
discrete.

Many techniques have been developed that could, in principle,
be used to solve a mulii-objective, constrained, and potentially
discontinuous optimization problem, providing solutions in the
form of Pareto fronts (PF) [1-7]. Even though it is empirically proven
that excellent results can be obtained using them, several authors
recognize the importance of performing postoptimality studies to
locally improve the results [6-9].

In this paper, a novel approach for postoptimality studies applied
to complex-system design is presented. It is based on a particular
implementation of factorial design to locally improve the Pareto-
optimal solutions, computed with a multi-objective optimization
technique. This enables the possibility of finding better solutions in
the case of unsatisfactory convergence and providing information on
the Pareto-robustness of the Pareto-optimal solutions.

The main objectives are to obtain an improved Pareto front,
and to provide the design team with a means to rank the optimal
solutions based on their Pareto robustness PR. The PR metric
introduced in this paper allows for ranking the solutions on the Pareto
front according to their robustness to design-variable dispersion
and/or modification. The PR enables the possibility to identify new
and possibly more suitable alternatives that would not have been
discovered otherwise.

As will be demonstrated later in the paper, the simulations required
to determine the PR are also used to support the tradeoff process,
computing the main effects of and interactions between the design

variables. This can potentially aid in early discovery of dominating
phenomena in the problem of interest, thus efficiently steering the

decisions of the design team.

To illustrate the proposed approach, it will be applied to two
validation test cases and to a case study of an Earth-observation
satellite for crisis management in the case of natural disasters.
The satellite system includes mathematical models of the satellite
subsystems and payload, as well as models of potential launchers,
ground segment, and a mission propagator.

The remaining part of the paper is organized as follows. In Sec. 1,
the details of the Pareto-robust optimization approach (PROA) are
provided. Section Il gives a description of the case study in terms of
mathematical models, objectives, and constraints. In Sec. IV, the
results of the simulations are discussed. Section V concludes the paper
with some final remarks. In the Appendix, the validation test cases
are presented, and the results obtained using PROA are discussed.



II. Pareto-Robust Optimization Approach
A. Origins of Pareto-Robust Optimization Approach

The problem of designing and optimizing a space system, consid-
ering its operative environment and the mission it will accomplish, is
highly constrained and characterized by having multiple objectives,
with continuous and discrete (e.g., architectural) variables.

In multi-objective optimization problems the “optimum™ is treated
differently compared with single-objective optimization problems.
The former aims at finding a set of good compromises, i.e., tradeoffs,
rather than a single optimal solution, by optimizing all the objectives
simultaneously. This set of solutions is found using the Pareto-
optimality concept. A solution is defined to be Pareto-optimal or
nondominated if there is no feasible solution for which one cannot
improve a single objective without causing a degradation of at least
one other objective. According to the Pareto-optimality concept,
a vector a € X is said to dominate another vector b € X in a
minimization problem, also written as a <b, if and only if the
following relationship holds:

Vie{l,....Nj: fifa) < fi(b)AFjE{l, ....N}: fi(a)
<fj(b) (1)

The set of nondominated vectors plotted in the objective space is
defined as the Pareto front. The determination of the true Pareto front
PF,c (i.e., the theoretical obtainable Pareto front), depends on many
aspects such as the complexity of the problem of interest, the number
of design variables and objectives, the nature of the front itself
{concave/convex, continuous/discrete), and the number of function
evaluations executed. In real-life applications PF . is almost never
reached, especially due to computational limitations and problem
complexity, as demonstrated in [8,9].

Therefore, many authors working with global multi-objective
algorithms suggest that a local analysis should be performed for the
solutions belonging to the Pareto front, [4,6,7]. The main reason is
that, for instance, some of the multi-objective optimization algo-
rithms (like evolutionary algorithms) do not guarantee convergence
to the optimum, even though it is empirically proven that they can
provide excellent results. The front obtained with a multi-objective
optimization algorithm is usually referred to as PF, ., It represents
the best approximation of PFy ..., computed by the algorithm.
Postoptimality studies should therefore be performed to improve
convergence of PF_ ., toward PF_ ...

Moreover, from an engineering point of view not all optima are
equal, not even those on the Pareto front. Some optima could be the
result of a particular combination of design variables that will exhibit
a steep drop in performance when the levels of these variables are
only slightly modified. Especially during preliminary design of space
systems, the design variables are only frozen after several design
iterations. Thus, there is a risk that the selected design baseline
may suffer from performance degradation in subsequent phases of
the design cycle. In this sense, a more Pareto-robust solution can be
considered a less risky one.

Further, the determination of the sensitivity of the optimal
(preferably also Pareto-robust) solutions and the shape of the design



space around it is considered to be of prime importance for the design
team to perform more informed tradeoffs. In separate research, we
propose a regression-based approach for the computation of global
sensitivity analysis and response surfaces at a reduced computational
effort if compared with Monte Carlo techniques [10,11]. The
approach is based on sampling according to the central composite
design (CCD).

The CCD s a typical factorial design used to determine first- and
second-order factor effects on the objectives, as well as interactions
between the design variables. The second-order model considered in
this discussion is given by

k k k=1 k
Y = }60 + Zﬁz’xi + Zﬁiz’x? + Z z ﬂz’_;’xz'xj (2}
i=1 i=1

i=1 j=1'+]

Here, f3;, f;; and f;; are the so-called regression coefficients that are
calculated by fitting the surface through the design points determined
by the CCD. In Sec. I1.C we show how to compute sensitivity indices
from Eq. (2) using CCD sampling.

The main advantage of using sensitivity analysis at this stage is
that the factors that affect the variance of the objectives the most can
be identified before actually computing the response surfaces, via
regression analysis. This reduces the information provided to the
design team that can focus on fewer response surfaces computed with
the most relevant factors as independent variables.

Summarizing, the proposed approach for postoptimality studies
can be used to assess the robustness of the Pareto-optimal solutions,
computed with a multi-objective optimization algorithm, and con-
tributes to improving convergence of PF_ .. toward PF,.. At the
same time it provides graphical information regarding sensitivity and
design-space shape to the design team.

B.  Multi-Objective Global Optimization

Many multi-objective optimization techniques and algorithms
have been developed and implemented to solve ad hoc mathematical
problems, see for example [5-7].

In general, global optimization algorithms are preferred over
local gradient-based techniques, mainly because the latter require
continuity in the search space of objective functions and constraints
and their first derivatives. Especially when dealing with architectures
of a space system, the design variables are not always continuous,
e.g., the choice of a particular launcher. Further, such methods are
characterized by finding local optima rather than global.

Global optimization methods may cover a large portion of the
design space while searching for the optimum, and provide mech-
anisms for avoiding local optima, e.g., random mutation in the case of
genetic algorithms [3]. Deterministic methods like branch-and-
bound algorithms [1,12], relaxation strategies, enumerative methods
[1], and interval-analysis methods show poor convergence in some
cases and a rapid increase of computational effort when the
dimensions of the search space increase [ 13]. Dynamic programming
(DP) is a combinatorial optimization technique, which demonstrated
to reach exact solutions for problems with specific formulations
(also multi-objective [14]).The DP technique uses solutions of



subproblems, ol similar nature to the main problem to optimize, Lo
build the global optimal solution [15]. The modification of the
problem structure to be solvable by a DP algorithm is not always a
feasible alternative, especially in collaborative, possibly distributed
design environments.

Classical methods (stochastic or deterministic) for the generation
of the Pareto front, such as the normal boundary intersection [16], the
adaptive weighted sum [17], the direct search domain [18], and the
normal constraint method [19], to mention a few, have shown good
performance in finding Pareto-optimal solutions for multi-objective,
constrained, continuous and discontinuous optimization problems.
A good overview of these methods and a comparison of the per-
formance of a few of them are presented in [5].

The nonclassical heuristic methods, such as evolutionary strategies

[2], simulated annealing [20], and tabu-search [21,22], proved to be
particularly flexible and applicable to continuous and discontinuous
problems with one or more objectives and constraints [6,7]. Heuristic
algorithms also demonstrated a high degree of scalability [23,24].
However, in general this comes at the price of inexact solutions,
which justifies the need for postoptimality studies. Also, other
approaches exist that exploit alternative formulations of the multi-
objective problem. The iso-performance method, for instance, allows
for obtaining optimal solutions amongst those that were previously
determined to meet the performance requirements with sufficient
margins [25]. Physical programming [26] instead demonstrated the
possibility to generate PF in multi-objective problems considering
experts judgment already during the optimization. Well-distributed
PF of physically meaningful solutions were obtained.

All of the global optimization methods discussed so far have ad-
vantages and disadvantages depending on the problem to be solved.
However, they all provide a Pareto front as a result. The PROA
proposed in this paper can in principle be implemented considering a
Pareto front obtained by any Pareto-generating technique. As will be
demonstrated later, Pareto robusiness is based on the dominance
principle, which is a general concept independent from any specific
optimization algorithm.

For the specific test cases used in this paper, we decided to use a
heuristic multi-objective optimization algorithm, the nondominated
sorting genetic algorithm II (NSGAII) [27]. It is a very popular
algorithm, for which many versions have been implemented and
released by the developers, and for which extensive tests on a wide
range of multi-objective problems have been performed, see for
instance [5,28,29].

C. Pareto-Robust Optimization Approach

Once the Pareto front of the optimization problem has been
obtained, PROA can be executed on the solutions of the PF_ ... In
PROA, the central point of the local CCD represents the design vector
corresponding to a single point on PF_ .. The other points are
derived in all dimensions by scattering the design-variable levels on
the basis of a certain percentage of the variability ranges (usually 5-
10% ). This percentage shall be carefully selected by the design team,
on the basis of the accepted range of design-variable variation within
which degradation of the performances is expected, or not.



For each solution of PF,, ... the design vectors of the local CCD
are evaluated, and the Pareto-robustness is computed. The concept of
Pareto-robustness is explained in terms of Euclidean distance of the
design vectors in objective space, taking constraints into account. In
an M-dimensional space the Euclidean distance between two vectors
a=/|a,a,, ...,ay] and b =[b,.b,. ..., by] can be computed
with the following expression:

d(a.b) = (3)

In Fig. 1 a two-dimensional schematic representation of the rule
used to compute the Euclidean distance to PF,, ., 18 shown. The
rule is implemented considering a nondimensional objective space
and PF_ ... If a CCD-generated vector is nondominated, then the
Euclidean distance between that vector and the closest Pareto-
optimal solution is computed, as in the case of P-S; and P,-§, of
Fig. 1. The closest Pareto-optimal solution is now determined
between the vector of interest and all the Pareto-optimal solutions.
In case a CCD-generated vector is dominated, instead, the M
closest Pareto-optimal solutions to the vector of interest are deter-
mined as a first step. In Fig. 1, for instance, P, and P; represent the
closest Pareto-optimal solutions to Py, D,, and D4. The distance
from the PF,,un 18 then computed using Eqg. (3) in the improving
direction of each single objective toward the local nadir points.
The local nadir points are the vectors made of the upper bounds of
each objective, restricted to the M Pareto-optimal solutions N, =
[max(Pr(f1). Pri(f1). ... Pau(f1)). oo o max(Py(far). Por(fmr).

ey Pag(f )], where P(f;) is the ith dimension (i.e., the ith
objective) of the vector P and [P;, Py, ..., Py are the M closest
Pareto-optimal solutions to a certain CCD-generated vector D,

The Euclidean distance is computed for each nondominated
CCD-generated vector D; iteratively, adding a contribution to the

distance considering one dimension at a time. For each objective f';,
with j =[1,2, ..., M], a contribution is added according to the
following rule:

d{Dif PFbmown) = d(‘Di' PFlﬂmwn)
+ {[D:'(fj) - Nk(fj)]g if Dz'(fj) > Nk{fj)

0 Otherwise

(4)

Once the contribution from all the dimensions have been added,
the square root of d(D;. PF,..) 1s taken as the final value for the
Euclidean distance between D; and PF,.p-

Following this rule, for instance, the distances of D, D,, and D,
from PF,, ., are computed as follows (Fig. 1):

d(Dy. PFnown) = JO + [D1(f2) =max(Py(f2), P3(f2))F  (4a)



. _ [D5(f1) — max(Py(f). Py(f1 )]
A2 PFlaown) = \/"‘[Dz (f2) = max(Py(f2). P3 ()T )

d(Dy, PEign) = /D3 (1) —max(Py(f1). Ps(F DE +0  (4)

The distance o of nondominated solutions to PF, ., is considered
to be negative to prefer design regions in which PF ., can be
improved. Further, for each CCD-generated design vector the degree
of constraint violation ¥ is added to the distance computed with
Eq. (4) to penalize design regions that may generate infeasible
solutions. ¥ is computed for constraints in both the nondimensional
design and objective space, and is equal to the amount by which the
constraint is violated.

The Pareto robustness figure of merit is thus computed taking
into account two contributions, namely the Euclidean distance from
PF nwn and the degree of constraint violation ¥ of all the CCD

points:

N{I.‘D
PR= ) (d(a;, PFiown) + %)) (5)
j=1

where Ngcp 1s the number of CCD-generated design vectors. In
Fig. 2, aschematic of the Pareto robustness concept is shown, using a
two-dimensional design space and a two-dimensional objective
space. The Pareto-optimal solutions D and E found during the global
optimization phase are analyzed using a CCD. Each CCD pointin the
design space corresponds with a point in objective space. PROA
searches for those solutions on PFy ., that give close-to-optimal,

Pareto-improving, and constraint-meeting solutions when design-
variable levels are perturbed from the original Pareto-optimal point.

There can be cases in which the central point of the CCD in
the design space must be moved before executing the simulations,
to avoid exceeding the boundaries of the design variables (see Fig. 2,
solution E). Shifting the CCD sull allows for determining the
robustness of roughly the same design region and includes the origi-
nal Pareto-optimum solution.

The statistical variance of the objectives in the objective space
could also be used as an indication of the variability of the objectives
with respect to the nominal value. Indeed, statistical mean and
variance are sometimes used in the literature with this purpose, see for
instance [30,31]. The main drawback of the direct use of statistical
mean and variance is that, from a Pareto perspective, it may result
in misleading indications. Consider again the schematic example
of Fig. 2. The statistical variance of the data generated by computing
a CCD around solutions D and E is the same (see the shadowed
ellipses). However, the Pareto-robustness of solution E is much
higher than the Pareto-robustness of solution D. This is indicated
by the smaller distances of the design points from PFy,un. by the



fact that the constraints are never violated, and by the fact that three
solutions (i.e., the square symbols) are better than these on PF_ ., de
facto pushing PF,, ., toward PF ..

At this stage of PROA an improved Pareto front may have been
obtained, and all optimal solutions have been ranked according to
their Pareto robustness. The risk of obtaining far-from-optimal
solutions in case of uncertainty (programmatic or technical) in the
determination of the design variables is mitigated if the design team
decides to steer for the more Pareto-robust areas of the design
space.

To better support its decision and to provide more insight in the
system behavior in one particular region of the design space (most
likely regions with a high Pareto-robustness ranking), the data
coming from the CCD analysis of the selected solution are reused to
compute the sensitivity analysis based on the variance of the perfor-
mance. In particular, the variance is decomposed in the contribution
of all the terms of the model represented by Eq. (2), using the
sensitivity indices [32]

o YO - VIEGIx)
’ V(y)

(6)

The total variance associated with the model is indicated with V(y).
The conditional variance term V(E(y|x_;)) indicates the variance of

the model determined by excluding the ith term. A more extensive
discussion on sensitivity indices computed with the approach de-

scribed in Eq. (6) can be found elsewhere [10,11].

The sensitivity index S§; provides a quantitative measure of the
contribution of the ith term to the variance of the performance y. The
sensitivity indices are computed for all the terms of the model
indicated in Eq. (2) and shown to the design team in the form of bar
plots (see also Sec. IV).

The information on the contribution of each design variable, and
every (interaction or higher-order) term involving it, to the output
variance provides insight on which variables to focus to improve the
performance. At the same time it tells which parameters to carefully
modify in subsequent phases of the design process to avoid large
deviations from the original baseline design. Contour plots and re-
sponse surfaces can be presented to the design team only considering
the most relevant factors from the sensitivity analysis, thus limiting
the information presented but still capturing the most important
phenomena. Contour plots allow for a fast and effective analysis of
boundaries and constraints, as will be shown in Sec. V. The complete

algorithm for PROA is schematically summarized in Fig. 3.
One possible drawback of using a second-order model like the one

described by Eq. (2) is that it would not represent a reasonable
approximation in the presence of higher-order effects. This would
result in a lack-of-fit of the regressor and/or in a low value of the
coefficient of determination [33]. The presence of lack-of-fit would
also influence the sensitivity indices that describe the contribution of
the terms of the model to the regression sum-of-squares only,



neglecting the error sum-of-squares. This phenomenon can be
mitigated by, for instance, adding sample points within the CCD o fit
higher-order regression models until lack-of-fit is reduced to
acceptable levels [33,34]. However, for relatively small regions
spanned by the CCD, the results obtained using the model in Eq. (2)
can be sufficiently accurate to account for all (or most of) the
variability of the output of the simulations [34].

One last remark regards the computational cost required by PROA.
The required number of simulations for the full-factorial part of
the CCD increases proportionally with the number of design
variables. Methods exist to reduce this computational cost, still
providing a structured (and balanced ) design, considering continuous
and discrete design variables. We refer to the possibility of creating
Resolution V, Resolution IV, and Resolution 11 factorial designs [33-
36]. The Pareto-robustness metric is independent from the number of
simulations performed in the proximity of each optimal solution. Its
meaning, instead, together with the meaning and validity of the
response surfaces and the validity of the regression-based sensitivity
analysis, is instead dependent on the number of sample points used in
the analysis. The designer shall be careful in selecting a factorial
design that provides a number of sample points at least equal to the
number of regression coefficients to estimate, plus one. For a more
complete discussion on regression analysis the reader is referred to
the textbooks of Kuri and Comell [36] and Draper and Smith [33].

The results of the validation of PROA are provided in the
Appendix. In the next section, PROA is implemented for the design
of a satellite for Earth observation instead. The main purpose is to
show the possibility of driving the engineering team and the decision-
makers toward a specific region of PF, .., using PROA, and to allow
for a more detailed local analysis exploiting the CCD-generated
solutions.

III. Case Study: Earth-Observation Mission

On 26 December 2004, the earthquake of Sumatra—Andaman, the
largest seismic event in forty years, produced a devastating tsunami
that affected the region of the Indian Ocean called the Bay of Bengal
and the Indonesian region [37]. To illustrate the methodology
described in the previous section we consider an Earth-observation
mission with the following mission statement as driver for the design:
“Design an Earth-observation mission to provide disaster manage-
ment tools for the Bay of Bengal and Indonesian regions, for over a
period of 7 years.”

From the mission statement, we find that the mission should be
focused on the observation of a well-determined area on the globe,
delimited by latitudes 12 deg S and 20 deg N, and longitudes 75 and
120 deg E. Further, top-level requirements for a satellite mission in
support of response and postdisaster operations are related to spatial
resolution, coverage, and revisit time [38].



Two classes of spatial resolution are considered strategic: 3 and
30 m spatial resolution images both obtainable with synthetic
aperture radars and optical payloads [38,39], of which we will choose
the latter. The objective of the analysis is now defined as to obtain the
largest total target-area coverage (considering a fixed simulation time
period for each design vector, i.e., three days), with the best possible
image spatial resolution, and at minimum cost. The objectives and
constraints considered for the analysis are summarized in Table 1.
The ratio between the total coverage and the number of simulation
days allows for estimating the average larget-area coverage per
day, and as a consequence providing a measure proportional to the
average revisit time of the satellite over the entire target area.

The mathematical models of a satellite, with its main subsystems
have all been designed and implemented. The main relationships be-
tween the design parameters have been derived from the subsystems’
mathematical models available in [40—42]. As shown in [43], these

models have been verified and validated. Some of the main design
variables needed for the sizing of the aforementioned subsystems
have been considered in the analysis, as shownin Table 2. In Table 3,
the related architectural variables and the levels they can assume are
presented.

The orbit and coverage models have been adapted from [42-44]
and coupled with the subsystems’ models. The orbit of the satellite
includes the effects due to the main environmental conditions, e.g.,
atmospheric drag, eclipse conditions, coverage, and target view ge-
ometry. The maneuvers that the satellite shall perform are computed
as a function of the boundary conditions coming from the launcher-
selection process, the inherent satellite properties and the selected
orbital parameters.

Once the orbit has been selected and the mission characteristic
velocity computed, for a given launcher the payload capability for the
selected orbit can be determined using data from [40] and [44].

The launcher characteristic velocity is defined as the total velocity
that can be delivered for a given payload after a due east launch from
Cape Canaveral and the use of a 185 km parking orbit. We assume
that the mission and launcher characteristic velocities are equivalent.
The data flow between launcher, satellite, ground segment, and
mission models is shown in Fig. 4.

The cost of the mission, which is one of the objectives Lo be
minimized, is computed summing up the launch cost, and the costof
the satellite system and operations. The cost estimating relationships
(CERs) have been derived from [4041]. A hybrid cost model
considering the unmanned spacecraft cost model and the small
satellites cost model has been implemented. Most of the CERs are
related to the mass of the subsystems, the technology readiness level
(TRL) the power consumption and the particular technology in use
(e.g., three-axis attitude-control technology has a larger cost coeffi-
cient than spinned attitude-control technology).

The spatial resolution of the optical payload is linked to its physical
dimensions and to the orbit by the following relationship [40]:
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Xnadir = 244 N E (?}

where X4, 18 the ground diffraction limited spatial resolution at the
satellite nadir expressed in m, h is the altitude of'the satellite above the
nadir point expressed in m, 4 is the wavelength of the radiation that we
want to observe (~0.5 pm inthe case of visible light). The variable D
represents the aperture diameter of the optical instrument expressed
in m. From Eq. (7) it can be concluded that the ground spatial
resolution at nadir is higher (lower value of X 4. ) than the spatial
resolution at the end of the swath width, because the distance from the
satellite to the edge of the swath is larger. To compute the spatial
resolution on the target area an average resolution has been taken into
account for each satellite passage over the target area itself.

This 1s a typical preliminary-design example at an early develop-
ment stage, which fits the purpose of presenting the potentialities
of PROA.

IV. Results and Discussions

In Fig. 5 the Pareto front obtained afier the global optimization
phase is shown. The NSGAII has been executed with a population
size of 250 individuals for 150 generations. The results of the simula-
tions show that PFy .., presented in Fig. 5 does not significantly
change already after the 120th generation.

As can be observed from Fig. 5, the spatial resolution and the
coverage show a contrasting behavior and a nonconvex local Pareto
front (see the projections for the combinations of the two variables).
This means that solutions with a large coverage also exhibit a worse
performance in terms of average spatial resolution on the target area.
Also the mission cost and the spatial resolution present a conflicting
behavior.

A local analysis on PF .., shows that indeed not all solutions in
Fig. 5 are equally Pareto-robust, and for some of them unfeasible
designs were generated after dispersing the design variables. This
local improvement phase for PF_ .., provides the ranking of the
solutions according to their Pareto-robusiness. In Fig. 6, projections
of PFypouwn On the three planes with the most Pareto-robust solution
are shown; thicker triangles and crosses represent clusters of solu-
tions close to each other in the objective space.

We also searched for the least Pareto-robust solution (not shown
here): it presents a much worse constraint-violation behavior if

compared with the most Pareto-robust one. Indeed, considering the
273 design vectors generaled with the CCD, the most Pareto-robust
solution presents 129 feasible and 144 infeasible solutions with all
the violations only determined by the spatial resolution constraint.
The least Pareto-robust solution only presents 4 feasible solutions.
The remaining 269 are all infeasible with violations of all the
constraints. Amongst the design vectors generated by the local analy-
sis, 6 of them improve PF,,.. ... dominating 13 original solutions,



The local analysis already eliminates many options to be evaluated
by the design team providing the most Pareto-robust solution
amongst the optimal solutions. Thus, the design team already has a
much more clear idea on probably the most interesting region of
the design space in which to focus the attention, the discussions, and
the tradeoffs. Further insight can be gathered through the global
sensitivity analysis and the regression analysis for the design region
of interest. In Table 4 the design-variable settings of the most Pareto-
robust solution are presented. The simulations have shown that the
solutions on PF g4, all have converged toward a value of nine for the
TRL, three for the type of solar cells, and two for the type of battery
designvariables. The TRL has an influence on the costof the mission;
thus, a logical conclusion is that the optimizer converges toward
the maximum value, i.e., the value that minimizes the cost. The solar
cells with intermediate efficiency, intermediate power density, and
intermediate cost are considered to be the best compromise. The same
balance has been obtained in case of the battery selection, see Table 3.
Not much influence of these three variables in the determination of
the objectives has been detected, thus, to simplify the discussion of
the results obtained with ANOVA and regression analysis, from this
point onward they are considered to be frozen to the values obtained
from the optimization phase. In Table 4, the design-variable settings
used for the CCD analysis are also presented. The central point of the
CCD does not coincide with the original optimal design vector,
because the CCD center was shifted to avoid constraint violation in
the design space. The solution identified as the most Pareto-robust
one presents a satellite in a nonsun-synchronous medium Earth orbit.
These unusual settings for an Earth-observation mission come from
the inherent assumptions made on the model, e.g., the effect of the
radiation environment is not taken into account, and one single
satellite is allowed to take part in the scenario. However, this is also
due to the fact that the optimization has been left free from many
constraints concemning the ranges of the design variables, e.g., the
semimajor axis, leading to a condition for which the swath-width is
large, and the inclination allows for an almost constant coverage of
the target area.

In Table 4, Launcher 8 represents an AtlasD/Centaur (two-stage),
Launcher 9 represents an AtlasD/Centaur/TE364-4 (three-stage), and
Launcher 10 represents a TitanlIIC Centaur (three-stage) [40.44].

InFigs. 7 and 8 the results obtained with the ANOVA and variance
decomposition on the most Pareto-robust region of the design space
are presented. The bars represent the percentage contribution of the
factors (see Table 4 for nomenclature), their interactions (when the
product of two factors is indicated), and their quadratic effects (when
the product of the factor by itselfis indicated) to the variability of the
constraints and the objectives. These bars have been computed using
Eq. (6) for all the terms of Eq. (2). In the design region spanned by the
CCD very small lack-of-fit was detected (i.e., 0.5%), meaning that the
quadratic model described by Eq. (2) was sufficient to effectively fit
the data and to properly explain the variability of the performance.



The simulations demonstrated that in this region of the design space
the on-orbit-mass and the perigee-altitude constraints are never
violated. Thus, the bar plots of Fig. 7 indicate the variables that
contribute the most to getting close to the relative constraints.

In Fig. 7, it can be observed that the launcher selection (H) is the
factor that mostly affects the on-orbit-mass constraint. There isalso a
small quadratic effect, due to the fact that launchers 8 and 10 (the
minimum and maximum value in the CCD, because launcher 9 is the
central point) have a lower payload capability for characteristic
velocities that are larger than 1 1.8 km /s. The semimajor axis (B) and
inclination (C) of the final orbit also play an important role in this
region of the design space. Indeed, together they determine the
mission-characteristic velocity. With increasing mission-character-
istic velocity the available payload on orbit decreases. The payload-
aperture diameter and the other factors affect this constraint mostly
as a quadratic effect, indicating that the minimum constraint violation
1s probably somewhere in the middle of the design region spanned
by the CCD. In Fig. 7b, it can be observed that the perigee-altitude
constraint is mostly affected by the semimajor axis (B) and to a far
lesser extent the eccentricity (A) of the selected orbit.

The spatial resolution constraint (Fig. 7¢) is practically only
affected by the semimajor axis (B) and the payload-aperture diameter
(D), with a small interaction between them. With increasing altitude
the spatial resolution of the instrument gets lower, while with an
increasing optical-payload aperture diameter the spatial resolution
tends to improve. The downlink-margin constraint is mainly affected
by the semimajor axis (B), the transmitter RF output power (E), and
the antenna aperture diameter (F), see Fig. 7d. The downlink-margin
1s related to the distance at which the communication with the ground
station takes place, the power with which the signal is emitted and the
directionality of the antenna, linked to its aperture for a parabolic
reflector type.

The cost of the mission is computed as the sum of spacecraft and
launcher cost. The spacecraft cost is determined from the CERs
mentioned in the previous section, mostly as a function of the mass of
the spacecraft, which in turn is affected by the payload mass and thus
by the aperture diameter (D) the most, as shown in Fig. 8a.

The coverage of the target area is determined by the eccentricity
(A), the semimajor axis (B), and the inclination (C) of the orbit,
Fig. 8b. The prominent interaction between the semimajor axis and
the inclination 1s due to the combined effect of these two design
variables. For instance, a large value for the semimajor axis would
in principle increase the coverage, even though it would worsen the
spatial resolution performance (see Fig. 8c¢). However, the extent to
which the coverage increases depends on the inclination of the orbit.
If there is no intersection between the satellite ground-track and
the target area, then increasing the semimajor axis to increase the
coverage would provide a less effective result compared with the case
in which the ground track passes through the target area. As already
anticipated, the spatial resolution depends almost entirely on the
semimajor axis (B), but reasonably also on the aperture-diameter of
the payload instrument (D), although in the current analysis this is
only a small effect.



With this acquired knowledge about the most relevant factors in the
design region of interest, the actual relationships between the design
variables and objectives and constraints can be computed and shown
to the design team in the form of contour plots.

In some of the graphs shown from Figs. 9-13 contour plots
involving architectural (i.e., discrete) variables are shown. They have
no physical relevance, because only few of the points on the contour
are valid. However, they are very useful to understand the trends of
the performances and to provide visual information to the design
team. In these figures some black dots are also shown. They represent
a hypothetical design baseline that can be derived from the combined
analysis performed with the variance decomposition and the contour
plots in the most Pareto-robust region of the design space. The ratio-
nale behind this baseline is discussed in the subsequent paragraphs.

In Fig. 9 the trend of the mission cost as a function of the payload
aperture diameter and the launcher selection is shown. The cost
increases for increasing payload-aperture diameter and with the
launcher selection going from 8 to 10. The analysis we performed
shows that in this region of the design space, if one would modify the
semimajor axis from low to intermediate level, the cost figure would
not change, but the spatial resolution constraint would be violated in
the entire region (no feasible solutions in this region).

The variance decomposition in Fig. 7 shows that the launcher
selection only affects the on-orbit-mass constraint, but it has already
been pointed out that in the design region spanned by the CCD
defined in Table 4 this constraint is never violated. This means that by
selecting launcher 8 instead of 9, there is a cost savings without
affecting the performance and the constraints. To illustrate this, the
graphs in Figs. 10~13 have been obtained using launcher number 8.

The target-area coverage objective is mainly affected by the orbital
parameters considered in the simulation, i.e., ecceniricity, inclina-
tion, and semimajor axis, see Fig. 8b. In Fig. 10, the target-area
coverage is plotted against the semimajor axis and the inclination.
The infeasibility is determined by the violation of the spatial-
resolution constraint for increasing semimajor axis. The difference
between Figs. 10 and 11 is the value of the eccentricity, which is
larger in Fig. 11. The target-area coverage is maximized for a low
value of eccentricity. This is due to the fact that the balance between
the coverage at apogee and perigee of an eccentric orbit, with the
eccentricity within the range determined by the CCD of Table 4, gives
a worse performance than an almost circular orbit. The target-area
coverage increases with increasing semimajor axis and the inclina-
tion getting close to an intermediate value.

The average spatial resolution on the target area is mainly
determined by the semimajor axis and the payload aperture-diameter,
as shown in Fig. 8c. In Fig. 12 the trends of the spatial-resolution
objectives are presented. As can be observed, it gets worse with
decreasing payload aperture-diameter, but most prominently it gets
worse with increasing semimajor axis. In this case the constraint
violation is more clear, because it is drawn in the same space as the
objective.



In Fig. 13, the downlink-margin is plotted against the transmitter
RF power-output and the transmit-antenna diameter. The graph is
presented to show that this constraint is violated only for a large
telemetry datarate, in combination with a nominal, or higher, value of
the semimajor axis, a low transmitter output power, and a low antenna
diameter.

The combination of launcher 8 and a low payload aperture-
diameter minimizes the cost and allows for meeting the spatial-
resolution constraint if the semimajor axis is in the lowest interval
defined by the CCD (Table 4). This combination of design variables,
together with an intermediate inclination of the orbit around 20 deg,
also provides a good balance with the coverage of the target area. The
downlink-margin constraint is not violated if the semimajor axis is
in the lowest part of the interval and the telemetry data rate is at its
nominal level, even with a low RF transmitter-power output and
low satellite-antenna aperture diameter. These two design variables
do not contribute much to the determination of the other objectives
and constraints, thus leaving the design team with a certain freedom
of selecting their levels.

The selected design point, i.e., the black dot, is presented in
Table 5. It provides a solution that is still on the Pareto front and does
not violate the constraints. The solution has been defined preferring
the cost and the coverage over the spatial resolution. Many other
design points could have been selected, but the fundamental aspect
is that the selection took place in a Pareto-robust design region, with
a clear insight in the effect of the variables on objectives and
constraints, and with a clear picture of the shape of the design space
with the variation of objectives and constraints.

The PROA as presented in this paper was used to study the effect
of the modification of the design variables on the objectives in terms
of robustness with respect to the Pareto front. Considering uncon-
trollable factors in the analysis of the Pareto-optimal solutions,
instead, would lead to a type of analysis with a modus operandi much
closer to reliability engineering. In this case, the Pareto-robustness
metric could still be implemented to provide an indication of the
variability (in the Pareto sense) of all the objectives due to the
uncertain behavior of uncontrollable factors.

V. Conclusions

In this paper, a methodology for the postoptimality study of
complex systems has been presented. It has been named the Pareto-
robust optimization approach (PROA). Previous studies demon-
strated that not all the mathematically optimal solutions are also
optimal from an engineering point of view. Robustness should also be
taken into account.



The results discussed in this paper demonstrate that PROA is able
to compute the Pareto-robusiness of the mathematically optimal
solutions, correctly steering the attention of the design team on the
most Pareto-robust regions of the design space. Further, PROA is able
to improve the known Pareto front, pushing it toward the true Pareto
front of the test cases proposed, and to graphically support the major
tradeoffs for the decision-making process. The Pareto-robustness
metric introduced in this paper is independent from the specific
method used to compute the Pareto front, because it is solely based on
the Pareto-dominance principle, and it is applied after the computa-
tion of the Pareto front itself.

The analysis of the test case of an Earth-observation mission shows
that the combination of a global multi-objective optimization method
with PROA effectively drives the design process, limiting the effort of
the engineering team in the search for a single optimal and robust
(Pareto-robust) design region. Indeed, the design region selected by
PROA provides solutions that are far from three of the constraints,
while still remaining close to the initially known Pareto front. The
graphical information on quantitative sensitivity analysis presented
in the form of bar plots and contour plots with the constraints can be
considered a valuable aid for the engineering team, providing much
more insight in the problem than any other single-point design
methodology. A detailed analysis of the contour plots allows for the
selection of a baseline design by balancing the objectives and
constraints in a very effective graphical fashion.

Appendix A: Validation Examples

In this section, two validation examples are presented to demon-
strate the performance of the PROA to identify robust and nonrobust
solutions on PFiown.

The first example is an unconstrained multi-objective problem
initially proposed by Deb [45] and modified by Tan et al. [21], of
which we consider a further modification. The problem statement is

3
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For the second test problem, three constraints have been added to the
previous one:

g;<—expi(x;—020}+4 V=234 (A2)



The PF presented in Fig. Al is obtained with NSGAII, using a
population size of 40 with 200 generations. Using PROA an analysis
is performed on PFy .y and the results are presented in Figs. A1b and
Alc. For each Pareto-optimum point, the design variables are
dispersed with 5% of their interval, according to the CCD structure,
obtaining the design vectors represented by the black squares.
Finally, the most Pareto-robust and least Pareto-robust solutions are
determined. The triangles and the diamonds represent the objective-
vectors obtained from all the design vectors determined by the CCD
in correspondence of these most and least Pareto-robust solutions,
respectively. The most Pareto-robust solution is obtained with x; =
1.5 and x, 5 4 = 0.9. The least Pareto-robust solution is obtained with
xy = 0.1 and x, 53 4 = 0.1, instead. This is an expected result due to
the structure of the problem. Indeed, in Fig. A2b, neglecting the
constraint for now, the shape of the function g; confirms that the
optimal solutions are obtained with x>;34 = 0.1 or equivalently
x234 = 0.9, but the minimum obtained with x,34 = 0.1 is much
steeper (thus less robust) if compared with the minimum in
correspondence of x, 3 4 = 0.9. Further, the modification of x;, when
itis closer to its upper bound causes the CCD-generated vectors to be
closer to the PF if compared with the case when x, is closer to its
lower bound. The black circles in Fig. Al (see the zoom-in of
Fig. Alc) show that PROA, during its search for Pareto-robust
solutions, is also capable of providing additional Pareto-optimal
solutions.

The three constraints added for the second test problem causes the
results to be completely overturned. As shown in Fig. A2b, the
exponential function(s) intersects the g; function(s) very close 10 0.9,
which is the location for which the most Pareto-robust solution was
found in the unconstrained case. Indeed, for the second test problem,
the least Pareto-robust solution is obtained with x; = 0.1 and
X334 = 09, These variable settings cause many of the CCD-
generated design vectors to violate the constraints, as represented by
the cross symbols in Fig. A2. The most Pareto-robust solution, in this
case, is represented by the steep peak (x; = 1.5 and x234 = 0.1),
because itis the one that causes no constraint violations, amongst the
Pareto-optimal solutions, with the CCD-generated vectors closer to
the PF (because x; is at its upper bound).
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Table 1 Design objectives and constraints

Objectives
Minimize mission cost [MSFY2010]

Maximize target area coverage [%-100]
Minimize average spatial resolution on the target area [m @ S5P]

Constraints
Satellite mass + adapter mass <= launcher mass availability on orbit
Perigee altitude = 200 Km
Spatialre solution <= 6 m @ 55P
Downlink margin = 4 dB

Table 2  Design factors used in the simulation and relative design

intervals
Design Variable Type Intervals
Min Max
Eccentricity Continuous 0 1
Semimajor axis Continuous 6400, km 42,000, km
Inclination Continuous 0, deg 180, deg
Payload aperture diameter Continuous 0.1, m l,m
Satellite transmitters output Continuous 1, W 300, W
power (RF power)
Satellite aperture-antenna diameter  Continuous 0.1, m l,m
Telemetry data rate Continuous 1, Mbps 3, Mbps
Type of solar cells Architectural 1 3
Type of batteries Architectural 1 3
Payload TRL Architectural 1 9
Launcher Architectural 1 15
Table 3  Architectural variables
Type of solar cells Efficiency Power density, kg /W

1 Silicon 14.08 115

2 Ga-As 24 140

3 Custom 20 100

Type of batteries  Energy density, Wh /kg
1 Nickel-Cadmium 25

2 Nickel-Hydrogen 35
3 Lithium-lon 140
Payload TRL

Affects the cost of the payload for a given performance

Launcher
The launchers are selected from the database presented in [40,44].
Affects the mass available for a given orbit and the mission cost




Tabled4 Most Pareto-robust design-variable settings

Design variable Most Pareto-robust solution CCD

Low (X,) Central point (Xy) High (X,)
Eccentricity [-] A 0.02 0.02 0.059 0.098
Semimajor axis [km] B 8046.9 8046.9 11607.0 15167.0
Inclination [deg] C 19.7 10.7 19.7 28.7
Payload aperture diameter [m] D 0.997 0.817 0.907 0.997
Satellite ransmitters output power (RF power)  [W] E 1 1 309 60
Satellite aperture-antenna diameter [m] F 0.1 0.1 0.19 0.28
Telemetry data rate [Mbps] G 1.05 1.05 1.25 1.45
Launcher [-] H 9 8 9 10
TRL [-] 9 Frozen
Type of solar cell [-] 3 Frozen
Type of battery [-] 2 Frozen

Table 5 Selected design baseline

Design variable Selected design baseline
Eccentricity — — A 0.02
Semimajor axis km B 9400.0
Inclination deg C 19.7

Payload aperture Diameter m D 0.817

Satellite transmitters output power (RF power) W E 1

Satellite aperture-antenna diameter m F 0.1

Telemetry data rate Mbps G 1.25
Launcher — — H 8

Cost [MSFY2010] Coverage [x 100%] Spatial resolution [m@SSP]

311 6.5 5.5




