
Politecnico di Torino

Department of Applied Science and Technology
Ph.D. in Chemical Engineering

XXV cycle (2010-2012)

MULTIVARIATE POPULATION BALANCE FOR
TURBULENT GAS-LIQUID FLOWS

PhD Student
Antonio Buffo

Supervisors
Prof. Daniele Marchisio

Prof. Marco Vanni

Second Referee:
Prof. Giuseppina Montante

Coordinator:
Prof. Vito Specchia



Abstract

This dissertation focuses on the development of computational tools capable of predicting
the complex fluid dynamics behavior of industrial scale gas-liquid systems. In the past, the
description of such systems for design purposes was performed through the use of correla-
tions, formulated by means of very expensive experimental campaigns. The limits of this
approach can be overcome by the use of modern simulation tools, such as Computational
Fluid Dynamics (CFD). However the momentum and mass transfer description of gas-liquid
systems is characterized by the intrinsic poly-dispersity of the gas phase, namely the different
dispersed bubbles are usually distributed over a certain range of size, velocity and chemical
composition values. Then a proper methodology must be applied to tackle this issue: Pop-
ulation Balance Modeling (PBM), originally formulated for crystallization problems, can
be successfully adopted to describe any generic dispersed system in which the combination
of different phenomena (i.e., physical space advection, diffusion, aggregation, breakage,
growth, nucleation) determines the state of the dispersed system.

All these considerations explain the interest of the multiphase flow community in ef-
ficient coupled PBM-CFD methods, especially when such methodologies are employed to
investigate large scale systems with complex phenomena involved, such as mass transfer
and chemical reactions. Moreover, the knowledge of more than one property of the dis-
perse phase can be required to properly describe the problem (i.e., multivariate description
instead of monovariate), as in the case of reacting multiphase systems, and this fact rep-
resents a challenge from the modeling point of view. At this point, it is very important to
reduce the computational costs introduced by the Population Balance Equation (PBE), by
recurring to approximate but reliable methods. In this sense, it is also recent the formulation
of Quadrature-Based Moments Methods (QBMM) for particulate flows, a class of solution
methods particularly suitable for the purposes of this work. Therefore in this dissertation
the issues related to the application of these methods for the description of industrial scale
bubble columns and aerated stirred tank reactors will be discussed.

In the first part of this work, the derivation of PBE and the Eulerian-Eulerian method-
ology for gas-liquid systems is shown, especially concerning the description of the mass
transfer problem in air-water system, in which the information on the bubble size distribu-
tion is needed to estimate the interfacial area and the distribution of bubble composition
may be required to calculate the local mass transfer driving force. Moreover the QBMM
solution methods, both for monovariate and multivariate cases, are here presented and dis-
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cussed in detail. In the second part, a preliminary study of QBMM stability and accuracy for
simplified zero-dimensional systems is performed through comparison with accurate PBE
solution methods, then the implementation is verified through the simulation of one and two-
dimensional systems in order to point out the numerical issues than may arise when physical
space advection is considered. Eventually, the simulation of realistic gas-liquid systems
(i.e., a stirred tank reactor and a bubble column), for which experimental data are available
relating to the local bubble size distribution (BSD) and mass transfer, are performed for
validation purposes. The shown results prove the effectiveness of the proposed PBM-CFD
approach: in general a very good agreement with the experimental data is observed with a
reasonable computational costs.

ii



Contents

1 Introduction 1

2 Population balance 11
2.1 General definition of Population Balance Equation . . . . . . . . . . . . . 11

2.1.1 Birth and death functions . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 PBE for gas-liquid systems . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Continuous events modeling . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Discontinuous events modeling . . . . . . . . . . . . . . . . . . . 26

2.3 Solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 Direct Simulation Monte Carlo . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Quadrature Method of Moments . . . . . . . . . . . . . . . . . . . 41
2.3.3 Conditional Quadrature Method of Moments . . . . . . . . . . . . 46
2.3.4 Direct Quadrature Method of Moments . . . . . . . . . . . . . . . 50
2.3.5 Direct Quadrature Method of Moments - Fully Conservative . . . . 56

3 CFD coupling 64
3.1 Multifluid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1.1 Local and instantaneous formulation . . . . . . . . . . . . . . . . . 66
3.1.2 Averaging techniques . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.3 Constitutive equations of multifluid model . . . . . . . . . . . . . . 71

3.2 Closure relations for multifluid model . . . . . . . . . . . . . . . . . . . . 73
3.2.1 Self-interaction term . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.2 Interaction terms between phases . . . . . . . . . . . . . . . . . . 74
3.2.3 Drag force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.4 Other interfacial forces . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.5 Turbulence closure . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.2.6 Summary of the multifluid model equations . . . . . . . . . . . . . 88

3.3 Coupling with Population Balance Equation . . . . . . . . . . . . . . . . . 88
3.3.1 Transport of moments - QMOM/CQMOM/DQMOM-FC . . . . . . 89
3.3.2 Transport of quadrature - DQMOM . . . . . . . . . . . . . . . . . 90

iii



CONTENTS

4 Results on simplified systems 96
4.1 Zero-dimensional system . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.1 Test case description . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.1.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Mono-dimensional system . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.1 Test case description . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.2.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Results on realistic systems 115
5.1 CFD simulation of a pseudo 2D bubble column. . . . . . . . . . . . . . . . 116

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.1.2 Test case description . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.1.3 Methods and numerical details . . . . . . . . . . . . . . . . . . . . 119
5.1.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 123
5.1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 Multivariate QBMM verification on a 2D bubble column . . . . . . . . . . 129
5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2.2 Test case description . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.2.3 Methods and numerical details . . . . . . . . . . . . . . . . . . . . 131
5.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 134
5.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3 Mass transfer simulation in a stirred tank reactor . . . . . . . . . . . . . . . 145
5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.3.2 Test case description . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.3.3 Methods and numerical details . . . . . . . . . . . . . . . . . . . . 148
5.3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 150
5.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Conclusions 166

iv



Chapter 1

Introduction

Turbulent gas-liquid flows are very common in the chemical, pharmaceutical, food and bio-
chemical industries. Many gas-liquid reactions, such as oxidation, hydrogenation, halogena-
tion and biological fermentation are usually performed in aerated stirred tank reactors and
bubble columns. Turbulent flow conditions, under which most of these processes are car-
ried out, are essential to improve the overall performance, increasing the gas dispersion and
enhancing heat and mass transfer rates.

The engineering approach on design and scale-up of these systems is historically based
on many empirical or semi-empirical correlations formulated by means of numerous exper-
iments performed through the last sixty years. However, the limitations of this approach
may be several: first, the use of correlations for estimating heat and mass transfer rates is
restricted to specific vessel geometries and operating conditions close to those under which
they were derived. Second, these correlations are usually based on well-mixed models, con-
sidering only volume-averaged quantities over the entire equipment and neglecting the effect
of spatial inhomogeneities that may exist even in small scale vessels. The last aspect one has
to consider is that the optimization of these gas-liquid systems through standard correlations
and experimental campaigns is usually very time consuming and expensive.

Gas-liquid systems are usually characterized by the interactions between the continuous
phase and the disperse phase, and between the different bubbles constituting the disperse
phase. These interactions can be classified as continuous or discontinuous depending on the
time and length scale chosen to observe the system: a continuous process will result, consid-
ering an infinitesimal time scale, in an infinitesimal change of properties of the dispersion,
whereas a discontinuous event leads to a finite change of the system status. The dynamics
of aerated stirred tank reactors is an illuminating example: on one hand bubble coalescence
and breakage events “instantaneously” modify the local interfacial area determining the vol-
umetric mass transfer coefficient (𝑘𝐿𝑎), and on the other one mass transfer continuously
changes the composition of liquid phase until the equilibrium is reached. Moreover, the
relationship between these phenomena and the fluid dynamics of the system should not be
ignored, because it is the reason behind the different flow regimes usually studied.

Another aspect to consider is the local nature of the interactions between the different
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CHAPTER 1. INTRODUCTION

phases. The example of gas-liquid stirred reactors is here always relevant: in fact, the Bubble
Size Distribution (BSD) varies from point to point in the vessel according to the flow condi-
tions imposed by the stirrer motion. As a consequence of such flow pattern, bubbles near the
impeller break-up due to the high shear experienced and the BSD is skewed towards lower
diameters, whereas bubbles accumulate and coalesce in stagnant zones, resulting in a BSD
shifted to larger bubble diameters. Very different conditions take place in gas-liquid bubble
columns, where the complex oscillating motion of the dispersion is completely determined
by the interaction between the rising bubbles and the surrounding fluids. Furthermore, every
single bubble has its own size, velocity and composition and, in order to correctly predict the
evolution in space and time of the disperse phase, including local and global mass transfer
fluxes, all these issues related to the local fluid dynamic behavior must be addressed.

In the latest years, with the rapid increasing of computing power, Computational Fluid
Dynamics (CFD) emerged as an essential tool for the study and design of the industrial scale
equipments. While for the single-phase systems only few aspects still need to be clarified,
gas-liquid flow modeling represents an open challenge: since for such system a trivial ex-
tension of single phase models is not feasible, different approaches for different purposes
are formulated and discussed in the literature (for a complete review see van Wachem and
Almstedt, 2003). Tracking-interface methods are able to capture with good approximation
the evolution of the gas-liquid interface, but they can be used only for small regions of large
systems and just including a few bubbles inside. Lagrangian-Eulerian methods allow the
evaluation of the motion of larger number of bubbles in a continuous media, however this
number may not be sufficient to simulate most of practical cases. With Eulerian-Eulerian
methods, both gas and liquid phases are treated as continuous interpenetratingmedia through
volume fractions, and this approach is suitable for the study of industrial problems with re-
alistic geometries.

In order to obtain an accurate description of a multiphase system, an important role
is played by the phase-coupling terms. Many studies have been conducted on interfacial
forces (like drag, virtual mass, lift, Basset and turbulent dispersion forces) acting on bub-
bles or swarms of bubbles. As observed in the work of Scargiali et al. (2007), in aerated
stirred tanks the drag force gives the most important contribution in determining the local
gas hold-up, whereas all the other forces are negligible. Different models considering the
rise of a bubble in a stagnant liquid are present in literature for the estimation of drag force
(Tomiyama et al., 1998; Deen et al., 2002; Scargiali et al., 2007) and the effect of turbulence
on terminal velocity or drag coefficient has been also accounted for (Bakker and Van den
Akker, 1994; Lane et al., 2005). Recently a drag law formulated in terms of the terminal
velocities, exposed by Montante et al. (2007), has been modified in order to account for both
turbulence and the presence of other bubbles, and was proven to be capable of describing
flow transitions between different regimes (Petitti et al., 2009). For bubble columns, on the
contrary, all the phase-coupling terms may play an important role in the fluid dynamic de-
scription as experimentally observed byDeen et al. (2001), although from themodeling point
of view there are still some issues about their relative importance (Diaz et al., 2008). Fur-
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CHAPTER 1. INTRODUCTION

thermore, turbulence modeling in both cases plays an important role in the prediction of the
multiphase flow: Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS)
were successfully applied to bubbly flows (Derksen and Van den Akker, 1999; Hartmann
et al., 2004), but they are typically used to simulate small scale systems due to their compu-
tational cost. For this reason, the well-known Reynolds-Averaged Navier-Stokes equation
(RANS) approach has been adapted to gas-liquid systems (Lopez de Bertodano and Saif,
1997), since it is now well established in the simulation of industrial equipments, with or
without terms accounting for bubble turbulence (Zhang et al., 2006).

It should be highlighted that in past studies the bubble population was usually described
by resorting to a non-physical mono-disperse bubble size distribution, constant in space and
time, with optimal bubble size chosen by a tedious fitting procedure. The presence of a BSD
was firstly considered by Bakker and Van den Akker (1994), who formulated a balance for
the number of bubbles that undergo coalescence and breakage in a gas-liquid stirred tank;
this model is based on the solution of an additional equation for the bubble number den-
sity with one-way coupling between gas and liquid, considering bubbles collisions with a
very simplified approach based on the critical Weber number. With this approach, the local
bubble size may be different from point to point in the domain, but in every single point
a nonphysical mono-disperse distribution is still considered. Almost at the same time, the
mathematical framework of Population Balance Equation (PBE), originally formulated for
crystallization and spray systems, was generalized to other dispersed systems (Ramkrishna,
2000). With this equation is possible to track the evolution of the disperse phase not only in
physical space, but also in the space generated by the considered properties of the popula-
tion (traditionally referred to as internal coordinates). Different formulation exists, namely
monovariate and multivariate PBEs. In the first case only one internal coordinate is suffi-
cient for describing the state of the dispersed system, while in the second case two or even
more coordinates are adopted. The aforementioned continuous and discontinuous processes
typical of gas-liquid systems, find with this method a proper phenomenological and deter-
ministic description through the formulation of probabilities and rates for bubble-bubble and
bubble-eddy interactions, contributing to determine the evolution of the bubble distribution
ad its physical properties in space and time.

However, due to its complex integro-differential form, the solution of the PBE is not
straightforward, especially when the model is complicated by the fact that more than one
bubble property is considered and spatial inhomogeneities are introduced. Most of the de-
veloped methods for solving the PBE belong to one of the following groups: classes or
sectional, Monte Carlo and moment-based methods. The first group the PBE is solved by
discretizing internal coordinates space: the Classes Methods (CM) were firstly developed
for the solution of monovariate cases, in which the state of the population is characterized
by a single property or variable (Kostoglou and Karabelas, 1994; Vanni, 2000) and were
recently extended to multivariate cases, in which two or more variables are needed for de-
scribing the disperse system (Kumar et al., 2008; Nandanwar and Kumar, 2008). The main
drawback of these methods is the high computational costs required to obtain an acceptable
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CHAPTER 1. INTRODUCTION

accuracy, when also the inhomogeneities in the physical space are taken into account. It is
worth mentioning that Finite Volume Methods (Gunawan et al., 2004) and Finite Element
Methods (Godin et al., 1999) belong to the group of classes methods and hence they, too,
show the aforementioned limitations in the applicability to realistic inhomogeneous cases.
Monte Carlo Methods (MCM) are based on the solution of stochastic differential equations
that are able to reproduce a finite number of artificial realizations of the system under in-
vestigation (Zhao et al., 2007). In order to have a solution very close to reality, the number
of artificial realizations is often very high, resulting in unsustainable computational costs.
For this reason, these methods are usually employed for validation (Zucca et al., 2007) in
simplified cases.

The Method of Moments was originally formulated and applied to particulate systems
in the pioneering work of Hulburt and Katz (1964). The idea behind this method is the inte-
gration of the PBE in the space of the internal coordinates, leading to a set of equations that
can be solved only for some lower-order moments. For realistic processes, it is not always
possible to write the governing equations in terms of the moments themselves, generating
what is known as ”closure problem”; many closures were proposed in order to overcome
this issue and our work is focused on a particular class of methods called Quadrature-Based
Moments Methods (QBMM), in which the Number Density Function (NDF) representing
the population is assumed to be a summation of some basis function (very often Dirac delta
functions) centered on the zeros of the orthogonal polynomials of a Gaussian Quadrature.
Although the quadrature approximation is always very accurate, comparison with alterna-
tive methods (Marchisio et al., 2003b; Zucca et al., 2007) is always suggested when different
processes are considered in the description. In general, acceptable accuracy can be achieved
with a very low number of nodes (𝑁 ≤ 4) (Marchisio et al., 2003b; Marchisio and Fox,
2005). The main advantage of QBMM is represented by the possibility to be coupled with
CFD solvers, and so they are capable of describing industrial scale systems characterized by
strong spatial heterogeneity and a high degree of poly-dispersity in the internal coordinates
with an optimal balance between accuracy and computational costs (Marchisio et al., 2003a;
Fan et al., 2004; Zucca et al., 2006; Petitti et al., 2010).

QBMMcan be subdivided into twomain groups: in the former the evolution of moments
is calculated and the quadrature approximation is determined through a specific inversion
algorithm; in the latter the quadrature (in terms of its weights and nodes) is directly evolved
in space and time by mimicking the evolution of some moments. For monovariate PBE,
these two methods correspond to the quadrature method of moments (QMOM) (McGraw,
1997) and to the direct quadrature method of moments (DQMOM) (Marchisio and Fox,
2005), respectively. For multivariate PBE, DQMOM can be easily extended, while QMOM,
with its standard inversion algorithms, can not be used as it is not capable of dealing with
the mixed-order moments that arise from multivariate populations. Among the recently
proposed inversion algorithms for multivariate problems (Brute-Force, Wright et al. (2001);
Tensor Product, Yoon and McGraw (2004b,a); Fox (2009); Conditional Quadrature Method
of Moments, CQMOM, Yuan and Fox (2011)), CQMOMwas proven to perform excellently.
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As far as the coupling to Computational Fluid Dynamics (CFD) codes is concerned,
some issues for both methods still need to be addressed. The generation of invalid sets of
moments may arise with QMOM/CQMOM when high-order spatial discretization schemes
are used for transporting the moments of the NDF (Wright Jr, 2007). A set of moments is
valid if there exists a NDF resulting in that specific set of moments: in this way the calcu-
lated nodes are always in the domain of internal-coordinate space and the weights are al-
ways positive. If the inversion algorithm were used with invalid moment sets, unrealizable
quadratures would be calculated (because no realizable NDF corresponds to an invalid set),
jeopardizing the stability of the simulation. Wright Jr (2007) proposed an iterative algorithm
to correct a corrupted set of moments, based on the convexity principle, but this algorithm
is only capable to restore the set, not to prevent and solve the corruption problem. Recently
Vikas et al. (2011) introduced a class of high-order numerical schemes, based on the kinetic
finite volume schemes, that guarantees the realizability of a set of moments. DQMOM does
not exhibit the corruption problem (Marchisio and Fox, 2005), since the resulting moments
tracked by the method will always be realizable as long as the weights are non-negative, but,
under certain conditions, the method may be unable to calculate properly the moments. In
fact, if the moment transport equation is purely hyperbolic (i.e. pure advection of the NDF)
or there are spatial discontinuities in the quadrature, the spatial continuity assumption used
to derive the method is no more valid and DQMOM fails (Mazzei et al., 2010, 2012). Even if
the spatial solution is smooth, problems may arise whenever the moment transport equation
contains spatial diffusion terms that are smaller than or comparable with the numerical dif-
fusion that every Finite-Volume scheme (FV) introduces. In fact, in this case the correction
proposed by Marchisio and Fox (2005) is difficult to be calculated since the numerical diffu-
sion coefficient cannot be determined accurately. Very recently, a slight modification of the
DQMOM formulation, the so-called DQMOM-Fully Conservative (Buffo et al., 2013), was
proposed allowing the proper solution in space of the evolution of important conservative
quantities as moments of NDF.

Although the coupled CFD-QBMM methodology can be applied to any dispersed mul-
tiphase system, the focus of this work, as previously pointed out, is on turbulent gas-liquid
systems, in which spatial inhomogeneities, bubble collisions and mass transfer play an im-
portant role in the determination of the state of the system. In such a system the mass transfer
rate strongly depends on the size of the bubbles (mass transfer from small bubbles is faster
than for larger ones) and at least a second internal coordinate related to the bubble compo-
sition is needed in addition to bubble size, in order to determine accurately the evolution of
the population. Therefore this dissertation is organized as follows:

• in Chapter 2 the generalized population balance framework is introduced, with partic-
ular attention to specific characteristics of gas-liquid systems. Moreover the solution
algorithms used are here presented and discussed in detail;

• in Chapter 3 an overview of CFD methodology for gas-liquid systems including the
treatment of phase coupling and turbulence is given. Furthermore, the details relating
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to the coupling of QBMM with CFD are reported;

• in Chapter 4 the results of a preliminary study of QBMM stability and accuracy for
simplified spatially zero-dimensional systems are shown, revealing the pros and cons
of different multivariate methods compared with a detailed Monte Carlo solution.
Also a very simple mono-dimensional system is examined, in order to point out the
difficulties that may arise when the advection in physical space is considered.

• in Chapter 5 results of the implementation of QBMM for realistic systems are shown.
A two-dimensional bubble column is investigated for model verification purposes.
Moreover, the results obtained in the simulation of experimentally studied systems, a
stirred tank reactor (Laakkonen et al., 2006) and a partially aerated rectangular bubble
column (Cachaza Gianzo, 2011), are eventually validated.
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Chapter 2

Population balance

In this chapter, the population balance framework needed to describe a generic polydisperse
multiphase flows is introduced: a generic definition of number density function (NDF) and
population balance equation (PBE) will be given, with a particular attention to the modeling
of aggregation-breakage processes that characterize the evolution of multiphase systems.

The discussion of the governing equations will be limited to the particular system un-
der investigation, namely gas-liquid flows, where dispersed bubbles may coalesce, break-up
and exchange mass with the surrounding liquid. It will be shown, under certain reasonable
assumptions, how to model the collisional events between bubbles and the mass transfer of
chemical species for a air-pure water system.

Finally, the solution methods for PBE used in this dissertation, Direct Simulation Monte
Carlo (DSMC) and Quadrature-based Methods of Moments (QBMM), will be explained in
detail. Although these methods can be used for solving any defined PBE, here the discussion
will focus in particular focused on the solution of governing equations for gas-liquid systems.
Moreover, particular emphasis will be given to the distinction between monovariate and
multivariate methods and on the difficulties derived by the introduction of different parts of
the physics in the solution of the investigated system.

2.1 General definition of Population Balance Equation
Dispersed systems are generally constituted by a continuous phase and a number of discrete
elements (or particles) composing the disperse phase. These elements may interact with
each other or with the continuous phase: general properties of the system determine the
nature of such interactions. As for the continuous phase, also each single element of the
disperse phase can be identified by a certain number of properties. In population balance
theory these properties are usually indicated as coordinates (Ramkrishna, 2000; Marchisio
and Fox, 2013). Coordinates are classified into two groups:

• external (i.e., the spatial coordinates: the position of a element in physical space is
not an intrinsic property this element);
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• internal (i.e., intimate properties of the elements, as their volumes, their velocities,
their temperature, their chemical composition, etc.).

The entire population of discrete elements can be described with a functional called
Number Density Function (NDF), containing information about how the population of par-
ticles inside an infinitesimal control volume is distributed over the properties of interest.
By using a rigorous notation, this infinitesimal volume is in general indicated with its po-
sition 𝐱 = (𝑥1, 𝑥2, 𝑥3) and its measure d𝐱 = d𝑥1d𝑥2d𝑥3, while 𝝃 = (𝜉1, 𝜉2, … , 𝜉𝑁 ) and
d𝝃 = d𝜉1d𝜉2 … d𝜉𝑁 represent respectively the internal-coordinate vector containing the 𝑁
properties of interest and the infinitesimal volume of the internal-coordinate space (i.e. the
space generated by the 𝑁 properties of the population, or phase space). The NDF definition,
𝑛𝝃(𝝃; 𝐱, 𝑡), stems on the fact that the following quantity:

𝑛𝝃(𝝃; 𝐱, 𝑡) d𝐱 d𝝃 (2.1)

represents the expected number of elements contained inside the physical volume d𝐱 and in
the internal-coordinate space d𝝃 at time 𝑡. This quantity should be considered as an ensemble
average of infinite number of realizations of the dispersed system; consequently the NDF
is a smooth and differentiable function with respect to time, physical space and internal-
coordinate space (for a detailed discussion about the NDF definition see Ramkrishna, 2000).
By means of the NDF, it is possible to describe a dispersed system in a deterministic way; in
fact, the NDF identifies the entire population of particles at any instant and at any given point
in the computational domain and considers the probability associated with the state of each
of these particles. As already mentioned, sometimes the population of particles is described
by only one internal coordinate, for example particle length (i.e., 𝜉 = 𝐿), and the NDF is
called monovariate. When two internal coordinates are needed, for example particle size
and surface area (i.e., 𝜉 = (𝐿, 𝑎)), the NDF is bivariate. More generally, higher-dimensional
cases are referred to as multivariate.

By considering a generic control volume in physical spaceΩ𝐱 and in internal-coordinate
space Ω𝝃 with boundaries indicated respectively with 𝜕Ω𝐱 and 𝜕Ω𝝃 , and by omitting the
dependency in space and time, it possible to write a balance equation for the number of
elements contained in this control volume (i.e., number density) as

𝜕
𝜕𝑡 ๖඘Ω𝐱

d𝐱 ඘Ω𝝃

d𝝃 𝑛𝝃๗
+ ඘Ω𝝃

d𝝃 ඘𝜕Ω𝐱
ඳ𝑛𝝃𝐯ප ⋅ d𝐀𝐱

+ ඘Ω𝐱

d𝐱 ඘𝜕Ω𝝃
ඳ𝑛𝝃 ̇𝝃ප ⋅ d𝐀𝝃 = ඘Ω𝐱

d𝐱 ඘Ω𝝃

d𝝃 ℎ𝝃 (2.2)

where 𝐯 is the advection velocity vector of the dispersed phase, assumed to be known (i.e., in
some way linked to the local velocity of the continuous phase), ̇𝝃 represents the continuous
rate of change in the internal-coordinate space and ℎ𝝃 is the functional representing discrete
events that may locally change the number of elements. In addition to the advection velocity
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in physical and phase space, also diffusive-flux terms can be included in Eq. (2.2) as other
particular higher-order terms according to the investigated system, here neglected in this
very general case only to simplify the notation and the expressions.

It is clear that the first term of Eq. (2.2) is an integral over the control volume (physical
and phase space) and represents accumulation in time of the total number of elements. The
second term indicates the net flux of number density due to advection in physical space; for
this reason the is surface integral is performed over the boundary of the physical space and
d𝐀𝐱 represents the infinitesimal surface unit vector with magnitude equal to the measure of
the infinitesimal surface of the physical control volume and direction defined by the vector
normal to this surface. The third term is analogue to the second one and represents advection
in phase space; if it is possible to calculate the physical advection as 𝐯 = d𝐱/d𝑡, at the same
time the phase space velocity vector can be written as ̇𝝃 = d𝝃/d𝑡 and it is composed in each
component by the rate of change of the 𝑖tℎ internal coordinate due to continuous processes.
Any discrete event that cause discontinuous jumps in phase space is instead represented by
the term on the right-hand side of Eq. (2.2).

The difference between continuous and discrete/discontinuous processes is based on the
time and space scales of interest. In principle, all processes can be treated as discrete at
molecular level, but, when a process is characterized by changes in internal coordinates with
time scales much smaller than the one characterizing the change in the NDF can be modeled
as continuous. A typical example is the growth of a solid crystal: the size of the particle
grows due to surface deposition of molecules which occurs at time and length scales much
smaller than the scales related to the change in size of the crystal. Another example could
be the absorption of a chemical species in a gas-liquid system. On the contrary when two
particles collide, and as a consequence of collision they aggregate, the length scale of this
process is of the same order of the variation of particle size, thus causing a discontinuous
jump in phase space.

Since 𝑛𝝃 is a continuous function by definition, it is possible to write the surface integrals
as volume integrals by applying the Reynolds-Gauss theorem (Aris, 1962) to Eq. (2.2):

𝜕
𝜕𝑡 ๖඘Ω𝐱

d𝐱 ඘Ω𝝃

d𝝃 𝑛𝝃๗
+ ඘Ω𝐱

d𝐱 ඘Ω𝝃

d𝝃 𝜕
𝜕𝐱 ⋅ ඳ𝑛𝝃𝐯ප

+ ඘Ω𝐱

d𝐱 ඘Ω𝝃

d𝝃 𝜕
𝜕𝝃 ⋅ ඳ𝑛𝝃 ̇𝝃ප = ඘Ω𝐱

d𝐱 ඘Ω𝝃

d𝝃 ℎ𝝃 , (2.3)

where 𝜕
𝜕𝐱 and 𝜕

𝜕𝝃 are the gradient in physical and internal-coordinate space, defined respec-
tively as

𝜕
𝜕𝐱 = ว

𝜕
𝜕𝑥1

, 𝜕
𝜕𝑥2

, 𝜕
𝜕𝑥3 ศ , 𝜕

𝜕𝝃 = ว
𝜕

𝜕𝜉1
, … , 𝜕

𝜕𝜉𝑁 ศ .
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Since Ω𝐱 and Ω𝝃 compose a generic control volume of the balance, from Eq. (2.3) derive
the following relation:

𝜕𝑛𝝃
𝜕𝑡 + 𝜕

𝜕𝐱 ⋅ ඳ𝑛𝝃𝐯ප + 𝜕
𝜕𝝃 ⋅ ඳ𝑛𝝃 ̇𝝃ප = ℎ𝝃 , (2.4)

which is known generally as Population Balance Equation (PBE); for further details on this
derivation, see Ramkrishna (2000); Marchisio and Fox (2013). When the elements do not
share a unique velocity field but are characterized by their own velocity distribution, the
velocity of the dispersed phase is treated as internal coordinate of the NDF 𝑛(𝝃, 𝐯; 𝐱, 𝑡) and
Eq. (2.4) becomes (omitting the dependencies on internal and external coordinates):

𝜕𝑛
𝜕𝑡 + 𝜕

𝜕𝐱 ⋅ (𝑛𝐯) + 𝜕
𝜕𝐯 ⋅ (𝑛𝐀) + 𝜕

𝜕𝝃 ⋅ ඳ𝑛 ̇𝝃ප = ℎ, (2.5)

where 𝐀 is now the continuous rate of change of particle velocity due to external forces
per unit mass acting on particles (e.g., gravity, fluid drag, etc.). Eq. (2.5) is usually called
Generalized Population Balance Equation (GPBE) (Marchisio and Fox, 2013).

In order to solve PBE or GPBE, initial conditions for 𝑛𝝃 at starting time and boundary
conditions in physical space Ω𝐱 and in phase space Ω𝝃 must be specified; however, analytical
solutions are available for a few special cases and only under some very simple hypotheses.
In most cases of practical interest, numerical methods must be used to solve these equations,
providing knowledge of the NDF for each time instant and at every physical point in the
computational domain, as well as at every point in phase space. In Section 2.3, thesemethods
will be introduced and discussed with particular focus on less demanding methods from the
computational point of view, as the Method of Moments (MOM).

Starting from the general definition of NDF, it is possible to define an arbitrary moment
of the NDF introducing the moment transform as follows:

𝑀𝐤 = ඘Ω𝝃

𝜉𝑘1
1 ⋯ 𝜉𝑘𝑁

𝑁 𝑛𝝃(𝝃; 𝐱, 𝑡) d𝝃 (2.6)

where 𝐤 = (𝑘1, … , 𝑘𝑁 ) is a vector containing the order of the moments with respect to each
of the components of 𝝃 and Ω𝝃 indicates all the possible values of the internal-coordinate
vector 𝝃. Through this definition, important integral quantities of the distribution may be
identified: for example, the total number of elements per unit volume located at time 𝑡 and
at point 𝐱 (i.e., the total number concentration) is the moment of order 𝟎 = (0, … , 0) as
follows:

𝑀𝟎 = ඘Ω𝝃

𝑛𝝃(𝝃; 𝐱, 𝑡) d𝝃. (2.7)

It is clear that, by using moments, internal-coordinate dependencies of NDF are integrated
out losing some piece of information of the distribution (e.g., the detailed shape), but impor-
tant variables from the engineering point of view (e.g., distribution averages or covariances)
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can be expressed as a function of the moments themselves. However, it is possible to apply
the moment transform defined in Eq. (2.6) to Eq. (2.4), obtaining:

𝜕𝑀𝐤
𝜕𝑡 + 𝜕

𝜕𝐱 ⋅ ඳ𝑀𝐤𝐯ප =

− ඘Ω𝝃

(𝜉𝑘1
1 ⋯ 𝜉𝑘𝑁

𝑁 ) 𝜕
𝜕𝝃 ⋅ ඳ𝑛𝝃 ̇𝝃ප d𝝃 + ඘Ω𝝃

(𝜉𝑘1
1 ⋯ 𝜉𝑘𝑁

𝑁 )ℎ𝝃 d𝝃, (2.8)

which the so-called moment transport equation. It should be mentioned that in this case the
physical velocity vector 𝐯 is not a function of NDF or its internal coordinates. In the case of
GPBE (Eq. (2.5)), the moment transport equation is the following one:

𝜕𝑀𝐤
𝜕𝑡 = − ඘Ω𝝃

(𝜉𝑘1
1 ⋯ 𝜉𝑘𝑁

𝑁 ) 𝜕
𝜕𝐱 ⋅ (𝑛𝐯) d𝝃 − ඘Ω𝝃

(𝜉𝑘1
1 ⋯ 𝜉𝑘𝑁

𝑁 ) 𝜕
𝜕𝐯 ⋅ (𝑛𝐀) d𝝃

− ඘Ω𝝃

(𝜉𝑘1
1 ⋯ 𝜉𝑘𝑁

𝑁 ) 𝜕
𝜕𝝃 ⋅ ඳ𝑛 ̇𝝃ප d𝝃 + ඘Ω𝝃

(𝜉𝑘1
1 ⋯ 𝜉𝑘𝑁

𝑁 )ℎd𝝃. (2.9)

It should be noticed that in both Eq. (2.8) and Eq. (2.9) the unclosed terms are moved on
the right side: in fact, the functional forms of 𝑛𝝃 , ̇𝝃, ℎ𝝃 and 𝑛, 𝐯, ̇𝝃, ℎ are in general not
known and must be assumed in order to solve these equations. This is the so-called “closure
problem” that Hulburt and Kats explicated in their pioneering work on Methods of Mo-
ments (Hulburt and Katz, 1964). Furthermore, although the PBE solution methods based
on moment transport equation could be applied to different problems (rather distinguishing
between monovariate and multivariate cases), the expression of different terms of Eq. (2.8)
and Eq. (2.9) strongly depends on the modeled dispersed system. For this reason, in the next
sections the NDF for gas-liquid system will be introduced and how to solve in practice the
PBE for this case will be discussed. However, for aggregation-breakage problem (e.g., solid
particles, drops or bubbles in fluids), the term relating to discontinuous events may have a
general expression and this will be provided in the following section.
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2.1.1 Birth and death functions
As previously remarked, the discontinuous events term ℎ is used to model all those processes
that have an instantaneous impact on the NDF, causing a discontinuous jump in phase space.
Such processes are usually divided into three groups (Marchisio and Fox, 2013):

• zero-order process, in which the jump depends only on the state of the continuous
phase (i.e., nucleation);

• first-order process, in which the jump is due to an interaction of a element of disperse
phase with the continuous phase (i.e., breakage);

• second-order process, in which the jump is due to an interaction of two different ele-
ments of disperse phase with the continuous phase (i.e., aggregation).

It should be noticed that higher-order processes are in general neglected because the simul-
taneous interaction of three or more dispersed elements is very unlikely compared to the
interaction of two elements in the same infinitesimal interval of time. Moreover it is impor-
tant to remark that different elements do not directly interact between each other, but always
by means of the action of the continuous phase. In other words, the state of the continuous
phase strongly determines the rate of different processes.

A very common way to model similar processes is to use birth and death functions
(Ramkrishna, 2000): according to the considered process, in fact, a certain number of ele-
ments may appear inside the control volume (e.g., as a consequence of a particle breakage
or nucleation of new particles) while other elements may disappear (e.g., when two aggre-
gating elements). By using the mathematical formalism, it is possible to state what follows:

ℎ𝑖 = ℎ+
𝑖 − ℎ−

𝑖 (2.10)

where ℎ+
𝑖 represent the rate of production and ℎ−

𝑖 the rate of loss of particle due to 𝑖tℎ dis-
continuous event. Since the aim of this work is related to the description of bubbles in
liquids, in the following part the formulation of similar functions for aggregation and break-
age processes will be presented and discussed. Readers interested in more details for other
particulate systems are referred to the specialized literature (Marchisio and Fox, 2013).

Birth and death due to breakage

A first-order process, as the bubble breakage is generally described by the following term:

𝑏(𝝃, 𝝃c; 𝐱, 𝑡)d𝑡 (2.11)

which is the probability that a particle with internal coordinates 𝝃 in a fluid characterized by
the physical state 𝝃c undergoes the process under investigation in the infinitesimal time inter-
val d𝑡. The quantity 𝑏 is a frequency and so has units of inverse of time, and its dependence
on the particle and fluid properties. According to this definition, the number of particles per
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unit volume disappearing because of this process can be readily written as (suppressing the
𝑡 and 𝐱 dependence for clarity):

ℎ−
𝑏 (𝝃, 𝝃c) = 𝑏(𝝃, 𝝃c)𝑛(𝝃). (2.12)

As far as the rate of formation of particles due to breakage is concerned, an additional
function must be defined. This is usually introduced as a conditional probability density
function (PDF) that states the probability of formation of a daughter element with internal
coordinates 𝝃າ from a mother element with 𝝃 . This function usually depends only on the
state of the disperse phase (Patruno et al., 2009; Marchisio and Fox, 2013); however the
dependence on continuous phase 𝝃c can be easily included in the definition. In any case, this
PDF has to be normalized in a way that:

඘Ω𝝃ູ
𝑃(𝝃າ|𝝃)d𝝃າ = 1, (2.13)

which states that the sum of all probabilities of producing the daughter particle 𝝃າ starting
from the mother particle 𝝃 is unity. However, the conditional PDF does not contain any
information regarding the number of particles formed during the breakage process; for this
reason the corresponding conditional number density function 𝑁(𝝃າ|𝝃), generally known as
daughter distribution function, is defined as follows:

඘Ω𝝃ູ
𝑁(𝝃າ|𝝃)d𝝃າ = 𝜈(𝝃), (2.14)

where 𝜈 is the total number of new elements formed by the breakage process. It is clear that
the relationship between Eq. (2.13) and Eq. (2.14) is a simple renormalization. Now it is
possible to describe the formation of new elements due to breakage in the following way:

ℎ+
𝑏 (𝝃, 𝝃c) = ඘Ω𝝃ູ

𝑁(𝝃າ|𝝃)𝑏(𝝃າ, 𝝃c)𝑛(𝝃າ)d𝝃າ. (2.15)

The overall breakage rate ℎ𝑏(𝝃, 𝝃c) is therefore expressed as:

ℎ𝑏(𝝃, 𝝃c) = ℎ+
𝑏 (𝝃, 𝝃c) − ℎ−

𝑏 (𝝃, 𝝃c) =

඘Ω𝝃ູ
𝑁(𝝃າ|𝝃)𝑏(𝝃າ, 𝝃c)𝑛(𝝃າ)d𝝃າ − 𝑏(𝝃, 𝝃c)𝑛(𝝃) (2.16)

It should be remarked that the formulation of daughter distribution function 𝑁 and the break-
age frequency 𝑏 is problem-dependent. In Section 2.2.2, some common functional forms for
gas-liquid system will be reported.
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Birth and death due to aggregation

In a second-order process, such as particle aggregation, one element with center of mass at
position 𝐱̃ characterized by internal-coordinate vector ̃𝝃 interacts with another element with
center of mass in the physical point 𝐱າ and internal-coordinate vector 𝝃າ, in a continuous
phase characterized by state vector 𝝃c. As already seen for breakage process, it is possible
to define the frequency of the aggregation process 𝑎 in a way that

𝑎(𝐱̃, ̃𝝃; 𝐱າ, 𝝃າ; 𝝃c)d𝑡 (2.17)

represents the probability of elements undergoing the second-order process in a time interval
d𝑡; as a standard frequency this quantity has unit of inverse of time. An important property
assumed for this frequency is the symmetry with respect to element permutation, resulting
in:

𝑎(𝐱̃, ̃𝝃; 𝐱າ, 𝝃າ; 𝝃c) = 𝑎(𝐱າ, 𝝃າ; 𝐱̃, ̃𝝃; 𝝃c) (2.18)

Starting from this aggregation frequency, it is possible to calculate the total number of
events 𝑁𝑒 occurring per unit time and unit volume involving elements in the infinitesimal
range of (𝐱̃, ̃𝝃), as follows:

𝑁𝑒(𝐱̃, ̃𝝃, 𝝃c, 𝑡) = ඘Ω𝐱ູ ඘Ω𝝃ູ
𝑎(𝐱̃, ̃𝝃; 𝐱າ, 𝝃າ; 𝝃c) 𝑛(2)(𝐱̃, ̃𝝃; 𝐱າ, 𝝃າ; 𝑡)d𝐱າ d𝝃າ, (2.19)

where 𝑛(2) is the so-called pair number density function, defined in such a way that:

𝑛(2)(𝐱̃, ̃𝝃; 𝐱າ, 𝝃າ; 𝑡)d𝐱̃ d ̃𝝃 d𝐱າ d𝝃, (2.20)

represents the expected number of element pairs with state (𝐱̃, ̃𝝃) and (𝐱າ, 𝝃) at time 𝑡. The
evolution of 𝑛(2) can be described in turn by a balance equation similar to PBE for the NDF;
however its solution involves the knowledge of 𝑛(3) generating another closure problem. For
this reason the following closure is used1:

𝑛(2)(𝐱̃, ̃𝝃; 𝐱າ, 𝝃າ; 𝑡) ≈ 𝑛(𝐱̃, ̃𝝃, 𝑡) 𝑛(𝐱າ, 𝝃າ, 𝑡). (2.21)

Moreover, in most practical cases the distance in physical space between the two interacting
elements (i.e., |𝐱າ − 𝐱̃|) is of the order of magnitude of element diameter and within this
distance the NDF does not change significantly. Therefore, it is possible to assume that:

𝑛(2)(𝐱̃, ̃𝝃; 𝐱າ, 𝝃; 𝑡) ≈ 𝑛(𝐱̃, ̃𝝃, 𝑡) 𝑛(𝐱̃, 𝝃າ, 𝑡). (2.22)
1In statistical mechanics this is known as Boltzmann Stosszahlansatz (Marchisio and Fox, 2013)
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By substituting what expressed in Eq. (2.22) into Eq. (2.19), it is possible to write:

𝑁𝑒(𝐱̃, ̃𝝃, 𝝃c, 𝑡) = ඘Ω𝝃ູ
𝛼(𝐱̃, ̃𝝃, 𝝃າ, 𝝃c) 𝑛(𝐱̃, ̃𝝃, 𝑡) 𝑛(𝐱̃, 𝝃າ, 𝑡)d𝝃າ, (2.23)

where
𝛼(𝐱̃, ̃𝝃, 𝝃າ, 𝝃c) = ඘Ω𝐱ູ

𝑎(𝐱̃, ̃𝝃; 𝐱າ, 𝝃າ; 𝝃c)d𝐱າ (2.24)

is the so-called aggregation kernel and has dimensions of spatial volume per unit time. This
derivation was necessary in order to define the rate of production of new elements due to
aggregation:

ℎ+
𝑎 (𝐱̃, 𝝃, 𝝃c, 𝑡) = 1

𝑀 ඘Ω𝝃ູ
𝛼(𝐱̃, ̃𝝃, 𝝃າ, 𝝃c) 𝑛(𝐱̃, ̃𝝃, 𝑡) 𝑛(𝐱̃, 𝝃າ, 𝑡)𝐽( ̃𝝃, 𝝃) d𝝃າ (2.25)

where (𝐱̃, 𝝃) is the state vector of the new element, generated by aggregation of (𝐱̃, 𝝃າ) and
(𝐱̃, ̃𝝃). The integer number 𝑀 is the symmetry factor to used to avoid multiple pairs count-
ing, and is equal to two for identical particles and one for different particles, in the case
of aggregation. While 𝐽( ̃𝝃, 𝝃) is the Jacobian of the variable transformation relating to the
internal-coordinate space before aggregation ̃𝝃 and after aggregation 𝝃, defined as follows:

𝐽( ̃𝝃, 𝝃) = ุ
𝜕 ̃𝝃
𝜕𝝃 ุ =

|
|
|
|
|
||

𝜕 ̃𝜉1
𝜕𝜉1

… 𝜕 ̃𝜉1
𝜕𝜉𝑁

⋮ ⋱ ⋮
𝜕 ̃𝜉𝑁
𝜕𝜉1

… 𝜕 ̃𝜉𝑁
𝜕𝜉𝑁

|
|
|
|
|
||

(2.26)

where 𝑁 is the total number of internal coordinates considered. It should be noticed that the
final expression of the Jacobian changes according to the internal coordinates of interest of
a particular problem.

The rate of loss of elements due to aggregation ℎ−
𝑎 (𝐱, 𝝃, 𝝃c, 𝑡) follows from Eq. (2.23),

and can be easily expressed as:

ℎ−
𝑎 (𝐱̃, 𝝃, 𝝃c, 𝑡) = ඘Ω𝝃ູ

𝛼(𝐱̃, ̃𝝃, 𝝃າ, 𝝃c) 𝑛(𝐱̃, ̃𝝃, 𝑡) 𝑛(𝐱̃, 𝝃າ, 𝑡)d𝝃າ. (2.27)

The overall aggregation rate ℎ𝑎(𝐱̃, 𝝃, 𝝃c, 𝑡) is below reported:

ℎ𝑎(𝐱̃, 𝝃, 𝝃c, 𝑡) = ℎ+
𝑎 (𝐱̃, 𝝃,𝝃c, 𝑡) − ℎ−

𝑎 (𝐱̃, 𝝃, 𝝃c, 𝑡) =
1

𝑀 ඘Ω𝝃ູ
𝛼(𝐱̃, ̃𝝃, 𝝃າ, 𝝃c) 𝑛(𝐱̃, ̃𝝃, 𝑡) 𝑛(𝐱̃, 𝝃າ, 𝑡)𝐽( ̃𝝃, 𝝃) d𝝃າ

− ඘Ω𝝃ູ
𝛼(𝐱̃, ̃𝝃, 𝝃າ, 𝝃c) 𝑛(𝐱̃, ̃𝝃, 𝑡) 𝑛(𝐱̃, 𝝃າ, 𝑡) d𝝃າ. (2.28)
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For a more detailed discussion on second-order process modeling, reader should consult
specialized text (Ramkrishna, 2000; Marchisio and Fox, 2013). As pointed out for breakage
frequency, the aggregation kernel formulation depends on the particular system under inves-
tigation; in Section 2.2.2 the most common kernels for bubble coalescence will be reported.

2.2 PBE for gas-liquid systems
A generic turbulent gas-liquid system can be thought of as a dispersion of bubbles, each
one characterized by its size 𝐿, composition 𝝓b and velocity 𝐔b. Bubble enthalpy (or tem-
perature) is out of the description because the aim of this work is to model an isothermal
system; however, this is not a serious limitation since other properties may be taken into the
population balance description (Buffo et al., 2012).

Recurring to the general definition of NDF given in Eq. (2.1), in a case of dispersed
gas-liquid system, it is possible to state that:

̂𝑛(𝐿, 𝝓b, 𝐔b; 𝐱, 𝑡) d𝐿 d𝝓b d𝐔b d𝐱, (2.29)

represents the expected number of bubbles with size between 𝐿 and 𝐿+d𝐿, composition be-
tween 𝝓b and 𝝓b +d𝝓b (considering 𝑁 chemical species), velocity between 𝐔b and 𝐔b +d𝐔b
contained inside the physical volume d𝐱 at time 𝑡. As previously remarked, a similar bub-
ble distribution is called multivariate because is characterized with more than two internal
coordinates. Moreover, the generic moment of the NDF is what follows:

𝑀𝑘,𝐥,𝐦(𝐱, 𝑡) = ඘Ω𝐿
඘Ω𝝓b

඘Ω𝐔b

𝐿𝑘𝝓𝐥
b𝐔𝐦

b ̂𝑛(𝐿, 𝝓b, 𝐔b; 𝐱, 𝑡) d𝐿 d𝝓b d𝐔b, (2.30)

where Ω𝐿, Ω𝝓b
and Ω𝐔b

are respectively the spaces generated by all possible values of bub-
ble size, composition and velocity, while 𝑘, 𝐥 = (𝑙1, … , 𝑙𝑁 ) and 𝐦 = (𝑚1, 𝑚2, 𝑚3) are the
integer values representing respectively the order of moment with respect to bubble size,
composition and velocity.

As seen for Eq. (2.5), it is possible to write a continuity statement for the NDF. This is
the GPBE for the investigated system:

𝜕 ̂𝑛
𝜕𝑡 + 𝜕

𝜕𝐱 ( ̂𝑛 𝐔b) + 𝜕
𝜕𝐔b

( ̂𝑛 𝐀b) + 𝜕
𝜕𝐿( ̂𝑛 𝐺) + 𝜕

𝜕𝝓b
( ̂𝑛 ̇𝝓b) = ලℎ(𝐿, 𝝓b, 𝐔b; 𝐱, 𝑡), (2.31)

where the meaning of the different terms is similar to that of the terms of Eq. (2.4) and
Eq. (2.5): on the left-hand side the different rates of change of the NDF due to continuous
events are represented, while the right-hand side term takes into account the discontinuous
events.

At this point, the discussion necessarily stops being general and some assumptions based
on physical reality are needed, not only to simplify the model for reducing computational
costs, but also to properly describe the system of interest. In other words, the functional
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form for 𝐔b, 𝐀b, 𝐺, ̇𝝓b and ලℎ of Eq. (2.31) are not general but problem-dependent. The final
purpose of this work is to describe in detail the oxygen mass transfer from gas to liquid in
an isothermal air-water industrial-scale contactor, and the following assumptions are made:

• thermal effects are neglected as the system is isothermal. This means that no energy
equation is solved for the continuous phase and for the dispersed bubbles. Moreover,
there is no phase transition of any chemical component (e.g., condensing or boiling);

• advection is considered the only mechanism responsible of bubble motion in physical
space. This assumption is based on the fact that (turbulent) diffusive transport of
momentum is negligible compared to advection, due to range of bubble sizes examined
in this work (as remarked in Section 3.2.3) usually larger than characteristic turbulent
scale;

• the shape of all bubble population is assumed spherical in first approximation. As
explained in section Section 3.2.3, this assumption is correct for very small bubbles
up to 1mm of equivalent diameter, while other shapes are observed for larger bubbles.
This means that the bubble interfacial area calculated as 𝑘𝐴𝐿2 and the bubble volume
calculated as 𝑘𝑉 𝐿3, with 𝑘𝐴 = 𝜋 and 𝑘𝑉 = 𝜋/6 the areic shape factor and volumetric
shape factor for a sphere, are slightly underestimated. However, this is not a limitation
of the model because it is possible to tackle this issue by introducing a deformation
factor, function of the state of the bubble (see Bakker and Van den Akker, 1994);

• gas phase is constituted by oxygen and nitrogen, where only one transfers between
phases (i.e., oxygen) and the other is inert (i.e., nitrogen). For this reason, the compo-
sition vector 𝝓b becomes a scalar quantity 𝜙b;

• bubble oxygen composition 𝜙b is defined as the total number of oxygen moles. This
physical quantity is chosen due to its conservation property, namely the total number
of moles is conserved after bubble breakage or coalescence;

• mass transfer resistance in gas phase can be neglected, namelymass transfer coefficient
𝑘𝐿 is estimated considering a flat oxygen profile in gas phase;

• advection in internal-coordinate space is represented by 𝐺 = d𝐿/d𝑡 (i.e., the rate of
bubble size change due to growth/shrink) and by ̇𝜙b = d𝜙b/d𝑡 (i.e., the rate of bubble
composition change). In general, these terms are function of all the internal coordi-
nates; in this case, instead, are expressed only in terms of bubble size 𝐿 and oxygen
composition 𝜙b since only mass transfer is able to continuously change size and com-
position of bubbles. In other words, bubble velocity 𝐔b does not influence phase space
advection terms;

• bubble coalescence and break-up are treated as an aggregation-breakage problem and
therefore modeled by using the term ලℎ. As indicated in Eq. (2.31), bubble collisional
phenomena may depend on size, composition and velocity (besides space and time);
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however the dependence on bubble velocity 𝐔b can be neglected for a turbulent sys-
tem, as explained in Section 2.2.2.

The description can be simplified by integrating out the bubble velocity:

𝑛(𝐿, 𝜙b; 𝐱, 𝑡) = ඘Ω𝐔b

̂𝑛(𝐿, 𝜙b, 𝐔b; 𝐱, 𝑡)d𝐔b, (2.32)

in which the detailed information relating to the bubble velocity distribution is integrated out,
reducing the number of internal coordinates of the problem. Eq. (2.31) must be rewritten in
order to take into account the former definition of NDF (omitting the dependence on space
and time for clarity):

𝜕𝑛
𝜕𝑡 + 𝜕

𝜕𝐱 (𝑛 𝐔̌b) + 𝜕
𝜕𝐿(𝑛 𝐺) + 𝜕

𝜕𝜙b
(𝑛 ̇𝜙b) = ℎ(𝐿, 𝜙b), (2.33)

where 𝐔̌b is defined as follows:

𝐔̌b(𝐿, 𝜙b) =
඘Ω𝐔b

̂𝑛(𝐿, 𝜙b, 𝐔b; 𝐱, 𝑡) 𝐔b d𝐔b

඘Ω𝐔b

̂𝑛(𝐿, 𝜙b, 𝐔b; 𝐱, 𝑡) d𝐔b

, (2.34)

representing the average bubble velocity conditioned over the values of bubble size and
composition. It is interesting for solution purposes the case in which the spatial gradient
vanishes (i.e., spatially homogeneous system), leading to the following equation:

𝜕𝑛
𝜕𝑡 + 𝜕

𝜕𝐿(𝑛 𝐺) + 𝜕
𝜕𝜙b

(𝑛 ̇𝜙b) = ℎ(𝐿, 𝜙b). (2.35)

Eq. (2.33) and Eq. (2.35) are respectively the continuity statement of the bivariate NDF de-
fined in Eq. (2.32) for spatially inhomogeneous and homogeneous systems, and these equa-
tions will be solved in Chapter 4 and Chapter 5 by means of the solution methods reported
in Section 2.3. It should be noticed that the dependence on 𝐀b of Eq. (2.31) disappears due
to the operation defined in Eq. (2.32). However, 𝐔̌b must be determined according to the
Stokes number of the dispersed system, namely the ratio between the relaxation time of the
bubble and of the fluid. For bubbly flows, the Stokes number is usually small but not zero
so a differential model for calculating the velocity is needed. Reader refers to Chapter 3 for
further details on bubble velocity calculation. In the following sections, the formulation of
𝐺, ̇𝜙b and ℎ of Eq. (2.33) and Eq. (2.35) will be presented and discussed.

It is worth mentioning the case in which also the dependence on bubble composition 𝜙b
is integrated out as follows:

̃𝑛(𝐿; 𝐱, 𝑡) = ඘Ω𝜙b

𝑛(𝐿, 𝜙b; 𝐱, 𝑡)d𝜙b, (2.36)
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leading to the following continuity statement:

𝜕 ̃𝑛
𝜕𝑡 + 𝜕

𝜕𝐱 ( ̃𝑛 𝐔̌b) + 𝜕
𝜕𝐿( ̃𝑛 ඾𝐺) = ඾ℎ(𝐿), (2.37)

or in the case of homogeneous system:

𝜕 ̃𝑛
𝜕𝑡 + 𝜕

𝜕𝐿( ̃𝑛 ඾𝐺) = ඾ℎ(𝐿), (2.38)

which is the well-known monovariate PBE for a gas-liquid system, in which the bubble
size is the only internal coordinate considered. It is important to remark that the bubble
growth/shrink term ඾𝐺 is formally equivalent to 𝐺, but in this case an average composition
over all bubble is used for estimating mass transfer instead the actual bubble composition
distribution.

2.2.1 Continuous events modeling
Referring to Eq. (2.33), the terms 𝐺 and ̇𝜙b can be thought of as rates responsible of the
advection of NDF in the internal-coordinate space generated by 𝐿 and 𝜙b. They are also
called “drift terms”. With these terms it is possible to account for all the types of physical
and chemical processes (such as mass transfer, chemical reactions, evaporation and conden-
sation, etc.) that continuously modify the populations of bubbles. As previously remarked,
in this work only oxygen mass transfer from air bubbles to water will be studied, by means
of a bivariate population balance that gives the knowledge of bubble size and composition
distribution in all the computational domain.

A detailed discussion of mass transfer theory is out of the aim of this work and can be
found in specialized literature (Cussler, 1997). However, in this part the mesoscale model
for 𝐺 and ̇𝜙b will be shown starting from very basic assumptions. By using the Fick law,
it is possible to describe the mass exchange of a generic chemical component 𝐴 through
the interface of bubble in a liquid (in the case of chemical absorption, without chemical
reaction):

𝐽𝐴 = 𝒟𝐴 ว
𝜕𝐶𝐴
𝜕𝑥 ศ𝑥=0

, [mol/m2 s] (2.39)

where 𝐽𝐴 is the molecular flux of chemical component 𝐴 and 𝒟𝐴 is the molecular diffusion
coefficient for 𝐴 in such system. It should be noticed that the molecular flux depends on a
spatial composition gradient on 𝑥-direction perpendicular to the gas-liquid interface. Since
in most cases the exact position of the interface is not known, it is possible to the define the
mass transfer coefficient 𝑘 in the following way:

𝑘 =
๧

𝐽𝐴
𝐶 𝑖𝑛

𝐴 − ̂𝐶𝐴 ๧
, [m/s] (2.40)

where 𝐶 𝑖𝑛
𝐴 is the molar concentration of 𝐴 at the interface while ̂𝐶𝐴 represents the concen-
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tration of 𝐴 at the bulk. Eq. (2.40) says that concentration variation between phase bulk and
interface can be modeled by this coefficient, without specifying the concentration profile
approach the interface from both phase sides. However, the continuity condition must be
imposed in this way:

𝐽𝐴 = 𝑘𝐺( ̂𝐶𝐺,𝐴 − 𝐶 𝑖𝑛
𝐺,𝐴) = 𝑘𝐿(𝐶 𝑖𝑛

𝐿,𝐴 − ̂𝐶𝐿,𝐴), (2.41)

where subscripts 𝐺 and 𝐿 for gas and liquid phases respectively are introduced. By assuming
the thermodynamical equilibrium at the interface, it is possible to apply the Henry law:

𝐶 𝑖𝑛
𝐿,𝐴 = 𝐻𝐴𝐶 𝑖𝑛

𝐺,𝐴, (2.42)

where 𝐻𝐴 is the dimensionless Henry constant (in contrast with the common definition of
Henry constant, which has dimensions of Pa m3/mol). In this manner, it is possible to eliminate
the dependence on interface concentration in Eq. (2.41):

𝐽𝐴 = ว
1

𝑘𝐿
+ 𝐻𝐴

𝑘𝐺 ศ
−1

(𝐻𝐴 ̂𝐶𝐺,𝐴 − ̂𝐶𝐿,𝐴). (2.43)

Moreover, in this case it is possible to assume a flat concentration profile in gas phase, very
common situation where pure gases or oxygen in air are considered. In this way, Eq. (2.43)
becomes:

𝐽𝐴 = 𝑘𝐿(𝐻𝐴 ̂𝐶𝐺,𝐴 − ̂𝐶𝐿,𝐴). (2.44)

It is now clear that 𝑘𝐿 models the concentration profile from the gas-liquid interface to the
liquid bulk. Many correlations are available in the literature in order to estimate the mass
transfer coefficient 𝑘𝐿 (for a detailed review, see Gimbun et al., 2009). The most common
ones are the so-called “penetrationmodels”, based on thework of Higbie (1935), considering
the gas-liquid interface covered by elements of fluid. These elements return in the bulk zone
after the contact time 𝜏 and new elements reach the surface with the concentration of the
bulk. In the case of no or negligible turbulence the contact time 𝜏 can be expressed as:

𝜏 = 𝑑𝑏
𝑈𝑠𝑙𝑖𝑝

(2.45)

where 𝑑𝑏 is the bubble diameter and 𝑈𝑠𝑙𝑖𝑝 is the relative velocity between bubble and liquid.
According to this theory, it is possible to derive that:

𝑘𝐿 = 2฻
𝒟 𝑈𝑠𝑙𝑖𝑝

𝜋 𝑑𝑏
. (2.46)

A modification of Higbie theory was proposed by Danckwerts (1951), considering that sub-
stitution of fluid elements at the interface is randomly independent of the length of the contact
with the interfacial surface. Defining with 𝑠 the fraction of fluid elements replaced at surface

24



CHAPTER 2. POPULATION BALANCE

per unit time, it is possible to write:

𝑘𝐿 = √𝒟 𝑠 (2.47)

In the work of Lamont and Scott (1970), a formulation for 𝑠 based on the local value of the
turbulent dissipation rate was assumed, giving:

𝑘𝐿 = 𝒞𝐿 ฻𝒟 ซ
𝜖
𝜈c

(2.48)

where 𝒞𝐿 is a fitting constant (assumed equal to 0.4 by the authors or equal to 1.13 as in the
work of Kawase et al., 1987), 𝜈c is the kinematic viscosity of the continuous phase and 𝜖 is
the local value of the turbulent dissipation rate.

Now that the mass transfer coefficient is introduced, the functions 𝐺 and ̇𝜙b of Eq. (2.33)
can be easily formulate. By considering a spherical bubble of size 𝐿, total number of oxygen
moles 𝜙b, interfacial area 𝑘𝐴𝐿2 and mass 𝜌b𝑘𝑉 𝐿3, it is possible to write the continuous rate
of change of bubble composition, ̇𝜙b, due to mass transfer as:

̇𝜙b(𝐿, 𝜙b; 𝐱, 𝑡) = 𝑘𝐿𝑘𝐴𝐿2
ว𝐶c − 𝐻 𝜙b

𝑘𝑉 𝐿3 ศ , (2.49)

Furthermore, the term 𝐺, representing the bubble growth/shrink rate, can be evaluated by a
simple mass balance on a single bubble:

𝐺(𝐿, 𝜙b; 𝐱, 𝑡) = 2𝑘𝐿𝑀𝑤
𝜌b ว𝐶c − 𝐻 𝜙b

𝑘𝑉 𝐿3 ศ , (2.50)

where 𝑀𝑤 is the molecular weight of the transferring solute (oxygen), 𝐶c is the molar con-
centration of solute in the continuous phase and 𝐻 is the dimensionless Henry constant.

25



CHAPTER 2. POPULATION BALANCE

2.2.2 Discontinuous events modeling
In this part, the functional form of the collisional term ℎ(𝐿, 𝜙b; 𝐱, 𝑡) of Eq. (2.33) for co-
alescence and breakage of bubbles in liquid will be shown. A thorough discussion for a
generic PBE can be found in Section 2.1.1, here only the final expression is reported (the
dependencies on space and time will be omitted for clarity):

ℎ(𝐿, 𝜙b) = 1
2 ඘

𝐿

0 ඘
𝜙b

0
𝛼 ෷(𝐿3 − 𝜆3) 1

3 , 𝜆෸ 𝑛 ෷(𝐿3 − 𝜆3) 1
3 , 𝜙b − 𝜙b,𝜆෸

× 𝑛 ඳ𝜆, 𝜙b,𝜆ප
𝐿2

(𝐿3 − 𝜆3) 2
3

d𝜆d𝜙b,𝜆 − 𝑛(𝐿, 𝜙b) ඙
∞

0
𝛼(𝐿, 𝜆)𝑛(𝜆, 𝜙b,𝜆)d𝜆d𝜙b,𝜆

+ ඘
∞

𝐿 ඘
∞

𝜙b

𝛽(𝜆)𝑃(𝐿, 𝜙b|𝜆, 𝜙b,𝜆)𝑛(𝜆, 𝜙b,𝜆)d𝜆d𝜙b,𝜆 − 𝛽(𝐿)𝑛(𝐿, 𝜙b), (2.51)

where 𝛼, 𝛽 and 𝑃 are respectively the coalescence kernel, the breakage kernel and the daugh-
ter distribution function that must be formulated for properly describing the collisional phe-
nomena between bubbles.

Many models for these terms, specifically for bubble coalescence and break-up in dis-
perse gas-liquid systems, were proposed in the last years. In this part of the work, the most
used formulations will be presented, however a detailed analysis of these models is out of
the aims of this work. It must be remarked that usually these kernels are derived from a mix-
ture of theoretical and empirical considerations and for this reason they may have a limited
range of validity, corresponding to the experimentally investigated operating conditions for
a specific equipment.

Breakage frequency

Bubble breakage is a complex phenomenon involving a balance between external stresses
that tend to break the bubble and viscous and interfacial forces that oppose to its deformation.
Most likely stresses causing instability on gas-liquid interface are turbulent fluctuations and
shear rates on continuous phase.

The study on this kind of process is usually conducted on liquid-liquid systems due to
the easy of controlling the experimental setting (in comparison to gas-liquid systems), how-
ever the conclusions can be extended to other fluid-fluid systems. Narsimhan et al. (1979)
proposed a model for drops breakage in a liquid-liquid system based on the fact that the
eddies arrival at drop surface and the consequent break-up event may be considered as in-
stantaneous processes and independent of the history of the various drops. Moreover, only
eddies smaller than the droplets and with sufficient energy are able to break the drop, while
bigger eddies only contribute to the transport of the dispersed particles.

Based on the theory of Narsimhan, Lee et al. (1987) proposed the following model for
bubble break-up:

𝛽(𝑉𝐿) = 𝐶1𝜖1/3𝐿−2/3
ส

1
𝐿 ඘

𝐿

0
1 − 𝐹(𝑋𝑐)d𝜆ห , (2.52)
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where 𝛽(𝑉𝐿) indicates the breakage frequency of a bubble of volume 𝑉𝐿 (with diameter
equal to 𝐿), 𝜖 is the turbulent dissipation of kinetic energy rate of the continuous phase and
𝐹(𝑋𝑐) represents the Chi-squared distribution function with three degrees of freedom, with
𝑋𝑐 defined as:

𝑋𝑐 = 𝐶2
𝜎𝐿2

𝜌c𝜖2/3 𝜆−11/3, (2.53)

where 𝜎 is the surface tension, 𝜌c is the density of the continuous phase. It is important to
notice that 𝐶1 and 𝐶2 are two parameters to be obtained through experiments.

Alopaeus et al. (2002) extended the model of Narsimhan for drops in liquid, introducing
an additional term for considering viscous forces opposing to breakage proportional to the
viscosity of the dispersed phase. The proposed expression was the following:

𝛽(𝐿) = 𝐶1 𝜖1/3erfc
⎛
⎜
⎜
⎝฻

𝐶2
𝜎

𝜌c𝜖2/3𝐿5/3 + 𝐶3
𝜇d

√𝜌c𝜌d𝜖1/3𝐿4/3

⎞
⎟
⎟
⎠

, (2.54)

where 𝐶1, 𝐶2 and 𝐶3 are three fitting parameters, erfc(𝑥) indicates the complementary error
function and 𝜌d and 𝜇d are respectively density and viscosity of the disperse phase.

Laakkonen et al. (2006) proposed a modification of this kernel in order to consider also
gas-liquid systems, substituting the dependence on disperse phase viscosity with the contin-
uous one, obtaining the following expression:

𝛽(𝐿) = 𝐶1 𝜖1/3erfc
⎛
⎜
⎜
⎝฻

𝐶2
𝜎

𝜌c𝜖2/3𝐿5/3 + 𝐶3
𝜇c

√𝜌c𝜌d𝜖1/3𝐿4/3

⎞
⎟
⎟
⎠

. (2.55)

In this way, the viscous forces contrasting the bubble breakage are considered proportional
to the viscosity of the continuous phase, as experimentally observed by Walter and Blanch
(1986). Moreover, Laakkonen et al. (2006) performed an extensive experimental studies on
a gas-liquid stirred tank reactor in order to find the proposed fitting parameter: 𝐶1 = 6.0,
𝐶2 = 0.04 and 𝐶3 = 0.01. However, the validity range these values is strictly defined by the
experimentally investigated operating conditions for such equipment.

Another popular kernel for binary bubble breakage was formulated by Luo and Svendsen
(1996):

𝛽(𝑉𝐿) = 𝐶1(1 − 𝛼d) ෷
𝜖

𝐿2 ෸
1/3

඘
1

𝜁𝑚𝑖𝑛

(1 + 𝜁)2

𝜁11/3 exp ส−
𝐶2 𝜎 𝐶𝑓 (𝑓)

𝜌c𝜖2/3𝐿5/3𝜁11/3 ห d𝜁, (2.56)

where 𝛼d is the volume fraction of the disperse phase and 𝜁 = 𝜆𝑒/𝐿 is the ratio between the
dimension of eddies able to break the bubble and the size of the bubble itself. The function
𝐶𝑓 is defined as follows:

𝐶𝑓 (𝑓) = 𝑓 2/3 + (1 − 𝑓)2/3 − 1, (2.57)
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where 𝑓 represent the ration between the volume of a daughter bubble an the volume of
the mother bubble. It should be noticed that this kernel, despite of others, also includes
information on the daughter distribution function. The value 𝜁𝑚𝑖𝑛 is linked to the minimum
eddie size according to Kolmogorov scale:

𝜁𝑚𝑖𝑛 =
𝜆𝑒,𝑚𝑖𝑛

𝐿 = 11.4
𝐿 ๖

𝜇3
c

𝜌3
c 𝜖 ๗

1/4

. (2.58)

The two parameters 𝐶1 and 𝐶2 are chosen by fitting with the experiments.
In conclusion, it is worth mentioning a model without parameters proposed by Lehr et al.

(2002) and successfully validated for gas-liquid bubble columns:

𝛽(𝐿) = 1
2

𝐿5/3𝜌7/5
c 𝜖19/15

𝜎7/5 exp
๖

−√2𝐿3𝜖6/5𝜌9/5
c

𝜎9/5 ๗
. (2.59)

Among all these formulations, it is possible to recognize the characteristics needed for
the implementation in a population balance solution code. In fact, the numerical solution
of the PBE is a very demanding task from the computational point of view, especially if
the final aim is to couple the PBM with the CFD description for industrial scale equipment.
For this reason, formulations involving the numerical solution of integrals or without fitting
parameters must be avoided because they lack of flexibility and computational speed com-
pared to others. Eq. (2.55) of Laakkonen et al. (2006) has all the main characteristic of a
good kernel formulation for this dissertation purpose and therefore in this work will be used
and investigated.

Daughter distribution function

As indicated in Section 2.1.1, it is necessary to indicate not only the frequency of the break-
age event, but also the number of bubbles generated by such event in order to give a complete
description of the break-up phenomenon. In general, the daughter distribution function de-
pends on the size of the mother bubble and on local turbulence intensity; the breaking bubble
may divide into two or more bubbles according to gas redistribution mechanism caused by
bubble internal pressure and external stresses: the number of fragments depends on the den-
sity difference between the continuous and the disperse phase and on the viscosity of the dis-
perse phase. When this difference is significant (and the disperse phase is not very viscous),
like in bubbly flows, binary breakage is the most likely event (Andersson and Andersson,
2006), although the dimension of the daughter bubbles may be very different.

Lehr et al. (2002) formulated a daughter distribution function based on local fluid prop-
erties and turbulence, as well as the size of mother bubble 𝜆, assuming a binary breakage:
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𝑃(𝑉𝐿|𝑉𝜆) =

⎧
⎪
⎪
⎪
⎨
⎪
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⎪
⎩

6
𝜋3/2𝐿3
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๙

−9
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2

๚
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๙
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2 ๖
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๖

𝜆𝜌3/5
c 𝜖2/5

𝜎3/5 ๗๗๚

with 0 ≤ 𝑉𝐿 ≤ 𝑉𝜆
2 ;

𝑃(𝑉𝐿 − 𝑉𝜆, 𝑉𝜆) with
𝑉𝜆
2 ≤ 𝑉𝐿 ≤ 𝑉𝜆.

(2.60)
This model, combined with breakage kernel of Eq. (2.59), was successfully validated for the
experimentally investigated bubble column by Lehr et al. (2002).

Another model based on phenomenological evidence was formulated by Luo and Svend-
sen (1996), and must be specifically combined with the corresponding breakage frequency
shown on Eq. (2.56):

𝑃(𝑉𝐿|𝑉𝜆) =
2 ඘

1

𝜁𝑚𝑖𝑛

(1 + 𝜁)2𝜁−11/3 exp(−𝑥𝑐)𝑑𝜁

𝜈𝐿 ඘
1

0 ඘
1

𝜁𝑚𝑖𝑛

(1 + 𝜁)2𝜁−11/3 exp(−𝑥𝑐)𝑑𝜁𝑑𝑓
(2.61)

where 𝑥𝑐 is a dimensionless representing the breakage critical energy and 𝜁 is the same
quantity defined in Eq. (2.56).

In contrast with these complex models, Laakkonen et al. (2006) proposed a daughter
distribution function based on a common statistical distribution, the 𝛽−Probability Density
Function (𝛽-PDF), normalized on the number of fragments generated by the process as fol-
lows:

𝑃(𝐿|𝜆) = 𝑁𝑓 ෷9 + 33
2 𝐶 + 9𝐶2 + 3

2𝐶3
෸ ว

𝐿2

𝜆3 ศ ว
𝐿3

𝜆3 ศ
2

ว1 − 𝐿3

𝜆3 ศ
𝐶

, (2.62)

where 𝜆 and 𝐿 are respectively the size of the mother and of the daughter bubble, and 𝑁𝑓 =
4/3 + 𝐶/3 is a factor calculated by imposing two essential conditions:

⎧⎪
⎨
⎪⎩

඘
∞

0
𝑃(𝐿|𝜆)d𝐿 = 𝑁𝑓 ,

඘
∞

0
𝑃(𝐿|𝜆)𝐿3d𝐿 = 𝜆3.

(2.63)

This model was proposed in order to avoid heavy numerical calculations (when PBE is
solved) due to complex dependence on fluid properties, still giving results similar to other
formulations: 𝛽-PDF was successfully validated in a case of aerated stirred tanks (Laakko-
nen et al., 2006; Petitti et al., 2010), and due to its flexibility can be extended also in the case
of bubble columns. However a validation process with experiments is still needed.

A slight modification of this functional was proposed by Buffo et al. (2013), in which
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the dependence on bubble composition 𝜙b (i.e., the total number of moles of a chemical
component) was included:

𝑃(𝐿, 𝜙b|𝜆, 𝜙b,𝜆) = 1
12(𝐶 + 1)2(𝐶 + 2)2(𝐶 + 3)2(𝐶 + 4)2

×
𝜙2

b

𝜙3
b,𝜆

ว1 − 𝜙b
𝜙b,𝜆 ศ

𝐶 𝐿2

𝜆3 ว
𝐿3

𝜆3 ศ
2

ว1 − 𝐿3

𝜆3 ศ
𝐶

, (2.64)

where 𝜆 and 𝜙b,𝜆 represent respectively the size and the number of moles of the parent
bubble, while 𝐿 and 𝜙b are the properties of the daughter bubble. 𝐶 is a parameter that
indicates the type of breakage and is equal to two for binary breakage, the most common
situation in the case of gas bubbles (Andersson and Andersson, 2006). It is clear that this
formulationwill be used in a bivariate case, while Eq. (2.62) will be usedwhen amonovariate
PBE will be solved.

Coalescence kernel

Bubble coalescence is a mechanism composed by three steps: approach and collision be-
tween two bubbles, drainage of the liquid film separating the bubbles and their final union
consequent to the breakage of the liquid film. The first step brings very close the two collid-
ing bubbles, trapping a film of liquid between them: this phase is controlled by the external
forces acting on the bubbles and their motion. The next step is the controlling one: in fact, the
trapped liquid must be drained out to reach the critical thickness at which break-up occurs,
caused by fluid instabilities. Moreover, there are numerous mechanisms that may induce
bubble collision: turbulent eddies may cause relative motion and the subsequent collision
between bubbles, velocity gradients of the continuous phase may make bubbles approach
and collide or a smaller bubble trapped into the wake of a bigger rising bubble may reach
the other one due to buoyancy and coalesce. The first two mechanisms are prevailing in the
case of turbulent systems or when the continuous phase moves as a consequence of agita-
tion, while in the case of stagnant liquid and low turbulent fluctuations the third mechanism
is predominant. A model for bubble coalescence kernels must contain the information relat-
ing to the frequency of collision due to various mechanisms, and the efficiency of collision
due to the breakage of the liquid film, considering that not all bubble collisions may generate
a new bubble (Jakobsen, 2008; Marchisio and Fox, 2013).

A generic form of the coalescence kernel is generally derived in analogy with the kinetic
theory of gases (Marchisio and Fox, 2013), and its calculation is based on the number of
bubbles swept by one bubble moving in a collisional cylinder with diameter equal to the
summation of the radii of the two colliding bubbles. For two bubbles of sizes 𝐿 and 𝜆, the
kernel can be approximated by:

𝛼(𝜆, 𝐿, 𝐔r) = 𝜋
4 (𝜆 + 𝐿)2 |𝐔r| 𝜂(𝐔r) (2.65)
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where the first term represents the section of the collisional cylinder and the second term
involving 𝐔r = 𝐔𝜆 − 𝐔𝐿 quantifies the relative velocity of two colliding bubbles. Further-
more, the function 𝜂(𝐔r) says how efficient is the collision to produce coalescence. This
term is proportional to the ratio between the collision time interval and the coalescence time
interval: there is coalescence only if the two bubbles are in contact for a time sufficient to
allow liquid drainage for reducing the film thickness up to the critical value. Collisional time
is linked to the turbulence characteristic scale and the rate of turbulence dissipation energy
𝜖. Coalescence time depends on the mobility of bubble surface: for example in high viscos-
ity systems, coalescence times are bigger due to the drainage in laminar regime. In general,
other aspects may influence the coalescence time interval, as the presence of surfactant or
impurities in the continuous phase.

It is possible to introduce bubble velocity into the population balance description by solv-
ing Eq. (2.31), while in Eq. (2.33) the dependence on velocity disappeared due to integration
process, reducing the computational costs for the problem solution. Moreover, the knowl-
edge of the velocities of colliding bubbles is in general not needed when turbulence prevails
over other collisional mechanism. In the work of Coulaloglou and Tavlarides (1977), a very
popular kernel based on isotropic turbulence theory was derived:

𝛼(𝜆, 𝐿) = 𝐶1 𝜖1/3(𝜆 + 𝐿)2(𝜆2/3 + 𝐿2/3)1/2𝜂(𝜆, 𝐿), (2.66)

where 𝐶1 is a constant of the model and 𝜖 is the local turbulent dissipation rate. The expres-
sion proposed for the coalescence efficiency is the following:

𝜂(𝜆, 𝐿) = exp
⎛
⎜
⎜
⎝
−𝐶2฻

2𝜌c𝜖2/3

𝜎
𝜆𝐿

𝜆 + 𝐿
⎞
⎟
⎟
⎠

(2.67)

in which the inertia of the draining liquid and the surface tension 𝜎 are considered the most
important factors generating the breakage of the film between the two colliding bubbles.
Prince and Blanch (1990) proposed another formulation for the efficiency, based on the fact
that bubble surfaces are stationary during liquid drainage:

𝜂(𝜆, 𝐿) = exp ว−𝐶2
𝜇c𝜌c𝜖

𝜎2 ෷
𝜆𝐿

𝜆 + 𝐿෸
4

ศ . (2.68)

In the work of (Laakkonen et al., 2006; Petitti et al., 2010), Eq. (2.66) combined with
Eq. (2.68) was used for simulate the evolution of a disperse phase in an aerated stirred tank,
showing a good match with the experimental data by using 𝐶1 = 0.88 and 𝐶2 = 6 ⋅ 109.
When the relative importance of turbulent approaching mechanism decreases as in bubble
columns, the value of 𝐶1 must be changed in order to reduce the coalescence frequency.
The value tested in this work is 𝐶1 = 0.28, but further tests are necessary to ensure the
correctness of a similar procedure.

As it is possible to see in Eq. (2.66), the coalescence kernel for a pure air-water sys-
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tem depends only on bubble size; the same dependence is observed in Eq. (2.55) for bubble
breakage frequency. However, other systems may exhibit an effect of composition. As
previously said, a remarkable example is the contaminated gas-liquid systems, where the
presence of impurities accumulating at the gas-liquid interface may significantly increase
the coalescence time reducing the coalescence efficiency. Although the effect of composi-
tion on kernels is clear from a qualitative point of view, there is still a lack of knowledge
regarding the kernel formulation under such conditions. For this reason, it is worth testing
the accuracy and the robustness of the investigated multivariate population balance by in-
troducing kernels with a dependence on bubble composition. In the proposed kernel based
on the work of Marshall Jr. et al. (2011), a composition-dependent term is multiplied by the
classical size-dependent kernel, amplifying or hindering coalescence, according to the spe-
cific chemical affinity of components in the disperse phase. Although this model does not
represent any realistic gas-liquid system, the purpose of accuracy assessment of the solution
methods is still valid. In fact, similar kernel formulation may be interesting in other appli-
cation areas (e.g., solid-liquid or gas-solid flows). The functional form of the composition
dependent kernel is the following:

𝛼(𝜆, 𝐿, 𝜉𝜆, 𝜉𝐿) = 𝛼1(𝜆, 𝐿)𝛼2(𝜉𝜆, 𝜉𝐿), (2.69)

where 𝜉𝜆 and 𝜉𝐿 are respectively the molar fractions of oxygen in the bubbles of size 𝜆 and
𝐿. The composition factor 𝛼2(𝜉𝜆, 𝜉𝐿) is defined in the following way:

𝛼2(𝜉𝜆, 𝜉𝐿) = exp{𝐶1𝜉𝜆𝜉𝐿 + 𝐶2(1 − 𝜉𝜆)(1 − 𝜉𝐿) + 𝐶3(𝜉𝜆 + 𝜉𝐿 − 2𝜉𝜆𝜉𝐿)}, (2.70)

where the constants 𝐶1, 𝐶2 and 𝐶3 influence the frequency of coalescence (positive values to
amplify, negative values to hinder) in case of preferential oxygen-oxygen, nitrogen-nitrogen
and oxygen-nitrogen coalescence respectively. Here the following values are assumed: 𝐶1 =
3, 𝐶2 = −2 and 𝐶3 = 2, representing the case in which oxygen-oxygen is the most likely
coalescence event over oxygen-nitrogen, while nitrogen-nitrogen is unlikely.

2.3 Solution methods
In the previous sections, the general concept of PBE and a specific formulation for a gas-
liquid systems were introduced. As explained in Section 2.2, it is possible for this particular
case to derive a bivariate PBE (with bubble size and composition of a chemical component
as internal coordinates), Eq. (2.33) and Eq. (2.35), by integrating out the dependence on bub-
ble velocity 𝐔b of the GPBE indicated in Eq. (2.31), losing therefore the information about
velocity distribution and simplifying the description of the system. Moreover, by using the
same procedure it is possible to obtain a monovariate PBE, Eq. (2.37) and Eq. (2.38), consid-
ering all the bubbles have the same composition. In Chapter 3, a method for calculating the
bubble velocity conditioned over the values of bubble size and composition, 𝐔̌b(𝐿, 𝜙b; 𝐱, 𝑡)
defined in Eq. (2.34) is explained in detail; in this part of this dissertation the velocity of
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bubbles is assumed to be known.
As remarked in Section 2.1, it is possible to deterministically characterize the evolution

of NDF in space and time by solving the PBE; however the analytical solution is available
only for very simple systems considering particular initial and boundary conditions and sim-
plified or no discontinuous events (Hulburt and Katz, 1964). As seen in Section 2.2.1 and
Section 2.2.2, where functional forms for realistically modeling of oxygen absorption in liq-
uid and of collisional events for air bubbles in water are introduced, the nature of the PBE
can be intrinsically non-linear. Therefore, numerical methods are in practical cases the only
approach available.

An overview of different numerical methods for the solution of PBE can be found in
Chapter 1. Here it is important to remind that these methods can be classified according
to the adopted solution strategy: Sectional Methods (SM), in which the internal-coordinate
space is discretized using different strategies (Classes Methods (Vanni, 2000; Kumar et al.,
2008), Finite Volume Methods (Gunawan et al., 2004) and Finite Element Methods (Godin
et al., 1999) belong to this group); Methods of Moments (MOM) (Hulburt and Katz, 1964),
in which the dependence on internal coordinates is integrated out by solving the transport
equation only for some moments of NDF; Monte Carlo Methods (MCM) (Liffman, 1992;
Zhao et al., 2007), i.e., direct numerical simulations describing the evolution of a certain
number of notional bubbles assumed to be statistically significant for the entire population.

As already pointed out in this dissertation, MOM are very promising due to their low
computational load among these numerical methods, and can be coupled with CFD in order
to obtain prediction of industrial scale systems with affordable computational costs. How-
ever, it is important to remark that MOM are approximated methods requiring the assess-
ment of the accuracy through comparison with other detailed solution methods, at least for
simplified cases (Zucca et al., 2007; Buffo et al., 2013).

Besides this classification, it is important to remind that solution methods for monovari-
ate NDF (i.e., with only one internal coordinate) and bivariate or in general multivariate
NDF (i.e., with two or more internal coordinates) can be very different in terms of algo-
rithms or strategies. In fact, while MCM maintain the same solution structure in both cases
(increasing only the memory requirements), the extension of methods originally formulated
for monovariate to multivariate descriptions, as SM and MOM, is not straightforward. As
said in Chapter 1, SM for multivariate PBE introduce the problem of the discretization for
a generic 𝑁-dimensional phase space, that can be solved in different ways (Kumar et al.,
2008; Nandanwar and Kumar, 2008) however, increasing enormously the computational
costs compared to the monovariate case. Also in this case, MOM seem to be the only way
feasible for predicting the evolution of a multivariate NDF in a large scale multiphase equip-
ment (Buffo et al., 2012; Petitti et al., 2012), although solution methods are different with
respect to the monovariate case.

A definition of a generic-order moment for a very general NDF is expressed in Eq. (2.6),
while in Eq. (2.30) the definition is reported of a generic-order moment according to the
NDF written as in Eq. (2.29) for a bubble population distributed over size, composition and
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velocity. Since in this section the solution methods used in this work will be presented, it is
crucial to define these quantities:

𝑀𝑘,𝑙(𝐱, 𝑡) = ඙
∞

0
𝑛(𝐿, 𝜙b; 𝐱, 𝑡)𝐿𝑘𝜙𝑙

b d𝐿d𝜙b, (2.71)

𝑀𝑘(𝐱, 𝑡) = ඘
∞

0
̃𝑛(𝐿; 𝐱, 𝑡)𝐿𝑘d𝐿, (2.72)

representing respectively the moment of order 𝑘 with respect to bubble size and order 𝑙 with
respect to bubble oxygen composition according to the bivariate NDF defined in Eq. (2.32)
and the moment of order 𝑘 with respect to bubble size according to the monovariate NDF
defined in Eq. (2.36).

By applying the moment transform as defined in Eq. (2.71) for all the terms reported in
Eq. (2.33), the transport equation for a generic moment can be written (since both number
density functions and moments depend on space and time, the dependencies are omitted for
clarity):

𝜕𝑀𝑘,𝑙
𝜕𝑡 = − 𝜕
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0
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b
̇𝜙b(𝐿, 𝜙b)𝑛(𝐿, 𝜙b)d𝜙b + 𝐻𝑘,𝑙, (2.73)

where the velocity of the generic moment 𝐔̌𝑘,𝑙 and the collisional term 𝐻𝑘,𝑙 are defined as
follows:
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0
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, (2.74)

𝐻𝑘,𝑙 = ඙
∞

0
ℎ(𝐿, 𝜙b)𝐿𝑘𝜙𝑙

b d𝐿d𝜙b. (2.75)

As seen in Eq. (2.35), spatial gradients vanish in a closed spatially homogeneous system and
Eq. (2.73) becomes:

d𝑀𝑘,𝑙
d𝑡 = ඘

∞

0
𝑘𝐿𝑘 𝐺(𝐿, 𝜙b)𝑛(𝐿, 𝜙b)d𝐿

+ ඘
∞

0
𝑙 𝜙𝑙

b
̇𝜙b(𝐿, 𝜙b)𝑛(𝐿, 𝜙b)d𝜙b + 𝐻𝑘,𝑙. (2.76)

In analogy with the bivariate case, it is possible to write for a generic moment of the
monovariate PBE the following transport equations for the inhomogeneous and homoge-
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neous systems respectively:

𝜕𝑀𝑘
𝜕𝑡 = − 𝜕

𝜕𝐱 (𝑀𝑘𝐔̌𝑘) + ඘
∞

0
𝑘𝐿𝑘 𝐺(𝐿)𝑛(𝐿)d𝐿 + 𝐻𝑘, (2.77)

d𝑀𝑘
d𝑡 = ඘

∞

0
𝑘𝐿𝑘 𝐺(𝐿)𝑛(𝐿)d𝐿 + 𝐻𝑘, (2.78)

where now the velocity of the generic moment 𝐔̌𝑘 and the collisional term 𝐻𝑘 are defined
as:

𝐔̌𝑘 =
඘

∞

0
𝐔̌b(𝐿) 𝑛(𝐿) 𝐿𝑘 d𝐿

඘
∞

0
𝑛(𝐿)𝐿𝑘 d𝐿

, (2.79)

𝐻𝑘 = ඘
∞

0
ℎ(𝐿)𝐿𝑘d𝐿. (2.80)

It is clear that Eq. (2.73) and Eqs. (2.76) to (2.78) are not closed, because the functional
form of the underlying NDF is in general not known. This is the so-called “closure problem”
pointed out in the first work on MOM of Hulburt and Katz (1964). As already reported in
Chapter 1, a closure was proposed by assuming the functional form of the NDF as a summa-
tion of delta functions centered on nodes of Gaussian quadrature approximation (McGraw,
1997; Marchisio and Fox, 2013). By using this approach, the following expression can be
written for the bivariate case:

𝑛(𝐿, 𝜙b) =
𝑁

𝑖්=1
𝑤𝑖 𝛿(𝐿 − 𝐿𝑖) 𝛿(𝜙b − 𝜙b,𝑖), (2.81)

and for the monovariate case:

𝑛(𝐿) =
𝑁

𝑖්=1
𝑤𝑖 𝛿(𝐿 − 𝐿𝑖). (2.82)

From the physical point of view, Eq. (2.81) can be easily explained: the entire bubble
population is divided into 𝑁 different groups, each one of them contains bubbles of uni-
form size and composition and corresponds to a node of the quadrature approximation. The
meaning of each term is the following: 𝑤𝑖 is the number density (i.e., the number of bubbles
per unit of total volume, consequently to the definition of number density function 𝑛) of the
bubbles with size equal to 𝐿𝑖 and composition equal to 𝜙b,𝑖. In the monovariate case, the
explanation is straightforward.

By using the quadrature approximation expressed in Eq. (2.81) and Eq. (2.82), it is pos-
sible write all the unclosed terms of Eq. (2.73) and Eq. (2.78) (and, of course, their homoge-
nous system counterparts) as a function of 𝑁 quadrature weights and nodes. By applying
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the moment transform to the collisional term reported Eq. (2.51) and then substituting NDF
dependence with Eq. (2.81), it is possible to write (omitting all the passages):

𝐻𝑘,𝑙 = 1
2

𝑁

𝑖්=1

𝑁

𝑗්=1
𝛼(𝐿𝑖, 𝐿𝑗)𝑤𝑖𝑤𝑗 ෺(𝐿3

𝑖 + 𝐿3
𝑗 )𝑘/3 ඳ𝜙b,𝑖 + 𝜙b,𝑗ප𝑙 − 𝐿𝑘

𝑖 𝜙𝑙
b,𝑖 − 𝐿𝑘

𝑗 𝜙𝑙
b,𝑗෻

+
𝑁

𝑖්=1
𝛽(𝐿𝑖)𝑤𝑖( ̄𝑃 (𝑖)

𝑘,𝑙 − 𝐿𝑘
𝑖 𝜙𝑙

b,𝑖) (2.83)

where 𝛼(𝐿𝑖, 𝐿𝑗) and 𝛽(𝐿𝑖) are respectively the aggregation kernel and the breakage fre-
quency, modeled as in Section 2.2.2, and

̄𝑃 (𝑖)
𝑘,𝑙 = ඘Ω𝐿

඘Ω𝜙b

𝐿𝑘𝜙𝑙
b𝑃(𝐿𝑖, 𝜙b,𝑖|𝜆, 𝜙b,𝜆)d𝐿d𝜙b, (2.84)

is the generic order moment (𝑘 with respect to size and 𝑙 with respect of composition) of
the daughter distribution function, described in Section 2.2.2. For the monovariate case, the
source term of a generic order moment 𝑀𝑘 can be written as (omitting all the calculations):

𝐻𝑘 = 1
2

𝑁

𝑖්=1

𝑁

𝑗්=1
𝛼(𝐿𝑖, 𝐿𝑗)𝑤𝑖𝑤𝑗 ෺(𝐿3

𝑖 + 𝐿3
𝑗 )𝑘/3 − 𝐿𝑘

𝑖 − 𝐿𝑘
𝑗 ෻

+
𝑁

𝑖්=1
𝛽(𝐿𝑖)𝑤𝑖( ̄𝑃 (𝑖)

𝑘 − 𝐿𝑘
𝑖 ). (2.85)

As for Eq. (2.83) and Eq. (2.85), all the unclosed terms of moment transport equation can
be written in terms of weights and quadrature nodes. At this point, it is crucial to establish
a procedure for relating weights and nodes to the underlying moment set. This is the topic
of the following sections, where QBMM will be introduced.

It is worth mentioning also an important case examined in this dissertation, namely when
the system is open, well-mixed, and there is continuous injection and extraction of bubbles
in a liquid. The transport equation for a generic order moment 𝑘, 𝑙 can be written as follows:

d 𝑀𝑘,𝑙
d𝑡 = −

(𝑀𝑘,𝑙)o𝑢𝑡 − (𝑀𝑘,𝑙)i𝑛
𝜏 + ඘

∞

0
𝑘𝐿𝑘 𝐺 𝑛(𝐿, 𝜙b)d𝐿

+ ඘
∞

0
𝑙 𝜙𝑙

b
̇𝜙b 𝑛(𝐿, 𝜙b)d𝜙b + 𝐻𝑘,𝑙. (2.86)

where 𝜏 is the bubble mean residence time and (𝑀𝑘,𝑙)i𝑛 is the generic moment of the inlet
bubble population. By establishing an analogy with the continuous stirred tank reactor the-
ory, it is possible to assume assume that (𝑀𝑘,𝑙)o𝑢𝑡 is equal to 𝑀𝑘,𝑙. The importance of this
case will be pointed out in the following sections.
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2.3.1 Direct Simulation Monte Carlo
The method described in this section takes into account the evolution of the bubble pop-
ulation in a volume 𝑉 , divided in 𝑁𝑣 smaller and well-mixed subvolumes 𝑉𝑣 (with 𝑣 =
1, 2, … , 𝑁𝑣), called “reservoirs”. Since the actual population within a single subvolume
can be extremely large, it is reasonable to consider only a portion Δ𝑉𝑣 = 𝛼𝑉𝑣 with 𝛼 << 1
in order to deal with a reasonable number of bubbles.

Each bubble is characterized by the indices 𝑖 and 𝑣, indicating the 𝑖−th bubble of the
subvolume Δ𝑉𝑣, with size 𝐿𝑖 and oxygen number of moles 𝜙b,𝑖. The method calculates the
frequency of the considered events:

• Coalescence between two bubbles 𝑖 and 𝑗 of the same subvolume Δ𝑉𝑣.
Since coalescence is a consequence of collision between two bubbles, its rate per unit
volume is formulated as follows:

𝑟(𝑐)
𝑖,𝑗,𝑣 = 𝛼𝑖,𝑗,𝑣𝑐𝑖,𝑣𝑐𝑗,𝑣 (2.87)

where 𝛼𝑖,𝑗,𝑣 = 𝛼𝑣(𝐿𝑖,𝑣, 𝜙b,𝑖,𝑣; 𝐿𝑗,𝑣, 𝜙b,𝑗,𝑣) is the coalescence kernel, 𝑐𝑖,𝑣 and 𝑐𝑗,𝑣 are the
numerical concentration of the 𝑖−th and 𝑗−th bubble (i.e., number of bubbles per unit
volume). Considering that for only one bubble (𝑖−th or 𝑗−th) the concentration in the
subvolume Δ𝑉𝑣 is equal to 1/Δ𝑉𝑣, it is possible to write the coalescence frequency as:

𝑓 (𝑐)
𝑖,𝑗,𝑣 = 𝑟(𝑐)

𝑖,𝑗,𝑣Δ𝑉𝑣 = 𝛼𝑖,𝑗,𝑣𝑐𝑖,𝑣𝑐𝑗,𝑣Δ𝑉𝑣 =
𝛼𝑖,𝑗,𝑣
Δ𝑉𝑣

. (2.88)

• Breakage of the 𝑖−th bubble in subvolume Δ𝑉𝑣.
Since the breakage is a first order process depending on the hydrodynamic field, its
rate per unit volume is expressed as:

𝑟(𝑏)
𝑖,𝑣 = 𝛽𝑖,𝑣𝑐𝑖,𝑣, (2.89)

where 𝛽𝑖,𝑣 = 𝛽𝑣(𝐿𝑖) is the breakage kernel and 𝑐𝑖,𝑣 the concentration of the 𝑖−th bubble
in subvolume Δ𝑉𝑣. As before, the frequency is defined as:

𝑓 (𝑏)
𝑖,𝑣 = 𝑟(𝑏)

𝑖,𝑣Δ𝑉𝑣 = 𝛽𝑖,𝑣. (2.90)

In fact, the breakage kernel 𝛽(𝐿𝑖) has units of the inversion of time.

• Bubble 𝑖 moving from subvolume Δ𝑉𝑣 to another reservoir.
Inside the physical volume 𝑉 , a bubble may move from subvolume Δ𝑉𝑣 to any point
of the system: if it remains into the same reservoir, it is reasonable to assume that
another identical bubble of the reservoir 𝑉𝑣 moves into the subvolume Δ𝑉𝑣, replacing
the old one, thus canceling the effect of this phenomenon. On the contrary, when the
bubble moves to another reservoir, it is necessary to define the frequency of this event:
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𝑓 (𝑚)
𝑖,𝑣 = 1

𝜏𝑣
, (2.91)

where 𝜏𝑣 is the average residence time of a bubble in reservoir 𝑣. It is obvious that,
when a new bubble enters a different reservoir 𝑉𝑢, it does not directly move into the
subvolume Δ𝑉𝑢 due to the small size of the subvolume compared to the reservoir.
However, it is reasonable to assume that when a bubble moves from Δ𝑉𝑣 to 𝑉𝑢, another
identical bubble moves from 𝑉𝑢 to Δ𝑉𝑢. Therefore it is possible to assume that bubble
motion takes place directly among subvolumes.

• Bubble 𝑖 injected into the subvolume Δ𝑉𝑣 from outside.
Since a generic open system is considered, also the injection frequency is indicated
with 𝑓 (𝑖)

𝑖,𝑣 , corresponding to the number of bubbles entering into the system from out-
side per unit time.

The total event frequency is the sum of the frequency of all possible events:

𝑓 (𝑡𝑜𝑡) =
𝑁𝑣

𝑣්=1

⎛
⎜
⎜
⎝

𝑁𝑏(𝑣)

𝑖්=1

𝑁𝑏(𝑣)

්
𝑗=𝑖+1

𝑓 (𝑐)
𝑖,𝑗,𝑣 +

𝑁𝑏(𝑣)

𝑖්=1
𝑓 (𝑏)

𝑖,𝑣 +
𝑁𝑏(𝑣)

𝑖්=1
𝑓 (𝑚)

𝑖,𝑣 + 𝑓 (𝑖)
𝑖,𝑣

⎞
⎟
⎟
⎠

(2.92)

where 𝑁𝑏(𝑣) is the number of bubbles contained in Δ𝑉𝑣.
If an event has occurred at time 𝑡0, the probability for a new event of any type to take

place at time 𝑡 = 𝑡0 + Δ𝑡 is described by the following law, typical of a Poisson process:

Pr(Δ𝑡) = 1 − exp ඳ−𝑓 (𝑡𝑜𝑡)Δ𝑡ප . (2.93)

In other words, it is possible to determine the interval of quiescence Δ𝑡 at which a new
event occurs by means of a random variable with cumulative probability density function
expressed in Eq. (2.93).

Once determined the time at which an event occurs, it is necessary to establish the nature
of this event. The probability of a generic event 𝑘 is defined as:

Pr𝑘 = 𝑓𝑘
𝑓 (𝑡𝑜𝑡) . (2.94)

After having ordered properly the list of all possible events, a random number 𝜉 is picked
from a uniform distribution between 0 and 1 and the chosen event is that with the index 𝑞,
satisfying the following relation:

𝑞−1

𝑘්=1
Pr𝑘 < 𝜉 ≤

𝑞

𝑘්=1
Pr𝑘. (2.95)

This method is the so-called “inversion method” (Gillespie, 1976; Garcia et al., 1987; Kruis
et al., 2000). Another method used to determine the nature of the event is the “acceptance-
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rejection” procedure (Smith and Matsoukas, 1998; Tandon and Rosner, 1999), where an
event 𝑘 is randomly selected (independently from its actual frequency 𝑓𝑘: the event is ac-
cepted if

𝜉 < 𝑓𝑘
max𝑖 𝑓𝑖

(2.96)

where 𝜉 a uniformly distributed (between 0 and 1) random number. If the event is rejected, a
new event is selected and the procedure is repeated using a new random number. However,
this method is more susceptible to the goodness of the random number generator algorithm
leading to larger errors compared with the more rigorous “inversion method” (Kruis et al.,
2000). Therefore, the “inversion method” is used in this work.

All the information relating to the bubble population is kept in a large array 𝑅, whose
element 𝑅𝑣,𝑖,𝑘 is the value of the 𝑘−th internal coordinate of the 𝑖−th bubble belonging to
the subvolume Δ𝑉𝑣. After the procedure determining the quiescence time Δ𝑡 and the nature
of the event, the array is updated according to the selected event. In the case of coalescence
between bubble (𝑖, 𝑣) and bubble (𝑗, 𝑣), bubble (𝑗, 𝑣) is removed by the population (canceling
the 𝑘 values of 𝑅𝑣,𝑗,𝑘) and bubble (𝑖, 𝑣) is substituted by the new formed bubble. In the case
of breakage of bubble (𝑖, 𝑣), this bubble is replaced by one of the fragments (according to
the daughter distribution function) while other daughter bubbles are added to the array 𝑅 as
new elements. In the case of bubble injection, a new array element is added according to
the boundary condition imposed. It is indeed that new internal-coordinate values follow the
proper law described by the physics of the system.

The case of bubble motion requires further explanations: the matrix 𝑃 is defined in such
a way that its element 𝑃𝑣,𝑢 represents the probability for the bubble (𝑖, 𝑣) to exit from the
volume 𝑣 and enter in volume 𝑢. It is clear that for a closed system 𝑃𝑣,𝑣 = 0 and ∑𝑁𝑣

𝑢=1 𝑃𝑣,𝑢 =
1, but for an open system this is not longer true. When the bubble motion event is selected
by the algorithm, the destination of the bubble is established by extracting another random
number 𝜁 from a uniform distribution between 0 and 1, following the relationship:

𝑢−1

𝑣්,𝑘
𝑃𝑣,𝑘 < 𝜁 ≤

𝑢

𝑣්,𝑘
𝑃𝑣,𝑘. (2.97)

Since the mass transfer process is slower than bubble coalescence and breakage, in this
work it is not treated in the same way as the other events. According to the calculated
mass transfer rates, the internal coordinates of the bubble population are updated after a
certain number 𝑁𝑒 of consecutive events in order to reduce the computational effort of this
procedure. By assuming that the liquid phase is well-mixed, also a variable related to the
composition of the chemical species in the liquid phase is integrated with respect to time by
using an explicit first-order forward scheme after 𝑁𝑒 events. In this work, the value of 𝑁𝑒
adopted was equal to 20, since no significant differences were detected in the solution with
further reductions.

It is worth mentioning a very common issue of coalescence-breakage problems is rep-
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resented by the number of the simulated bubbles during the simulation: if the coalescence
prevails this number reduces, possibly leading to statistical unreliable results; whereas if
breakage event is more frequent, the total number of simulated bubbles increases until a
unsustainable situation is reach in terms of computational time. This issue is usually over-
come by using the “doubling-halving” procedure described in Liffman (1992), in which the
population is doubled or halved if the number of simulated bubble reaches a minimum or
a maximum limit. However, the mass transfer process imposes the conservation of the to-
tal number of moles of the exchanged chemical species: this procedure can not be adopted
in this situation and the total number of bubbles is here simply monitored over the entire
simulation.
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2.3.2 Quadrature Method of Moments
As previously mentioned, the closure problem typical of MOM can be solved by imposing
a functional form for the NDF and QBMM use the quadrature approximation for overcome
this issue. The Quadrature Method of Moments was originally formulated in the work of
McGraw (1997), and it is specifically defined for monovariate NDF. In Eq. (2.82) the typical
functional form given by QBMM for a monovariate NDF is already reported; moreover, by
substituting the Eq. (2.82) into Eq. (2.72) it is possible to write what follows:

𝑀𝑘 =
𝑁

𝑖්=1
𝑤𝑖𝐿𝑘

𝑖 , (2.98)

where a generic 𝑘−order moment is expressed as a function of 𝑁 weights and nodes of
quadrature.

Since moments are the transported quantities of Eq. (2.77) and Eq. (2.78), while weights
and nodes are used to formulate the unclosed terms as performed in Eq. (2.85), it is necessary
to establish a procedure capable to express the quadrature weights and nodes as a function
of moments themselves. This procedure is usually called “inversion algorithm” (McGraw,
1997; Marchisio et al., 2003). It is certainly possible to determine the 𝑁 weights and nodes
by solving the following non-linear system:

⎧⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

𝑀0 =
𝑁

𝑖්=1
𝑤𝑖

𝑀1 =
𝑁

𝑖්=1
𝑤𝑖𝐿𝑖

…

𝑀2𝑁−1 =
𝑁

𝑖්=1
𝑤𝑖𝐿2𝑁−1

𝑖

(2.99)

This non-linear system can be solved by using a non-linear equation solver (e.g., Newton-
Raphson); however, this is not a very efficient method since a very good initial guess is
needed to ensure convergence (Marchisio and Fox, 2013). In this part of the dissertation, an
efficient and stable procedure will be explained in detail.

As this method is based on quadrature theory, some preliminary concept will be in-
troduced. According to this theory, the NDF (as reported in Eq. (2.36)) is called weight
function or measure, must be non-negative and non-null in the integration interval and all
its moments of any 𝑘 order (as defined in Eq. (2.72)) must exist (Gautschi, 2004; Press
et al., 2007; Marchisio and Fox, 2013). Since the physical reality is here described, all these
requirements are in general satisfied by the defined NDF. It is important to define the or-
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thogonal polynomials (Gautschi, 2004):

{𝑃0(𝐿), 𝑃1(𝐿), … , 𝑃𝑖(𝐿)}
with 𝑃𝑖(𝐿) = 𝑘𝑖,0𝐿𝑖 + 𝑘𝑖,1𝐿𝑖−1 + ⋯ + 𝑘𝑖,𝑖 (2.100)

is orthogonal in the interval of integration Ω𝐿, with respect to the measure function 𝑛(𝐿), if

඘Ω𝐿

𝑛(𝐿)𝑃𝛼(𝐿)𝑃𝛽(𝐿)d𝐿
๜

= 0 for 𝛼 ≠ 𝛽,
> 0 for 𝛼 = 𝛽.

(2.101)

A consequence of this definition is that the integration domain Ω𝐿 and the weight func-
tion 𝑛(𝐿) uniquely define the family of polynomials {𝑃𝑖(𝐿)}. An important relation of the
orthogonal polynomials is that:

𝑃𝑖+1(𝐿) = (𝐿 − 𝑎𝑖)𝑃𝑖(𝐿) − 𝑏𝑖𝑃𝑖−1(𝐿) with 𝑖 = 0, 1, 2, … (2.102)

with 𝑃−1(𝐿) = 0, 𝑃0(𝐿) = 1 and where

𝑎𝑁 =
඘Ω𝐿

𝐿𝑛(𝐿)𝑃𝑖(𝐿)𝑃𝑖(𝐿)d𝐿

඘Ω𝐿

𝑛(𝐿)𝑃𝑖(𝐿)𝑃𝑖(𝐿)d𝐿
with 𝑖 = 0, 1, 2, … (2.103)

𝑏𝑁 =
඘Ω𝐿

𝑛(𝐿)𝑃𝑖(𝐿)𝑃𝑖(𝐿)d𝐿

඘Ω𝐿

𝑛(𝐿)𝑃𝑖−1(𝐿)𝑃𝑖−1(𝐿)d𝐿
with 𝑖 = 1, 2, … (2.104)

Eq. (2.102) is the so-called “recurrence formula” of orthogonal polynomials and is an im-
portant relation used for computing the quadrature approximation. The knowledge of the
recursion coefficients indicated in Eq. (2.103) and Eq. (2.104) allows to calculate the zeros
of the orthogonal polynomials. In fact, the recursive relationship is capable to generate a
sequence of polynomials orthogonal with respect to the weight function in the integration
interval. An important feature is that, as shown in Marchisio and Fox (2013), it is possible
to write the coefficients 𝑎𝑖 and 𝑏𝑖 in terms of the moments of the NDF. Furthermore, it is
possible to demonstrate that each polynomial belonging to an orthogonal sequence has all
its roots real, distinct, and strictly inside the integration interval (the entire demonstration
can be found in Gautschi, 2004). Now it is clearer the choose of Gaussian quadrature to
approximate the NDF (Eq. (2.82)): the roots of the orthogonal polynomials are in turn the
nodes of the approximation quadrature. Moreover, Gaussian quadrature formulas are used
because of its accuracy property: an interpolation formula with 𝑁 equally-spaced nodes
(i.e.,Newton-Cotes) has a degree of accuracy of 𝑁 − 1, whereas a Gaussian quadrature has
a degree of accuracy of 2𝑁 − 1. However, the definition of degree of accuracy is based on
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having polynomials as the integrand function, for this reason the quality of the quadrature
must be assessed when another integrand function (as in the case of source term of PBE,
expressed in Eq. (2.51)) is evaluated.

By using the recursive relationship of the orthogonal polynomials, it is possible to find
the weights and nodes of quadrature (Wilf, 1962; Gautschi, 1997, 2004; Marchisio and Fox,
2013). The sequence of recursive relationships can be written in matrix form as:

𝐿

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑃0(𝐿)
𝑃1(𝐿)
𝑃2(𝐿)

⋮
𝑃𝑁−1(𝐿)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0 1
𝑏1 𝑎1 1

𝑏2 𝑎2 1
⋱ ⋱ ⋱

𝑏𝑁−1 𝑎𝑁−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑃0(𝐿)
𝑃1(𝐿)
𝑃2(𝐿)

⋮
𝑃𝑁−1(𝐿)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
⋮

𝑃𝑁 (𝐿)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (2.105)

Eq. (2.105) shows that the zeros of 𝑃𝑁 (𝐿) (i.e., the nodes of the quadrature approximation
𝐿𝑖) are the eigenvalues of the tridiagonal matrix appearing in the equation. Eventually, this
matrix can be transformed in symmetric by means of a diagonal similarity transformation,
and so preserving the eigenvalues, to give the so-called Jacobi matrix:

𝐉 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0 √𝑏1
√𝑏1 𝑎1 √𝑏2

√𝑏1 𝑎2 √𝑏3
⋱ ⋱ ⋱

√𝑏𝑁−1 𝑎𝑁−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (2.106)

This procedure transforms the ill-conditioned problem of finding the roots of a polynomial
described in Eq. (2.99) into the well-conditioned problem of finding the eigenvalues and
eigenvectors of a tridiagonal symmetric matrix. In the work of Wilf (1962), it is shown that
the 𝑁 weights can then be calculated as 𝑤𝑖 = 𝑀0𝑗2

𝛼1, where 𝑗𝛼1 represent the first component
of the 𝛼−th eigenvector 𝐣𝛼 of the Jacobi matrix. As previously mentioned, the coefficients
𝑎𝑁 and 𝑏𝑁 of Eq. (2.102) can be calculated by means of the orthogonality condition and
by using the moments of the NDF. Two efficient methods for calculating the Jacobi matrix
from themoments, the Product-Difference algorithm (Gordon, 1968) andWheeler algorithm
(Wheeler, 1974) will be described below. Furthermore, it is important to stress that a generic
inversion algorithm is capable of calculate a full set of 𝑁 weights and 𝑁 nodes from a
“realizable” set of 2𝑁 − 1 moment. The concept of moment realizability is introduced in
the work of Wright Jr (2007), where a typical condition in which moments may corrupt
is presented. The inversion of a corrupted moment set may give weights and nodes not
belonging to the integration support. An adaptive version of the Wheeler algorithm was
proposed by Yuan and Fox (2011), capable of checking for moment realizability and return
the largest set of weights and abscissas possible (i.e., with a total number of quadrature nodes
≤ 𝑁). Moreover, this adaptive algorithm is particularly useful for degenerate cases, where
the evolution of the underlying NDF tends to be described with a number of quadrature
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nodes less than the initial 𝑁−weighted Dirac delta functions. In such cases, the adaptive
Wheeler algorithm will return the exact NDF. More details on adaptive quadrature can be
found in Yuan and Fox (2011).

It is worth mentioning that if the functional form of the NDF corresponds to the weight
function of a known family of orthogonal polynomials, such as Gauss-Legendre, Gauss-
Jacobi, Gauss-Laguerre, Gauss-Hermite and Gauss-Chebyshev, the recursion coefficients
can be calculatedwithout using themoments and therefore Eq. (2.106) can be directly solved.
This procedure is the basis of other methods, the so-called Extended Quadrature Methods
of Moments (Yuan et al., 2012).

Product-Difference

A method for write the Jacobi matrix (Eq. (2.106)) is represented by the product-difference
(PD) algorithm, firstly formulated by Gordon (1968) and based on the theory of continued
fractions of Stieltjes. The first step consists to write the matrix 𝐏 with components 𝑃𝑖,𝑗
functions of the moments of the NDF. The procedure is the following:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑃𝑖,1 = 𝛿𝑖,1 with 𝑖 = 1, … , 2𝑁 + 1,

𝑃𝑖,2 = (−1)𝑖−1𝑀𝑖−1 with 𝑖 = 1, … , 2𝑁,

𝑃𝑖,𝑗 = 𝑃1,𝑗−1𝑃𝑖+1,𝑗−2 − 𝑃1,𝑗−2𝑃𝑖+1,𝑗−1
with 𝑖 = 1, … , 2𝑁 + 2 − 𝑗
and 𝑗 = 3, … , 2𝑁 + 1.

(2.107)

where 𝛿𝑖,1 is the Kronecker delta, 𝑀𝑖 represents the moment of 𝑖−order of the NDF and 𝑁 is
the chosen number of quadrature nodes. It important to highlight here that also normalized
moments 𝑚𝑖 = 𝑀𝑖/𝑀0 can be used for construct the matrix 𝐏; in this case the final weights
must be corrected by multiplying for 𝑀0.

The matrix 𝐏 is necessary to determine the coefficients of the continued fraction 𝜁𝑖 for
in turn calculating the coefficients of Jacobi matrix 𝐉. The relationship between 𝐏 and 𝜁𝑖 is
the following:

𝜁𝑖 =
𝑃1,𝑖+1

𝑃1,𝑖𝑃1,𝑖−1
with 𝑖 = 2, … , 2𝑁 and 𝜁1 = 0, (2.108)

while 𝑎𝑖 and 𝑏𝑖 coefficients of Eq. (2.106) can be expressed as:

𝑎𝑖 = 𝜁2𝑖 + 𝜁2𝑖−1 with 𝑖 = 0, … , 𝑁 − 1, (2.109)
𝑏𝑖 = −√𝜁2𝑖+1𝜁2𝑖 with 𝑖 = 1, … , 𝑁 − 1. (2.110)

This algorithm is very efficient, but the stability tends to decrease as the number of
quadrature nodes 𝑁 increases (in general when 𝑁 > 10, as pointed out by Marchisio
and Fox, 2013). Moreover the algorithm fails with distributions with zero mean (i.e., with
𝑀1 = 0), because a division by zero is performed when the coefficients of the continued
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fraction 𝜁𝑖 are calculated. However, this is not the case of distributions with values of internal
coordinate ranging between [0, ∞), such as bubble size or bubble composition; the problem
may arise when the integration support is between (−∞, ∞) as for the bubble velocity space.
Therefore, another algorithm can be used in place of PD: the Wheeler algorithm, presented
in the following section, can be applied without problems also in the latter case.

Wheeler algorithm

Wheeler (1974) proposed an alternative approach for the calculation of the coefficient of the
Jacobi matrix (Eq. (2.106)). This method uses a different set of basis functions 𝜋𝑖(𝐿), rather
than the powers of 𝐿. Since also {𝜋𝑖(𝐿)} are orthogonal polynomials it is possible to apply
the recursive relation as follows:

𝜋𝑖+1(𝐿) = (𝐿 − 𝑎າ
𝑖 )𝜋𝑖(𝐿) − 𝑏າ

𝑖 𝜋𝑖−1(𝐿) for 𝑖 = 0, 1, 2, … (2.111)

with 𝜋−1 = 0 and 𝜋0 = 1. The coefficients 𝑎າ
𝑖 and 𝑏າ

𝑖 must be calculated by means of the
following integrals:

𝜇𝑖 = ඘Ω𝐿

𝜋𝑖(𝐿)𝑛(𝐿)d𝐿 with 𝑖 = 0, 1, … , 2𝑁 − 1, (2.112)

usually referred as modified moments in contrast with the standard moment definition. It
must be remarked that, also in this case, 𝑁 represents the number of quadrature nodes. Now
the coefficients of the modified moments 𝑎າ

𝑖 and 𝑏າ
𝑖 must be related to the standard moment

coefficients 𝑎𝑖 and 𝑏𝑖 of the Jacobimatrix. This is done by defining the following intermediate
quantities:

𝜎𝑖,𝑗 = ඘Ω𝐿

𝑛(𝐿)𝜋𝑖(𝐿)𝜋𝑗(𝐿)d𝐿, for 𝑖, 𝑗 ≥ −1. (2.113)

The calculation of these quantities can be performed by using the following relation, based
on the orthogonality property:

𝜎𝑖,𝑗 = 𝜎𝑖−1,𝑗+1 − ෷𝑎𝑗−1 − 𝑎າ
𝑗෸ 𝜎𝑖−1,𝑗 − 𝑏𝑗−1𝜎𝑖−2,𝑗 + 𝑏າ

𝑗𝜎𝑖−1,𝑗−1 (2.114)

where 𝑖 = 1, 2, … , 𝑁 − 1, 𝑗 = 𝑖, 𝑖 + 1, … , 2𝑁 − 𝑖 − 1 and with

𝜎−1,𝑖 = 0 𝜎0,𝑖 = 𝜇𝑖 and 𝑎0 = 𝑎າ
0 + 𝜇1

𝜇0
, 𝑏0 = 0. (2.115)

Eq. (2.114) can be rewritten as a function of the coefficients of the Jacobi matrix in the
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following way:

𝑎𝑖 = 𝑎າ
𝑖 −

𝜎𝑖−1,𝑖
𝜎𝑖−1,𝑖−1

+
𝜎𝑖,𝑖+1
𝜎𝑖,𝑖

, (2.116)

𝑏𝑖 =
𝜎𝑖,𝑖

𝜎𝑖−1,𝑖−1
. (2.117)

A detailed derivation of this method can be found in (Wheeler, 1974). TheWheeler algo-
rithm results in higher stability, compared with the PD algorithm: in fact, even by choosing
modified moments 𝜇𝑖 equal to standard moments 𝑀𝑖 (i.e., with 𝑎າ

𝑖 = 𝑏າ
𝑖 = 0), the algorithm

is general more stable (Yuan and Fox, 2011; Marchisio and Fox, 2013). Moreover, it can be
demonstrated that the use of the basis functions 𝜋𝑖(𝐿) allows to calculate the coefficients of
the Jacobi matrix also in the case of distributions with zero mean (i.e., 𝑀1 = 0).

2.3.3 Conditional Quadrature Method of Moments
This method is basically an extension of QMOM discussed in Section 2.3.2 to multivariate
cases (Yuan and Fox, 2011; Buffo et al., 2013). The variables transported inside the com-
putational domain are in this case some mixed-order moments of the multivariate NDF, for
bubble population as defined in Eq. (2.71) distributed with respect to bubble size 𝐿 and com-
position 𝜙b. The inversion algorithm must be capable of inverting the tracked moment set,
taking into account the dependencies on other internal coordinates. It is important to remark
that here the method is presented for the bivariate case under investigation, but there is not
a serious limitation on its applicability on other cases with a larger number of the internal
coordinates (Yuan and Fox, 2011; Marchisio and Fox, 2013).

The Conditional Quadrature Method of Moments is intended as a particular inversion
procedure, intrinsically related to the following definition of conditional density function:

𝑛(𝐿, 𝜙b) = 𝑛(𝐿)𝑝(𝜙b|𝐿), (2.118)

and its generic moment of order 𝑘 and 𝑙:

𝑀𝑘,𝑙 = ඘
∞

0
𝑛(𝐿)𝐿𝑘

඘
∞

0
𝑝(𝜙b|𝐿)𝜙𝑙

b d𝐿d𝜙b, (2.119)

where 𝑝(𝜙b|𝐿) is the probability of having the bubble composition 𝜙b in the infinitesimal
interval 𝜙b +d𝜙b when the bubble size 𝐿 is fixed and equal to a certain value and 𝑛(𝐿) is the
monovariate NDF (i.e., with only the bubble size 𝐿 as internal coordinate). It is important
to stress here that a preliminary choice related to the order of importance among all the
internal coordinates has to be made. In general, this decision is problem-dependent: in this
particular case under investigation the bubble size𝐿 is chosen in place of bubble composition
𝜙b because of coalescence and breakage kernels depend mostly on bubble size. However,
other approaches are possible, as explicated by Yuan and Fox (2011) where CQMOM was
applied to the Kinetic Equation for rarefied gases: by tracking a large number of moments
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(and thus increasing the computational cost of the methods), the conditional density function
can be defined respectively for all the considered internal coordinates, and the choice of the
preliminary internal coordinate is performed from time to time, according to characteristic of
the underlying NDF (i.e., the covariance of the distribution with respect to a specific internal
coordinate).

By using the quadrature approximation expressed in Eq. (2.82) for the first term on the
right hand side of Eq. (2.118), it is possible to write:

𝑛(𝐿) =
𝑁1

𝑖1=1
𝑤𝑖1

𝛿(𝐿 − 𝐿𝑖1
), (2.120)

where 𝑤𝑖1
is the number density of bubbles with size equal 𝐿𝑖1

. It should be noticed that
𝑁1 represents the number of quadrature nodes used to approximate only the bubble size
distribution, without considering a specific dependence on bubble composition 𝜙b. In order
to include this dependence, a functional form for the conditional probability density function
𝑝(𝜙b|𝐿) must be assumed. Also in this case, a sum of delta functions centered on nodes of
a Gaussian quadrature approximation are is used as follows:

𝑝(𝜙b|𝐿𝑖1
) =

𝑁2

𝑖2=1
ල𝑤𝑖2

(𝐿𝑖1
) 𝛿(𝜙b − 𝜙b,𝑖2

(𝐿𝑖1
)), (2.121)

where the numerical fraction ල𝑤𝑖2
(𝐿𝑖1

) and the composition 𝜙b,𝑖2
(𝐿𝑖1

) are conditioned on the
value of the first internal coordinate 𝐿𝑖1

with number density 𝑤𝑖1
, while 𝑁2 indicates the

number of nodes used to represent the conditioned distribution. Since 𝑝(𝜙b|𝐿) is essentially
a PDF, ල𝑤𝑖2

(𝐿𝑖1
) is actually a numerical fraction and not a density number as for 𝑤𝑖1

. By
substituting Eq. (2.120) and Eq. (2.121) into Eq. (2.118), a functional form for the bivariate
NDF is given in the following way:

𝑛(𝐿, 𝜙b) =
𝑁1

𝑖1=1
𝑤𝑖1

𝛿(𝐿 − 𝐿𝑖1
)

𝑁2

𝑖2=1
ල𝑤𝑖1,𝑖2

𝛿(𝜙b − 𝜙b,𝑖1,𝑖2
), (2.122)

where ල𝑤𝑖2
(𝐿𝑖1

) = ල𝑤𝑖1,𝑖2
and 𝜙b,𝑖2

(𝐿𝑖1
) = 𝜙b,𝑖1,𝑖2

. Eq. (2.122) can be easily explained from
a physical point of view: each of the 𝑁1 groups of bubbles characterized by a size 𝐿𝑖1

is
subdivided into 𝑁2 groups of bubbles with different compositions 𝜙b,𝑖1,𝑖2

. The total number
of quadrature nodes 𝑁 is equal to 𝑁1 ⋅ 𝑁2. An important case is represented by the case in
which 𝑁2 = 1: in this particular case at each group of bubbles corresponds a single value
of bubble size and bubble composition. As it will be shown in Chapter 4 and Chapter 5,
the choice of a number of nodes 𝑁2 > 1 can be pointless if the underlying NDF does not
present any variance with respect to bubble composition; in other words, the quadrature is
determined by the investigated problem. Moreover, it is worth mentioning that Eq. (2.122)
can be rewritten in the same form as preliminarily indicated in Eq. (2.81), and this aspect will
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be of crucial importance when bivariate DQMOM equations are derived in Section 2.3.4.
The structure of CQMOM inversion algorithm directly follows from Eq. (2.122). In fact,

the construction of the multivariate distribution begins with the calculation of the monovari-
ate quadrature of order 𝑁1 for the chosen first internal coordinate 𝐿, inverting the first 2𝑁1
pure moments with respect to bubble size. According to this statement, 2𝑁1 pure moments
with respect to the size must be transported and used to recover the 𝑁1 monovariate weights
and nodes of quadrature:

𝑀0,0
𝑀1,0

⋮
𝑀2𝑁1−2,0
𝑀2𝑁1−1,0

→ PD/Wheeler →

𝑤1
𝑤2
⋮

𝑤𝑁1−1
𝑤𝑁1

,

𝐿1
𝐿2
⋮

𝐿𝑁1−1
𝐿𝑁1

.

By applying the quadrature approximation in Eq. (2.82) for the first part of this double
integral reported in Eq. (2.119), the following expression is written:

𝑀𝑘,𝑙 =
𝑁1

𝑖1=1
𝑤𝑖1

𝐿𝑘
𝑖1

𝐶 𝑙(𝐿𝑖1
), (2.123)

where

𝐶 𝑙(𝐿𝑖1
) = ඘

∞

0
𝑝(𝜙b|𝐿𝑖1

)𝜙𝑙
bd𝜙b, =

𝑁2

𝑖2=1
ල𝑤𝑖1,𝑖2

𝜙𝑙
b,𝑖1,𝑖2

(2.124)

is the so-called conditional moment of order 𝑙 with respect to bubble composition, condi-
tioned on the value of the first internal coordinate 𝐿𝑖1

. Conditional moments are quite useful
to determine the conditional numerical fraction ල𝑤𝑖1,𝑖2

and conditional abscissas 𝜙b,𝑖1,𝑖2
by us-

ing the same inversion algorithms formulated in Section 2.3.2 for monovariate moments :

𝐶0(𝐿𝑖1
)

𝐶1(𝐿𝑖1
)

⋮
𝐶2𝑁2−2(𝐿𝑖1

)
𝐶2𝑁2−1(𝐿𝑖1

)

→ PD/Wheeler →

ල𝑤𝑖1,1
ල𝑤𝑖1,2

⋮
ල𝑤𝑖1,𝑁2−1
ල𝑤𝑖1,𝑁2

,

𝜙b,𝑖1,1
𝜙b,𝑖1,2

⋮
𝜙b,𝑖1,𝑁2−1
𝜙b,𝑖1,𝑁2

,

with 𝑖1 = 1, 2, … , 𝑁1. It is clear that the first 2𝑁2 conditional moments are necessary to
calculate 𝑁1 quadratures, for each of the 𝑁1 nodes previously calculated. These conditional
moments are recovered by using Eq. (2.123), resulting in the following linear system of rank
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𝑁1:

𝐊 ⋅ 𝐆

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝐶 𝑙(𝐿1)
𝐶 𝑙(𝐿2)

⋮
𝐶 𝑙(𝐿𝑁1−1)
𝐶 𝑙(𝐿𝑁1

)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑀0,𝑙
𝑀1,𝑙

⋮
𝑀𝑁1−1,𝑙
𝑀𝑁1,𝑙

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (2.125)

where the coefficient matrices are defined as follows:

𝐊 =

⎛
⎜
⎜
⎜
⎜
⎝

1 … 1
𝐿1 … 𝐿𝑁1
⋮ ⋱ ⋮

𝐿𝑁1−1
1 … 𝐿𝑁1−1

𝑁1

⎞
⎟
⎟
⎟
⎟
⎠

, (2.126)

and

𝐆 =
⎛
⎜
⎜
⎝

𝑤1
⋱

𝑤𝑁1

⎞
⎟
⎟
⎠

, (2.127)

with 𝑙 = 0, 1, 2, … , 2𝑁2 − 1. Eq. (2.125) has the structure typical of a Vandermonde linear
system, which is a well-known ill-conditioned problem. However, as reported in Yuan and
Fox (2011), this system can be numerically solved by using an efficient algorithm proposed
by Rybicki (Press et al., 2007). Moreover, it is important to mention that the linear system of
Eq. (2.125) becomes singular if two of the 𝐿𝑖1

nodes are identical. Therefore, in a degenerate
case CQMOM fails and the particular adaptive quadrature described in Yuan and Fox (2011)
represents a possible solution to this particular issue.

As previously mentioned in this dissertation, the total number of moments to track de-
pends on the desired quadrature approximation: the number of nodes 𝑁1 for the first internal
coordinate (e.g., in this case bubble size) and the number of conditional nodes 𝑁2 of the sec-
ond internal coordinate (e.g., in this case bubble composition). Firstly the calculation of the
quadrature for the first internal coordinate requires to transport the first 2𝑁1 pure moments
with increasing order with respect to size. Then, the 𝑁1 ⋅𝑁2 conditional numerical fractions
and nodes for the second internal coordinate are determined by means of the 𝑁1(2𝑁2 − 1)
moments in the order indicated in Eq. (2.125). Therefore, the total number of moments com-
posing the tracked moment set is 2𝑁1𝑁2 + 𝑁1 and is strictly specified by the method: in
other words, the set of transported moments is formed by a fixed number of moments with
a specific order 𝑘 with respect to size and 𝑙 with respect to composition, determined by the
total number of nodes 𝑁 of quadrature approximation. In Fig. 2.1 moment sets for differ-
ent choices of 𝑁1 and 𝑁2 are reported as example. Furthermore, the method can be used
coupled with an adaptive approach as previously mentioned for a degenerate case, where
the total number of moments to be tracked is fixed at the beginning of the simulation using
a large number of nodes 𝑁 , and during the simulation the actual number of nodes used is
reduced according to the instantaneous underlying NDF. Further details can be found in the
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Figure 2.1: Moment sets tracked by CQMOM for different values of 𝑁1 and 𝑁2.

original work of Yuan and Fox (2011).

2.3.4 Direct Quadrature Method of Moments
As remarked in the original work of Marchisio and Fox (2005), the idea behind DQMOM
is different from QMOM and its multivariate extension CQMOM: instead of transporting
a set of moments of the NDF, with DQMOM the evolution of weights and nodes of the
quadrature approximation is directly calculated in every point of the computational domain,
without recurring to any inversion algorithm. The main advantage of this method is the fact
that the extension to multivariate cases is straightforward, allowing to treat in the same way
the distribution with respect to any internal coordinate characterizing the system (Marchisio
and Fox, 2005; Zucca et al., 2007; Buffo et al., 2012). However, this method is affected by
some problems relating to the proper conservation of some moments of the NDF when the
advection in the physical space is described, as mentioned in Section 2.3.5 and explicated
by examples in Section 4.2 and Section 5.2. In this part of the dissertation, DQMOM for
the monovariate and bivariate cases presented in Section 2.2 will be discussed for the ho-
mogenous system modeled by Eq. (2.35) and Eq. (2.38); afterward, the issue relating to the
physical space advection will be treated in detail.

The detailed derivation of DQMOM for a generic dispersed system can be found in
Marchisio and Fox (2005), while in the works of Buffo et al. (2012, 2013) the method is
applied to a gas-liquid system. In order to give an idea of all the passages, the set of governing
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equations for a monovariate and spatially homogeneous system will be recovered starting
from the definition of quadrature approximation (Eq. (2.82)):

𝑛(𝐿) =
𝑁

𝑖්=1
𝑤𝑖 𝛿(𝐿 − 𝐿𝑖). (2.128)

By substituting Eq. (2.128) into Eq. (2.38), the following expression is obtained after some
algebra:

𝑁

𝑖්=1
𝛿(𝐿 − 𝐿𝑖) ส

d𝑤𝑖
d𝑡 ห −

𝑁

𝑖්=1
𝛿າ(𝐿 − 𝐿𝑖) ส

d𝑤𝑖𝐿𝑖
d𝑡 − 𝐿𝑖

d𝑤𝑖
d𝑡 ห

+
𝑁

𝑖්=1
𝑤𝑖

𝜕
𝜕𝐿 ඳ𝐺 𝛿(𝐿 − 𝐿𝑖)ප = ℎ(𝐿). (2.129)

where 𝑁 is the total number of quadrature nodes. By applying the definition of moment
transform reported in Eq. (2.72), Eq. (2.129) becomes:

඘Ω𝐿

𝑁

𝑖්=1
𝛿(𝐿 − 𝐿𝑖) ส

d𝑤𝑖
d𝑡 ห 𝐿𝑘 d𝐿 − ඘Ω𝐿

𝑁

𝑖්=1
𝛿າ(𝐿 − 𝐿𝑖) ส

d𝑤𝑖𝐿𝑖
d𝑡 − 𝐿𝑖

d𝑤𝑖
d𝑡 ห 𝐿𝑘 d𝐿

+ ඘Ω𝐿

𝑁

𝑖්=1
𝑤𝑖

𝜕
𝜕𝐿 ඳ𝐺(𝐿) 𝛿(𝐿 − 𝐿𝑖)ප 𝐿𝑘 d𝐿 = 𝐻𝑘. (2.130)

Since integrals can be moved inside the summation sign, it is possible to write:

඘
+∞

−∞
𝐿𝑘𝛿(𝐿 − 𝐿𝑖)d𝐿 = 𝐿𝑘

𝑖 ; (2.131)

඘
+∞

−∞
𝐿𝑘𝛿າ(𝐿 − 𝐿𝑖)d𝐿 = −𝑘𝐿𝑘−1

𝑖 ; (2.132)

඘
+∞

−∞

𝜕
𝜕𝐿 ඳ𝐺(𝐿) 𝛿(𝐿 − 𝐿𝑖)ප 𝐿𝑘 d𝐿 =

= −𝑘 ඘
+∞

−∞
𝐿𝑘−1𝐺(𝐿)𝛿(𝐿 − 𝐿𝑖)d𝐿 = −𝑘𝐿𝑘−1

𝑖 𝐺𝑖; (2.133)

where 𝐺𝑖 = 𝐺(𝐿𝑖). Eqs. (2.131) to (2.133) are substituted into Eq. (2.130), bringing together
all left hand terms under the same summation sign:

𝑁

𝑖්=1 อ𝐿𝑘
𝑖 ส

d𝑤𝑖
d𝑡 ห + 𝑘𝐿𝑘−1

𝑖 ส
d𝑤𝑖𝐿𝑖

d𝑡 − 𝐿𝑖
d𝑤𝑖
d𝑡 ห − 𝑘𝑤𝑖𝐿𝑘−1

𝑖 𝐺𝑖ฮ = 𝐻𝑘 (2.134)

where 𝐻𝑘 is the source term of the 𝑘−order moment of the monovariate NDF, calculated
with Eq. (2.85). By defining the following constitutive equations of DQMOM for the 𝑖−th
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weight and weighted node in the following way:

⎧⎪
⎨
⎪⎩

d 𝑤𝑖
d𝑡 = 𝑎𝑖;

d 𝑤𝑖𝐿𝑖
d𝑡 = 𝑏𝑖 + 𝑤𝑖𝐺𝑖;

(2.135)

with 𝑖 = 1, … , 𝑁 , it is possible to express Eq. (2.134) as:

𝑁

𝑖්=1
ඹ(1 − 𝑘)𝐿𝑘

𝑖 𝑎𝑖 + 𝑘𝐿𝑘−1
𝑖 𝑏𝑖ය = 𝐻𝑘. (2.136)

Eq. (2.135) and Eq. (2.136) totally determine the evolution of the NDF for a given initial
condition. In fact, the 2𝑁 source terms 𝑎𝑖 and 𝑏𝑖 of Eq. (2.135) can be calculated by means
of the linear system defined by Eq. (2.136), by using the source term of the first 2𝑁−order
moments of the distribution, which are written as functions of weights and nodes of quadra-
ture as shown in Eq. (2.83). In order to make the discussion clearer, the case with 𝑁 = 2 is
presented:

⎧⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪⎩

d 𝑤1
d𝑡 = 𝑎1;

d 𝑤2
d𝑡 = 𝑎2;

d 𝑤1𝐿1
d𝑡 = 𝑏1 + 𝑤1𝐺1;

d 𝑤2𝐿2
d𝑡 = 𝑏2 + 𝑤2𝐺2;

(2.137)

where 𝑎1, 𝑎2, 𝑏1 and 𝑏2 are calculated by the following linear system:

⎡
⎢
⎢
⎢
⎢
⎣

1 1 0 0
0 0 1 1

−𝐿2
1 −𝐿2

2 2𝐿1 2𝐿2
−2𝐿3

1 −2𝐿3
2 3𝐿2

1 3𝐿2
2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑎1
𝑎2
𝑏1
𝑏2

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎢
⎣

𝐻0
𝐻1
𝐻2
𝐻3

⎤
⎥
⎥
⎥
⎥
⎦

. (2.138)

The extension to the bivariate case is straightforward. In fact, by using the same deriva-
tion strategy of the monovariate case and assuming the expression reported in Eq. (2.81) as
functional form of the bivariate NDF, it is possible to write:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

d 𝑤𝑖
d𝑡 = 𝑎𝑖,

d 𝑤𝑖𝐿𝑖
d𝑡 = 𝑏𝑖 + 𝑤𝑖 𝐺𝑖,

d 𝑤𝑖𝜙b,𝑖
d𝑡 = 𝑐𝑖 + 𝑤𝑖 ̇𝜙b,𝑖,

(2.139)
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with 𝑖 = 1, … , 𝑁 , 𝐺𝑖 = 𝐺(𝐿𝑖, 𝜙b,𝑖) and ̇𝜙b,𝑖 = ̇𝜙b,𝑖(𝐿𝑖, 𝜙b,𝑖). In order to solve Eq. (2.139)
the source terms 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 must be expressed as functions of weights and nodes 𝑤𝑖, 𝐿𝑖 and
𝜙b,𝑖. This is accomplished by forcing the evolution of the moments to be what is dictated by
Eq. (2.76) resulting in the following expression:

𝑁

𝑖්=1
෺(1 − 𝑘 − 𝑙)𝐿𝑘

𝑖 𝜙𝑙
b,𝑖𝑎𝑖 + 𝑘𝐿(𝑘−1)

𝑖 𝜙𝑙
b,𝑖𝑏𝑖 + 𝑙𝐿𝑘

𝑖 𝜙(𝑙−1)
b,𝑖 𝑐𝑖෻ = 𝐻𝑘,𝑙. (2.140)

Eq. (2.140) is the bivariate counterpart of Eq. (2.136), representing a linear system as dif-
ferent pairs of {𝑘, 𝑙} values are selected. As in the monovariate case, the number of pairs
depends on total number of unknown terms, in turn defined by the nodes of the quadrature
𝑁 . In the case, DQMOM needs 3𝑁 independent relations in order to calculate the 3𝑁
unknown source terms appearing in Eq. (2.139). It is clear that, as with other QBMM, the
accuracy of the quadrature approximation is improved by increasing the number of nodes 𝑁 ,
resulting in higher computational costs due to the increasing number of transport equations.
In a more compact form, Eq. (2.140) can be written as follows:

𝐀̄𝐬 = 𝐝, (2.141)

where
𝐬 = [𝑎1, … , 𝑎𝑁 , 𝑏1, … , 𝑏𝑁 , 𝑐1, … , 𝑐𝑁 ]T,

𝐝 = [𝐻𝑘1,𝑙1
, 𝐻𝑘2,𝑙2

, … , 𝐻𝑘3𝑁 ,𝑙3𝑁
]T.

As detailed discussed in the literature (Fox, 2009; Buffo et al., 2012), it is important to
define the linear system in such a manner that results in a full rank matrix 𝐀̄ for all possible
𝑁 distinct and non-degenerate nodes (i.e., 𝐿𝑖 for monovariate case and 𝐿𝑖, 𝜙b,𝑖 for bivariate
case). As pointed out in the original work of Marchisio and Fox (2005), in the case of a
monovariate distribution the source terms of the first 2𝑁 order moments must be used to
define the 2𝑁 unknowns, always resulting in a full rank matrix 𝐀̄ for a non-degenerating
problem: in the reported example with 𝑁 = 2, in fact, 𝐻0, 𝐻1, 𝐻2 and 𝐻3 are evaluated
before solving the linear system.

When a bivariate case is solved, this strategy relating to themimickedmoment set may be
not unique (Buffo et al., 2013). As explained by Fox (2009), one strategy could be choosing
linearly independent moments of a particular order 𝛾 = 𝑘 + 𝑙 that lead to a full rank matrix,
before including moments of higher order. Another possibility for the choice of the moments
can be to track only the pure moments with respect of size and composition (Buffo et al.,
2012). A different approach was used in the work of Buffo et al. (2013), in which the aimwas
the comparison between different QBMM: the mathematical equivalence between the meth-
ods is guaranteed only if the same moment set is tracked. With this approach the strategy be-
hind the choice of moments is left to CQMOM, which, as explained in Section 2.3.3, strictly
defines the moment set to be tracked. For example when a two-node quadrature is used
(𝑁 = 2), it is possible to track the moment set presented as first choice in Fig. 2.1, namely
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{𝑘, 𝑙} = (0, 0; 1, 0; 0, 1; 2, 0; 1, 1; 3, 0). Moreover, it should be remarked that the functional
form assumption for the bivariate NDF made for CQMOM and DQMOM formulations are
different: Eq. (2.122) is equal to Eq. (2.81) only when 𝑁2 = 1, as already pointed out in
Section 2.3.3. Therefore, only in this case the two QBMM can give comparable results.
Furthermore, it is worth mentioning that the choice {𝑘, 𝑙} = (0, 0; 1, 0; 0, 1; 2, 0; 1, 1; 0, 2)
that would use all the possible moments of global order 0, 1, 2 cannot be used since it leads
to a singular linear system (Buffo et al., 2013).

In contrast with CQMOM, particular attention should be paid when other terms of the
PBE are taken into account with DQMOM. The simple case of continuous injection and
extraction of bubbles in stagnant liquid, describedwith Eq. (2.86) for a generic ordermoment
of the NDF, can be helpful to understand the problem. As mentioned in Buffo et al. (2013),
it is possible to make a parallel with the theory of the numerical methods for conservation
laws, where constitutive equations may be formulated in terms of conserved variables (i.e.,
moments) or primitive variables (i.e., weights and nodes of quadrature). Since with QMOM
and CQMOM conserved variables are transported, one may think that DQMOM is a method
based on balance of primitive quantities and write what follows:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

d 𝑤𝑖
d𝑡 = −(𝑤𝑖)o𝑢𝑡 − (𝑤𝑖)i𝑛

𝜏 + 𝑎𝑖,
d 𝑤𝑖𝐿𝑖

d𝑡 = −(𝑤𝑖𝐿𝑖)o𝑢𝑡 − (𝑤𝑖𝐿𝑖)i𝑛
𝜏 + 𝑏𝑖 + 𝑤𝑖 𝐺𝑖,

d 𝑤𝑖𝜙b,𝑖
d𝑡 = −

(𝑤𝑖𝜙b,𝑖)o𝑢𝑡 − (𝑤𝑖𝜙b,𝑖)i𝑛
𝜏 + 𝑐𝑖 + 𝑤𝑖 ̇𝜙b,𝑖,

(2.142)

with (𝑤𝑖)o𝑢𝑡, (𝑤𝑖𝐿𝑖)o𝑢𝑡, (𝑤𝑖𝜙b,𝑖)o𝑢𝑡 assumed equal to 𝑤𝑖, 𝑤𝑖𝐿𝑖, 𝑤𝑖𝜙b,𝑖 respectively in a well-
mixed system, and (𝑤𝑖)i𝑛, (𝑤𝑖𝐿𝑖)i𝑛, (𝑤𝑖𝜙b,𝑖)i𝑛 are weights and weighted nodes of the inlet
bubble distribution. However, as it will be shown in Section 4.1.2 this formulation is not able
to properly conserve the evolution of the moments because is not correctly derived following
the DQMOM procedure (Marchisio and Fox, 2005): in fact, bubble injection and extraction
must be modeled as source/sink terms (Buffo et al., 2013), as reported in Eq. (2.86).

The proper way for writing the constitutive equations for the aforementioned case is the
following one (algebraic passages are omitted for brevity):

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

d 𝑤𝑖
d𝑡 = −𝑎#

𝑖 + 𝑎𝑖,
d 𝑤𝑖𝐿𝑖

d𝑡 = −𝑏#
𝑖 + 𝑏𝑖 + 𝑤𝑖 𝐺𝑖,

d 𝑤𝑖𝜙b,𝑖
d𝑡 = −𝑐#

𝑖 + 𝑐𝑖 + 𝑤𝑖 ̇𝜙b,𝑖,

(2.143)

where 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 can be found through the solution of the linear system described in
Eq. (2.140) and 𝑎#

𝑖 , 𝑏#
𝑖 , 𝑐#

𝑖 are obtained by solving the linear system generated by the fol-
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lowing expression:

𝑁

𝑖්=1
෺(1 − 𝑘 − 𝑙)𝐿𝑘

𝑖 𝜙𝑙
b,𝑖𝑎

#
𝑖 + 𝑘𝐿(𝑘−1)

𝑖 𝜙𝑙
b,𝑖𝑏

#
𝑖 + 𝑙𝐿𝑘

𝑖 𝜙(𝑙−1)
b,𝑖 𝑐#

𝑖 ෻ =
(𝑀𝑘,𝑙)o𝑢𝑡 − (𝑀𝑘,𝑙)i𝑛

𝜏 . (2.144)

It is important to highlight the analogy between the Eq. (2.140) and Eq. (2.144): once that
the moment set is defined, the matrix 𝐀̄ is the same for calculating all the unknown terms
𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑎#

𝑖 , 𝑏#
𝑖 , 𝑐#

𝑖 , what changes is the vector of known terms.
A problem of different nature may occur when the advection in physical space is con-

sidered. In this case, DQMOM equations written for an inhomogeneous case, as formulated
in the work of Marchisio and Fox (2005), are an example of a set of conservation laws writ-
ten by using primitive variables (Buffo et al., 2013). An implicit assumption of solution
smoothness in space and time was made for deriving the following equations:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

d 𝑤𝑖
d𝑡 + 𝜕

𝜕𝐱 ඳ𝑤𝑖𝐔̌𝑖ප = 𝑎𝑖,
d 𝑤𝑖𝐿𝑖

d𝑡 + 𝜕
𝜕𝐱 ඳ𝑤𝑖𝐿𝑖𝐔̌𝑖ප = 𝑏𝑖 + 𝑤𝑖 𝐺𝑖,

d 𝑤𝑖𝜙b,𝑖
d𝑡 + 𝜕

𝜕𝐱 ඳ𝑤𝑖𝜙b,𝑖𝐔̌𝑖ප = 𝑐𝑖 + 𝑤𝑖 ̇𝜙b,𝑖,

(2.145)

where 𝐔̌𝑖 is the conditional velocity of bubbles with size 𝐿𝑖 and composition 𝜙b,𝑖, namely the
velocity of the 𝑖-th group of bubbles with size 𝐿𝑖 and composition 𝜙b,𝑖, calculated by means
of a specificmomentum equation of the multifluid method, considering each group of bubble
as a different phase (as explained in the work of Buffo et al., 2012). The terms 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖
are calculated with the same procedure described in Eq. (2.141). It is important to remark
that Eq. (2.145) are derived by assuming that the time and spatial derivatives of weights
and nodes exist and are finite (Marchisio and Fox, 2005), and for this reason the fields of
each quadrature weight and node must be necessarily continuous all over the computational
domain. Unfortunately, weights and abscissas may be spatially discontinuous, even if the
moment set is well defined (Wright Jr, 2007); in these cases DQMOM will not be able
to calculate the correct evolution of the conserved variables (i.e., moments). Even when
no discontinuities are present, due to the fact that the governing equations do not contain
any diffusion term (for modeling reasons, as in this case) and because the only resulting
diffusion is numerical, standard DQMOM fails in correctly predicting the evolution of the
moments, as demonstrated by Mazzei et al. (2010, 2012). Since the quantification of the
numerical diffusion coefficient is not feasible, because depends on the numerical scheme
and the computational grids used, Buffo et al. (2013) formulate a new version of DQMOM,
called DQMOM-Fully Conservative, capable of properly conserve in space the moments of
NDF even transporting primitive quantities as weights and nodes of quadrature.
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2.3.5 Direct Quadrature Method of Moments - Fully Conservative
As previously pointed out, QBMM can be essentially subdivided into two different groups of
method: the former group is composed by QMOM and CQMOM in which the equations for
a givenmoment set are discretized and solved, recurring to the inversion algorithmwhenever
source terms of moments are calculated. The latter group is composed by DQMOM (and its
conservative counterpart DQMOM-FC), where the equations for the quadrature quantities
are directly discretized and solved for a given computational domain, calculating the source
terms of these quantities by means of a linear system defined in such a way that the evolution
of a certain moment set of the NDF is properly described.

As remarked in Section 2.3.4, by using an analogy with the theory of numerical method
for conservation laws (LeVeque, 2002; Toro, 2009), the first group of methods stems on con-
servative quantities calculation (i.e., moments of NDF), while the second group is based on
primitive quantities. For smooth solutions in space and time, the two classes of methods are
essentially equivalent, while significant differences are present when the solution contains
shock waves that lead to spatial discontinuities (LeVeque, 2002; Toro, 2009); in this case
the equations written in a non-conservative form are not able to provide the correct solution
due to the smoothness solution assumption made for formulating the second group methods.
Unfortunately, DQMOM equations for a generic inhomogeneous system are an example of a
set of conservation laws written by using primitive variables, assuming that spatial and time
derivatives exist and are finite, namely the solution is smooth enough to be differentiable
in space and time. As pointed out in literature (Mazzei et al., 2010; Buffo et al., 2013), the
cases in which weights and nodes of quadrature fields present spatial discontinuities are very
frequent, especially when a diffusion term (generally capable of smoothing solutions) is not
included in the model. In these cases, moreover, the numerical diffusion introduced with
any discretization scheme only magnifies the solution differences between these methods
and conservatives methods. Buffo et al. (2012) proposed to estimate the numerical diffusion
of the discretization scheme and introduce a diffusion term in DQMOM equations capable
of canceling out the numerical diffusion: this method was proved to be very effective in
preserving the correct behavior of moments for a very simple 1D inhomogeneous system
discretized with equally-spatial nodes, for which a method for evaluate the numerical dif-
fusion there exist (Ferziger and Peric, 2002). However, this method can not be efficiently
applied for two or three-dimensional CFD simulation, even in simple Cartesian grids.

Therefore, a new approach was proposed by Buffo et al. (2013), based on the fact that
weights and nodes of quadrature may be discontinuous in space, but not in time. The idea
behind this Fully-Conservative formulation (DQMOM-FC) is to rewrite the fluxes of weight
and nodes in the physical space in order to preserve the correct behavior of the moments,
by extending to the general inhomogenous situation the approach developed previously for
homogeneous open systems (Eq. (2.143) and Eq. (2.144)). By treating also the physical
advection term of moments as a source term of DQMOM equations, it is possible to write
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the following equations (derivation passages are described in Buffo et al. (2013):

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

d 𝑤𝑖
d𝑡 = −𝑎∗

𝑖 + 𝑎𝑖,
d 𝑤𝑖𝐿𝑖

d𝑡 = −𝑏∗
𝑖 + 𝑏𝑖 + 𝑤𝑖 𝐺𝑖,

d 𝑤𝑖𝜙b,𝑖
d𝑡 = −𝑐∗

𝑖 + 𝑐𝑖 + 𝑤𝑖 ̇𝜙b,𝑖,

(2.146)

The new values 𝑎∗
𝑖 , 𝑏∗

𝑖 and 𝑐∗
𝑖 , with respect to theDQMOMformulation given in Section 2.3.4,

contain the information relating to the physical space advection of the moments tracked and
are calculated by solving the linear system underlying the following expression:

𝑁

𝑖්=1
෺(1 − 𝑘 − 𝑙)𝐿𝑘

𝑖 𝜙𝑙
b,𝑖𝑎

∗
𝑖 + 𝑘𝐿(𝑘−1)

𝑖 𝜙𝑙
b,𝑖𝑏

∗
𝑖 + 𝑙𝐿𝑘

𝑖 𝜙(𝑙−1)
b,𝑖 𝑐∗

𝑖 ෻ = 𝐹𝑘,𝑙, (2.147)

where 𝑖 = 1, 2, … , 𝑁 . The term 𝐹𝑘,𝑙 is the net flux over the cell faces of the generic mo-
ment 𝑀𝑘,𝑙 and it must be written by using the standard FV method of fluxes discretization
and recurring to the quadrature approximation. A detailed account of how to calculate these
fluxes can be found in the work of Vikas et al. (2011). As it is possible to observe, the main
difference compared to the original formulation is the way in which advection in physical
space is treated, and as shown in Chapter 4 and Chapter 5, this slight modification allows
the method to conserve properly the moments of the NDF. However, it can be proven (the
detailed demonstration can be found in Marchisio and Fox, 2013) that, although DQMOM-
FC is conservative in space, this method is only first-order accurate in time: this means
that when a first-order forward Euler time integrator is used, an error proportional to Δ𝑡2

is introduced by the method. Therefore, for problems intrinsically non-stationary it may be
necessary to use a very small time step or an high-order time-integrator in order to minimize
this error; otherwise for stationary solutions, even with a fast transient, the results are accu-
rate and equal to those obtained with methods formulated for conservative quantities (i.e.,
QMOM and CQMOM).

57



References

Alopaeus, V., Koskinen, J., I. Keskinen, K., Majander, J., 2002. Simulation of the population
balances for liquid–liquid systems in a nonideal stirred tank. part 2—parameter fitting and
the use of the multiblock model for dense dispersions. Chemical Engineering Science 57,
1815–1825.

Andersson, R., Andersson, B., 2006. On the breakup of fluid particles in turbulent flows.
American Institute of Chemical Engineering Journal 52, 2020–2030.

Aris, R., 1962. Vectors, Tensors, and the Basic Equations of FluidMechanics. Prentice-Hall,
Englewood Cliffs (NJ), USA.

Bakker, A., Van den Akker, H., 1994. Gas-liquid contacting with axial flow impellers.
Chemical Engineering Research and Design 72, 573–582.

Buffo, A., Vanni, M., Marchisio, D., 2012. Multidimensional population balance model for
the simulation of turbulent gas–liquid systems in stirred tank reactors. Chemical Engi-
neering Science 70, 31–44.

Buffo, A., Vanni, M., Marchisio, D., Fox, R.O., 2013. Multivariate quadrature-based mo-
ments methods for turbulent polydisperse gas-liquid systems. International Journal of
Multiphase Flow 50, 41–57.

Coulaloglou, C., Tavlarides, L., 1977. Description of interaction processes in agitated liquid-
liquid dispersions. Chemical Engineering Science 32, 1289–1297.

Cussler, E.L., 1997. Diffusion: Mass Transfer in Fluid Systems. Cambridge Series in Chem-
ical Engineering, Cambridge University Press, Cambridge, UK. Second Edition.

Danckwerts, P.V., 1951. Significance of liquid-film coefficients in gas absorption. Industial
and Engineering Chemistry 43, 1460–1467.

Ferziger, J.H., Peric, M., 2002. Computational Methods for Fluid Dynamics. Springer-
Verlag, Berlin, Germany. Third Edition.

Fox, R., 2009. Higher-order quadrature-based moment methods for kinetic equations. Jour-
nal of Computational Physics 228, 7771–7791.

58



REFERENCES

Garcia, A.L., van denBroeck, C., Aertsens, M., Serneels, R., 1987. Amonte carlo simulation
of coagulation. Physica A: Statistical Mechanics and its Applications 143, 535–546.

Gautschi, W., 1997. Numerical Analysis: An Introduction. Birkhäuser, Boston (MA), USA.

Gautschi, W., 2004. Orthogonal Polynomials: Computation and Approximation. Oxford
University Press, Oxford, UK.

Gillespie, D.T., 1976. A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434.

Gimbun, J., Rielly, C., Nagy, Z., 2009. Modelling of mass transfer in gas–liquid stirred tanks
agitated by rushton turbine and CD-6 impeller: A scale-up study. Chemical Engineering
Research and Design 87, 437–451.

Godin, F.B., Cooper, D.G., Rey, A.D., 1999. Numerical methods for a population-balance
model of a periodic fermentation process. American Institute of Chemical Engineering
Journal 45, 1359–1364.

Gordon, R.G., 1968. Error bounds in equilibrium statistical mechanics. Journal of Mathe-
matical Physics 9, 655–663.

Gunawan, R., Fusman, I., Braatz, R.D., 2004. High resolution algorithms for multidimen-
sional population balance equations. American Institute of Chemical Engineering Journal
50, 2738–2749.

Higbie, R., 1935. The rate of absorption of a pure gas into a still liquid during short periods
of exposure. Transaction of the Institution of Chemical Engineers 31, 364–389.

Hulburt, H., Katz, S., 1964. Some problems in particle technology: A statistical mechanical
formulation. Chemical Engineering Science 19, 555–574.

Jakobsen, H.A., 2008. Chemical Reactor Modeling: Multiphase Reactive Flows. Springer-
Verlag, Berlin, Germany. First Edition.

Kawase, Y., Halard, B., Moo-Young, M., 1987. Theoretical prediction of volumetric mass
transfer coefficients in bubble columns for newtonian and non-newtonian fluids. Chemical
Engineering Science 42, 1609–1617.

Kruis, F.E., Maisels, A., Fissan, H., 2000. Direct simulation monte carlo method for particle
coagulation and aggregation. American Institute of Chemical Engineering Journal 46,
1735–1742.

Kumar, J., Peglow, M., Warnecke, G., Heinrich, S., 2008. The cell average technique for
solving multi-dimensional aggregation population balance equations. Computers and
Chemical Engineering 32, 1810–1830.

59



REFERENCES

Laakkonen, M., Alopaeus, V., Aittamaa, J., 2006. Validation of bubble breakage, coales-
cence and mass transfer models for gas–liquid dispersion in agitated vessel. Chemical
Engineering Science 61, 218–228.

Lamont, J.C., Scott, D.S., 1970. An eddy cell model of mass transfer into the surface of a
turbulent liquid. American Institute of Chemical Engineering Journal 16, 513–519.

Lee, C.H., Erickson, L., Glasgow, L., 1987. Bubble breakup and coalescence in turbulent
gas-liquid dispersions. Chemical Engineering Communications 59, 65–84.

Lehr, F., Millies, M., Mewes, D., 2002. Bubble-size distributions and flow fields in bubble
columns. American Institute of Chemical Engineering Journal 48, 2426–2443.

LeVeque, R.J., 2002. Finite Volume Methods for Hyperbolic Problems. Cambridge Univer-
sity Press, Cambridge, UK.

Liffman, K., 1992. A direct simulation monte-carlo method for cluster coagulation. Journal
of Computational Physics 100, 116–127.

Luo, H., Svendsen, H.F., 1996. Theoretical model for drop and bubble breakup in turbulent
dispersions. American Institute of Chemical Engineering Journal 42, 1225–1233.

Marchisio, D., Fox, R.O., 2013. Computational Models for Polydisperse Particulate and
Multiphase Systems. Cambridge Series in Chemical Engineering, Cambridge University
Press, Cambridge, UK.

Marchisio, D.L., Dennis Vigil, R., O. Fox, R., 2003. Implementation of the quadrature
method of moments in CFD codes for aggregation–breakage problems. Chemical Engi-
neering Science 58, 3337–3351.

Marchisio, D.L., Fox, R.O., 2005. Solution of population balance equations using the direct
quadrature method of moments. Journal of Aerosol Science 36, 43–73.

Marshall Jr., C.L., Rajniak, P., Matsoukas, T., 2011. Numerical simulations of two-
component granulation: Comparison of three methods. Chemical Engineering Research
and Design 89, 545–552.

Mazzei, L., Marchisio, D.L., Lettieri, P., 2010. Direct quadrature method of moments for
the mixing of inert polydisperse fluidized powders and the role of numerical diffusion.
Industrial & Engineering Chemistry Research 49, 5141–5152.

Mazzei, L., Marchisio, D.L., Lettieri, P., 2012. New quadrature-based moment method for
the mixing of inert polydisperse fluidized powders in commercial CFD codes. American
Institute of Chemical Engineering Journal 58, 3054–3069.

McGraw, R., 1997. Description of aerosol dynamics by the quadrature method of moments.
Aerosol Science and Technology 27, 255–265.

60



REFERENCES

Nandanwar, M.N., Kumar, S., 2008. A new discretization of space for the solution of multi-
dimensional population balance equations. Chemical Engineering Science 63, 2198–
2210.

Narsimhan, G., Gupta, J., Ramkrishna, D., 1979. A model for transitional breakage proba-
bility of droplets in agitated lean liquid-liquid dispersions. Chemical Engineering Science
34, 257–265.

Patruno, L., Dorao, C., Svendsen, H., Jakobsen, H., 2009. Analysis of breakage kernels for
population balance modelling. Chemical Engineering Science 64, 501–508.

Petitti, M., Nasuti, A., Marchisio, D.L., Vanni, M., Baldi, G., Mancini, N., Podenzani, F.,
2010. Bubble size distribution modeling in stirred gas–liquid reactors with QMOM aug-
mented by a new correction algorithm. American Institute of Chemical Engineering Jour-
nal 56, 36–53.

Petitti, M., Vanni, M., Marchisio, D., Buffo, A., Podenzani, F., 2012. Application of the
conditional quadrature method of moments for the simulation of coalescence, breakup and
mass transfer in gas-liquid stirred tanks, in: Proceedings of 14th European Conference on
Mixing, pp. 371–376.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2007. Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, Cambridge, UK. Third
Edition.

Prince, M.J., Blanch, H.W., 1990. Bubble coalescence and break-up in air-sparged bubble
columns. American Institute of Chemical Engineering Journal 36, 1485–1499.

Ramkrishna, D., 2000. Population Balances: Theory and Applications to Particulate Sys-
tems in Engineering. Academic Press, San Diego (CA), USA. First Edition.

Smith, M., Matsoukas, T., 1998. Constant-number monte carlo simulation of population
balances. Chemical Engineering Science 53, 1777–1786.

Tandon, P., Rosner, D.E., 1999. Monte carlo simulation of particle aggregation and simul-
taneous restructuring. Journal of Colloid and Interface Science 213, 273–286.

Toro, E.F., 2009. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical
Introduction. Springer-Verlag, Berlin, Germany. Third Edition.

Vanni, M., 2000. Approximate population balance equations for Aggregation–Breakage
processes. Journal of Colloid and Interface Science 221, 143–160.

Vikas, V., Yuan, C., Wang, Z., Fox, R., 2011. Modeling of bubble-column flows with
quadrature-based moment methods. Chemical Engineering Science 66, 3058–3070.

61



REFERENCES

Walter, J.F., Blanch, H.W., 1986. Bubble break-up in gas—liquid bioreactors: Break-up in
turbulent flows. The Chemical Engineering Journal 32, B7–B17.

Wheeler, J.C., 1974. Modified moments and gaussian quadratures. RockyMountain Journal
of Mathematics 4, 287–296.

Wilf, H.S., 1962. Mathematics for the physical sciences. John Wiley and Sons, New York
(NJ), USA.

Wright Jr, D.L., 2007. Numerical advection of moments of the particle size distribution in
eulerian models. Journal of Aerosol Science 38, 352–369.

Yuan, C., Fox, R.O., 2011. Conditional quadrature method of moments for kinetic equations.
Journal of Computational Physics 230, 8216–8246.

Yuan, C., Laurent, F., Fox, R.O., 2012. An extended quadrature method of moments for
population balance equations. Journal of Aerosol Science 51, 1–23.

Zhao, H., Maisels, A., Matsoukas, T., Zheng, C., 2007. Analysis of fourmonte carlomethods
for the solution of population balances in dispersed systems. Powder Technology 173, 38–
50.

Zucca, A., Marchisio, D.L., Vanni, M., Barresi, A.A., 2007. Validation of bivariate DQ-
MOM for nanoparticle processes simulation. American Institute of Chemical Engineering
Journal 53, 918–931.

62



Chapter 3

CFD coupling

Multiphase systems can be described according to different approaches. Since the inherent
complexity of these systems, there is not a definitivemodel that can be considered universally
applicable: it should be evaluated for any kind of problem which is the most convenient one
to use, accordingly to the type of system under consideration and the information to be
obtained. The reason for this lack is due mainly to two factors (van Wachem and Almstedt,
2003):

• different multiphase systems (i.e., gas-solid, liquid-solid, liquid-liquid, etc..) may re-
sult into different fluid dynamic regimes (annular flow, jet flow, slug flow, bubbly
flow, etc.) that are very difficult to integrate into a single model.

• the forces that arise when two or more phases are in contact (dynamic interface, coa-
lescence, breakage, drag, etc.) usually have a complex mathematical formulation and
can be not convenient to consider all types of forces existing.

It is usually possible to distinguish between methods that solve the interface profile,
used in simulations where the scale of reference is that of the particle, and averaged meth-
ods, which do not address the problem of the interface, making the application to spatially
larger systems easy. Among the former methods, it should be mentioned the family of Vol-
ume of Fluid (VOF) methods (Hirt and Nichols, 1981): with these it is possible to trace the
interface between the continuous and the disperse phase, describing in detail the shape of
the dispersed particle during its motion in the continuous fluid. The different phases are con-
sidered to be completely segregated in the computational cell (i.e., only one phase present
in a single cell); an additional equation solves the evolution of the interface and can be for-
mulated according to different point of views (Eulerian or Lagrangian or in a combination
of both) (Peskin, 1977; Hirt and Nichols, 1981; Osher and Sethian, 1988; Unverdi and Tryg-
gvason, 1992). The limitation of these methods is the high definition of the calculation grid
necessary to represent in detail the shape of the dispersed particle and therefore its inter-
face; for this reason the computational costs can be very high. These methods fall into the
category of Direct Numerical Simulation (DNS) for multiphase systems and provide very
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precise information, but their use is mostly limited to simple geometries and small portions
of systems.

The averagedmethodsmay be divided in two categories: Eulerian-Lagrangian and Eulerian-
Eulerian methods. The Eulerian-Lagrangian approach prescribes that the flow field of the
continuous phase is calculated by using the averaged Navier-Stokes equation, while the mo-
tion of each one of the particles composing the disperse phase is taken into account by calcu-
lating the trajectories of the particles moving in the continuous phase, exchanging momen-
tum, mass and energy with the surrounding fluid. The limitation of this type of approach
is related to the global amount of particles traceable; in fact, despite of the continuous in-
crease in computing power, this amount is always restricted, and consequently the mod-
els Lagrangian-Eulerian are only applicable to certain types of systems (such as sprays or
droplet). Among these methods, it is worth mentioning the Particle Source in Cell (PSIC)
used for simulate gas-liquid and gas-solid systems (Migdal and Agosta, 1967; Crowe et al.,
1977), but with a limit on the volume fraction of the disperse phase, since a way to account
for the interactions between different particles is not expected. For high volume fractions, it
is possible to use the so-called Discrete Particle Method (DPM) (Li et al., 1999; Chen and
Fan, 2004; van Sint Annaland et al., 2005).

With the Eulerian-Eulerian approach, all the phases present in the multiphase system
are treated as interpenetrating continua, sharing the same space and interacting through their
source terms. The concept of volume fraction is essential: all the equations are written in
such a way that volume fractions assume values between zero and one: the summation of
these, in each cell, must be equal to one. It is clear that in this approach an average of the
properties of the single dispersed particles is performed, calculating the evolution of different
phases characterized by averaged quantities. Among these Eulerian-Eulerian methods, the
multifluid model and the mixture model are the most important (Drew and Passman, 1999;
Hjertager, 2007; Yeoh and Tu, 2010). The former solves the constitutive equations for the 𝑁
different phases composing the multiphase system, while the latter uses a few equations that
describe the properties of the mixture, rather than those of the individual phases. However,
this latter method is more indicated when a multiphase system composed by phases with
more or less the same density is considered.

Since the aim of this work is to simulate industrial scale gas-liquid systems, the mul-
tifluid model will be used. In this chapter, the constitutive equations of the model will be
formulated, with particular attention to the peculiarities of gas-liquid systems and the cou-
pling procedure with the Population Balance Equation.
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3.1 Multifluid model
In general, it is possible to describe a multiphase system by means of a finite number of
regions, each one containing a single phase, divided by many interfaces. The derivation
of the multifluid model consists in writing the local and instantaneous mass and momen-
tum conservation equations for each phase and, through appropriate averaging techniques,
deriving the equations that describe the average characteristics of the fluid. For engineer-
ing applications, in fact, the interest is often directed towards the average properties of a
fluid; the fluctuations given by turbulence are taken into account only when they may affect
the macroscopic properties. As it will be clearer below, the averaging process involves the
definition of sub-models for some phenomena constituting the deviating components of the
averaged equations, such as the effects of turbulence and the interaction between the phases.
In the next section, the constitutive equations of the multifluid model for 𝑁 different phases
will be presented in detail.

3.1.1 Local and instantaneous formulation
For a given region 𝑉 fixed in space and shared between 𝑁 different physical phases, it is
possible to write the balance equation for a generic (scalar or vector) extensive quantity 𝜓 .
By indicating with 𝑉𝑘 ⊆ 𝑉 the portion of the volume occupied by 𝑘−th phase, the control
volume 𝑉 is the union of the 𝑁 subvolumes:

𝑉 =
𝑁

ෑ
𝑘=1

𝑉𝑘(𝑡) (3.1)

where 𝑘 = 1, ..., 𝑁 . By assuming valid the continuum hypothesis, the balance equation for
𝜓 is the following (Ishii and Mishima, 1984; Hjertager, 2007):

𝑁

𝑘=1 ๖
𝑑
𝑑𝑡 ඘𝑉𝑘(𝑡)

𝜌𝑘𝜓𝑘𝑑𝑉
๗ຟຠຠຠຠຠຠຠຠຠຠຠຠຣຠຠຠຠຠຠຠຠຠຠຠຠຬ

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

=

= −
𝑁

𝑘=1 ๖඘𝐴𝑘(𝑡)
𝜌𝑘𝜓𝑘(𝑢𝑘 ⋅ 𝑛𝑘)𝑑𝐴

๗
−

𝑁

𝑘=1 ๖඘𝐴𝑘(𝑡)
(𝐽𝑘 ⋅ 𝑛𝑘)𝑑𝐴

๗ຟຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຣຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຬ
𝑛𝑒𝑡 𝑓𝑙𝑢𝑥

+

+ 1
2

𝑁

𝑘=1

𝑁

𝑗්=1
(1 − 𝛿𝑗𝑘) ඘𝐴𝐼,𝑗𝑘(𝑡)

Φ𝐼,𝑗𝑘𝑑𝐴 +
𝑁

𝑘=1 ඘𝑉𝑘(𝑡)
𝜌𝑘Φ𝑘𝑑𝑉

ຟຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຣຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຠຬ
𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑒𝑟𝑚

, (3.2)

where 𝐴𝐼,𝑗𝑘(𝑡) represents the interface between 𝑗−th and 𝑘−th phase, 𝐴𝑘(𝑡) the surface of
volume 𝑉𝑘(𝑡), 𝜌𝑘 the density of 𝑘−th phase, 𝜓𝑘 a property of the fluid evaluated for the 𝑘−th
phase, 𝑛𝑘 the normal vector of 𝐴𝑘(𝑡), 𝑢𝑘 the instantaneous velocity of 𝑘−th phase, 𝐽𝑘 the
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flux of 𝜓𝑘 due to other phenomena, Φ𝑘 the volumetric source term, Φ𝐼,𝑗𝑘 the source term
of the interface and 𝛿𝑗𝑘 the Kronecker delta (equal to 1 if 𝑖 = 𝑗 and equal to 0 if 𝑖 ≠ 𝑗). It
is important to say that the interface between phases can be thought as a separation surface
between the phases through which discontinuity of properties may exist. The position of the
interface 𝐴𝐼,𝑗𝑘(𝑡) is determined by the vector:

𝑟𝐼,𝑗𝑘 = 𝑟𝐼,𝑗𝑘(𝑥(𝜁, 𝜂, 𝑡), 𝑦(𝜁, 𝜂, 𝑡), 𝑧(𝜁, 𝜂, 𝑡)), (3.3)

and the velocity of the point(𝜁 ,𝜂) belonging to the surface is written as:

𝑢𝐼,𝑗𝑘 =
๖

𝜕𝑟𝐼,𝑗𝑘
𝜕𝑡 ๗

𝜁,𝜂=𝑐𝑜𝑠𝑡.
. (3.4)

By means of Leibniz and Gauss theorem, it is possible to rewrite the three first terms of
Eq. (3.2) as a sum of volume and surface integrals (a rigorous derivation can be found in
Bove, 2005):

𝑑
𝑑𝑡 ඘𝑉𝑘(𝑡)

𝜌𝑘𝜓𝑘𝑑𝑉 = ඘𝑉𝑘(𝑡)

𝜕
𝜕𝑡 (𝜌𝑘𝜓𝑘)𝑑𝑉 +

𝑁

𝑗්=1
(1 − 𝛿𝑗𝑘) ඘𝐴𝐼,𝑗𝑘(𝑡)

𝜌𝑘𝜓𝑘𝑢𝐼,𝑗𝑘 ⋅ 𝑛𝑘𝑗𝑑𝐴 (3.5)

඘𝐴𝑘(𝑡)
𝜌𝑘𝜓𝑘𝑢𝑘 ⋅ 𝑛𝑘𝑑𝐴 = ඘𝑉𝑘(𝑡)

∇ ⋅ (𝜌𝑘𝜓𝑘𝑢𝑘)𝑑𝑉 −
𝑁

𝑗්=1
(1 − 𝛿𝑗𝑘) ඘𝐴𝐼,𝑘𝑗 (𝑡)

𝜌𝑘𝜓𝑘𝑢𝑘 ⋅ 𝑛𝑘𝑗𝑑𝐴. (3.6)

඘𝐴𝑘(𝑡)
𝐽𝑘 ⋅ 𝑛𝑘𝑑𝐴 = ඘𝑉𝑘(𝑡)

∇ ⋅ 𝐽𝑘𝑑𝑉 −
𝑁

𝑗්=1
(1 − 𝛿𝑗𝑘) ඘𝐴𝐼,𝑘𝑗

𝐽𝑘 ⋅ 𝑛𝑘𝑗𝑑𝐴. (3.7)

By substituting Eqs. (3.5) to (3.7) into Eq. (3.2) the following expression is obtained:

𝑁

𝑘්=1 ඘𝑉𝑘(𝑡) ෺
𝜕
𝜕𝑡 (𝜌𝑘𝜓𝑘) + ∇ ⋅ (𝜌𝑘𝜓𝑘𝑢𝑘) + ∇ ⋅ 𝐽𝑘 − 𝜌𝑘Φ𝑘෻ 𝑑𝑉 +

−
𝑁

𝑘්=1

𝑁

𝑗්=1
(1 − 𝛿𝑗𝑘) ඘𝐴𝐼,𝑘𝑗

෺(𝑚̇𝐼,𝑘𝑗𝜓𝑘 + 𝐽𝑘 ⋅ 𝑛𝑘𝑗) + 1
2Φ𝐼,𝑘𝑗෻ 𝑑𝐴 = 0, (3.8)

where the mass exchange term 𝑚̇𝐼,𝑘𝑗 per unit of area and unit time from 𝑘−th phase to 𝑗−th
phase is defined as:

𝑚̇𝐼,𝑘𝑗 = 𝜌𝑘(𝑢𝑘 − 𝑢𝐼,𝑘𝑗) ⋅ ⃗𝑛𝐼,𝑘𝑗 . (3.9)

Since control volume 𝑉 is generic, Eq. (3.8) is valid for any 𝑉𝑘(𝑡) and 𝐴𝐼,𝑘𝑗(𝑡). Therefore,
the local and instantanous balance equation has the following form:

𝜕
𝜕𝑡 (𝜌𝑘𝜓𝑘) + ∇ ⋅ (𝜌𝑘𝜓𝑘𝑢𝑘) + ∇ ⋅ 𝐽𝑘 − 𝜌𝑘Φ𝑘 = 0, (3.10)

66



CHAPTER 3. CFD COUPLING

and the condition for the interfacial jump:

𝜓𝑗𝑚̇𝐼,𝑗𝑘 + 𝜓𝑘𝑚̇𝐼,𝑘𝑗 + 𝐽𝑗 ⋅ 𝑛𝐼,𝑗𝑘 + 𝐽𝑘 ⋅ 𝑛𝐼,𝑘𝑗 = Φ𝐼,𝑗𝑘. (3.11)

Eq. (3.10) and Eq. (3.11) are valid for any 𝜓𝑘, properly providing 𝐽𝑘, Φ𝑘 and Φ𝐼,𝑘𝑗 . Mass,
momentum, chemical species and energy balance equation arewritten in the form of Eq. (3.10)
and Eq. (3.11) (Hjertager, 2007). Since in this work, an isothermal system is modeled, only
first three balance equation will be reported below.

Mass balance for 𝑘−th phase can be written as:

𝜕𝜌𝑘
𝜕𝑡 + ∇ ⋅ (𝜌𝑘𝑢𝑘) = 0 (3.12)

and the jump condition as:
𝑚̇𝐼,𝑗𝑘 + 𝑚̇𝐼,𝑘𝑗 = 0. (3.13)

Momentum balance equation for 𝑘−th phase is:

𝜕
𝜕𝑡 (𝜌𝑘𝑢𝑘) + ∇ ⋅ (𝜌𝑘𝑢𝑘𝑢𝑘) = ∇ ⋅ ̄̄𝑇 𝑘 + 𝜌𝑘 ⋅ 𝑏⃗𝑘, (3.14)

and the interfacial jump condition:

𝑚̇𝐼,𝑗𝑘𝑢𝑗 + 𝑚̇𝐼,𝑘𝑗𝑢𝑘 + ̄̄𝑇 𝑗 ⋅ 𝑛𝐼,𝑗𝑘 + ̄̄𝑇 𝑘 ⋅ 𝑛𝐼,𝑘𝑗 = 𝑚⃗𝜎
𝑗𝑘, (3.15)

where ̄̄𝑇 represents the stress tensor, 𝑏⃗𝑘 is the vector representing the sum of the forces acting
on 𝑘−th phase and 𝑚𝜎

𝑗𝑘 is the superficial traction, which has the dimension of stress and is
defined as:

𝑚𝜎
𝑗𝑘 = 2𝐻𝑗𝑘𝜎𝑛𝐼,𝑗𝑘 − ∇𝐼,𝑗𝑘𝜎, (3.16)

where 𝜎 is the interfacial tension, 𝐻𝑗𝑘 the interface curvature e ∇𝐼,𝑗𝑘𝜎 is the gradient of
interfacial tension between 𝑗−th and 𝑘−th phases (Aris, 1962). For the mass fraction 𝑌𝑘 of
a chemical species:

𝜕
𝜕𝑡 (𝜌𝑘𝑌𝑘) + ∇ ⋅ (𝜌𝑘𝑌𝑘𝑢𝑘) = −∇𝐹𝑌,𝑘 + 𝜌𝑘Ψ𝑘 (3.17)

and the interfacial jump condition:

𝑚̇𝐼,𝑗𝑘𝑌𝑗 + 𝑚̇𝐼,𝑘𝑗𝑌𝑘 + 𝐹𝑌,𝑗 ⋅ 𝑛𝐼,𝑗𝑘 + 𝐹𝑌,𝑘 ⋅ 𝑛𝐼,𝑘𝑗 = Ψ𝐼,𝑘𝑗 (3.18)

where 𝐹𝑌,𝑘 is the molecular flux of 𝑌 in the 𝑘−th phase according to Fick law, Ψ𝑘 is the
volumetric generation rate of 𝑌 of 𝑘−th phase and Ψ𝐼,𝑘𝑗 is the interfacial generation rate of
𝑌 per unit area of the interface 𝑗𝑘.

Eqs. (3.12) to (3.18) describe in detail all the fluid dynamics aspects of a generic mul-
tiphase system. Since the final aim of this work is to develop a methodology for predicting
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the behavior of industrial scale systems, averaging techniques can be helpful to reduce the
level of detail of the simulation.

3.1.2 Averaging techniques
Averaging techniques commonly used in the multiphase modeling can be essentially of three
types: time average, spatial average or ensemble average. As pointed out by Drew and
Passman (1999), the averaged equations for multiphase flows were historically derived by
means of volume averaging, in which the averaging procedure was performed on a volume
larger than the characteristic volume of the secondary phase. Therefore, all the information
lost on the scales smaller than the averaging scale need to be accounted for through sub-grid
models, which may be derived empirically, analytically or numerically (Hjertager, 2007).
However, in this way, the model is sensitive to the choice of averaging volume (Drew and
Passman, 1999); with the ensemble averaging, the obtained equations are the same to those
derived with the volume averaging technique and from the mathematical point of view are
independent of the choice of volume control. Therefore, the latter method will be used.

In deriving conservation laws for each phase on the desired domain it is important to
distinguish between phases during the averaging procedure. The mathematical tool used
for performing this distinction is the so-called “indicator function”, specifically defined to
isolate each phase from others even in the microscale description. Defining the space of all
possible events ℰ of a given system 𝒫 , the local and instantaneous formulation of a generic
variable 𝑓 defined in 𝒫 can be written as 𝑓(𝑟, 𝑡; 𝜇), where 𝑟 ∈ ℛ is the vector of position
coordinates, 𝑡 is the time and 𝜇 ∈ ℰ is a particular realization of 𝒫 . The indicator function
for the 𝑘−th phase in any realization 𝜇 is defined as:

𝑋𝑘(𝑟, 𝑡; 𝜇) =
๜

1 if 𝑟 ∈ phase 𝑘 in realization 𝜇
0 otherwise

(3.19)

By using the phase indicator function is possible to describe the behavior of a single phase
in completely separate way from the entire multiphase system, ignoring all the other phases
and interfaces. Moreover, the definition of Eq. (3.19) is useful to the derivation of averaged
equations, for example:

𝜕𝑋𝑘
𝜕𝑡 + 𝑢𝐼,𝑗𝑘 ⋅ ∇𝑋𝑘 = 0, (3.20)

namely the derivatives of phase indicator function is equal to zero. The term ∇𝑋𝑘 can be
written as:

∇𝑋𝑘 = ว
𝜕𝑋𝑘
𝜕𝑛 ศ 𝑛𝐼,𝑘𝑗 = 𝛿(𝑟 − 𝑟𝐼,𝑘𝑗)𝑛𝐼,𝑘𝑗 (3.21)

where 𝛿(𝑟 − 𝑟𝐼,𝑘𝑗) is the Dirac delta function for the interface between 𝑗−th and 𝑘−th.
Now it is important to define the ensemble average of 𝑓 in the following way:

⟨𝑓(𝑟, 𝑡; 𝜇)⟩ℰ = ඘ℰ
𝑓(𝑟, 𝑡; 𝜇) d𝑚(𝜇) (3.22)
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where d𝑚(𝜇) is the density for the probability on the set of all events ℰ . It can be shown that
for the ensemble average the following relationships are valid (Drew and Passman, 1999):

• according to Leibnitz theorem:

๎𝑋𝑘
𝜕𝑓
𝜕𝑡 ๏

ℰ
= ๎

𝜕𝑋𝑘𝑓
𝜕𝑡 ๏

ℰ
− ๎𝑓𝑘𝑗

𝜕𝑋𝑘
𝜕𝑡 ๏

ℰ
(3.23)

• according to Gauss theorem:

⟨𝑋𝑘∇𝑓⟩ℰ = ⟨∇(𝑋𝑘𝑓)⟩ℰ + ⟨𝑓𝑘𝑗∇𝑋𝑘⟩ℰ (3.24)

where 𝑓𝑘𝑗 represent the value of the function 𝑓 evaluated on 𝑘−th phase region of the inter-
face 𝑘𝑗. Moreover, also the so-called Reynolds rules are valid:

⟨𝑓 + 𝑔⟩ = ⟨𝑓⟩ + ⟨𝑔⟩
⟨⟨𝑓⟩𝑔⟩ = ⟨𝑓⟩⟨𝑔⟩
⟨cost.⟩ = cost.

๎
𝜕𝑓
𝜕𝑡 ๏ = 𝜕⟨𝑓⟩

𝜕𝑡
⟨∇𝑓⟩ = ∇⟨𝑓⟩

⟨∇ ⋅ 𝑓⟩ = ∇ ⋅ ⟨𝑓⟩ (3.25)

By multiplying Eq. (3.10) for the phase indicator function 𝑋𝑘 e and applying the ensem-
ble averaging, the following equation is obtained:

𝜕
𝜕𝑡⟨𝑋𝑘𝜌𝑘𝜓𝑘⟩ + ∇ ⋅ ⟨𝑋𝑘𝜌𝑘𝜓𝑘𝑢𝑘⟩ = −⟨𝑋𝑘𝐽𝑘⟩ + ⟨𝑋𝑘𝜌𝑘Φ𝑘⟩+

− 1
𝑉

𝑁

𝑗්=1
(1 − 𝛿𝑗𝑘) ඘𝐴𝐼,𝑘𝑗

[𝑚̇𝐼,𝑘𝑗𝜓𝑘 + 𝐽𝑘 ⋅ 𝑛𝐼,𝑘𝑗]𝑑𝐴 (3.26)

The average equation for the interface jump condition can be written multiplying Eq. (3.11)
for the gradient of indicator phase function ∇𝑋𝑘 and performing the averaging procedure:

1
𝑉 ඘𝑉

[𝜓𝑗𝑚̇𝐼,𝑗𝑘 + 𝜓𝑘𝑚̇𝐼,𝑘𝑗 + 𝐽𝑗𝑛𝐼,𝑗𝑘 + 𝐽𝑘𝑛𝐼,𝑘𝑗]𝑑𝑉 = 1
𝑉 ඘𝑉

Φ𝐼,𝑗𝑘𝑑𝑉 (3.27)

3.1.3 Constitutive equations of multifluid model
Constitutive equations of the model can be written in compact form by means of the follow-
ing defined averages (Drew and Passman, 1999):
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1. phase average:
𝜓𝑘 = ⟨𝑋𝑘𝜓𝑘⟩

𝛼𝑘
(3.28)

where 𝛼𝑘 is the volume fraction of 𝑘−th phase and is defined as ensemble average of
the phase indicator function 𝑋𝑘 (i.e., 𝛼𝑘 = ⟨𝑋𝑘⟩) and the following relationship is
valid:

𝑁

𝐾=1
𝛼𝑘 = 1; (3.29)

2. interfacial area per unit volume expressed as:

𝐴𝑘 = −⟨𝑛𝑘 ⋅ ∇𝑋𝑘⟩ (3.30)

where 𝑛𝑘 is the unit normal vector to 𝑘−th phase;

3. density weighted average (or Favre average) written as:

𝜓̂𝑘 = ⟨𝑋𝑘𝜌𝑘𝜓𝑘⟩
𝛼𝑘 ̄𝜌𝑘

. (3.31)

The balance equation for the for a Favre-averaged generic quantity of 𝑘−th phase 𝜓̂ can
be written as:

𝜕
𝜕𝑡 (𝛼𝑘 ̄𝜌𝑘𝜓̂𝑘) + ∇ ⋅ (𝛼𝑘 ̄𝜌𝑘𝜓̂𝑘

̂𝑢𝑘) = −∇ ⋅ ෺𝛼𝑘 ෷
̂𝐽 𝑘 + 𝐽 𝑇

𝑘 ෸෻ + (𝛼𝑘 ̄𝜌𝑘Φ̂𝑘)+

− 1
𝑉

𝑁

𝑗්=1
(1 − 𝛿𝑗𝑘) ඘𝐴𝐼,𝑘𝑗

[𝑚̇𝐼,𝑘𝑗𝜓𝑘 + 𝐽𝑘 ⋅ 𝑛𝐼,𝑘𝑗]𝑑𝐴 (3.32)

where 𝐽 𝑇
𝑘 is originated by averaging procedure of the advective term. This unclosed term

contains the information relating to the turbulence of the system. The vector (or tensor if 𝜓𝑘
is a vector field) 𝐽 𝑇

𝑘 can be formulated in the following way:

𝐽 𝑇
𝑘 = ̄𝜌𝑘 ෷๠𝜓𝑘𝑢𝑘 − 𝜓̂𝑘

̂𝑢𝑘෸ (3.33)

Below the averaged constitutive equations for a generic multiphase system are presented.
As seen in Section 3.1.1, at least three relationship are necessary to describe the evolution
of an isothermal system:

• mass conservation
𝜕
𝜕𝑡 (𝛼𝑘 ̄𝜌𝑘) + ∇ ⋅ (𝛼𝑘 ̄𝜌𝑘

̂𝑢𝑘) = Γ𝑘 (3.34)

• momentum conservation (Navier-Stokes)

𝜕
𝜕𝑡 (𝛼𝑘 ̄𝜌𝑘

̂𝑢𝑘) + ∇ ⋅ (𝛼𝑘 ̄𝜌𝑘
̂𝑢𝑘

̂𝑢𝑘) = ∇ ⋅ ෺𝛼𝑘 ෷
̂̄̄𝑇 𝑘 + ̄̄𝑇 𝑇

𝑘 ෸෻ + (𝛼𝑘 ̄𝜌𝑘𝑔) + Γ𝑘
̂𝑢𝑘 + 𝑀⃗𝐼,𝑘 (3.35)

70



CHAPTER 3. CFD COUPLING

• mass fraction of the 𝑌𝑘 chemical species conservation

𝜕
𝜕𝑡 (𝛼𝑘 ̄𝜌𝑘 ̂𝑌𝑘) + ∇ ⋅ (𝛼𝑘

̄𝑢𝑘 ̂𝑌𝑘) = −∇ ⋅ 𝛼𝑘( ල⃗𝐹 𝑌,𝑘 + ල⃗𝐹
𝑇
𝑌,𝑘) + ̂𝑌𝑘𝑗 ⋅ Γ𝑘 + 𝛼𝑘 ̄𝜌𝑘Ψ̂𝑘 (3.36)

where ̄̄𝑇 𝑇
𝑘 represent the Reynolds stress tensor generated by the averaging procedure. Fur-

thermore, the right-hand side terms of Eq. (3.36) represent respectively the mass exchange
within 𝑘−th phase due to concentration gradient, mass transfer from other phases to 𝑘−th
and the generation rate of 𝑌 in phase 𝑘 (e.g., due to chemical reaction). Γ𝑘 is the mass
exchange term between phases defined as:

Γ𝑘 = − 1
𝑉

𝑁

𝑗්=1
(1 − 𝛿𝑗𝑘) ඘𝐴𝐼,𝑘𝑗

𝑚̇𝐼,𝑘𝑗𝑑𝐴 (3.37)

while the term 𝑀⃗𝐼,𝑘 takes into account the interfacial forces between phases:

𝑀⃗𝐼,𝑘 = − 1
𝑉

𝑁

𝑗්=1
(1 − 𝛿𝑗𝑘) ඘𝐴𝐼,𝑘𝑗

෺𝑚̇𝐼,𝑘𝑗𝑢𝑘 − ̄̄𝑇 𝑘 ⋅ 𝑛𝐼,𝑘𝑗෻ 𝑑𝐴 (3.38)

For the mass conservation, the interface jump condition is:

1
𝑉 ඘𝐴𝐼,𝑘𝑗

[𝑚̇𝐼,𝑗𝑘 + 𝑚̇𝐼,𝑘𝑗]𝑑𝐴 = 0, (3.39)

and for momentum conservation:

1
𝑉 ඘𝐴𝐼,𝑘𝑗

෺𝑢𝑗𝑚̇𝐼,𝑗𝑘 + 𝑢𝑘𝑚̇𝐼,𝑘𝑗 − ̄̄𝑇 𝑗 ⋅ 𝑛𝐼,𝑗𝑘 − ̄̄𝑇 𝑘 ⋅ 𝑛𝐼,𝑘𝑗෻ 𝑑𝐴 = − 1
𝑉 ඘𝐴𝐼,𝑘𝑗

𝑚⃗𝜎
𝑗𝑘𝑑𝐴. (3.40)

Therefore the following constraints are valid for the mass exchange:

𝑁

𝑘්=1
Γ𝑘 = 0, (3.41)

and for momentum exchange:

𝑁

𝑘්=1
[Γ𝑘𝑢𝑘 + 𝑀⃗𝐼,𝑘] = 1

2

𝑁

𝑘්=1

𝑁

𝑗්=1

1
𝑉 (1 − 𝛿𝑘𝑗) ඘𝐴𝐼,𝑘𝑗

𝑚⃗𝜎
𝑗𝑘𝑑𝐴 = 𝑀⃗𝜎 . (3.42)

3.2 Closure relations for multifluid model
Themultifluidmodel written in the form expressed in Section 3.1.3 can not be directly solved
since there are terms not directly depending on averaged fluid quantities. These unclosed
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terms can be divided in three groups:

1. self-interaction terms ( ̄̄𝑇 𝑘);

2. terms of interaction between phases (Γ𝑘, 𝑀⃗𝐼,𝑘, 𝑀⃗𝜎);

3. turbulence terms ( ̄̄𝑇 𝑇
𝑘 ).

Moreover, the thermodynamic state of the system must be defined through equations of
state, linking the different thermodynamic variables. The closures of the aforementioned
terms together with state equations defines the constitutive laws for a given system. In the
next section, the laws of closure for the multifluid model will be derived, with special men-
tion to gas-liquid in which the dispersed phase are bubbles.

3.2.1 Self-interaction term
The viscous stress tensor ̄̄𝑇 𝑘 of the 𝑘−th phase can be formulated as sum of two different
components, a pressure term and a shear stress term (Aris, 1962):

̄̄𝑇 𝑘 = −𝑝𝑘
̄̄𝐼 + ̄̄𝜏𝑘. (3.43)

The shear stress tensor is modeled according to the Newtonian strain-stress relationship:

̄̄𝜏𝑘 = 𝜁𝑘 ෷∇ ⋅ ̂𝑢𝑘෸ ̄̄𝐼 + 2𝜇𝑘 ෺
̄̄𝑆𝑘 − 1

3∇ ⋅ ̂𝑢𝑘
̄̄𝐼෻ , (3.44)

where ̄̄𝐼 is the identity matrix and the strain-rate tensor is defined as:

̄̄𝑆𝑘 = 1
2 ෷∇ ⋅ ̂𝑢𝑘 + ෷∇ ⋅ ̂𝑢𝑘෸

𝑇
෸ . (3.45)

The bulk viscosity 𝜁𝑘 is generally assumed equal to zero for all phases, while the dynamic
viscosity 𝜇𝑘 is usually equal to the value of the laminar viscosity, different for each phase (for
the dispersed gas phase is usually assumed equal to zero). The effects of secondary phases
and temperature on this term is in general neglected in first approximation, especially when
an isothermal system is studied, as in examined case. Furthermore, it is possible to state that
by neglecting the effect of surface tension, as if the different phases were not separated, the
same pressure is shared by all the phases:

𝑝𝑘 = 𝑝𝐼,𝑘 = 𝑝. (3.46)

3.2.2 Interaction terms between phases
The formulation of the term Γ𝑘 depends on the process (i.e., evaporation, condensation, mass
transfer, etc.) that one wants to simulate. If there is an exchange of mass, Γ𝑘 equal to zero;
in the case of mass transfer, this term must be defined according the underlying theory, as in
Section 2.2.1.
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The force acting on the interface of 𝑘−th phase 𝑀⃗𝐼,𝑘 is usually expressed with a sum of
an average interfacial pressure, a shear rate acting on the interface and a term accounting for
the forces acting on the bubbles:

𝑀⃗𝐼,𝑘 = 𝑝𝐼,𝑘∇𝛼𝑘 − ̄̄𝜏𝐼,𝑘∇𝛼𝑘 + 𝑀⃗𝑒
𝐼,𝑘. (3.47)

In this manner, it is possible to rewrite the right-hand side of Eq. (3.35) in the following way:

∇ ⋅ ෷𝛼𝑘
̂̄̄𝑇 𝑘෸ + (𝛼𝑘 ̄𝜌𝑘𝑔) + Γ𝑘

̂𝑢𝑘 + 𝑀⃗𝐼,𝑘 =

= − 𝛼𝑘∇𝑝𝑘 + ∇ ⋅ ඳ𝛼𝑘 ̄̄𝜏𝑘ප + (𝑝𝐼,𝑘 − 𝑝𝑘)∇𝛼𝑘 − 𝜏𝐼,𝑘∇ ⋅ 𝛼𝑘 + (𝛼𝑘 ̄𝜌𝑘𝑔) + Γ𝑘
̂𝑢𝑘 + 𝑀⃗𝑒

𝐼,𝑘, (3.48)

where 𝑀⃗𝑒
𝐼,𝑘 represents the external forces per unit volume acting on the interface between

the continuous phase and the 𝑘−th disperse phase. Since the external forces are of different
nature, 𝑀⃗𝑒

𝐼,𝑘 is a linear combination of various acting forces. Moreover, it is possible to
consider the gas-liquid system composed by a continuous (or primary) phase (with 𝑘 = 1)
and 𝑁 − 1 disperse phases, each one representing a group of bubbles characterized by a
value of size, composition and velocity. By assuming that interfacial forces act only between
continuous and disperse phases, a reasonable assumption for low gas hold-up, the external
forces term for the primary phase results in (Ishii and Mishima, 1984):

𝑀⃗𝐼,1 =
𝑁

𝑘්=2
(𝑀⃗𝐷

𝐼,𝑘 + 𝑀⃗𝐿
𝐼,𝑘 + 𝑀⃗𝑉𝑀

𝐼,𝑘 + 𝑀⃗𝐵
𝐼,𝑘 + 𝑀⃗𝑇𝐷

𝐼,𝑘 ), (3.49)

while for the secondary phases:

𝑀⃗𝐼,𝑘 = −𝑀⃗𝐷
𝐼,𝑘 − 𝑀⃗𝐿

𝐼,𝑘 − 𝑀⃗𝑉𝑀
𝐼,𝑘 − 𝑀⃗𝐵

𝐼,𝑘 − 𝑀⃗𝑇𝐷
𝐼,𝑘 𝑘 = 2, ..., 𝑁. (3.50)

The different terms in Eq. (3.49) and Eq. (3.50) represent respectively contributions of drag,
lift, virtual mass, Basset and turbulent dispersion forces. Since each term of Eq. (3.49) and
Eq. (3.50) are forces per unit volume, 𝑀⃗𝐼,𝑘 is expressed in the following way:

𝑀⃗𝐼,𝑘 = 𝛼𝑘
𝑉𝑏

𝐹𝐼,𝑘, (3.51)

where 𝑉𝑏 is the volume of the single bubble. In the case of bubbles with spherical shape, it
is possible to write:

𝑉𝑏 = 𝜋
6

̄𝑑 3
𝑏,𝑘 (3.52)

where ̄𝑑𝑏,𝑘 is the diameter of the bubbles belonging to the 𝑘−th group of bubbles.
This way to express 𝑀⃗𝐼,𝑘 respects the jump condition at the interface as specified in

Eq. (3.40). In the following sections, the meaning of the terms entering Eq. (3.49) and
Eq. (3.50) and their formulation from modeling point of view will be treated.
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3.2.3 Drag force
The relative stationary motion between an immersed body and the surrounding fluid (pri-
mary or continuous phase) generates the drag force. This force acts on single bubbles and
has an influence on the global hold-up of the disperse phase, as well as on flooding point and
heat and mass transfer coefficients. Drag force 𝐹 𝐷

𝐼,𝑘 has two different contributions: the first
is linked to the surface friction due to the shear rates acting on the surface of the immersed
body. The second is related to the shape of the body and is generated by the non-uniform
pressure distribution caused by the relative (or slip) velocity between the object and the fluid
(Bird et al., 2002). Therefore, the drag force is expressed in terms of the projection area 𝐴
of the body, the slip velocity and the so-called drag coefficient 𝐶𝐷,𝑘:

𝐹 𝐷
𝐼,𝑘 = 1

2𝜌1𝐶𝐷,𝑘𝐴|𝑢𝑘 − 𝑢1|(𝑢𝑘 − 𝑢1). (3.53)

In general 𝐶𝐷,𝑘 depends on the characteristics of the continuous phase according to the
following definition of Reynolds number for dispersed systems:

Re =
𝜌1 ̄𝑑𝑏,𝑘|𝑢𝑘 − 𝑢1|

𝜇1
, (3.54)

where 𝜇1 is the dynamic viscosity of the continuous phase. For spherical particles ̄𝑑𝑏,𝑘 is
the diameter, while for particles of other shapes an equivalent diameter can be conveniently
defined. In Fig. 3.1 the behavior of drag coefficient 𝐶𝐷,𝑘 is reported for a solid spherical
particle as a function of Re.

For low Reynolds numbers (Re < 1), the drag coefficient is inversely proportional to the
values of Re. For these values, the non-linear advective term of Navier-Stokes equation is
negligible with respect to the viscous term and the stationary momentum balance equation
for the incompressible continuous phase can be written in the following form:

∇𝑝 = 𝜇𝑙∇2𝑢1. (3.55)

The solution of this equation was provided by Stokes, giving the name to the fluid regime
that one has for these conditions. The drag force acting on a solid particle immersed in a
Stokesian fluid results equal to:

𝐹𝐷 = 3𝜋𝜇1 ̄𝑑𝑏,𝑘|𝑢𝑘 − 𝑢1|(𝑢𝑘 − 𝑢1), (3.56)

where |𝑢𝑘 − 𝑢1| is absolute value the slip velocity. By substituting Eq. (3.56) into Eq. (3.53),
it is possible to express the drag coefficient as:

𝐶𝐷,𝑘 = 𝐹𝐷
0, 5𝜌1𝐴(𝑢𝑘 − 𝑢1) = 24

Re (3.57)
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Figure 3.1: Values of the drag coefficient 𝐶𝐷,𝑘 in function of the Reynolds number for a solid
shperical shere.

where 𝐴 = 𝜋 ̄𝑑2
𝑏,𝑘/4 represents the projection area. For values of Re > 1, the assumption

underlying the Stokesian regime is no more valid, since the fluid inertia begins to show its
importance and the behavior of 𝐶𝐷,𝑘 deviates from Eq. (3.57). As is it possible to observe
in Fig. 3.1, for values of Reynolds number ranging between 103 and 2, 5 ⋅ 105 (Newton
regime), the drag coefficient 𝐶𝐷,𝑘 assumes an almost constant values equal to 0.44. In the
zone between the two regimes (1<Re<103), it is possible to use the following drag coefficient
proposed by Schiller and Naumann (1933):

𝐶𝐷,𝑘 = 24
Re (1 + 0.15Re0.687). (3.58)

For Re>2, 5 ⋅ 105 the values of drag coefficient 𝐶𝐷,𝑘 strongly reduce due to the transition
boundary layer of the from laminar to turbulent condition.

Hadamard e Rybczynski extended the Stokes relationship for 𝐶𝐷,𝑘 to the case of a fluid
sphere with viscosity 𝜇𝑘 immersed in a fluid with viscosity 𝜇1 (Crowe, 2006). The drag
force acting on the fluid particle can be written in the following way:

𝐹𝐷 = 2𝜋𝜇1𝐴|𝑢𝑘 − 𝑢1|3𝜆 + 2
𝜆 + 1 , (3.59)

where 𝜆 = 𝜇𝑘/𝜇1. The solid sphere represents a limiting case of Eq. (3.59) for 𝜆 = ∞, while
the case of a bubble in a liquid can be approximated with 𝜆 = 0. In this latter case, the
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following relationship is obtained:

𝐶𝐷,𝑘 = 16
Re . (3.60)

A fluid sphere rising or falling in a viscous liquid is subjected to the force of gravity, buoy-
ancy and drag. In stationary conditions, the forces sum to zero, and the sphere is moving at
a constant speed called terminal velocity (Clift et al., 1978). For a viscous sphere in Stokes
regime, the terminal velocity is:

𝑈𝑇 = 2
3𝑔𝐴2 (𝜌1 − 𝜌𝑘)

𝜇1

𝜆 + 1
3𝜆 − 2 (3.61)

This value should be considered as an upper limit, since the impurities present in real systems
have an effect on the coefficient 𝜆 which is difficult to quantify. Furthermore, it is important
to define the Eötvös number (Eo) in the following way:

Eo =
𝑑2

𝑏,𝑘𝑔|𝜌1 − 𝜌𝑘|
𝜎 , (3.62)

representing the ratio between buoyancy and superficial forces. For Eo ≤ 4, the size of the
fluid sphere is small and tends to behave like solid spheres, instead for Eo > 4 its behavior
is more similar to that described by the equations of Hadamard e Rybczynski.

For high values of Reynolds number, the non linear advective term of Navier-Stokes
equation becomes important: this implies that the vorticity and its gradients around the
sphere are transported by the fluid; in these cases the drag coefficient cannot be calculated
with a theoretical approach but can be estimated by means of empirical or semi-empirical
expressions obtained by many authors. The experimental campaigns carried out for the
determination of 𝐶𝐷,𝑘 mainly consider a single not rotating particle or bubble, in motion
through a fluid medium of infinite length and stagnant, therefore moving with a constant
terminal velocity. Moreover correlations were developed to describe the swarm effect of on
drag force; in fact the presence of many neighboring particles or bubbles generates interfer-
ence that lead to a reduction of the slip velocity between the phases and this aspect should
be consider in 𝐶𝐷,𝑘 models. It is worth mentioning that rising or falling fluid spheres may
change their shape according to different fluid dynamics conditions. The different shape
regimes are shown in Fig. 3.2, according to Eötvös (Eo), Reynolds (Re) and Morton (Mo),
this latter defined as:

Mo =
𝑔𝜇4

1|𝜌1 − 𝜌𝑘|
𝜌2

1𝜎3
. (3.63)

Some of the more popular drag correlations for gas-liquid systems will be reported be-
low.
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Figure 3.2: Shape regimes for falling or rising drops and bubbles in water. (Clift et al., 1978)
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𝐶𝐷,𝑘 proposed by Schiller and Naumann

The well-known Schiller and Naumann correlation (Schiller and Naumann, 1933), valid for
isolated solid spheres in liquids, has the following form:

𝐶𝐷,𝑘 =
⎧⎪
⎨
⎪⎩

24
Re (1 + 0.15Re0.687) if Re ≤ 1000

0.44 if Re > 1000
(3.64)

This correlation is herementioned for its widespread implementation in CFD codes; it should
not be used for the simulation of gas-liquid systems.

Drag correlation based on terminal velocity

Experiments on individual air bubbles in distilled water were conducted by Peebles and Gar-
ber (1953); Haberman andMorton (1956), which has been chosen because the contaminants
in the primary stage have a significant influence on 𝐶𝐷,𝑘.Taking into account the balance of
forces acting on a single bubble rising in a primary stage considered of infinitesimal length,
can be derived the following drag coefficient form:

𝐶𝐷,𝑘 = 4
3

(𝜌1 − 𝜌𝑘) ̄𝑑𝑏,𝑘𝑔
𝜌1

̂𝑢𝑡
(3.65)

where ̂𝑢𝑡 is the terminal velocity of the rising bubble experimentally measured. The terminal
velocity ̂𝑢𝑡 for a pure air water system can be calculated by means of the Grace correlation
(Clift et al., 1978):

̂𝑢𝑡 = ฻ว
2.14𝜎
𝜌1𝑑𝑏,𝑘

+ 0.505𝑔𝑑𝑑,𝑘ศ 𝑑𝑏,𝑘 ≥ 1.3mm. (3.66)

Eq. (3.66) gives an expression to the central part of the curve shown in Fig. 3.3.

𝐶𝐷,𝑘 according to Tomiyama

Recently, Tomiyama et al. (1998) developed different correlations for air-water systems with
different of purity of water:

• for a pure system:

𝐶𝐷,𝑘 = max ෺min ෷
16
Re (1 + 0.15Re0.687), 48

Re෸ , 8
3

𝐸𝑜
𝐸𝑜 + 4෻ (3.67)

• for a slightly contaminated water:

𝐶𝐷,𝑘 = max ෺min ෷
24
Re (1 + 0.15Re0.687), 72

Re෸ , 8
3

𝐸𝑜
𝐸𝑜 + 4෻ (3.68)
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Figure 3.3: Terminal velocity for a single air bubble in water at 20∘C. (Clift et al., 1978)

• for a fully contaminated water:

𝐶𝐷,𝑘 = max ෺
24
Re (1 + 0.15Re0.687), 8

3
𝐸𝑜

𝐸𝑜 + 4෻ (3.69)

𝐶𝐷,𝑘 for swarm of bubbles

The motion of bubbles in water at different hold-up values was studied by Ishii and Zuber
(1979), in order to determine the influence of swarms of bubbles on the drag coefficient.
For this reason, they proposed an approach based on a mixture viscosity, namely a modified
value of the viscosity of the primary phase that takes account of the additional resistance
to the motion of the bubbles caused by a high concentration of bubbles themselves. The
following correlation for the identified flow regimes was proposed:

𝐶𝐷,𝑘 =

⎧⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

24
Re𝑚

Stokes Regime

24
Re𝑚

(1 − 0.1Re0.75
𝑚 ) Undistorted Particle Regime

4 ̄𝑑𝑏,𝑘
6 𝑓(𝛼𝑘)ซ

𝑔(𝜌1 − 𝜌𝑘)
𝜎 Distorted Particle Regime

8
3(1 − 𝛼𝑘)2 Churn Turbulent Regime

(3.70)
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where

Re𝑚 =
̄𝑑𝑏,𝑘𝜌1| ̂𝑢1 − ̂𝑢𝑘|

𝜇𝑚
(3.71)

is the Reynolds number based on mixture viscosity 𝜇𝑚. The function 𝑓(𝛼𝑘) depends on
relative viscosity between continuous and dispersed phases and can be expressed as follows:

𝑓(𝛼𝑘) =

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

(1 − 𝛼𝑘)−0.5 for 𝜇1 ≫ 𝜇𝑘

(1 − 𝛼𝑘)−1.0 for 𝜇1 ≈ 𝜇𝑘

(1 − 𝛼𝑘)−1.5 for 𝜇1 ≪ 𝜇𝑘

(3.72)

However, the swarm effect becomes significant for high local volume fraction of the dis-
persed phase, generally more than 20 %.

Turbulence effect on 𝐶𝐷,𝑘

For solid particles larger than the typical length scale of turbulence, the dimensions and the
characteristics of the boundary layer surrounding the particles are modified by the turbu-
lent fluctuations and changing according to the drag force. For fluid particles, experimental
studies showed that turbulence causes a reduction of the slip velocity. The model proposed
by Bakker and Van den Akker (1994) takes this effect into account, based on the fact that
the increase of momentum transport around the bubble can be related to the ratio between
the size of the bubble and the length of the scale of turbulence. These authors introduce the
concept of effective viscosity, defined as the sum of the molecular viscosity and of a term
proportional to the eddy viscosity. In the case the 𝑘 − 𝜖 model for the turbulence is used,
effective viscosity can be written as:

𝜇𝑒𝑓𝑓 = 𝜇𝑙 + 𝐶𝜌𝑙
𝑘2

𝜖 (3.73)

where 𝑘 is the turbulent kinetic energy, 𝜖 is its rate of dissipation and 𝐶 is a fitting parameter.
The drag coefficient will be calculated by means of this modified Reynolds number:

Re𝑒𝑓𝑓 =
̄𝑑𝑏,𝑘𝜌1|𝑢1 − 𝑢𝑘|

𝜇𝑒𝑓𝑓
(3.74)

This correlation is able to predict the decrease of slip velocity with increasing turbulence, and
this damping is particularly significant for bubbles with diameter less than 5mm. This seems
reasonable, since larger bubbles fluctuates also in stagnant fluids, the turbulent fluctuations
therefore play a minor role on their drag coefficient.
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3.2.4 Other interfacial forces
Among interfacial forces, the drag force is certainly the most important of those listed in
Eq. (3.49) and Eq. (3.50). Often, other forces are neglected in a first approximation and are
evaluated only in a second time in order to reach a more accurate prediction of the system
dynamics. It is very common procedure to consider only the drag force for the simulation
of aerated stirred tank reactors, where the motion of the bubbles is imposed by the impeller
(Petitti et al., 2010); in bubble columns also other forces, especially lift and virtual mass may
have an effect on the predicted flow pattern. Nevertheless, they are often neglected even in
this case especially in the simulation of laboratory scale rectangular columns (Diaz et al.,
2008). Models for other interfacial forces are listed below, in order of importance.

Lift force

The lift force acting on the bubbles is able to induce a lateral shift of the rising motion,
tending to bring the bubbles to the walls of the vessel. Through numerous experiments it
was shown that this lateral shift depends strongly on the size of the bubble (for example,
the small bubbles tend to go towards the walls, while the larger ones at the center of the
vessel).The lift force represents the transverse force due to vorticity, evaluated in the center
of the particle subject to such a force. The general expression for the lift force is the following
(Drew and Lahey Jr, 1987):

𝐹 𝐿
𝑑 = 𝛼𝑘𝜌1𝐶𝐿( ̂𝑢𝑘 − ̂𝑢1) × 𝜔⃗1, (3.75)

where 𝐶𝐿 is the lift coefficient. The following expression for 𝜔⃗1 is given:

𝜔⃗1 = ∇ × ̂𝑢1. (3.76)

For systems at low Reynolds number, the lift coefficient 𝐶𝐿 for small bubbles rising in an
air-water system ranges between 0.25 and 0.3 (Zun, 1980). A correlation for calculating 𝐶𝐿
after numerous experiments in the case of a single bubble in air-water system was proposed
by Tomiyama et al. (2002):

𝐶𝐿 =
⎧⎪
⎨
⎪⎩

min[0.288 tanh(0.121Re), 𝑓(𝐸𝑜)] se 𝐸𝑜 < 4

𝑓(𝐸𝑜) se 𝐸𝑜 ≥ 4
(3.77)

where
𝑓(𝐸𝑜) = 0.00105𝐸𝑜3 − 0.0159𝐸𝑜2 − 0.0204𝐸𝑜 + 0.474. (3.78)

Another correlationwas proposed byHibiki and Ishii (2007), accounting for the swarm effect
on lift force:

𝐶𝐿 = 𝜉෋[𝐶 low Re𝑚
𝐿 (Re𝑚, 𝐺𝑆)]2 + 𝐶 high Re𝑚

𝐿 (𝑅𝑒𝑚, 𝐺𝑆)]2, (3.79)
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where 𝑅𝑒𝑚 is:

Re𝑚 =
2𝜌1 จ ̂𝑢𝑘 − ̂𝑢1จ ̄𝑑𝑏,𝑘

𝜇𝑚
, (3.80)

and 𝐺𝑆 :

𝐺𝑆 =
๧

̄𝑑𝑏,𝑘
̂𝑢𝑘 − ̂𝑢1

∇ ̂𝑢1๧
. (3.81)

In practice, 𝐶𝐿 is supposed to be constituted by the contribution of two different terms, the
first acting at low Re𝑚 (Re𝑚 < 1000):

𝐶 low Re𝑚
𝐿 = 6

𝜋2(2𝑅𝑒𝑚𝐺𝑆)1/2
2.255

(1 + 0.1𝑅𝑒𝑚/𝐺𝑆)3/2 , (3.82)

and the second term is important for high values of Re𝑚:

𝐶 high Re𝑚
𝐿 = 1

2 ๖
1 + 16𝑅𝑒−1

𝑚
1 + 29𝑅𝑒−1

𝑚 ๗
. (3.83)

The coefficient 𝜉 takes into account the shape of the bubbles and can be expressed as:

𝜉 = 2 − exp(0.136𝐸𝑜1.11). (3.84)

Turbulent dispersion force

As already mentioned, turbulent fluctuations are capable of strongly modifying the flow field
of multiphase system, and the effect on the interfacial forces may be in some cases not negli-
gible. Turbulent energy may be dissipated acting on different aspects of the disperse phase:
size of the bubble, interfacial area, slip velocity and turbulent intensity of the continuous
phase. Because of the difficulties related to the experimental techniques, it is difficult to iso-
late different effects of the turbulence and therefore formulate a unique model. As already
seen, some authors took into account this phenomenon by modifying the drag coefficient
(Bakker and Van den Akker, 1994); on the contrary some others expressed a new force able
to consider the modifications on the disperse phase inducted by turbulence. Among these
it is possible to mention the work of Lopez de Bertodano (1998), proposing the following
model for a single bubble:

𝐹 𝑇𝐷
𝑑 = −𝐶𝑇𝐷𝜌1𝑘1∇𝛼𝑘, (3.85)

where 𝐶𝑇𝐷 is the turbulent dispersion coefficient (ranging between 0.1 and 0.5) and 𝑘1 rep-
resents the turbulent kinetic energy of the continuous phase. The following model for a
single bubble moving in a vertical cylinder, also accounting for wall effects was proposed
by Podowski (2009):

𝐹 𝑇𝐷
𝑑 = 𝐶𝑇𝐷𝜌1∇ ⋅ (𝛼1

̄̄𝑇 𝑇
𝑘 ), (3.86)

with a coefficient 𝐶𝑇𝐷 equal to 2/3.
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Virtual mass force

The drag force takes into account the interactions between the liquid and the bubbles in a
field of uniform motion under the stationary conditions. If bubbles were accelerated in re-
lation to the liquid, the liquid surrounding the bubble would be accelerated as well. This
additional contribution is the so-called force of additional mass or virtual mass. The con-
cept of virtual mass force can be understood by considering the change of kinetic energy of
the liquid surrounding a bubble in acceleration. In a potential flow, acceleration induces a
resistant force on a sphere equal to half the mass of the fluid displaced by the acceleration
of the bubble. The general expression for this force is the following (Drew and Lahey Jr,
1987):

𝐹 𝑉𝑀
𝑑 = 𝛼𝑘 ̄𝜌1𝐶𝑉𝑀 ෺෷

𝐷
𝐷𝑡

̂𝑢𝑘 − 𝐷
𝐷𝑡

̂𝑢1෸ + ( ̂𝑢1 − ̂𝑢𝑘) ⋅ (∇ ̂𝑢𝑘 − ∇ ̂𝑢1)෻ (3.87)

where the virtual mass coefficient 𝐶𝑉𝑀 is function of the volume fraction 𝛼𝑘 and for a single
bubble ranges between 0.25 e 0.5. For very diluted solid particles in a fluid, it is possible to
use the value calculated for a sphere in a potential flow, equal to 0.5. For gas-liquid systems,
the following relationship was proposed by Wijngaarden and Jeffrey (1976):

𝐶𝑉𝑀 = 𝐶𝑉𝑀𝑃 (1 + 2.78𝛼𝑘), (3.88)

where 𝐶𝑉𝑀𝑃 represents the value of 𝐶𝑉𝑀 for a single bubble. It is important to remark that
this force is usually neglected when the motion of the disperse phase can be assumed as
stationary.

Basset force

The Basset force is the viscous force due to acceleration relative between the two phases,
continuous and dispersed, and the development of the boundary layer near the interfacial
surface. This force can be neglected when the motion of a stationary system is described
and should be considered for the modeling of non-stationary flows. However, the relative
importance compared to the drag force is such that even in this last case it is often neglected.
The Basset force can be expressed as follows (Drew and Lahey Jr, 1987):

𝐹 𝐵
𝑑 = 9

̄𝑑𝑏,𝑘
𝛼1ซ

𝜌1𝜇1
𝜋 ඘

𝑡

0

𝑎(𝑟, 𝑡)
√𝑡 − 𝜏

𝑑𝜏, (3.89)

where for 𝑎(𝑟, 𝑡) is the acceleration between phases, given by the following relation:

𝑎(𝑟, 𝑡) = ෷
𝐷
𝐷𝑡𝑢1 − 𝐷

𝐷𝑡𝑢1෸ − (𝑢𝑘 − 𝑢1) × (∇ × 𝑢𝑙). (3.90)

3.2.5 Turbulence closure
The averaging procedure of the advective term of the Navier-Stokes equation for the generic
phase 𝑘 brings to the definition of the so-called Reynolds stress tensor ̄̄𝑇 𝑇

𝑘 , which takes into
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account that part of the turbulent spectrum which is not resolved with the averaging process.
While nowadays strengths and weaknesses of all the models for single phase systems are
well-known, for multiphase flows, the turbulence modeling has still a number of not fully
clarified aspects. As previously remarked, although accurate methods (such as Direct Nu-
merical Simulation (DNS) or Large Eddy Simulation (LES)) allow to have a clearer view
of the phenomenon, it is non-feasible to apply them to simulations of large systems due to
the excessive details provided and the huge computational cost. In this sense, it should be
considered the work of Kataoka and Serizawa (1989) and then Lopez de Bertodano and Saif
(1997), which have derived and extended the well-known 𝑘 − 𝜖 model for single phase sys-
tems to multiphase systems. Comparing the case of 𝑁 generic phases with the single phase
𝑘 − 𝜖, the number of terms that need to be modeled is larger and it is difficult to give a
physical meaning for each term, making it extremely complex the treatment of turbulence
in multiphase systems.

The multiphase 𝑘 − 𝜖 is the common choice among other Reynolds-Averaged Navier-
Stokes (RANS) models, because is a good trade off between accuracy and computational
costs. However, recent work has shown that Large Eddy Simulations (LES) and Very Large
Eddy Simulations (VLES) can be applied to bubbly flows for systems of small size, allowing
to better describe the fluid dynamics of the systems compared to RANS prediction (Deen
et al., 2001).

Since the final aim of this dissertation is to describe turbulent industrial scale systems,
the following approaches are taken into account:

• turbulence model only for the liquid phase: standard 𝑘 − 𝜖 model is used for the liquid
phase and an additional term accounting for the turbulence inducted by the bubbles
can be included.

• mixture turbulence model: when the ratio of densities between different phases in the
systems is close to 1 or when the global gas hold-up is small, it is possible to solve the
transport equation for 𝑘 and 𝜖 referred to the mixture of the phases involved.

𝑘 − 𝜖 Turbulence Model only for the liquid phase

This model calculates the turbulent energy 𝑘 and the its dissipation rate 𝜖 only for the liquid
phase. Therefore, the equations have the following form (Kataoka and Serizawa, 1989):

𝜕
𝜕𝑡 (𝛼 ̄𝜌𝑘)1 + ∇ ⋅ (𝛼 ̄𝜌 ̂𝑢𝑘)1 = ∇ ⋅ ว𝛼 𝜇𝑇

𝜎𝑘
∇𝑘ศ1

+ 𝛼1 බ𝐺1 − ̄𝜌𝜖 + 𝑃𝑏,𝑘භ1 , (3.91)

𝜕
𝜕𝑡 (𝛼 ̄𝜌𝜖)1 + ∇ ⋅ (𝛼 ̄𝜌 ̂𝑢𝜖)1 = ∇ ⋅ ว𝛼 𝜇𝑇

𝜎𝜖
∇𝜖ศ1

+ 𝛼1 ෺
𝜖
𝑘(𝐶1𝐺1 − 𝐶2 ̄𝜌𝜖) + 𝑃𝑏,𝜖෻1

. (3.92)

where the 𝐶1 and 𝐶2 are model parameters, indicated in Table 3.1. The term relating to the
production of turbulent kinetic energy 𝐺1 is defined as follows:

𝐺1 = ̄̄𝜏1 ∶ ∇ ̂𝑢1, (3.93)
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where ̄̄𝜏1 is defined according to Eq. (3.44). The turbulent viscosity 𝜇𝑇,1 is modeled in the
following way:

𝜇𝑇,1 = 𝐶𝜇 ̄𝜌
𝑘2

1
𝜖1

(3.94)

where 𝐶𝜇 is a constant. It should be remarked that when the two terms 𝑃𝑏,𝑘 and 𝑃𝑏,𝜖 relating
to the additional turbulent kinetic energy produced or dissipated due to the work induced by
the bubbles are equal to 0, the model has the form of the standard 𝑘 − 𝜖 model. These two
terms can be expressed, according to Sato and Sekoguchi (1975):

𝑃𝑏,𝑘 = 𝐶𝑏𝑀⃗𝐷
1 ⋅ ( ̂𝑢𝑘 − ̂𝑢1) (3.95)

𝑃𝑏,𝜖 = 𝐶𝑏𝑒(1 − 𝛼1) ̂𝜌1
𝑘3/2

1
𝑑𝑏

(3.96)

where 𝑀⃗𝐷
1 is the drag force per unit volume expressed as in Eq. (3.51), 𝑑𝑏 is the bubble

diameter and 𝐶𝑏 and 𝐶𝑏𝑒 are two model constants. 𝐶𝑏 usually ranges from 0.02 to 0.75,
meaning that from 2 to 75 percent of the bubble-induced turbulence goes into the large
eddy structure of the continuous phase, while 𝐶𝑏𝑒 from 0.02 to 0.2. However, these large
variations in the two constants indicate the problems with this turbulence model for bubbly
flows (Hjertager, 2007), and, as said before, the two production terms are usually neglected
(Zhang et al., 2006).

Table 3.1: Constants of the 𝑘 − 𝜖 model.

𝐶𝜇 𝐶1 𝐶2 𝜎𝑘 𝜎𝜖

0.09 1.44 1.92 1.0 1.3

𝑘 − 𝜖 Mixture Turbulence Model

As previously remarked, this model is based on the assumption that properties and mean
velocities of the mixture are sufficient to describe the behavior of the turbulence of the mul-
tiphase system. It is possible to write the equations for 𝑘 and 𝜖 in the following way (Yeoh
and Tu, 2010):

𝜕𝜌𝑚𝑘
𝜕𝑡 + ∇ ⋅ (𝜌𝑚

̂𝑢𝑚𝑘) = ∇ ⋅ ว
𝜇𝑇,𝑚
𝜎𝑘

∇𝑘ศ + 𝐺𝑘,𝑚 − 𝜌𝑚𝜖 (3.97)

𝜕𝜌𝑚𝜖
𝜕𝑡 + ∇ ⋅ (𝜌𝑚

̂𝑢𝑚𝜖) = ∇ ⋅ ว
𝜇𝑇,𝑚
𝜎𝜖

∇𝜖ศ + 𝜖
𝑘(𝐶1𝐺𝑘,𝑚 − 𝐶2𝜌𝑚𝜖) (3.98)

where 𝜌𝑚 (mixture density) and ̂𝑢𝑚 (mixture velocity) are defined as:

𝜌𝑚 =
𝑁

𝑖්=1
𝛼𝑖𝜌𝑖, (3.99)
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̂𝑢𝑚 =

𝑁

𝑖්=1
𝛼𝑖𝜌𝑖

̂𝑢𝑖

𝑁

𝑖්=1
𝛼𝑖𝜌𝑖

, (3.100)

For the turbulent viscosity of the mixture 𝜇𝑇,𝑚 the following expression is used:

𝜇𝑇,𝑚 = 𝜌𝑚𝐶𝜇
𝑘2

𝜖 , (3.101)

and the production of turbulent kinetic energy 𝐺𝑘,𝑚 can be expressed as:

𝐺𝑘,𝑚 = 𝜇𝑇,𝑚(∇ ̂𝑢𝑚 + ∇ ̂𝑢𝑇
𝑚) ∶ ∇ ̂𝑢𝑚 (3.102)

The constant used with this model are the same for the single phase 𝑘 − 𝜖 model, reported
in Table 3.1.

3.2.6 Summary of the multifluid model equations
The final set of the equations is the following, neglecting all the interfacial forces except
drag force:

• Mass conservation
𝜕
𝜕𝑡 (𝛼𝑘 ̄𝜌𝑘) + ∇ ⋅ ෷𝛼𝑘 ̄𝜌𝑘

̂𝑢𝑘෸ = Γ𝑘 (3.103)

𝑁

𝑘්=1
𝛼𝑘 = 1 𝑘 = 1, ..., 𝑁 (3.104)

𝑁

𝑘්=1
Γ𝑘 = 0 (3.105)

• Momentum conservation (Navier-Stokes equation) for the continuous phase (𝑘 = 1)

𝜕
𝜕𝑡 ෷𝛼1 ̄𝜌1

̂𝑢1෸ + ∇ ⋅ ෷𝛼1 ̄𝜌1
̂𝑢1

̂𝑢1෸ = −𝛼1∇𝑝 + 𝛼1 ̄𝜌1𝑔 + Γ1
̂𝑢1+

+∇ ෷𝛼1(𝜇1 + 𝜇𝑇,1) ෷∇ ̂𝑢1 + ෷∇ ̂𝑢1෸
𝑇

෸෸ − ∇ ⋅ ෷𝛼1𝜇1 ෷
1
3∇ ̂𝑢1

̄̄𝐼෸෸

−
𝑁

𝑘්=2

3
4 ̄𝜌1𝛼𝑘

𝐶𝐷,𝑘
̄𝑑𝑏,𝑘

จ ̂𝑢𝑘 − ̂𝑢1จ ෷ ̂𝑢𝑘 − ̂𝑢1෸ (3.106)
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• Momentum conservation for the 𝑁 − 1 disperse phases (𝑘 = 2, … , 𝑁)

𝜕
𝜕𝑡 ෷𝛼𝑘 ̄𝜌𝑘

̂𝑢𝑘෸ + ∇ ⋅ ෷𝛼𝑘 ̄𝜌𝑘
̂𝑢𝑘

̂𝑢𝑘෸ = −𝛼𝑘∇𝑝 + 𝛼𝑘 ̄𝜌𝑘𝑔 + Γ1
̂𝑢1+

− 3
4 ̄𝜌1𝛼𝑘

𝐶𝐷,𝑘
̄𝑑𝑏,𝑘

จ ̂𝑢𝑘 − ̂𝑢1จ ෷ ̂𝑢𝑘 − ̂𝑢1෸ (3.107)

• Conservation of the ̂𝑌𝑘 chemical species in the 𝑘−th phase (𝑘 = 1, … , 𝑁)

𝜕
𝜕𝑡 (𝛼𝑘 ̄𝜌𝑘 ̂𝑌𝑘) + ∇ ⋅ (𝛼𝑘

̄𝑢𝑘 ̂𝑌𝑘) = −∇ ⋅ 𝛼𝑘( ල⃗𝐹 𝑌,𝑘 + ල⃗𝐹
𝑇
𝑌,𝑘) + ̂𝑌𝑘𝑗 ⋅ Γ𝑘 + 𝛼𝑘 ̄𝜌𝑘Ψ̂𝑘 (3.108)

3.3 Coupling with Population Balance Equation
In the previous sections, the constitutive equations of the multifluid model were derived for
a very general case, in which the multiphase system is composed by one continuous phase
and 𝑁 − 1 disperse phases. With this approach, it is possible to calculate the velocity ̂𝑢𝑘 of
the 𝑘−th disperse phase with volume fraction 𝛼𝑘 and characteristic diameter ̄𝑑𝑏,𝑘. Now that
the methodologies for solving the Population Balance Equation (PBE) and for calculating
the flow-field of a gas-liquid are introduced, the so-called PBM-CFD coupling procedure
will be presented.

As already reported in Section 2.3, by using a QBMM the entire population of the dis-
persed bubbles can be subdivided into 𝑁 different groups, each one of them corresponding to
a node of the quadrature approximation reported in Eq. (2.81), in turn composed by bubbles
with the same size and composition. In light of that, two different approaches are possible:

• Assign a volume fraction 𝛼𝑘 and a velocity ̂𝑢𝑘 of the multifluid for each one of the 𝑁
quadrature nodes of the QBMM (Fan et al., 2004).

• Consider only one volume fraction and one velocity for all the bubbles of the disperse
phase (Petitti et al., 2010).

It is clear that the first method has a higher computational cost compared to second one due
to the larger number of equations to solve, however represents a good choice when bubble
sizes distribution is wide, in order to catch segregation phenomena (more evident in other
kind of multiphase flows, such as granular systems). The second approach is a time saving
procedure, which has its validity if the population of bubbles has more or less the same
terminal velocity (Montante et al., 2007; Petitti et al., 2010; Buffo et al., 2012), a typical
situation for bubble size ranging between 2 to 10mm, as it is possible to observe in Fig. 3.3.
As with QBMM the moments of the population or the quadrature approximation itself can
be transported, these two approaches will be further explained in the following sections.
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3.3.1 Transport of moments - QMOM/CQMOM/DQMOM-FC
As already remarked in this dissertation, with QMOM and CQMOM the evolution of the
moments of the bubble distribution can be tracked in space and time. This means that the
equations for a moment set are coupled to multifluid equations and solved by the methods.
Otherwise with DQMOM-FC the advective term is rewritten in terms of the velocity of the
moments. Therefore it is important to define the velocity of the moments, coupled with the
calculated values of the multifluid model. The velocity of a generic order bivariate moment,
appearing in the moment transport equation (Eq. (2.73)), is defined in the following way
(Eq. (2.74)):

𝐔̌𝑘,𝑙 =
඙

∞

0
𝐔̌b(𝐿, 𝜙b)𝑛(𝐿, 𝜙b)𝐿𝑘𝜙𝑙

b d𝐿d𝜙b

඙
∞

0
𝑛(𝐿, 𝜙b)𝐿𝑘𝜙𝑙

b d𝐿d𝜙b

(3.109)

where 𝐔̌b(𝐿, 𝜙b) representing the average bubble velocity conditioned over the values of
bubble size and composition and is calculated by means of the multifluid model.

If all the bubbles share the same flow field 𝐔̌b, it is possible to take it out to sign of
integral and write the following statement:

𝐔̌𝑘,𝑙 = 𝐔̌b, (3.110)

namely, all the moments of the tracked set moves in the physical domain with the same
velocity 𝐔̌b, calculated considering only two phases, one continuous and one dispersed. It is
important to notice that 𝐔̌b is not a function of size 𝐿 and composition 𝜙, but it is necessary
to indicate a characteristic diameter for solving the Navier-Stokes equations, appearing in the
formulation of the interfacial forces term (Eq. (3.51)). A common approach is represented
by the following choice (Petitti et al., 2010):

𝑑𝑏 = 𝑑32 =
𝑀3,0
𝑀2,0

, (3.111)

namely the Sauter diameter is locally calculated through moments and used for the velocity
of the gas phase.

When 𝑁 different disperse phases are considered, each one for 𝑁 quadrature node ap-
proximation, it is possible to rewrite Eq. (3.109) as:

𝐔̌𝑘,𝑙 =

𝑁

𝑖්=1
𝐔̌b,𝑖 𝑤𝑖 𝐿𝑘

𝑖 𝜙𝑙
b𝑖

𝑁

𝑖්=1
𝑤𝑖 𝐿𝑘

𝑖 𝜙𝑙
b𝑖

(3.112)

where 𝐔̌b,𝑖 = 𝐔̌b,𝑖(𝐿𝑖, 𝜙b,𝑖) is calculated by the multifluid approach considering 𝐿𝑖 as the
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size of the characteristic bubble and the volume fraction of the 𝑖−th phase as:

𝛼𝑖 = 𝑤𝑖𝑘𝑉 𝐿3
𝑖 (3.113)

where 𝑘𝑉 is the volumetric shape factor. The derivation of the equations for the monovariate
case is straightforward and here are not reported.

3.3.2 Transport of quadrature - DQMOM
When the 𝑁 quadrature weights and nodes are directly tracked with DQMOM, the more
common strategy adopted is to calculate the evolution of 𝑁 different disperse phase and
use the calculated velocity of the 𝑖−th phase for transporting the quadrature quantities as
expressed in Eq. (2.145). In order to reduce the number of equations, Fan et al. (2004)
proposed the following approach for the 𝑖−th quadrature node (or disperse phase):

𝜕
𝜕𝑡 ඳ𝛼𝑖𝜌bප + ∇ ⋅ ඳ𝛼𝑖𝜌b𝐔b,𝑖ප = 𝜌b ඳ3𝑘𝑉 𝐿2

𝑖 𝑏𝑖 − 2𝑘𝑉 𝐿3
𝑖 𝑎𝑖ප , (3.114)

𝜕
𝜕𝑡 ඳ𝛼𝑖𝜌b𝐿𝑖ප + ∇ ⋅ ඳ𝛼𝑖𝜌b𝐿𝑖𝐔b,𝑖ප = 𝜌b ඳ4𝑘𝑉 𝐿3

𝑖 𝑏𝑖 − 3𝑘𝑉 𝐿4
𝑖 𝑎𝑖ප , (3.115)

𝜕
𝜕𝑡 ඳ𝛼𝑖𝜌b𝜙b,𝑖ප + ∇ ⋅ ඳ𝛼𝑖𝜌b𝜙b,𝑖𝐔b,𝑖ප = 𝜌b ඳ𝑘𝑉 𝐿3

𝑖 𝑐𝑖 + 𝜙b,𝑖 ඳ3𝑘𝑉 𝐿2
𝑖 𝑏𝑖 − 3𝑘𝑉 𝐿3

𝑖 𝑎𝑖පප , (3.116)

where 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖 are calculated through Eq. (2.140) and the volume fraction 𝛼𝑖 is defined
as

𝛼𝑖 = 𝑤𝑖𝑘𝑉 𝐿3
𝑖 (3.117)

where 𝑘𝑉 is the volumetric shape factor. Due to the peculiarities of the method, DQMOM
was usually usedwithmore than two disperse phases. However it is possible to write the gov-
erning equations for weights and nodes of quadrature considering only one disperse phase,
namely combined with a two-phase flow description. The set of equations solved will be the
following:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝜕 𝑤𝑖
𝜕𝑡 + ∇ ⋅ ඳ𝑤𝑖𝐔̌bප = 𝑎𝑖,

𝜕 𝑤𝑖𝐿𝑖
𝜕𝑡 + ∇ ⋅ ඳ𝑤𝑖𝐿𝑖𝐔̌bප = 𝑏𝑖 + 𝑤𝑖 𝐺𝑖,

𝜕 𝑤𝑖𝜙b,𝑖
𝜕𝑡 + ∇ ⋅ ඳ𝑤𝑏𝜙b,𝑖𝐔̌bප = 𝑐𝑖 + 𝑤𝑖 ̇𝜙b,𝑖,

(3.118)

with velocity field 𝐔̌b shared by all the quadrature weights and nodes and the total gas volume
fraction 𝛼 defined as:

𝛼 =
𝑁

𝑖්=1
𝑤𝑖𝑘𝑉 𝐿3

𝑖 . (3.119)

Also in this case, the derivation for the monovariate case is trivial.
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Chapter 4

Results on simplified systems

In Chapter 2, multivariate Quadrature-Based Moment Methods (QBMM) in the context
of gas-liquid systems were presented and discussed in detail from the theoretical point of
view. It was shown that they are part of a particular family called Methods of Moments
(MOM), and that they are based on the use of a quadrature approximation for overcoming
the inevitable closure problem (Hulburt and Katz, 1964; McGraw, 1997). As explained in
Section 2.3, with QBMM only the evolution of integral properties of the distribution (i.e.,
moments) can be tracked in space and time, integrating out the information relating to the
actual shape of the number density function (NDF) and by assuming the functional form of
NDF as a summation of delta functions centered on nodes of quadrature approximation (Mc-
Graw, 1997; Marchisio and Fox, 2005). This approximation allows to solve the population
balance equation, both for monovariate and multivariate cases, reducing the computational
costs compared to other solution methods; for this reason QBMM are particularly suitable
to be coupled with CFD codes (Fan et al., 2004; Zucca et al., 2006; Petitti et al., 2010).
However, although the quadrature approximation is in general very accurate, a comparison
with alternative “exact” methods is always needed in order to assess the accuracy of QBMM
by varying the total number of quadrature nodes 𝑁 when different processes are considered
(Zucca et al., 2007; Buffo et al., 2012). For this reason, in the first section of this chapter the
results of the comparison between different QBMM and the Direct Simulation Monte Carlo
(DSMC) for a very simple zero-dimensional system will be shown and discussed.

Since the final aim of the work is to develop a reliable and accurate methodology for
performing mass transfer predictions in different gas-liquid equipments, it is crucial to ver-
ify QBMM also in the case of inhomogeneous systems, in which also advection in physi-
cal space has an influence on the evolution in space and time of the NDF. As reported in
Chapter 1, several issues may jeopardize the results of QBMM simulations: for example
the “moment corruption” problem, namely the generation of invalid moment sets, may arise
with QMOM/CQMOMwhen standard high-order spatial discretization schemes are used for
transporting the moments of the NDF (Wright Jr, 2007; Petitti et al., 2010). Another well-
known issue is related to the fact that when the transport equations for moments are purely
hyperbolic (i.e. pure advection of the NDF) and when there are spatial discontinuities in the
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NDF, the spatial continuity assumption used to derive DQMOM is not valid anymore (Buffo
et al., 2013; Marchisio and Fox, 2013). Even if the spatial solution is smooth, moments of
the NDF may not properly be conserved whenever the moment transport equation contains
spatial diffusion terms that are smaller than or comparable with numerical diffusion, that ev-
ery Finite-Volume scheme (FV) introduces (Mazzei et al., 2010, 2012). For these reasons,
in the second section of this chapter the results of the implementation different QBMM for a
mono-dimensional system will be presented, with particular attention to the described prob-
lems and to the grid-independence conditions, that always must be verified for the solution
of similar cases. The results presented in this work are based on recently published works
(Buffo et al., 2012, 2013).

4.1 Zero-dimensional system
4.1.1 Test case description
As previously mentioned, it is very important to verify and validate QBMM through com-
parison with alternative methods as a reference for the solution quality. For this purpose,
Direct Simulation Monte Carlo (DSMC) technique (described in Section 2.3.1) was cho-
sen among other methods as alternative to QBMM due to its implementation simplicity and
because it can be easily extended to simulate multivariate problems as in this case. It is
important to stress here that the important parameter of DSMC simulation, the total number
of notional bubbles undergoing randomly selected events, must be high enough to ensure
statistical reliability of the results but also must be affordable from the computational point
of view, especially for memory requirements. A common strategy adopted in other works
for obtaining sensible results is to average a certain number of different realizations of the
same system (Zucca et al., 2007). In this case, the average of ten different realizations with
10,000 bubbles was considered a good trade off between accuracy and computational costs
after a series of preliminary tests.

A summary of all the simulations carried out for this zero-dimensional homogeneous
system is reported in Table 4.1; in each case different processes were selected in order to
cover a wide spectrum of possibilities and the results obtained with DQMOM and CQMOM
were compared to DMSC predictions. As pointed out in Section 2.3, QBMM for homoge-
neous systems result in a system of Ordinary Differential Equations, solved here with the
standardMatlab integrator ode15s (a quasi-constant step size implementation of the numer-
ical differentiation formulas, as explained in Shampine and Reichelt, 1997). In all cases the
studied system was composed of water and air, as continuous and disperse phases respec-
tively. The physical properties are reported in Table 4.2. The variable 𝐻 is the dimensionless
Henry constant based on concentrations (i.e., 𝐻𝐶𝐺

𝑖 = 𝐶𝐿
𝑖 ). It is important to notice that the

value used in these simulations is two order magnitude larger than the physical one, with the
aim of seeing a significant variation of oxygen concentration in the gas phase during mass
transfer; although this value does not represent any real gas-liquid system, this artifact is
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Table 4.1: Summary of simulations carried out for the homogeneous case.

Case Coalescence kernel Breakage Mass Continuous Chemical
Size depend. Comp. depend. kernel transfer gas flow reaction

1 Laakkonen No Laakkonen No No No
2 Laakkonen Yes Laakkonen No No No
3 Laakkonen No Laakkonen Yes No No
4 Laakkonen No Laakkonen No 𝜏 = 1 s No
5 Laakkonen No Laakkonen Yes 𝜏 = 1 s No
6 Laakkonen No Laakkonen Yes 𝜏 = 1 s Fast

Table 4.2: Physical properties used in numerical simulations.

𝜌𝑐 998.2 kg m−3

𝜌𝑏 1.255 kg m−3

𝜇𝑐 1.0 ⋅ 10−3 Pa s
𝜎 0.07 N m−1

𝒟 1.970 ⋅ 10−9 m2 s−1

𝐻 3.18 [−]

nevertheless useful to test and validation purposes.
In order to assess the accuracy of the quadrature approximation underlyingQBMMequa-

tions, different simulations with a variable number of nodes of the quadrature (from two to
four) were carried out. As remarked in Section 2.3.4, all of the 𝑁 nodes of DQMOM have
different values of both internal coordinates. On the contrary, with CQMOM the value of
the first internal coordinate is shared by 𝑁2 nodes for the second internal coordinate. When
𝑁2 = 1 and the same set of moments is tracked in spatially homogenous systems, CQMOM
and DQMOM are mathematically equivalent and the obtained results are the same. As it
was pointed out in the work of Yuan and Fox (2011), CQMOM can be particularly efficient
when the population is distributed with a certain variance over the second internal coordi-
nate, and 𝑁2 > 1 helps to capture some specific properties of the studied system. In this
work, different simulations were performed with the aim of finding the possible situations in
which a quadrature with 𝑁2 > 1 is required; size-dependent or size-composition dependent
coalescence, breakage, mass transfer, inlet or depletion of bubbles and fast chemical reaction
in the liquid bulk were considered.

As shown in Table 4.1, breakage frequency, daughter distribution function, coalescence
kernel and efficiency formulations used in this study are based on the works of Laakkonen
et al. (2006, 2007), indicated in Eqs. (2.55), (2.64), (2.66) and (2.68) at Pages 27 and 30 to 32
respectively. Although a comparison between different kernels available in the literature
will be certainly very interesting, it is out of the aims of this study. In previous works (Petitti
et al., 2010, 2012; Buffo et al., 2012), it was shown that the set of kernels used in this work is
particularly suitable for describing gas-liquid systems, and for this reason it was here widely
investigated. Moreover, it is important to remind that the composition dependence, indicated
in Table 4.1 and expressed in Eq. (2.70) at Page 32, is based on the work of Marshall Jr. et al.
(2011) on particular solid-fluid systems. Although this might not represent any realistic
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Table 4.3: Initial conditions for QBMM simulations: log-normal distribution with respect to
bubble size and constant oxygen concentration. Units: generic moment 𝑀𝑘,𝑙 in m𝑘−3 mol𝑙,
weights w𝑖 in m−3, size 𝐿𝑖 in m, moles 𝜙b,𝑖 in mol

CQMOM
M0,0 M1,0 M2,0 M3,0 M4,0
1.8286 ⋅ 107 6.7086 ⋅ 104 2.5173 ⋅ 102 9.6615 ⋅ 10−1 3.7925 ⋅ 10−3

M5,0 M6,0 M7,0 M0,1 M1,1
1.5226 ⋅ 10−5 6.2521 ⋅ 10−8 2.6256 ⋅ 10−10 4.3303 1.6998 ⋅ 10−2

M2,1 M3,1 M0,2 M1,2 M2,2
6.8243 ⋅ 10−5 2.8022 ⋅ 10−7 1.2559 ⋅ 10−6 5.2744 ⋅ 10−9 2.2655 ⋅ 10−11

M3,2 M0,3 M1,3 M2,3 M3,3
9.9517 ⋅ 10−14 4.4604 ⋅ 10−13 2.0037 ⋅ 10−15 9.2036 ⋅ 10−18 4.3206 ⋅ 10−20

DQMOM

𝑁 = 2
𝑤1 𝐿1 𝜙b,1
1.1157 ⋅ 107 3.2258 ⋅ 10−3 1.4912 ⋅ 10−7

𝑤2 𝐿2 𝜙b,2
7.1291 ⋅ 106 4.3619 ⋅ 10−3 3.7403 ⋅ 10−7

𝑁 = 3

𝑤1 𝐿1 𝜙b,1
5.3797 ⋅ 106 2.9524 ⋅ 10−3 1.1535 ⋅ 10−7

𝑤2 𝐿2 𝜙b,2
1.1446 ⋅ 107 3.8375 ⋅ 10−3 2.5329 ⋅ 10−7

𝑤3 𝐿3 𝜙b,3
1.4601 ⋅ 106 4.9846 ⋅ 10−3 5.5511 ⋅ 10−7

𝑁 = 4

𝑤1 𝐿1 𝜙b,1
2.3732 ⋅ 106 2.7504 ⋅ 10−3 9.3254 ⋅ 10−8

𝑤2 𝐿2 𝜙b,2
1.0745 ⋅ 107 3.5030 ⋅ 10−3 1.9266 ⋅ 10−7

𝑤3 𝐿3 𝜙b,3
4.9635 ⋅ 106 4.3875 ⋅ 10−3 3.7856 ⋅ 10−7

𝑤4 𝐿4 𝜙b,4
2.0419 ⋅ 105 5.5902 ⋅ 10−3 7.8296 ⋅ 10−7
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gas-liquid system, the assessment of the accuracy of QBMM with similar kernels is still
interesting in other application areas (Buffo et al., 2013). The mass transfer coefficient,
𝑘𝐿, was calculated by means of the Lamont and Scott correlation as reported in Eq. (2.48) at
Page 25, while the effect of a fast chemical reaction was obtained by setting the concentration
of oxygen in liquid phase equal to zero at each time step without accounting for a mass
transfer enhancement. As already mentioned, the value chosen for Henry constant and the
selection of composition dependent kernels are justified by the testing purposes. However,
the modeling of a chemical reaction in liquid phase coupled with a detailed description of
the dispersed phase by means of Population Balance Models will certainly be the subject of
future studies.

As far as the different variables involved are concerned, a crucial role is played by the
turbulent dissipation rate, 𝜖, or more specifically for zero-dimensional systems its volume-
averaged value, that determines the prevalence of bubble coalescence on breakage. In fact,
such value is present in both kernels (Eqs. (2.55), (2.66) and (2.68)) and in the mass transfer
coefficient correlation (Eq. (2.48)): for this reason two different values of 𝜖 was preliminarily
investigated in order to find the more critical situation for the quadrature accuracy. Here
only the results obtained using 𝜖 equal to 4.82 ⋅ 10−2 m2/s3 will be shown, in which bubble
coalescence is stronger than breakage. In this case, the error of the quadrature is higher
probably due to the fact that coalescence is a second order process compared to breakage,
which is a common first order process, representing therefore a more challenging problem.

Another important aspect of a zero-dimensional simulation is represented by the initial
conditions chosen for the bubble population: in this work all the predictionswere obtained by
prescribing the presence of bubbles inside the control volume. Although the total number of
notional bubbles already present inside the system at the beginning of the DSMC simulations
was set equal to 10,000 and kept in a certain range by the DSMC algorithm, the value of the
subvolume of the domain in which all the bubbles are contained was calculated in such a
way that the global gas volume fraction of the system was equal to 0.5. This gas hold-up is
important to characterize the physics of the system: in fact, the greater the number of bubbles
inside a volume, the more these will tend to coalesce. It is indeed true that a similar global
hold-up value is difficult to find in real gas-liquid system, but it is quite common as a local
value in CFD simulations. For example, higher gas volume fractions are usually imposed as
inlet boundary condition, according to the procedure described by Ranade (2002). Smaller
volume fraction values were preliminarily tested, but the most significant results in terms
of assessment of quadrature error were obtained with the initial global gas hold-up equal to
0.5. The shape of the initial bubble distribution was assumed to be a log-normal distribution
with respect to the size with a mean of 3.7mm and a standard deviation of 15% of the mean
value, but with the same oxygen concentration of 8.56mol/m3 in all bubbles (corresponding to
the concentration of oxygen in air at 25 ∘C and 1 atm). The described initial condition had to
be prescribed in the form of initial moments for CQMOM and of initial weights and nodes
for DQMOM: in order to compare the results given by different methods, these values were
obtained by the initialization of the DSMC. The numerical values are reported in Table 4.3.
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4.1.2 Results and discussion
Since it would be too confusing to extensively represent all cases considered, only the salient
results will be shown and discussed. In Fig. 4.1 the time evolution of some lower-order
moments of the NDF is reported for Case 1, in which only bubble coalescence and breakage
were described. It should be noticed that in Fig. 4.1 the time evolution of only some tracked
moments is plotted. As already remarked, the tracked moment set changes according to the
chosen total number of quadrature nodes (𝑁 = 2, 3, … ). Since the subset: 𝑀0,0, 𝑀1,0,
𝑀2,0, 𝑀3,0, 𝑀0,1 and 𝑀1,1 are the six moments transported in all the cases (see Fig. 2.1),
only their evolution will be commented in this section. Furthermore, it is very important to
remind here that the represented moments have a clear physical meaning: 𝑀0,0 is the total
number of bubbles per unit volume, 𝑀1,0 is the total bubble size per unit volume, 𝑀2,0 is
proportional to the total area of bubbles per unit volume, 𝑀3,0 is proportional the total gas
fraction and 𝑀0,1 is the total number of oxygen moles in the gas phase per unit volume.
The first three moments decrease as a result of a prevailing coalescence, whereas 𝑀3,0 and
𝑀0,1 remain constant, because coalescence and breakage do not have an influence on the
global gas hold-up and on the total moles of oxygen in the gas phase. The physical meaning
of mixed-order moments is not straightforward and their evolution with respect to time is
usually difficult to predict intuitively; however, as it will become clearer later, some of them
are important to conserve crucial properties of the bubble population.

In Fig. 4.2 the evolution of moments is shown in the case with coalescence, breakage
and mass transfer. In this case 𝑀3,0 and 𝑀0,1 decrease with time as a consequence of mass
transfer. In fact, the gas volume fraction and the oxygen moles are reduced by the mass
exchanged with the liquid. The comparison between MC and QBMM simulations results
in good agreement: the evolution in time is correctly reproduced, with a slight error due
to the quadrature approximation. Moreover, the moment evolutions are identical with CQ-
MOM and DQMOM, as evident in Fig. 4.1 and Fig. 4.2. In fact for this simple spatially
homogeneous system the two methods are mathematically equivalent when the moment set
is identical.

Mean percentage integral errors calculated during all the time evolution of some mo-
ments are reported in Table 4.4 with an increasing number of quadrature nodes: for all the
cases examined the error between the “exact” Monte Carlo solution and the QBMM solu-
tion for the moments with order smaller than four with respect to bubble size and for 𝑀0,1
and 𝑀1,1, which are the moments included in all the tracked moment set, is below 10%,
even when the total number of nodes is equal to two, a remarkable result considering the
computational savings achieved. If we look at the higher-order moments, especially the
pure moments with respect to bubble size which are not included in the moment set tracked
by the QBMM, the relative error increases, reaching values up to 50.1% in some cases. But
when the total number of quadrature nodes increases, the quadrature accuracy improves also
for higher order moments, with an error below 15% in every case considered.

Particular attention should be paid to Fig. 4.3, where the comparison obtained with a two
and three-node quadrature is shown for Case 1, in terms of mean gas oxygen concentration
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Figure 4.1: Time evolution of some lower order moments of the NDF for a homogeneous
system, in case of coalescence (size-dependent kernel) and breakage. Black line: MC method.
Circles: CQMOM with 𝑁1 = 3 and 𝑁2 = 1. Triangles: DQMOM with 𝑁 = 3. Units of a
generic moment 𝑀𝑘,𝑙: m𝑘−3 mol𝑙. Time in seconds.
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Figure 4.2: Time evolution of some lower order moments of the NDF for a homogeneous
system, in case of coalescence (size-dependent kernel), breakage and mass transfer. Black line:
MC method. Circles: CQMOM with 𝑁1 = 3 and 𝑁2 = 1. Triangles: DQMOM with 𝑁 = 3.
Units of a generic moment 𝑀𝑘,𝑙: m𝑘−3 mol𝑙. Time in seconds.
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Table 4.4: Mean percentage error of QBMM for the examined cases.

M0,0 M1,0 M2,0 M3,0 M4,0 M5,0 M6,0 M7,0 M0,1 M1,1 M2,1 M3,1

Case 1

N=2 9.2 7.3 4.3 0. 6.2 14.8 26.2 41.1 0. 6.0 14.4 25.7
N=3 7.9 5.3 2.6 0. 2.6 5.4 8.3 11.8 0. 2.6 5.4 8.3
N=4 7.6 5.2 2.6 0. 2.8 5.6 8.6 11.6 0. 2.8 5.6 8.6

Case 2

N=2 10.5 8.1 4.7 0. 3.7 4.5 5.6 8.5 0. 6.4 8.3 6.6
N=3 7.6 5.1 2.5 0. 2.5 5.1 7.8 10.1 0. 2.5 5.1 7.8
N=4 7.4 5.0 2.6 0. 2.7 5.5 8.3 11.2 0. 2.7 5.5 8.3

Case 3

N=2 10.1 7.9 4.6 0.5 6.5 22.3 38.3 50.1 2.1 6.5 21.4 44.6
N=3 7.9 5.2 2.3 0.5 3.3 6.2 8.2 6.9 1.9 1.8 4.7 6.2
N=4 7.7 5.1 2.4 0.4 3.3 6.4 9.5 12.7 3.2 1.7 3.4 6.4

Case 4

N=2 5.5 5.2 3.6 0.4 3.9 5.8 5.6 4.1 0.4 6.3 9.5 9.4
N=3 6.1 4.7 2.5 0.4 3.1 6.5 10.1 13.5 0.4 3.1 6.5 10.1
N=4 5.6 4.2 2.3 0.4 3.0 6.1 9.6 13.2 0.4 3.0 6.1 9.6

Case 5

N=2 5.6 5.3 3.6 0.7 4.1 6.0 5.7 4.1 1.1 6.5 9.7 9.7
N=3 5.9 4.3 2.1 0.8 3.8 7.2 10.9 14.5 2.7 6.0 9.6 13.5
N=4 5.3 3.8 1.7 0.9 3.8 7.1 10.7 14.5 3.4 6.6 10.1 13.9

Case 6

N=2 5.6 5.3 3.4 0.7 4.4 6.1 5.2 2.7 2.2 7.1 10.0 9.1

𝑁1=2
𝑁2=2 5.6 5.3 3.5 0.6 4.3 6.1 5.2 2.8 2.0 6.9 10.2 9.8

N=3 5.7 4.2 2.1 0.7 3.4 6.8 10.3 13.6 2.3 5.4 8.9 12.6

𝑁1=3
𝑁2=2 5.7 4.3 2.2 0.6 3.4 6.7 10.3 13.6 2.1 5.2 8.7 12.6

N=4 5.3 3.9 2.0 0.7 3.4 6.6 10.1 13.7 2.2 5.0 8.3 11.8

𝑁1=4
𝑁2=2 5.3 4.0 2.1 0.6 3.3 6.6 10.1 13.8 2.0 4.9 8.2 11.8
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Figure 4.3: Time evolution of oxygen concentration for each quadrature node representing the
population of bubbles for the Case 1. Left: two-node quadrature (𝑁 = 2). Right: three-node
quadrature (𝑁 = 3).

and oxygen concentration calculated for each 𝑖-th quadrature node, defined respectively as:

𝐶𝑔𝑎𝑠 =
𝑀0,1

𝑘𝑉 𝑀3,0
, (4.1)

𝐶𝑖 =
𝜙b,𝑖

𝑘𝑉 𝐿3
𝑖

. (4.2)

As already explainedwith Fig. 4.1, since bubbles in this simple case coalesce and break-up in
the absence of mass transfer, the global oxygen concentration in the gas phase has to remain
constant. Since 𝑀0,1 and 𝑀3,0 are included in the tracked moment set and are properly
conserved even when 𝑁 = 2, the average concentration in gas phase remains constant in
both cases shown in Fig. 4.3. This means that the moment set evolution is correct and that
moments are realizable. However, also the concentration for each quadrature node should
stay constant and equal to the initial value, but for the case of two nodes this condition is
not respected, showing a non-physical behavior, as if the concentration may vary over time
even without mass transfer. The fact that the quadrature approximation, still representing
a realizable moment set, explores forbidden and unphysical regions of phase space, means
that this is an unrelizable reconstruction of the NDF, as is therefore labelled as unrelizable
quadrature. This wrong behavior is probably due to the fact that a particular moment 𝑀2,1
related to the specific surface area and their oxygen concentration must be included into the
transported set. In fact, when this moment is tracked as with 𝑁 = 3, the evolution of the
oxygen concentration for each node in time is constant as expected. This example highlights
the importance of checking always not only the realizability of the moments but also that of
the quadrature.

In Fig. 4.4 the time evolution of some lower-order moments of the NDF calculated with
QBMM for Case 4 is reported. The continuous injection/extraction of bubbles, added to
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Figure 4.4: Time evolution of some lower order moments of the NDF for a homoge-
neous system, in case of coalescence (size-dependent kernel), breakage and continuous injec-
tion/extraction of bubbles. CQMOM with 𝑁1 = 3 and 𝑁2 = 1. DQMOM with 𝑁 = 3. Units
of a generic moment 𝑀𝑘,𝑙: m𝑘−3 mol𝑙. Time in seconds.

coalescence and breakage, does not modify the volume fraction and the total number of
oxygen moles, because the initial condition corresponds in this case to the steady state hold-
up and oxygen moles. In fact, 𝑀3,0 and 𝑀0,1 remain constant in time with CQMOM and
with DQMOM. On the contrary if we try to solve Eq. (2.142) reported at Page 54, shown in
the figure with the label “DQMOM Error”, we obtain the non-physical behavior shown in
Fig. 4.4 highlighting the importance of a correct implementation of DQMOM.

It is interesting to discuss more in detail the evolution of the variance in the second
internal coordinate (i.e., bubble composition), since this is strictly related to the number of
nodes to be used in that direction (i.e., 𝑁2 of CQMOM) kept equal to one in the previous
simulations. As already pointed out before, under this constraint and for this simple zero
dimensional systemCQMOMandDQMOMare mathematically equivalent. For this reason,
different initial conditions/boundary conditions were also tested and investigated (both with
MC and CQMOM) in order to understand under what conditions variance is generated and
sustained for the problem under investigation, resulting therefore in NDF that might require
quadratures with more than one node in the second internal coordinate. One of them is
shown in Fig. 4.5, where the size/composition NDF of the bubbles is represented at different
times for a particular population: a bivariate normal distribution with a mean of 3.7mm
and 2.27 ⋅ 10−7 mol of oxygen and with a standard deviation of 15% of the mean size and
composition in both directions. This specific initial conditionwas studied as a simple starting
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Figure 4.5: Representation of the NDF on the plane bubble size/bubble composition obtained
by MC simulation considering coalescence and breakage (both depending only on bubble size).
On the left the initial distribution at 𝑡 = 0 s, on the right the distribution after 15 s, when the
steady state is reached.

point in which there exists variance in the second coordinate direction, although it may not
reflect any realistic system. As clearly shown in Fig. 4.5, after a short transient the population
of bubbles moves toward a steady state in which a functional relationship between bubble
size and bubble composition is established, namely

𝜙𝑏 = 𝐶𝑓 𝑘𝑉 𝐿3, (4.3)

where 𝐶𝑓 is the final equilibrium oxygen concentration equal within all bubbles. As the
transient is quite fast and the variance in the direction of the second internal coordinate is
negligible, there is no need for this particular case to have 𝑁2 > 1 when using CQMOM.
Even in the case of continuous injection and extraction of bubbles with mass transfer (Case
5), no significant variance is detected at the steady state, as shown in Fig. 4.6. In fact, the
rate of inter-bubble mixing, caused by coalescence and breakage is much higher than the
rate of mass transfer (even though here the Henry constant is fixed to a much higher value
than physical reality) and consequently the concentration of oxygen in the bubbles becomes
quickly uniform.

However, the multivariate description is still needed. As it is possible to see in Fig. 4.7,
where the time evolution of the oxygen concentration for each bubble node (of DQMOMand
CQMOM) for the Case 5 is shown. In fact, small bubbles tend to exchange mass faster than
the bigger ones and, more importantly, with different dynamics. It is important to highlight
here that only if the lines overlapped, namely all the bubbles moved towards the equilib-
rium with the same oxygen concentration, it would not be necessary the use of multivariate
population balances.

The last zero dimensional spatially homogeneous case investigated, was that of mass
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Figure 4.6: Representation of theNDF on the plane bubble size/bubble composition obtained by
MC simulation considering coalescence (depending only on bubble size), breakage, continuous
injection and extraction of bubbles and mass transfer. On the left the initial condition for the
distribution, on the center the distribution after 2.5s and on the right the distribution after 30 s,
when the steady state is reached.
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Figure 4.7: Time evolution of oxygen concentration for each quadrature node representing the
population of bubbles for the Case 5 with 𝑁 = 3. Solid line: small sized bubbles. Dashed line:
medium sized bubbles. Dash-dotted line: large sized bubbles.
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Figure 4.8: Representation of theNDF on the plane bubble size/bubble composition obtained by
MC simulation considering coalescence (depending only on bubble size), breakage, continuous
injection and extraction of bubbles, mass transfer and fast chemical reaction. On the left the
initial distribution at 𝑡 = 0 s, on the right the distribution after 30 s, when the steady state is
reached.

transfer combined with a fast chemical reaction, which instantaneously consumes the oxygen
molecules in liquid phase. Fig. 4.8 represents the bubble population at different times for
Case 6: in this case the chemical reaction in the liquid phase is able to generate variance in the
second internal coordinate direction, but it is still insufficient to justify the use of𝑁2 > 1with
CQMOM. In fact, the values of the mean percentage error reported in Table 4.4 using only
one node in the direction of the second internal coordinate are comparable to those obtained
in other cases, and an increase in 𝑁2 does not show a significant reduction. However, this
conclusion is not valid in general and further studies are desirable in order to assess this
point.

4.2 Mono-dimensional system
4.2.1 Test case description
The governing equations of CQMOM,DQMOMandDQMOM-FCwere numerically solved
to simulate coalescence and breakage of a population of bubbles inside a mono-dimensional
system in which the gas phase flows and the liquid is stagnant. As previously said, this case is
particularly helpful to verify the implementation and highlight possible difficulties that may
arise when also the motion of bubbles in physical space is taken into account. This turns
out to be very useful in understanding as the “moment corruption” problem, when moments
are transported (CQMOM) and the non-conservation of the moment set, when primitive
variables are transported (DQMOM). In this very simple test case, the bubble velocity 𝐔̌b
(appearing in the moment velocity term 𝐔̌𝑘,𝑙 of Eq. (2.74)) was assumed constant and uni-
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form (in physical space, time and internal-coordinate space) and equal to 1m/s, while the total
length of the mono-dimensional domain was equal to 1m. No diffusion term was included
in the equation of this case study; this assumption is justified by the fact that molecular and
turbulent diffusion is generally negligible when compared to advection due to the relatively
large size of the bubbles. Moreover, only a two-node quadrature is considered, namely six
moments are tracked into the domain: 𝑀0,0, 𝑀1,0, 𝑀2,0, 𝑀3,0, 𝑀0,1 and 𝑀1,1. At the inlet of
this system, a log-normal distribution with the characteristics described in Section 4.1.1 was
prescribed as boundary condition (see Table 4.3); for the outlet all the derivatives were set
equal to zero in order to allow the bubble to exit from the domain. This mono-dimensional
system is discretized by means of the standard Finite-Volume approach. Properties at the
face on the boundary in between two cells was reconstructed with the simple First-Order
upwind scheme and time integration was carried out by using the standard adaptive solver
ode15s of Matlab (Shampine and Reichelt, 1997). A particular initial condition was im-
plemented: in the first half of the domain the same distribution of the inlet boundary was
assumed, while in the second half the bivariate distribution indicated in Section 4.1.2 was
prescribed. In this way, in each zone the moment set is realizable and can be inverted by
CQMOM algorithm; however particular attention should be paid in the calculation of fluxes
near the discontinuity at the half of the mono-dimensional system.

4.2.2 Results and discussion
In Fig. 4.9 the result of QBMM verification is shown for the simple 1-D system described
above, in which bubbles flow with uniform velocity and undergo coalescence and breakage.
The use of the First-Order upwind scheme allows to have realizable moment set in all the
domain (Desjardins et al., 2008), even during the very first time steps when the discontinuity
due to the prescribed initial condition may potentially lead to moment corruption. Further-
more, it is possible to observe that the original version of DQMOM (Marchisio and Fox,
2005) and reported in Section 2.3.4, is not capable of preserving the correct evolution of
the moment set; on the contrary with DQMOM-FC the moments are properly conserved,
restoring the expected mathematical equivalence with CQMOM. Increasing the number of
the grid nodes, as shown in Fig. 4.10, the accuracy of the original version of DQMOM
is improved, explaining why this non-conservation problem can be treated as a numerical
diffusion. However, with DQMOM-FC the moment set is correctly reproduced. It is in
particular interesting to observe the evolution of 𝑀3,0 and 𝑀0,1. Since these moments are
conserved during the coalescence and break-up, as their source terms are null, their evolu-
tion should be a straight horizontal line. This is however true (for any number of grid nodes)
only for CQMOM and DQMOM-FC. It is worth mentioning that these conservation errors
due to spatial discretization are detected in moments of global order (i.e., 𝑘 + 𝑙) equal to or
greater than two. In fact, moments of global order smaller than two are linear combination
of the primitive variables actually transported (i.e., weights and weighted nodes or abscis-
sas), whereas higher-order moments are non-linear combinations of these variables. This
means that the original DQMOM is capable of conserving only moments of global order
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Figure 4.9: Steady state spatial evolution of moments calculated with QBMM, in the case of
coalescence and breakage with bubbles moving into the domain with a residence time 𝜏 = 1.
Units of a generic moment 𝑀𝑘,𝑙: m𝑘−3 mol𝑙. Time in seconds. Dimensionless 𝑥-coordinate
discretized with 50 grid nodes

zero and of an additional global order (usually one since the method is formulated in terms
of weighted nodes or abscissas, as formulated in Section 2.3.4).

In order to make sure that the behaviors observed are intrinsic properties of the meth-
ods and not artifacts caused by the fact that different methods might need finer grids than
others a grid-independence study has been performed. Fig. 4.11 shows these results for the
tracked moments with different methods. In this simple one-dimensional case the number
of grid nodes was varied between 5 and 1000. The CQMOM solution with 1000 nodes was
considered “exact” since no significant differences were detected in the solution with further
refinements. Then the moments predicted with CQMOM, DQMOM and DQMOM-FC with
grid nodes varying between 5 and 500 were used to calculate the error with respect to the
“exact” solution. As it is seen only CQMOMandDQMOM-FC are capable of conserving (in
the Finite-Volume sense) all the moments, including those of global order equal to or higher
than two. The error for 𝑀3,0 (i.e., global order 3 > 2), whose source term is null considering
only coalescence and breakup, is of the order of magnitude of the round-off error only for
CQMOM and DQMOM-FC (even with 5 grid nodes), whereas DQMOM, which transports
primitive variables, fails in conserving this moment. The error for 𝑀0,1 is instead for all the
methods as small as the order of magnitude of the round-off error, because this moment of
global order 1 (smaller than 2) can be correctly predicted also by DQMOM. The error for
all the other moments (with non-zero source term) confirms that in general CQMOM and
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Figure 4.10: Steady state spatial evolution of moments calculated with QBMM, in the case of
coalescence and breakage with bubbles moving into the domain with a residence time 𝜏 = 1.
Units of a generic moment 𝑀𝑘,𝑙: m𝑘−3 mol𝑙. Time in seconds. Dimensionless 𝑥-coordinate
discretized with 100 grid nodes

DQMOM-FC are more accurate than DQMOM, notwithstanding the grid refinement.
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Chapter 5

Results on realistic systems

From the industrial point of view, aerated stirred tanks and bubble columns are themost com-
mon examples of turbulent gas-liquid systems; numerous reactions, such as oxidation, hy-
drogenation, halogenation and biological fermentation are usually carried out in such equip-
ments. Most of these processes need a turbulent flow condition, an important factor that
controls the interfacial area between phases and, consequently, mass and heat transfer rates.
Since this has an impact on the process economy, extensive experimental comparison have
been performed in the past to identify the different fluid dynamics regimes, and to assign to
each of them appropriate correlations to calculate mass transfer rates for design and scale-
up (Calderbank, 1958). Nevertheless, these empirical or semi-empirical correlations do not
have a general validity and their use is limited to specific configurations and operating con-
ditions close to those under which they were derived, considering only volume-averaged
properties of the system, neglecting the significant spatial inhomogeneities that exist even
in laboratory scale equipment and that in turn affect global properties.

An illuminating example is constituted by the estimation of mass transfer rates in bubble
columns. In fact, the operating conditions and the design variables of these system play a
crucial role in the determination of all the main fluid dynamics characteristics. Moreover,
the hydrodynamics is very difficult to describe due to the unsteady nature of the flow, caused
by the simultaneous processes that occur at different spatial and time scales. The liquid recir-
culation inside the column is inducted by the rising bubbles, in turn subjected to coalescence
and breakage at smaller scales that modify in size and shape. Local interfacial area for gas-
liquid mass transfer depends on the Bubble Size Distribution (BSD), which may sensibly
vary in different zones of the column. Numerous zero-dimensional or mono-dimensional
models for the estimation of the volumetric mass transfer coefficient, 𝑘𝐿𝑎, have been formu-
lated through the years (for a thorough review, see Cachaza Gianzo, 2011), but they are all
applicable to particular cases, as basic assumptions of these refer to specific fluid dynamic
regimes.

Another example is that of gas–liquid stirred tank reactors, where the hydrodynamic is
completely determined by the mechanic agitation. Also in this case, however, the interfacial
area for mass transfer depends on the BSD, which is known to vary according to different op-
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erating conditions, and for the same operating conditions, from point to point in the system.
In fact, higher bubble break-up frequency are detected near the impeller, due to the high
shear rates, resulting in BSD skewed towards lower diameters, whereas in stagnant zones
far from the impeller bubbles tend to accumulate and coalesce, resulting in a BSD shifted to
larger bubble diameters.

Moreover, it should be considered that bubbles are distributed not only with respect to
size, but also velocity and composition and a possible approach, as described in Chapter 3,
is to combine Computational Fluid Dynamics (CFD) with Population Balance Modeling
(PBM) in an Eulerian-Eulerian framework with the aim of correctly predicting the evolution
in space and time of the dispersed phase, including local and global mass transfer fluxes in
industrial-scale equipments.

In this Chapter, the coupled CFD-PBM fully predictive approach will be applied to the
simulation of mass transfer rates for a realistic bubble column and an aerated stirred tank
reactor, both experimentally studied by Cachaza Gianzo (2011) and Laakkonen et al. (2006),
respectively. The obtained results will be eventually compared with the experimental data
available for those configurations.

5.1 CFD simulation of a pseudo 2D bubble column.
5.1.1 Introduction
In the latest years, rectangular bubble columns have been investigated by many groups
(Pfleger et al., 1999; Pfleger and Becker, 2001; Buwa et al., 2006; Diaz et al., 2008a) due
to the easy setup and the possibility to better visualize the flow without any optical dis-
tortion. Moreover this particular configuration has several fluid dynamic characteristics of
larger cylindrical bubble columns and is particularly suited to be studied computationally
because of the lower volume and regular shape; both aspects help to achieve good quality
grids, reducing the global computational cost (Buwa and Ranade, 2002).

Different experimental techniques can be used to characterize the nature of the gas-liquid
flow inside rectangular bubble columns: measurement of the wall pressure fluctuations is
one of the simplest ways to characterize the dynamics of such systems (Drahoš et al., 1991;
Letzel et al., 1997), but also laser-Doppler anemometry (Becker et al., 1994, 1999; Borchers
et al., 1999; Pfleger et al., 1999) and particle image velocimetry (Lin et al., 1996; Mudde and
Simonin, 1999) were successfully applied for the same purpose. Furthermore, high-speed
cameras and oxygen probes have been used to carry out measurements of BSD and mass
transfer rates (Cachaza Gianzo, 2011).

From the modeling point of view, all these data allow to study on different aspects
and easily validate simulation results. The dimension of the computational grid was one
of the first points addressed: Pfleger et al. (1999) have performed simulations both with
two-dimensional (2-D) and three-dimensional (3-D) domain, showing that turbulent viscos-
ity obtained with a 2-D simulation is 5-10 times higher than the viscosity values obtained

115



CHAPTER 5. RESULTS ON REALISTIC SYSTEMS

in 3-D simulation of the same identical column and for this artificially increased viscosity
the oscillatory motion of the plume is damped with 2-D simulations. Pfleger et al. (1999);
Sokolichin and Eigenberger (1999); Mudde and Simonin (1999) have stressed on the impor-
tance of an adequate grid resolution to properly catch the experimentally observed dynamics.
In the work of Deen et al. (2001), different turbulence models are compared showing that
Large Eddy Simulation (LES) with a proper subgrid model may improve the description
of the fluid dynamics usually obtained with the Reynolds-average Navier-Stokes equations
(RANS) approach, although this latest model represents the only feasible way for describe
industrial-scale systems; Zhang et al. (2006) have shown that RANS results can be improved
by choosing the proper bubble-induced turbulence model. Another important investigated
aspect is represented by the boundary conditions: Ranade (2002) has speculated about com-
mon practices both for inlet and outlet conditions without giving a unique optimal choice.
Recently, Zhang (2007) has pointed out the necessity to include the free surface into the
computational domain when the system involves mass transfer.

Most of these attempts to describe the behavior of rectangular bubble columns assume
the bubble population as composed of a single bubble size, usually used as a fitting parameter
to capture the global gas hold-up value (Pfleger and Becker, 2001). Although in air-water
dispersions, bubble slip velocity is not very sensitive to the value of bubble diameter ranging
between 1 to 10 mm (see Fig. 3.3 at Page 80), bubble size distribution locally varies as a
consequence of coalescence and break-up processes and this deeply affects the estimation
of gas-liquid interfacial area. The recent interest of coupled CFD-PBM approaches is so
explained: Buwa and Ranade (2002) have used the commercial code FLUENT for the two-
phase fluid dynamics description coupled with user-defined functions (UDF) implementing
the so-called non-uniform multi-group model, a particular method Classes Method, for five
bubble groups. Diaz et al. (2008b) have carried out simulations using the commercial code
CFX using the build-in population balance module including the non-uniform multi-group
model for ten different classes of bubbles.

As reported in Chapter 2, Quadrature-Based Moment Methods (QBMM) have the great
advantage of increasing the accuracy of the population balance description by reducing the
overall computational cost compared with other solution methods. In a previous work of my
group (Buffo et al., 2013) the importance of having a deep control on the implementation
of the governing equations was remarked; in commercial codes it can be very difficult to
achieve a proper combination between CFD software and user-defined routines for Popula-
tion Balance Equations, can be very difficult to achieve especially in terms of stability of
the code. The open source alternative to the commonly known CFD codes, OpenFOAM,
reached in later years a good level of maturity and nowadays it is widely used in different
scientific areas both in the industry and in academic institutions. All the parts of the code
are available under the GPL license over the internet and can be fully modifiable according
to different needs.

The aim of the work is so to implement and validate QBMM inside the OpenFOAM
framework. A preliminary implementation of theQuadratureMethod ofMomentswas tested
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by simulating the partially aerated rectangular bubble column experimentally studied by
Diaz et al. (2008b,a); Cachaza Gianzo (2011) and directly comparing the results obtained
with the experiments. This work will be described in the following subsections.

5.1.2 Test case description
The simulated experimental apparatus consists of a 0.2m wide, 1.8m high and 0.04m deep
polymethyl methacrylate bubble column. The column was filled with tap water up to 0.45m
from the bottom at room temperature and atmospheric pressure, while air was fed through
an aluminum sparger composed of eight centered holes of 1mm of diameter and 6mm pitch.
A sketch of this setup is shown in Fig. 5.1. The superficial gas velocity 𝑈𝐺 was varied from
2.4 to 21.3m/s by means of the appropriate combination of volumetric flow meters.

..

0.2 m

.

0.04 m

.

0.45 m

.

OUTLET

.
INLET

..

6 mm

.

6 mm

.

𝑑 = 1 mm

Figure 5.1: Left: Schematic representation of the rectangular bubble column simulated. Right:
Gas distributor scheme; colored area represents the modeled sparger surface.

Comparison with the numerical simulations is carried out between different sets of ex-
perimental data:

• Global gas hold-up, measured through the manometric method, that evaluates the
static pressure difference between two pressure sensors located at wall of the column.

• Plume Oscillation Period (POP), performed by means of the transformation of the
pressure time series from the time domain to the frequency domain and the subsequent
identification of the characteristic frequency of the peak in the low frequency band (0 -
1Hz).
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• Visual observations, carried out by means of a digital video system.

• Mean Sauter diameter (𝑑32), obtained after manipulation of high-speed digital camera
frames through an image processing software. Although the exact position of the cam-
era is unknown (Cachaza Gianzo, 2011), this value helps to understand what happens
in the central part of the column in terms of Bubble Size Distribution (BSD).

Further details about the experimental setup can be found in the literature (Diaz et al.,
2008b,a; Cachaza Gianzo, 2011).

5.1.3 Methods and numerical details
The standard OpenFOAM solver compressibleTwoPhaseEulerFoam, based on the two-
phase Eulerian-Eulerian equations for compressible systems, was modified in order to in-
clude a Population Balance module (a description of the coupled PBM-CFD methodology
was reported in Section 3.3). This module is designed to allow further expansions, as dif-
ferent solution methods, as well as other closures for turbulence and interfacial forces and
different coalescence/breakage kernels. A preliminary implementation of the Quadrature
Method of Moments (QMOM) was performed and verified, then the obtained results were
eventually compared with the experimental data. In Fig. 5.2 an outline of the solver structure
is shown.

The main guidelines of the solution procedure are summarized below:

• Compressibility effect disabled by default (isothermal system);

• Drag coefficient calculated bymeans of Eq. (3.65) assuming constant terminal velocity
equal to 20 cm/s for all the bubble sizes. Other interfacial forces are neglected;

• Standard 𝑘 − 𝜖 model for the turbulence in the liquid phase. Turbulent viscosity in
the gas phase was not taken into account because, in this phase, turbulent transport of
momentum is negligible in comparison to advection because of the large size of the
bubbles;

• Four moments of the Bubble Size Distribution calculated (𝑀0, 𝑀1, 𝑀2, 𝑀3), corre-
sponding to a two-node quadrature approximation;

• Coalescence kernel and efficiency indicated in Eq. (2.66) and Eq. (2.68). Brekage
frequency and daughter distribution function reported in Eq. (2.55) and Eq. (2.62);

• Source terms of moments calculated in a specific range of gas volume fraction (i.e.,
1.0 ⋅ 10−4 < 𝛼𝐺 < 0.8). In the other regions are assumed equal to zero;

• Free surface contained inside the computational domain.

Three different non-uniform hexahedrical grids, reported in Fig. 5.3, with the purpose
of addressing a proper spatial resolution were investigated. An adaptive version of the first
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Figure 5.2: Schematic representation of a single time step of the segregated OpenFOAM solver
coupled with QMOM.
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order backward Euler discretization scheme was used for time integration: time step Δ𝑡 is
chosen so that the following Courant-Friedrichs-Lewy condition is respected:

CFL = Δ𝑡
𝑛=3

𝑖්=1

𝑈𝑟,𝑖
Δ𝑥𝑖

< 1, (5.1)

where 𝑈𝑟,𝑖 is the relative velocity between gas and liquid in the 𝑖-th direction and Δ𝑥𝑖 is the
cell size in the same direction. For the sake of numerical stability, the value of Δ𝑡 can not be
larger than 0.025 s. Spatial discretization schemes and boundary conditions are summarized
in Table 5.1. The physical constants used in all the simulations are reported in Table 5.2.

. . .

Figure 5.3: Mesh used in the numerical simulations. From left to right: coarse (17 width × 7
depth × 45 height), medium (32 × 11 × 70), fine (62 × 19 × 128).

Special mention deserves the inlet condition for the gas phase; in fact the sparger was
modeled through a rectangle with an area equal to the total area enclosed by the 8 holes
(Fig. 5.1). The volume fraction of gas 𝛼𝐺 imposed at this surface is fixed and equal to
0.5 in all the performed simulations; the inlet gas velocity was calculated according to the
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Table 5.1: Numerical schemes and boundary conditions adopted in the simulations

Variable Scheme Inlet Outlet Wall

Gas vol. frac. Limited Second 0.5 Gradient zero Gradient zeroOrder Upwind

Gas velocity Limited Second Depends on flow rate Gradient zero Free-slip wallOrder Upwind with backflow

Liquid Limited Second 0.0 m/s Gradient zero No-slip wallvelocity Order Upwind
Pressure First Order Upwind Gradient zero 1 bar Gradient zero

𝑘 Limited Second Based on Turbulence 1 ⋅ 10−4 m2/s2
Gradient zeroOrder Upwind Intensity equal to 5% (backflow only)

𝜖 Limited Second and Length Scale equal 1 ⋅ 10−5 m2/s3
Gradient zeroOrder Upwind to the hole diameter (backflow only)

Moments First Order Upwind Log-normal distrib. Gradient zero Gradient zero

Table 5.2: Physical properties used in numerical simulations.

𝜌𝑙𝑖𝑞. 998.2 kg/m3

𝜌𝑔𝑎𝑠 1.255 kg/m3

𝜇𝑙𝑖𝑞. 1.0 ⋅ 10−3 Pa s
𝜎 0.07 N/m

following expression:

Inlet Gas Velocity = Gas Flow Rate
Modelled Sparger Area ⋅ Gas Volume Fraction . (5.2)

The complex mechanism of bubble formation and detachment from the hole of the sparger
was modeled by assuming a log-normal distribution as inlet Bubble Size Distribution, ac-
cording to the work of Petitti et al. (2010). The 𝑘-th order moment was calculated as follows:

𝑀𝑘 = 𝑀0 exp อ𝑘𝜇 + 𝑘2𝜎2

2 ฮ , (5.3)

where 𝑀0 is the moment of order zero, namely the total number of bubbles per unit volume
and 𝜇 and 𝜎 are the two parameters of the log-normal distribution. By assuming the mean
𝑚 of the bubble distribution equal to the bubble diameter calculated with the correlation
of Geary and Rice (1991) valid for holed spargers and the standard deviation √𝑣 of the
distribution equal to 15% of the mean value 𝑚 as in the works of Laakkonen et al. (2007);
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Petitti et al. (2010), it is possible to calculate 𝜇 and 𝜎 in the following way:

𝜇 = log
๖

𝑚2

√𝑣 + 𝑚2 ๗
, (5.4)

𝜎 = ซlog ෷
𝑣

𝑚2 + 1෸. (5.5)

The value of the moment of order zero 𝑀0 can be calculated by considering the following
equality:

Gas vol. frac. = 𝑘𝑉 𝑀3 = 𝑘𝑉 𝑀0 exp อ3𝜇 + 9𝜎2

2 ฮ , (5.6)

where 𝑘𝑉 is the volumetric shape factor (equal to 𝜋/6 for a sphere) and 𝑀3 is the moment of
order three with respect to bubble size.

Five different operating conditions (at different superficial velocity 𝑈𝐺) were simulated,
in order to compare the obtained results with the experimental data available. The results of
this comparison are shown in the following section.

5.1.4 Results and discussion
Mesh size analysis

As previously mentioned, the influence of the mesh resolution on the results was studied in
order to keep under control the computational time (similar work was done by Diaz et al.
(2008b)). Three different grids were generated: coarse, medium and fine (as reported in
Fig. 5.3) and in Table 5.3 the obtained results are compared with the experimental data for
the case with 𝑈𝐺 = 2.4 mm/s.

Table 5.3: Mesh size effect on calculated gas hold-up, Plume Oscillation Period and Sauter
Diameter compared with experiments for 𝑈𝐺 = 2.4 mm/s.

Grid size Number of cells Hold-up POP (s) 𝑑32 (mm)

Coarse 5355 0.64% 7.78 5.78
Medium 24640 0.62% 10.57 6.92
Fine 150784 0.57% 11.71 5.93

Experim. 0.69% 11.37 6.83

As it can be observed, all numerical results slightly differ from the experiments. While
the global gas hold-up decreases with the grid resolution, POP increases and the mean Sauter
diameter 𝑑32 shows a non-monotonic trend. Similar results varying the cell size were ob-
tained by Diaz et al. (2008b) for the same system under investigation. Although it is not
possible to say that a grid independence condition is achieved, the medium mesh represents
a good trade off between accuracy and computational costs and will be used in the rest of the
work. However, it should be remarked that both numerical global gas volume fraction and
POP are strongly influenced by the interfacial force closure (i.e., drag force) and a tuning
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of the terminal velocity 𝑈𝑇 will provide better agreement with experiments. Regarding the
difference between experimental and simulated 𝑑32 values, as it was previously pointed out,
it might be due not only to the choice of coalescence and breakup kernel constants, but also
to the uncertainty of the exact camera position (Cachaza Gianzo, 2011).

Effect of increasing gas flow rate

In Fig. 5.4 some experimental camera frames of the characteristic flow inside the column
are compared with the simulation results of gas hold-up and water superficial velocity for
different values of the superficial gas velocity 𝑈𝐺. As it is possible to see the predicted
results reproduce the central bubble plume and its oscillating motion from side to side. The
liquid phase descends along the sidewalls of the column, without escaping from the domain
due to the fact that walls are higher than the free surface; the conservation of the liquid mass
is a crucial aspect in the prediction of mass transfer rates (Buffo et al., 2012). The local
value of gas hold-up at different 𝑈𝐺 is in good agreement with the experimental pictures.
The region with the higher bubble density is the central plume for all the simulated cases, but
at the lowest investigated gas flow rate bubbles are not trapped into the liquid recirculation
and tend to stay only in the central region and spread over all the column section only when
the plume approaches the free surface. As the superficial velocity 𝑈𝐺 is increased to higher
values, smaller bubbles tend tomovewith the liquid vortices downwards along the side walls,
resulting in a better aeration in the bubble column. This situation is also confirmed by other
plots that show the liquid velocity field and the profile of the mean bubble diameter, 𝑑32
(Fig. 5.5). Contour plots of 𝑑32 show that, with the increase of the gas superficial velocity,
smaller bubbles tend to stay in the liquid recirculation path, whereas bigger bubbles are
concentrated into the central plume zone where coalescence and breakage occur with faster
rates due to turbulence.

Table 5.4: Comparison of experimental data and calculated results for global gas volume frac-
tion (hold-up), POP and mean Sauter diameter varying the superficial gas velocity 𝑈𝐺.

Superf. vel. (mm/s) Hold-up POP (s) 𝑑32 (mm)

2.4 0.62% 10.10 6.01
Exp. 0.69% 11.37 6.83

7.1 1.61% 8.26 6.28
Exp. 1.81% 5.69 7.05
11.9 2.45% 5.83 6.89
Exp. 2.63% 4.27 6.50

16.6 3.36% 3.80 7.01
Exp. 3.36% 3.01 6.40
21.3 4.19% 3.84 7.96
Exp. 4.10% 2.84 7.73

In Table 5.4 another comparison between simulations and experiments in terms of av-
erage values as global gas hold-up, POP and mean Sauter diameter as a function of the
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Figure 5.4: Comparison between experimental and computational frames at different values
of gas superficial velocity. From top to bottom: 𝑈𝐺 = 2.4 mm/s; 11.9mm/s and 21.3mm/s. From
left to right: high speed camera frame. Gas hold-up distribution [0 (blue), > 0.1 (red)]. Water
superficial velocity field.
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Figure 5.5: Contour plot of mean Sauter diameter 𝑑32 for different superficial velocity 𝑈𝐺.
From left to right: 2.4mm/s, 11.9mm/s, 21.3mm/s. Units in meter.

superficial gas velocity 𝑈𝐺 is reported. The change of global gas hold-up at different flow
rates is a crucial characterization for a bubble column because it is usually performed in order
to experimentally identify the different flow regimes (Ruzicka et al., 2001; Zahradník et al.,
1997). In Fig. 5.6 the measured global gas hold-up values are compared with the predicted
ones. As it can be clearly seen, very good agreement is detected both in terms of absolute
values and trends; similar trends can be explained by the existence of unique flow regime,
the vortical flow regime(Diaz et al., 2008b), as clearly visible in Fig. 5.4. Furthermore, a
similar agreement proves that the choice of the drag coefficient is appropriate, at least for
this flow regime: it is interesting to stress here that bubble size diameter is no longer used
as a model fitting parameter (Pfleger and Becker, 2001) for catching the experimental value
of global gas hold-up, but it is calculated with the population balance model. As already
mentioned, the terminal velocity of the bubble 𝑈𝑇 is here assumed equal to 20 cm/s for all the
bubbles. This is a reasonable value because, from experimental evidence, the rising velocity
of a single bubble in stagnant water is about 25 cm/s for bubble sizes ranging between 2-10
mm (see Fig. 3.3 at Page 80); this value must be in some way reduced in order to account
for the effect of other bubbles (i.e., the local gas volume fraction) and of turbulence of the
system (Montante et al., 2007; Petitti et al., 2010). In this case it is possible to say that 20 cm/s
is an appropriate value for the system under investigation, but further studies are required
both from the experimental and theoretical point of view to formulate a drag law valid for
different flow regimes.

The characteristic oscillating behavior of the bubble plume is an essential trait of the par-
tially aerated bubble column. From the experimental side, themeasurements of this wavelike
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Figure 5.6: Comparison between experimental data and predicted global gas hold-up for dif-
ferent superficial gas velocities.

motion is usually carried out by means of time series analysis of pressure sensors data lo-
cated at different points in the equipment. In the examined case, the spectrum of pressure
fluctuations was recorded at a frequency of 15Hz for 20min in order to minimize the sta-
tistical error, then low-pass filtered at the frequency of 1Hz before the calculation of the
Plume Oscillation Period (POP) (Cachaza Gianzo, 2011). Otherwise, the calculation of the
POP from the simulations is usually based on the number of cycles of the horizontal liquid
velocity profile at the central point of the column. This method is feasible at low superfi-
cial gas velocity, but at high gas flow rates the number of cycles cannot be easily identified
due to chaotic motion of the plume. For this reason, the horizontal liquid velocity data are
transformed from time domain to the frequency domain using a Fast Fourier Transform al-
gorithm (Diaz et al., 2008b). In Fig. 5.7 the comparison between experimental and predicted
POP values is reported. As it is possible to see from the experimental observations, at low
𝑈𝐺 values, the POP is high and rapidly decreases as gas superficial velocity decreases until
a constant value is reached. This evolution has been related to the evolution of the bubble
size distribution (Buwa and Ranade, 2002), as coalescence and breakage rapidly increase at
low gas superficial velocity but then reach a pseudo steady-state at higher 𝑈𝐺 values. The
predictions of the model do not fully capture this trend and the calculated POP decreases al-
most monotonically with the gas superficial velocity. This is probably due to the turbulence
models that seems to be inadequate to describe the observed dispersion behavior.

Fig. 5.8 shows the evolution of the mean Sauter diameter 𝑑32 with respect to the gas
superficial velocity. As it was previously pointed out, the exact position of the camera used
in the experiments is unknown, moreover assuming that the values reported in literature are
averaged over all the snapshots analyzed by the software (Cachaza Gianzo, 2011). For this
reason the comparison with the experiments should not be intended here as a validation but
only as a qualitative feedback for QMOM results. More interesting is the comparison be-
tween the predicted 𝑑32 and the value imposed at the inlet by the Geary and Rice correlation:
the average bubble size at the center of the column increases much less with the gas flow
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Figure 5.7: Comparison between experimental data and predicted Plume Oscillation Period for
different superficial gas velocities.

rate than the bubble size at inlet. This fact shows that the relative importance of break-up
process over coalescence increases with 𝑈𝐺, due to the enhancement of turbulent induced
collisions at higher gas flow rates.
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Figure 5.8: Comparison between experimental and predictedmean Sauter diameter at the center
of the column and the inlet value calculated with the correlation of Geary and Rice (1991) for
different superficial gas velocities.

5.1.5 Conclusions
In this part of the work, QBMMwere implemented in a open source CFD code OpenFOAM,
overcoming all the issues that may arise when new equations must be solved and coupled
with the fluid dynamic description in a commercial CFD code (Buffo et al., 2013). The new
code obtained from themodification of the standard solver compressibleTwoPhaseEulerFoam
is stable and parallelized, providing a solid base for further expansions.

For assessing the reliability of the implementation, the partially aerated rectangular bub-
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ble column of the work of Diaz et al. (2008b,a); Cachaza Gianzo (2011) was modeled and
the obtained results was compared with the experimental data available at different superfi-
cial gas velocities. The performed analysis shows that there is in general a good agreement
with the experiments for the compared variables: global gas hold-up trend with respect of
𝑈𝐺 was correctly reproduced by the model, while the comparison of POP and mean Sauter
diameter is still satisfactory despite of the approximations introduced by the model and the
impossibility of extracting data from simulations with the same procedures used in the ex-
periments.

However, it was shown that the calculated moments of the bubble size distribution may
give detailed and local information of mass transfer interfacial area between the two phases,
necessary for carrying out mass transfer simulations of oxygen in water. As seen in Sec-
tion 4.1.2 for zero-dimensional systems, the smaller bubbles have higher mass transfer rates
than larger ones because of a higher interfacial area and tend to reach the equilibrium with
the liquid more quickly; for this reason not only the bubble size, but also bubble concentra-
tion is needed for a proper description of the mechanism. Therefore, this work will continue
with the implementation of a multivariate population balance solver, CQMOM, in the same
open source framework with aim of validating the model with the dissolved oxygen profiles
available in literature.

5.2 Multivariate QBMM verification on a 2D bubble column
5.2.1 Introduction
As previously reported, in the latest years the coupled PBM-CFD approach has attracted the
interest of the scientific and industrial communities as a powerful tool to predict dispersed
systems involving a certain degree of poly-dispersity. In the most popular commercial codes
(i.e., CFX, FLUENT) new specific modules for the solution of the monovariate PBE using
different methods were introduced in order to meet the user needs. However, an official
implementation of a multivariate PBE solution method does not exist, and this will be the
focus of the rest of this Chapter.

As pointed out elsewhere (Buffo et al., 2013), the implementation of PBE solution meth-
ods in CFD codes is not a straightforward operation. Although the main commercial CFD
codes have the possibility of introducing additional equations, some important information,
such as phase fluxes at different cell faces, are the results of internal routines, completely
hidden to the programmer and for which there is no proper documentation. For this reason,
it is crucial to verify every implemented part of the code in order to point out programming
errors and in order to overcome numerical difficulties that may arise when new quantities,
strongly coupled with the fluid dynamic description, like the moments of the bubble distribu-
tion, are transported. Only after this verification is performed the validation via comparison
with experiments can be carried out.

Therefore, the implementation in the commercial code ANSYS FLUENT 13 and the ver-
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Figure 5.9: Schematic representation of the two-dimensional rectangular bubble column mod-
eled.

ification of different QBMM for a very simple 2D bubble column will be treated in this part
of the dissertation, showing in detail the criteria used for verifying the code and establish-
ing the guidelines of initial and boundary conditions. The result of the comparison between
different QBMM will be also shown and discussed. Moreover, mass transfer tests were
also carried out, in order to point out the differences between modeling without population
balances, with a monovariate approach and with a multivariate approach the comparison is
done in terms of global mass transfer coefficient and the results of this comparison will be
presented and discussed.

5.2.2 Test case description
In Fig. 5.9 a schematic representation of the simulated system is reported. The aim of the
work is to verify the implemented population balance module without validation. The geom-
etry is constituted by a simple two-dimensional rectangular grid with 11,230 non-uniform
cells, with a gas sparger situated at the bottom of the column and the outlet at the top. The
air bubbles are injected in stagnant pure water and therefore the liquid starts moving only
due to the action of bubbles. At the beginning of the simulation, the free surface between
phases is placed at a height of 1.26 m.
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Figure 5.10: Schematic representation of a single inner iteration of the segregated pressure-
based solver of FLUENT.

5.2.3 Methods and numerical details
As previously mentioned, different QBMMwere coupled to the commercial CFD code AN-
SYS FLUENT 13. The Population Balance Equations were implemented by means of a
User-Defined Functions (UDF) and Scalars (UDS), a framework specifically designed for
coupling new equations into the preexisting CFD code. Although a complete description of
the coupling procedure is reported in Section 3.3, in this section the salient details will be
recalled.

A generic User-Defined Scalar, 𝜓 , can be introduced into the set of solved equations in
the context of the multifluid solver and calculated by means of the following equation:

𝜕
𝜕𝑡 ඳ𝛼𝑖𝜌𝑖𝜓ප + ∇𝐱 ⋅ ඳ𝛼𝑖𝜌𝑖𝐔𝑖𝜓 − ඳ𝛼𝑖Γ𝑖∇𝐱𝜓පප = 𝑆 (5.7)

where 𝛼𝑖, 𝜌𝑖, 𝐔𝑖 and Γ𝑖 are respectively volume fraction, density, velocity and diffusion
coefficient of the 𝑖−th phase, while 𝑆 is the source term. It should be noticed that Eq. (5.7)
is mass conservative with respect to the 𝑖 − 𝑡ℎ phase, namely the sum of advective and
diffusive fluxes discretized at different faces of a single computational cell within a time
step is equal to zero (when 𝑆 is equal to zero). A schematic rapresentation of the solver is
reported in Fig. 5.10.

In the actual PBE implementation 𝜓 and 𝑆 may represent different quantities, depending
on the method used. As explained in Section 2.2, molecular or turbulent diffusion is neg-
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ligible for all the scalars that refer to bubble properties, as moments for QMOM/CQMOM
and weights and weighted nodes for DQMOM/DQMOM-FC. For CQMOM, the relation
between the solved scalar 𝜓 and the generic-order moment 𝑀𝑘,𝑙 is the following:

𝜓 =
𝑀𝑘,𝑙

𝛼𝑖
(5.8)

𝑆 = 𝜌𝑖 ๙
𝐻𝑘,𝑙 −

𝑁

𝑗්=1
𝑘𝑤𝑗 𝐿𝑘−1

𝑗 𝜙𝑙
b,𝑗 𝐺(𝐿𝑗 , 𝜙b,𝑗) −

𝑁

𝑗්=1
𝑙 𝑤𝑗𝐿𝑘

𝑗 𝜙𝑙−1
b,𝑗

̇𝜙b(𝐿𝑗 , 𝜙b,𝑗)
๚

, (5.9)

which is the approach described in Section 3.3.1. Assuming that all bubbles move the same
velocity, namely using a two-fluid approach with a liquid continuous phase and a single
gaseous dispersed phase (i.e., 𝑖 = 1), it is theoretically possible to recover the transport equa-
tion for a generic order moment as reported Eq. (2.73) at Page 34 by substituting Eq. (5.9)
into Eq. (5.7). As mentioned in Section 3.3, this assumption is reasonable when the BSD
ranges between 1 to 10 mm (Petitti et al., 2010; Buffo et al., 2013), as in this case. It is not
clear, however, how the advective fluxes of a generic scalar are calculated; for this reason
the discretization scheme used not only for the moments, but also all for the other calculated
variables First-Order Upwind was used.

For DQMOM and DQMOM-FC respectively, the generic scalar 𝜓 must be substituted
by the model variables 𝑤𝑗 , 𝑤𝑗𝐿𝑗 and 𝑤𝑗𝜙b,𝑗 in the following way:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝜓 =
𝑤𝑗
𝛼𝑖

𝑆 = 𝜌𝑖𝑎𝑗 ,

𝜓 =
𝑤𝑗𝐿𝑗

𝛼𝑖
𝑆 = 𝜌𝑖 බ𝑏𝑗 , +𝑤𝑗𝐺𝑗භ

𝜓 =
𝑤𝑗𝜙𝑗

𝛼𝑖
𝑆 = 𝜌𝑖 බ𝑐𝑗 + 𝑤𝑗 ̇𝜙b,𝑗භ ,

(5.10)

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝜓 =
𝑤𝑗
𝛼𝑖

𝑆 = 𝜌𝑖 ෺𝑎𝑗 + 𝑎∗
𝑗 ෻ ,

𝜓 =
𝑤𝑗𝐿𝑗

𝛼𝑖
𝑆 = 𝜌𝑖 ෺𝑏𝑗 + 𝑏∗

𝑗 , +𝑤𝑗𝐺𝑗෻ ,

𝜓 =
𝑤𝑗𝜙𝑗

𝛼𝑖
𝑆 = 𝜌𝑖 ෺𝑐𝑗 + 𝑐∗

𝑗 + 𝑤𝑗 ̇𝜙b,𝑗෻ ,

(5.11)

with 𝑗 = 1, … , 𝑁 is the quadrature node index. Also in this case, it is possible to recover
DQMOM formulation as written in Eq. (2.145) at Page 55 by substituting Eq. (5.10) into
Eq. (5.7), and DQMOM-FC formulation expressed in Eq. (2.146) at Page 57 by substituting
Eq. (5.11) into Eq. (5.7). In order to perform a fair comparison between the different QBMM,
it is necessary to adopt the same assumptions everywhere: First-Order Upwind discretization
schemes for all the variables and the two-fluid approach (i.e., only one gas phase considered).
Moreover, the calculation of the source term of QBMM was performed only in a certain
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Table 5.5: Boundary conditions used for two-dimensional CFD simulation

Boundary BC for gas phase BC for liquid phase

1 𝛼 = 0.5 𝛼 = 0.5
𝑈 = 1.4236 m s−1 𝑈 = 0.0 m s−1

2 Free slip wall No-slip wall
3 Pressure outlet with backflow equal to 1 Pressure outlet

range of gas volume fraction (i.e., 1.0 × 10−4 < 𝛼𝐺 < 0.8), in order to consider bubble
collisions only when bubbles are in an adequate number and do not constitute the continuous
phase.

The turbulent behavior of the systems was taken into account by means of the 𝑘 − 𝜖
mixture turbulent model indicated in Section 3.2.5. The drag coefficient entering in the in-
terfacial force of the two-fluid model was calculated in terms of the bubble terminal velocity
reported in Eq. (3.65) at Page 79, which was assumed to be constant and equal to 20 cm/s. It is
important to remark that the mean bubble diameter in Eq. (3.65) is calculated as a function
of moments through the definition of Sauter diameter 𝑑32 reported in Eq. (3.111) at Page 90.
Other interfacial forces were neglected in first approximation. Bubble breakage frequency,
daughter distribution function, coalescence kernel and efficiency were formulated with mod-
els reported in Eqs. (2.55), (2.64), (2.66) and (2.68) at Pages 27 and 30 to 32 respectively
(Laakkonen et al., 2006; Petitti et al., 2010), while for the mass transfer coefficient the model
of Lamont and Scott (1970) expressed in Eq. (2.48) at Page 25 was implemented.

In Table 5.5 the conditions imposed at boundaries are reported for gas and liquid phases,
while in Table 5.6 a scheme of all the performed simulations is reported. The inlet air bub-
ble population was a log-normal distribution as in Section 5.1.3, with parameters calculated
assuming a mean diameter equal to 3.7mm and a standard deviation equal to 15 % of the
mean diameter value. The generic-order moment 𝑀𝑘,𝑙 is calculated by means of the follow-
ing expression:

𝑀𝑘,𝑙 = 𝑀0,0 ඳ𝑘𝑉 𝐶𝑂2ප𝑙 exp อ(𝑘 + 3𝑙) 𝜇 + (𝑘 + 3𝑙)2 𝜎2

2 ฮ (5.12)

where 𝜇, 𝜎 and 𝑀0,0 are calculated with Eqs. (5.4) to (5.6) and 𝐶𝑂2
is inlet oxygen con-

centration assumed equal to 8.56mol/m3. Weights and weighted nodes of quadrature needed
for the inlet conditions of DQMOM/DQMOM-FC simulations can be found applying the
CQMOM inversion algorithm described in Section 2.3.3 to the corresponding inlet moment
set.
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Table 5.6: Summary of the simulations carried out.

QBMM Quadrature nodes Mass transfer Number of scalars
CQMOM 2 No 6
CQMOM 3 No 9
DQMOM 2 No 6
DQMOM-FC 2 No 6
No - Yes 2
QMOM 2 Yes 6
QMOM 3 Yes 8
CQMOM 2 Yes 7
CQMOM 3 Yes 10

5.2.4 Results and discussion
CQMOM implementation

As previously said, the CQMOM implementationwas tested and verified in order to point out
numerical issues. The typical result of a CQMOM simulation is shown in Fig. 5.11, where
the contour plots of volume fraction, mean Sauter diameter and some of the transported
moments are reported considering a system with only coalescence and breakage with a two-
node quadrature.

The physical meaning for most of these quantities is explained in Chapter 4; here it is
important to remark that, by means of this approach, the evolution of the multidimensional
NDF is tracked in every point of the computational domain. In fact, as shown in Fig. 5.11
the mean Sauter diameter, calculated with Eq. (3.111), changes from point to point into the
bubble column as a consequence of coalescence and breakage processes. In order to have
this information, six moments have to be transported (i.e., 𝑀0,0, 𝑀1,0, 𝑀2,0, 𝑀3,0, 𝑀0,1,
𝑀1,1) for calculating the two nodes of the quadrature approximation through the inversion
algorithm, used in turn to evaluate the source terms of themoments. It is important to remark
that the moment inversion and the source term calculation are carried out only when the local
gas volume fraction ranges between 1.0 × 10−4 and 0.8, as the description of the disperse
phase (i.e., bubbles) with the population balance makes sense only under these conditions.
As a consequence, the equations for the tracked moments are solved also above the free
liquid surface for stability reasons, but without calculating the source term and setting it to
zero. The unphysical contour plot for the moment reported is explained by the fact that all
the moments were initialized equal to zero at the initial time. However, what happens above
the liquid level does not influence the results in the area of interest, namely the gas-liquid
dispersion.

Other important variables to be monitored for verification purposes are the source terms
of the moment of order three with respect to size and the source term of the moment of order
one with respect to composition, that must be equal to zero, if mass transfer process is not
active. As reported in Fig. 5.11, the calculated values for these quantities in all the cells of
the domain are near the machine precision as expected. This means that bubble coalescence
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Figure 5.11: From left to right: 1) First row: Profiles of gas volume fraction, 𝑀0,0, 𝑀1,0; 2)
Second row: 𝑀2,0, 𝑀3,0, mean Sauter diameter 𝑠𝑎𝑢 (m); 3) Third row: source term of 𝑀3,0,
source term of 𝑀0,1 and 𝑀0,1 for the case considering only bubble coalescence and break-up
calculated using CQMOM with a two-node quadrature approximation after 15 s. Units of a
generic order moment 𝑀𝑘,𝑙: m𝑘−3 mol𝑙.
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Figure 5.12: From left to right: 1) First row: Profiles of gas volume fraction, 𝑀0,0, 𝑀1,0; 2)
Second row: 𝑀2,0, 𝑀3,0, mean Sauter diameter 𝑠𝑎𝑢 (m); 3) Third row: source term of 𝑀3,0,
source term of 𝑀0,1 and 𝑀0,1 for the case considering only bubble coalescence and break-up
calculated using CQMOM with a three-node quadrature approximation after 15 s. Units of a
generic order moment 𝑀𝑘,𝑙: m𝑘−3 mol𝑙.
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and breakage do not change 𝑀3,0 and 𝑀0,1 maintaining constant the gas holdup and the total
number of oxygen moles, as seen in Chapter 4 for simplified systems.

As pointed out in Section 2.3, it is possible to improve the accuracy of the approximation
by increasing the number of nodes of the quadrature, namely a larger number of moments
must be included into the transported set. In Fig. 5.12 the results obtained considering a
three-node quadrature (moment set: 𝑀0,0, 𝑀1,0, 𝑀2,0, 𝑀3,0, 𝑀4,0, 𝑀5,0, 𝑀0,1, 𝑀1,1, 𝑀2,1)
are shown. By looking the contour plots, especially the source terms of the moments, similar
conclusions can be drawn also in this case.

However, particular attention should be devoted to the gas phase oxygen concentration
that will be used for expressing the driving force for mass transfer estimation. It is interest-
ing to compare results obtained with two and three-node quadrature approximations in terms
of global oxygen concentration, calculated by means of Eq. (4.1), and in terms of oxygen
concentration for each of 𝑖−th nodes as expressed in Eq. (4.2). This comparison are reported
in Fig. 5.13. As explained in Chapter 4, the case with coalescence and breakage is particu-
larly helpful for verification purposes. In fact, since bubbles in this simple case coalesce and
break-up in the absence of mass transfer, the global oxygen concentration in the gas phase,
shown in Fig. 5.13, has to remain constant and the corresponding contour plot has to give a
flat profile since it is the ratio of two conserved quantities. The fact that the mean gas oxygen
concentration has the same value also above the free surface is due an assumption used in-
side the subroutine; this explains why in the other contour plots, the concentration fields are
defined only in the disperse phase and are equal to zero in the other zones. As it is possible
to see both quadrature approximations with 𝑁 = 2 and 𝑁 = 3 respect this constraint, as the
contour plots of the global oxygen concentration in the gas in the case of no mass transfer
are completely flat and equal to the inlet values.

Furthermore, also the concentration for each quadrature node should be constant and
equal to the inlet value but, as it is possible to see in Fig. 5.13, for the case of two nodes
this condition is not respected, showing a non-physical behavior, already detected in the
zero-dimensional case (Fig. 4.3), amplified here by the fact that the oxygen concentration
for the first internal coordinate is non-physically negative in some points of the domain. This
situation in which the moments are correctly predicted (i.e., 𝑀3,0 and 𝑀0,1), and therefore
their values are realizable, but the quadrature approximation generates reconstructed NDF
that samples the phase space in “forbidden” regions, is defined as unrealizable quadrature.
This unrealizable reconstructed NDF is due to the fact that a particular moment, 𝑀2,1, re-
lated to the covariance of the distribution must be included into the transported set and must
be used to reconstruct the NDF and the quadrature approximation. When this moment is
transported and used into the inversion algorithm, as in the case of three-node quadrature,
the contour plots of the oxygen concentrations for each node are flat profiles (see second row
of Fig. 5.13).
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Figure 5.13: First row from left to right: Mean oxygen concentration (mol/m3) in the gas phase
and oxygen concentration calculated for the first and second quadrature nodes in the case of
coalescence and breakage with a 2 node quadrature after 15 s. In the second row, the same
variables for a 3 node quadrature.

DQMOM implementation

Also the implementations of DQMOM and DQMOM-FC were verified, considering only
bubble coalescence and breakage, limiting the investigation only to the case of the two-
node quadrature . In Fig. 5.14 and Fig. 5.15 are shown the weights and the weighted nodes
transported by the methods, mean diameter, mean oxygen concentration and gas volume
fraction profiles for the two different QBMM. As it can be clearly seen from the figures,
DQMOM does not allow to calculate properly the mean oxygen concentration in the gas
phase because, as already seen in the mono-dimensional case Section 4.2, is not capable
of preserving the correct evolution of the moment set. It is worth mentioning that these
errors are detected in moments 𝑀𝑘,𝑙 of global order (i.e., 𝑘 + 𝑙) equal to or greater than
two (Marchisio and Fox, 2005). In fact, moments of global order smaller than two are linear
combination of the primitive variables actually transported (i.e., weights and weighted nodes
or abscissas), whereas higher-order moments are non-linear combinations of these variables.
Thismeans that the original DQMOM is capable of conserving onlymoments of global order
zero and of order one. Moreover, it is possible to say that the unphysical contour plot of the
mean oxygen concentration in gas phase, shown in Fig. 5.14, is due to 𝑀3,0, namely the
local volume fraction might be under/overestimated with this method.

On the contrary with DQMOM-FC the moments are properly conserved as the mean
oxygen concentration contour plot is able to show. However, it is very important to remark
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Figure 5.14: From left to right: 1) First row: Profiles of gas volume fraction, 𝑤1 (m−3), 𝑤2
(m−3); 2) Second row: 𝑤1𝐿1 (m−2), 𝑤2𝐿2 (m−2), 𝑤1𝜙b,1 (mol m−3); 3) Third row: 𝑤2𝜙b,2 (mol
m−3), mean Sauter diameter 𝑑32 (m) and mean oxygen concentration (mol/m3) in the gas phase
for the case considering only bubble coalescence and break-up calculated using DQMOM with
a 2 nodes quadrature approximation after 12 s.
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Figure 5.15: From left to right: 1) First row: Profiles of gas volume fraction, 𝑤1 (m−3), 𝑤2
(m−3); 2) Second row: 𝑤1𝐿1 (m−2), 𝑤2𝐿2 (m−2), 𝑤1𝜙b,1 (mol m−3); 3) Third row: 𝑤2𝜙b,2 (mol
m−3), mean Sauter diameter 𝑑32 (m) and mean oxygen concentration (mol/m3) in the gas phase
for the case considering only bubble coalescence and break-up calculated using DQMOM-FC
with a 2 nodes quadrature approximation after 10.5 s.
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that the maximum time step value used to achieve stability with DQMOM-FC was 5.0 ⋅10−5

s versus 0.05 s of CQMOM and DQMOM, greatly increasing the total computational time
with respect to the other two methods. The main reason of this big difference stays into
the fact that DQMOM-FC is capable of conserve moments in space but is only a second
order accurate method with respect to time, as pointed out in Section 2.3.5. Furthermore,
the numerical implementation of the method is another important aspect: while CQMOM
and DQMOM use the stable and optimized built-in user-defined scalar structure with addi-
tional source term, DQMOM-FC calculation are carries out by means of an external pro-
gram specifically created to manage the large set of ODEs that the moment flux calculations
involve, without resorting to the optimized FLUENT subroutines. This is due to the im-
possibility of performing these calculations for the fluxes, as dictated by the DQMOM-FC
algorithm, inside FLUENT.

The comparison between different QBMM for this particular test case showed that CQ-
MOM is a stable and efficient algorithm, able to automatically conserve the physical quanti-
ties of interest, while DQMOM suffers from the impossibility of conserving all the quantities
of interest, unless its fully conservative version is used. This latter seems to cure the prob-
lem, but the current implementation in commercial codes is still inadequate to simulate large
systems.

Mass transfer test

As reported in Table 5.6 five different types of mass transfer simulation were performed
for this particular configuration and, in the absence of experimental data for this system,
the results of the different methodologies are compared with each other in Fig. 5.16. The
comparison is done for the oxygen saturation curve, namely the time evolution of mean
oxygen concentration in the liquid phase. All the curves showed a similar behavior with
some differences. It is important to stress here that the simulation without the PBM requires
an arbitrary assumption on the mean bubble size and completely neglects the poly-dispersity
of gas-phase. Therefore not only the predictions will be different from those of the PBM (and
potentially wrong) but they will be highly affected by the value chosen for the constant mean
bubble size. For the particular value used here (i.e., 𝑑𝑏 = 3.7 mm) the predictions reported
in Fig. 5.16 over predicts the average liquid oxygen accumulation.

As already pointed out elsewhere in this dissertation, PBM gives the opportunity to take

Table 5.7: Computational time required for 10 seconds of mass transfer simulation.

Method Quadrature nodes Simulation time (s) Ratio
No PBM - 30692 -
QMOM 2 51648 168.28%
QMOM 3 80062 260.86%
CQMOM 2 79374 258.61%
CQMOM 3 132509 431.74%

140



CHAPTER 5. RESULTS ON REALISTIC SYSTEMS

0 2 4 6 8 10

0

5 · 10−2

0.1

0.15

Time (s)

O
x
y
ge
n
co
n
ce
n
tr
at
io
n
(m

o
l/
m

3
) No PB

QMOM 2 nodes
QMOM 3 nodes
CQMOM 2 nodes
CQMOM 3 nodes

Figure 5.16: Oxygen saturation curve in the liquid phase, calculated with different methodolo-
gies.

into account the polydispersity of the system: the choice betweenmonovariate andmultivari-
ate is, in general, due to the nature of the problem and to the required accuracy for describing
the system under study. In this case, the main difference between monovariate (only size de-
pendent population balance) and bivariate (size-composition dependent population balance)
is the capacity to describe not only the interfacial area, but also the driving force of mass
transfer. Comparing the predictions in Fig. 5.16 highlights that a higher transfer rate for the
monovariate than for the bivariate description, as shown in Fig. 5.16, due to the fact that
the monovariate description neglects that smaller bubbles exchange mass faster than larger
ones and the concentration of the species transferred tends to decrease more rapidly thereby
reducing the global mass transfer coefficient. A preliminary computation time analysis, re-
ported in Table 5.7, demonstrates that the monovariate method is faster than the bivariate
one due to the lower number of moments transported. However, the use of a closed com-
mercial code does not allow to optimize certain aspects of the implementation. For example,
the assumption of an unique terminal velocity for all the bubbles allows to solve the moment
equations only at the end of the time iteration, just after the fluid dynamics calculation: this
possibility is excluded by the solver. Therefore an analysis of the computational times will
be more significant when it is available an optimized implementation of CQMOM in a open
source CFD code.

Fig. 5.16 also shows the effect of increasing the number of quadrature nodes in the de-
scription of the bubble population and its impact on the overall oxygen transfer rate. The
curves with three nodes, both with QMOM and CQMOM, indicate a faster oxygen absorp-
tion due to a better description of the interfacial area. In the case of CQMOM, it is very
important to monitor for verification purposes the evolution with the time of the oxygen
concentration calculated for each quadrature node in the case of the two and three-node
quadrature. In fact, as previously pointed out in absence of mass transfer, oxygen concen-
trations for two nodes quadrature have non-physical values and, as Fig. 5.17 shows, the mass
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Figure 5.17: Time evolution of oxygen concentration (mol/m3) calculated for first and second
quadrature node (first and second rows) in the case of coalescence, breakage and mass transfer
after 2, 4, 6, 8 and 10 seconds (left to right) calculated by means of CQMOM with 2 nodes.

transfer tends to amplify this wrong behavior, resulting in time to negative concentrations in
some zones of the domain. Otherwise, with a three-node quadrature (Fig. 5.18), the nodes
of quadrature approximations representing oxygen concentrations have always acceptable
values, i.e., positive and smaller than the inlet values.

5.2.5 Conclusions
In this section, the implementation of different QBMM inside the commercial CFD code
FLUENT was discussed and verified in order to point out numerical issues. Although DQ-
MOM and DQMOM-FC are solid methods to treat different multivariate problems, it was
demonstrated that, in the case of gas-liquid flows, the former method fails because of the
underestimation of the gas volume fraction and the consequently wrong calculation of the
average oxygen concentration of the gas phase; while the latter method was implemented by
means of an external program without resorting to the optimized user-defined subroutines
framework, requiring a very smaller time step compared to the other methods.

CQMOM instead was proved to be stable and ready to be used for the simulation of
realistic system for validation purposes. However, also in this case some issues related to
the oxygen concentration were found: when only six moments are used for representing the
bubble size and composition distribution, the oxygen concentration field calculated for each
quadrature node may become nonphysical or unrealizable, because the transported moment
set does not include an important higher order moment (i.e., 𝑀2,1), while the mean oxygen
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Figure 5.18: Time evolution of oxygen concentration (mol/m3) calculated for first, second and
third quadrature node (first, second and third rows) in the case of coalescence, breakage and
mass transfer after 2, 4, 6, 8 and 10 seconds (left to right) calculated by means of CQMOMwith
3 nodes.
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concentration is properly calculated because of a ratio of conserved moments. When nine
moments included in the moment set, namely a three-node quadrature is used, all the oxy-
gen concentrations are correctly placed in phase space. Moreover, this situation also was
confirmed when oxygen mass transfer was studied. However, also in the case of three-node
quadrature the oxygen concentrations need to be monitored and prevent them from becom-
ing negative with an appropriate correction. In the next section, a possible approach will be
presented and discussed.

In conclusion, different approaches in the simulation of mass transfer tests were com-
pared in terms of computational time and the evolution of mean oxygen concentration in
the liquid phase. Although the simulation without population balance was proved to be the
fastest of all, an important part of the gas liquid physics is completely neglected; by using
a monovariate or multivariate approaches to account for the bubble population, a difference
in the results is observed, meaning that problem of course affected by the amount of physics
considered. The analysis of computational time for the different methodologies showed that
the controlling parameter is the total number of variables to be tracked. Nevertheless, this
significant difference in computational time may be due to the implementation strategy of
the additional equations in the commercial code FLUENT. The optimized CQMOM imple-
mentation in a open CFD source code might provide a more significant comparison.

5.3 Mass transfer simulation in a stirred tank reactor
5.3.1 Introduction
CFD modeling of aerated stirred tanks initially focused on single-phase liquid systems,
with very simplified two-dimensional approaches (Harvey and Greaves, 1982; Placek et al.,
1986; Pericleous and Patel, 1987), where the impeller and the baffles were considered as
sources/sink of momentum and the system was modeled assuming an axial-symmetric ge-
ometry, in order to give only a qualitative idea of the flow pattern, without resolving its
three-dimensional structures. With the increase of computational power, three-dimensional
simulations became feasible and were performed (Ranade et al., 1989; Ranade and Joshi,
1990; Kresta and Wood, 1991), but still with the stirrer modeled as a momentum source or
by means of ad-hoc boundary conditions; these methods were limited by a difficulty closure
process. To overcome this issue, several approaches have been developed such as Sliding
Mesh (SM) and Multiple Reference Frame (MRF) (Luo et al., 1994; Tabor et al., 1996;
Wechsler et al., 1999). Especially the latter one has become a standard in the simulation
of rotating items because it is computationally cheap and can be also used in steady-state
descriptions. With this method, the computational domain is divided in two zones: one
rotating with the impeller, while the other one fixed in an inertial reference frame. The in-
formation between the two zones is exchanged by means of particular boundary conditions.
Good agreement with the experimental measurements of flow velocity was obtained by Luo
et al. (1994), while Wechsler et al. (1999) compared the results obtained by SM and MFR in
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the prediction of trailing vortices, demonstrating that the MFR approach represents a good
trade-off between computational costs and accuracy.

As mentioned in Chapter 1, one of the first works accounting for the presence of a Bub-
ble Size Distribution (BSD) in gas-liquid stirred tanks was that of (Bakker and Van den
Akker, 1994), who formulated a population balance model, based on the solution of an ad-
ditional equation for the bubble number density. Good agreement with experimental data
for global gas hold-up and mass transfer coefficient was found, with the exception of the
impeller discharge zone, where the turbulent dissipation rate reaches the highest values; the
same approach was also adopted by other authors (Lane et al., 2002; Kerdouss et al., 2006;
Moilanen et al., 2008). In all cases, good predictions were obtained by adjusting some em-
pirical constants introduced in the model; however a proper phenomenological description
of the probability and rate of bubbles collisions and bubble-eddy collisions was replaced by
a less complicated approach based on the critical Weber number. With this approach, the
local bubble size varies from point to point in the domain, but in every single point a non-
physical mono-disperse distribution is considered; this is due to the fact that the constitutive
equations for only 2 moments of the bubble size distribution, the moment of order zero (i.e.,
the total number of bubble per unit volume) and the moment of order three with respect to
bubble size (i.e., the moment proportional to the gas volume fraction) were solved.

To overcome this issue, it is necessary to solve a complete population balance model
(PBM). As already pointed out in Chapter 2, different methods exist for its solution, but only
a few of them can be used coupled with the fluid dynamic flow description in a CFD frame-
work. Various Classes Methods (CM) were firstly coupled with CFD for the description of
gas-liquid stirred tanks, as in the work of Montante et al. (2008); Kerdouss et al. (2008);
the main disadvantage of these methods is represented by the large number of classes (and
so the number of equations) to reach a satisfactory accuracy, thus consequently increasing
the computational costs, without considering that the extension to multivariate problems for
these methods is absolutely not trivial. An attractive way to solve the population balance
equation with a low computational cost is represented by the methods of moments (MOM),
where the evolution of the bubble population is calculated by transporting only few low or-
der moments of the distribution. As previously mentioned, a particular group of MOM is
the Quadrature-based Method of Moments (QBMM), where a quadrature formula is used
to approximate the shape of the distribution. QBMM were applied both in the monovari-
ate (QMOM) (Petitti et al., 2010) and multivariate (DQMOM) (Buffo et al., 2012) cases for
description of the 194 L baffled gas-liquid stirred tank reactor, experimentally investigated
by Laakkonen et al. (2006). Simulations considering bubble coalescence and breakage were
carried out and the results were validated with the experimental data available of Bubble
Size Distribution, both intended as a mean Sauter diameter profile over all the reactor and
as a local BSD in a singular point of the domain. In the work of (Petitti et al., 2012), it is
seen as Conditional Quadrature Method of Moments can be successfully used in the con-
text of gas-liquid systems and it is particularly suitable for multivariate problems due to its
conservation properties.

145



CHAPTER 5. RESULTS ON REALISTIC SYSTEMS

42

78

6
3
0

6
3

32

63

7
0

1
3
1

1
1
9

1
0
2

9
4

54

32

2
1
0

630

72 32

R9

R8

R12

R4

R2

22.5°

22.5°

11.25°

22.5°

R2−A

22.5°

R2−B R2−C

R2−D

R2−E

Figure 5.19: Representation of the simulated stirred tank and location of the sample points in
which BSD data were measured (Dimensions in mm). (a) Sample points are located on 45∘plane
between baffles. (b) Plane located at 70 mm below the upper surface.

The results presented in this section are based on the description of the gas-liquid in-
terfacial area with DQMOM (Buffo et al., 2012) and a complete mass transfer simulation
performed with CQMOM (Petitti et al., 2012).

5.3.2 Test case description
The configuration studied in this part of the work has been firstly investigated from the
experimental and modeling point of view by Laakkonen et al. (2006, 2007). The vessel di-
mensions and the position of the measurement points are reported in Fig. 5.19. This reactor
is a 194 liter tank with four baffles (with a particular configuration with upper extensions,
specifically designed for having a flat liquid profile on the free surface), agitated by a stan-
dard six-blade Rushton turbine with a circular metal porous sparger with external diameter
of 3.3 cm and pores with an average diameter of 15𝜇m, situated about at 10.5 cm under the
impeller.

For this particular air-water system, detailed local measurements of BSD in different
points of the reactor and mass transfer rates are available for model validation. The experi-
mental technique used for measuring the bubble size distribution was the Capillary Suction
Probe, in which bubbles are forced to pass into capillaries of different sizes and a light sensor
takes into account the number of bubbles and their volume. The oxygen adsorption curve
in the liquid phase was instead determined by means of an oxygen probe positioned in a
specific point of the reactor, having previously fluxed only nitrogen into the system.

5.3.3 Methods and numerical details
The computational grid was created with GAMBIT, whereas simulations were carried out
by using FLUENT 12: population balance equations and the drag force formulation in
Eq. (3.65) based on bubble terminal velocity were implemented through User-Defined Func-
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tions and Subroutines and by solving additional equations for User-Defined Scalars as ex-
plained in Section 5.2. Same submodels for bubble coalescence, breakage andmassa transfer
were used also in this case. The motion of the Rushton turbine was modeled by using the
Multiple Reference Frame (MFR) approach (Wechsler et al., 1999), in order to reduce the
computational time requested for each simulation. Thanks to geometrical symmetry and pe-
riodicity only half of the stirred tank was considered. Approximately 230,000 hexahedrical
cells were used to discretize the reactor; further grid refinement did not significantly improve
the accuracy of solution. Mass trasfer simulations required an extension of the geometry in
the upper part for including also the free surface, in order to conserve the total mass of liquid
inside the domain. In the latter case, approximately 150,000 celles were added to the reactor
mesh. The simulation results were compared with the experimental data for the different
measurement points and for a wide range of operating conditions. The air flow rate ranged
from 0.018 to 0.093 volumes of gas per volume of reactor per minute (vvm) and the stirring
rate ranged between 155 and 250 rpm, with global hold-up values up to 1.5 %.

As already said before, both DQMOM and CQMOMwere applied to the same geometry
for different purposes: DQMOM is used to obtain detailed information on the gas-liquid in-
terfacial area and validate the model with the experimental BSD data, whereas CQMOM is
used for simulating the mass transfer experiments and comparing the obtained results with
the experimental data available. For this reason, in the first case a steady-state approach
was used and in the second case a transient situation solved by means of a First-Order Im-
plicit time integrator was considered. It should be remarked that DQMOM implementation
is slightly different than the one reported in Section 5.2: here the two nodes the multiphase
system are calculated by means of a multifluid approach, considering one continuous liquid
phase (water) and two dispersed gaseous phases (air) whose volume fractions, character-
istic composition, sizes and velocities are calculated by solving the appropriate equations
(see Eq. (3.116)). With CQMOM instead, only two phases (continuous liquid and dispersed
gas) were used in the description of the system and ten additional scalar were transported,
9 moments of the multidimensional bubble distribution (i.e., three-node quadrature approx-
imation. Moment set: 𝑀0,0, 𝑀1,0, 𝑀2,0, 𝑀3,0, 𝑀4,0, 𝑀5,0, 𝑀0,1, 𝑀1,1, 𝑀2,1) and the
concentration of oxygen in the liquid phase. The main difference between the two methods
lies not only in the number of quadrature nodes, but especially in considering a velocity
for each node of quadrature in the first case and only one velocity for all the bubbles in the
second case. In Section 5.1 it was demonstrated that the latter method does not represent a
serious limitation for the flow description in the case in which bubble size ranges between
2-10 mm, because they have approximately the same terminal velocity (as pointed out in
Section 3.3.1), although the former approach is formally more rigorous.

Boundary conditions for this system are defined as follows. Non-slip and impermeability
boundary conditions at walls are assumed for both the continuous and the dispersed phase.
However, as demonstrated by Zhang et al. (2006), the simulations are quite insensitive to the
actual wall condition used for the gas phase, because of the low gas volume fraction near the
wall. A different approach was used for DQMOM simulations in terms of inlet condition:
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the gas enters into the reactor by means of the porous sparger considering a constant inlet
velocity of 9.94m/s has been imposed at the whole section for the two gas phases and the
overall gas volume fraction was calculated by matching the relative gassing rate, that varied
between 0.018 and 0.093 vvm. With CQMOM, a different approach was adopted in order to
reduce the inlet gas velocity magnitude in order to use a proper time step for integration: a
volume fraction of 0.5 was assumed at the sparger surface and the gas velocity was calculate
to recover the right gas flow rate, as explained in Section 5.1. The liquid velocity components
on the gas sparger were assumed equal to zero. The upper surface of the vessel was modeled
as a pressure outlet; the condition of backflow changed according to the simulations carried
out: in all the cases gas bubbles could exit from the system but, without considering the free
surface as done with DQMOM steady state description, the flow that enters into the surface
it is composed only by the liquid phase. Whereas with CQMOM, in which the gas-liquid
free surface is modeled, the flow that enters into the outlet surface is only composed by gas
phase. Although the former approach is not completely satisfying at the theoretical level,
this condition is a good compromise between accuracy and ease of solution. Zhang et al.
(2006) compared such a simplified approach with a more rigorous simulation in which the
gas zone above the free surface is taken into account and did not found relevant differences in
the results of the two approaches. In addition, it should be observed that in an aerated stirred
tank reactor the flow pattern is largely determined by the motion imposed by the stirrer,
and the outlet boundary condition is not able to amend this situation. However, when mass
transfer is taken into account, an approach that allows to conserve the total mass of liquid over
the entire simulation is strictly required and a more costly geometry from a computational
point of view is needed.

The PBM requires to set boundary conditions for the different bubbles groups with DQ-
MOM and for different moments with CQMOM that enter into the system through the
sparger. Experimental study of bubble formation at metal porous spargers has been con-
ducted for a water-air system by Kazakis et al. (2008) for similar superficial velocity and
mean diameter of pores; as a results of their work, the BSD above the sparger can be mod-
eled as a log-normal distribution with a standard deviation of 0.15 of the mean size, with a
mean bubble size (𝑑𝑏, 𝑖𝑛𝑙𝑒𝑡) calculated by the following correlation:

𝑑𝑏, 𝑖𝑛𝑙𝑒𝑡 = 7, 35
๙
We−1,7Re0,1Fr1,8

ว
𝑑𝑝
𝑑𝑠 ศ

1,7

๚

1/5

, (5.13)

where the dimensionless numbers of Froude (Fr), Weber (We), Reynolds (Re) are defined
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as follows:

Fr =
𝑈𝑔𝑠
𝑑𝑠 𝑔 , (5.14)

We =
𝜌𝑐𝑈 2

𝑔𝑠𝑑𝑠
𝜎 , (5.15)

Re =
𝜌𝑐𝑈𝑔𝑠𝑑𝑠

𝜇𝑐
, (5.16)

and where 𝑈𝑔𝑠 is the gas superficial velocity based on sparger area, 𝑑𝑠 is the sparger diameter
and 𝑑𝑝 is the mean pore size. The values of the inlet moments were calculated by means
of Eq. (5.12) considering a mean oxygen concentration of 8.56mol/m3. The inlet values of
weights and nodes of the quadrature approximation of DQMOM were recovered through
the CQMOM algorithm Section 2.3.3. Thanks to this procedure the inlet volume fractions
for the two different bubble classes (𝛼1, 𝛼2), their characteristic sizes (𝐿1, 𝐿2) and their
compositions (𝜙b,1, 𝜙b,2) have been prescribed at the inlet surface of the sparger.

5.3.4 Results and discussion
Bubble size distribution with DQMOM

As previously mentioned, the results reported in this paragraph refer to comparison with
experimental data from the work of Laakkonen et al. (2006, 2007); the prediction of gas
distribution profiles, global hold-up and power consumption for this particular configuration
are out of the scope of this work. For a complete discussion of these topics, see Petitti
et al. (2009, 2010), where comparisons of power consumption and global hold-up show a
good agreement with experimental data for similar configuration and operating conditions
simulated here.

The results of a typical DQMOM simulation coupled with the CFD description are
shown in Fig. 5.20. As it has been already said before, only two nodes of the quadrature
approximation (i.e., 𝑁 = 2) have been considered for modeling the population of bubbles:
these nodes can be thought of as two different groups of bubbles with characteristic volume
fractions (𝛼1, 𝛼2), sizes (𝐿1, 𝐿2), composition (𝜙b,1, 𝜙b,2) and velocities (𝑈b,1, 𝑈b,2), which
exchange mass and momentumwith the continuous liquid phase and interact with each other
by means of coalescence and breakage. Through this approach it is possible to track the evo-
lution of the multidimensional NDF in every point of the computational domain.

An example of the comparison between experimental data and modeling predictions for
one operating condition is reported in Fig. 5.21, where the physical quantity compared, the
mean Sauter diameter 𝑑32, has been calculated from the PBM-CFD simulations as reported
in Eq. (3.111). As it is seen, weights and nodes calculated directly by resorting to DQMOM
properly predict the local value of the mean Sauter Diameter experimentally observed. In
general, this model shows a good approximation of the experimental trends under all the
operating conditions investigated (see Table 5.8). It is important to point out here that all
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Figure 5.20: Contour plots of gas volume fraction (first row), bubble size (m) (second row),
bubble velocity (m s−1) (third row) and bubble composition (mol) (fourth row) for the two nodes
of quadrature approximation, in the case of stirring rate of 155 rpm and gassing rate of 0.018
vvm.
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Figure 5.21: Contour plots of the local 𝑑32 (mm) and comparison between experimental (first
row) and predicted values (second row), in the indicated points. Operating condition: 250 rpm,
0.093 vvm. (a) Axial planes at 45∘between baffles. (b) Horizontal plane located at 70 mm below
the upper surface.

Table 5.8: Experimental and simulated mean Sauter diameter 𝑑32 (mm) in five different points
of the stirred tank.

Stirring rate (rpm) Gassing rate (vvm) R2 R4 R8 R9 R12
155 0.018 Exp. 2.37 2.48 2.29 1.65 3.31

Sim. 3.10 2.56 2.57 2.63 3.09

220 0.041 Exp. 2.56 3.34 2.57 1.76 3.81
Sim. 2.66 3.04 2.47 2.50 3.20

220 0.052 Exp. 2.74 2.93 2.17 2.01 3.18
Sim. 2.45 3.31 2.55 2.65 3.57

250 0.093 Exp. 2.96 3.24 2.44 2.25 3.33
Sim. 2.82 3.27 2.60 2.71 3.35

the parameters of the PBM-CFDmodel (especially in the coalescence and breakage kernels)
are mainly derived from theory and are not adjusted in this work to fit the experimental data.
Therefore the satisfactory agreement with experiments is a remarkable result.

A trend for the mean Sauter diameter (𝑑32) from experiments and simulations in dif-
ferent points of the vessel is clearly observable since 𝑑32 measured in R𝟏𝟐 is higher than
what measured in R𝟒 and R𝟖, whereas 𝑑32 measured in R𝟐 is generally bigger than in R𝟗.
Moreover, the mean Sauter diameter increases when increasing the gas flow rate. In fact, as
more bubbles are present in the system, they tend to coalesce more frequently. The values
of mean Sauter diameter measured in zone R𝟐 and R𝟖 are almost the same and differ only
at higher flow rates. In these latter cases, 𝑑32 measured in R𝟐 is higher than in R𝟖, and,
near the upper surface, around the shaft of the impeller and under the baffles, coalescence
plays an important role due to bubbles accumulation. The agreement is quite good also in
the horizontal plane located 70 mm below the upper surface (see Fig. 5.21): coalescence
prevails downwind of baffles (R𝟐-E) due to stationary vortices; breakage plays an important
role upwind of baffles instead (R𝟐-D).
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Figure 5.22: Comparison between the local BSD reconstructed from the moments (continuous
line) with the experimental one (white squares) in the different measurements points. BSDs are
expressed in terms of volume density 𝜒(𝐿).

As shown in Table 5.8, a better agreement is reached with the increase of the gas flow and
stirring rate. In fact, at 155 RPM all the predicted 𝑑32 are larger than the experimental ones
and also the spatial distribution trend into the system is not clearly detected. At 220 RPM, the
experimental data are recovered by the PBM-CFD simulation with good accuracy. For this
operating condition, the smallest bubbles remain at the proximity of the impeller, as well as
the largest ones are confined in the lower zone of the reactor, where a gas recirculation path
is present. At the maximum rotational speed considered, 250 RPM, a very good qualitative
agreement is recorded: when the gas flow rate is 0.052 vvm, a slight disagreement in plane
near the impeller (i.e., 𝑑32,R𝟗 > 𝑑32,R𝟐) is observed. However, with the increasing of the gas
flow rate up to 0.093 vvm, the observed experimental trend is restored, as confirmed by the
progressive enhancement of coalescence near the upper surface of the vessel.

The experimental BSDs and the modelled BSDs are compared in Fig. 5.22 for one oper-
ating condition. The reconstruction of the predicted BSD was carried out by resorting to the
tracked moments, assuming a log-normal distribution. The comparison of the local BSDs
was performed in terms of volume density function 𝜒(𝐿), defined as follows:

𝜒(𝐿) = 𝑛(𝐿)𝑘𝑉 𝐿3

∫∞
0 𝑛(𝐿)𝑘𝑉 𝐿3𝑑𝐿

(5.17)
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Figure 5.23: Contour plot of the local mass transfer coefficient 𝑘𝐿 𝑎 (s−1) calculated in the
PBM-CFD simulation with DQMOM (logarithmic scale). Operating condition: 250 rpm, 0.093
vvm.

As it is possible to see from the results obtained, the agreement with the experimental data
is acceptable, even if the number of nodes of the quadrature approximation is very small.

In Fig. 5.23, the contour plot of the local volumetric mass transfer coefficient for the
entire geometry, 𝑘𝐿𝑎, calculated by means of the local values of gas fractions and character-
istic bubble sizes, is reported. This value differs strongly from point to point into the reactor,
because of turbulence induced by the motion of the impeller. In fact, on the impeller plane,
bubbles are forced to break-up by high turbulence shear stresses, significantly increasing the
number of bubbles and significantly reducing their size. For this reason, in this zone both
the interfacial area per unit of volume, 𝑎, and the mass transfer coefficient, 𝑘𝐿, reach their
maximum values. On the contrary, the portion of volume in the bottom of the vessel not
interested by the gas recirculation shows a mass transfer coefficient that tends to zero.

As already remarked in this dissertation (see Sections 4.2 and 5.2), by using DQMOM
the moments of bubble distribution with global order greater than two might be not properly
conserved during simulations and, consequently some important quantities involved in mass
transfer rates calculation could be not correctly defined. For this reason, the same configu-
ration was studied also with CQMOM when the oxygen mass transfer problem is taken into
account.

Mass transfer test with CQMOM

In Fig. 5.24, Fig. 5.25 and Fig. 5.26, the contour plot of the local volumetric mass transfer
coefficient 𝑘𝐿𝑎, the local mass transfer coefficient 𝑘𝐿 and the specific volumetric area 𝑎 for
different operating conditions are reported respectively. As already said for Fig. 5.23 in the
case of DQMOM, these values change significantly from point to point into the domain,
due to turbulence fluctuations induced by the stirrer motion. In this case, it is possible to
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Figure 5.24: Contours of 𝑘𝐿𝑎 (1/s) for two different operating conditions investigated after 200
s. Left: 250 rpm and 0.052 vvm. Right: 155 rpm and 0.018 vvm.

Figure 5.25: Contours of 𝑘𝐿 (m/s) for two different operating conditions investigated after 200
s. Left: 250 rpm and 0.052 vvm. Right: 155 rpm and 0.018 vvm.
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Figure 5.26: Contours of the specific surface area of bubbles (1/m) for two different operating
conditions investigated after 200 s. Left: 250 rpm and 0.052 vvm. Right: 155 rpm and 0.018
vvm.

observe the relative importance of the different terms composing the local volumetric mass
transfer coefficient 𝑘𝐿𝑎 and the effect of higher gas flow rates and stirrer rotational speed:
local values of mass transfer coefficient 𝑘𝐿 are higher with the increasing of mechanical
agitation. The effects of higher gas flow rates and rotational speeds are more evident in
Fig. 5.26 for the specific volumetric area 𝑎, especially looking the order of magnitude of
the reported values. In fact, Fig. 5.24 shows how the impact of bubble size distribution is
important when compared to the mass transfer coefficient 𝑘𝐿; on the impeller plane, bubble
breakage is themost frequent processes due to higher turbulence shear stresses, and changing
the shape of bubble distribution towards smaller sizes. Above this zone, bubble coalescence
increases in importance but the significant number of bubbles present has its effect on the 𝑘𝐿𝑎
profile. Whereas, the bottom part of the vessel starts to be interested by the gas recirculation
only higher gas flow rates and the mass transfer coefficient here tends to zero.

The results of the comparison between the predicted mean Sauter diameter 𝑑32 with the
experimental data available are shown in Fig. 5.27. Also with CQMOM the experimental
trend of bubble diameters are qualitative well described: as previously said, smaller bubbles
prevail on the horizontal plane seen by the stirrer, whereas larger bubbles are observed in
the zones with higher gas hold-up near to the shaft. From the quantitative point of view,
it is important remark that 𝑑32 values are extracted from a snapshot of the system at 200 s;
for this reason the reported profile differ from the predictions obtained in a previous work
(Petitti et al., 2010) with QMOMwithout mass transfer, that result in a better agreement with
the experimental data.

The typical results ofmass transfer tests are reported in Fig. 5.28, where themeasurement
of oxygen absorption in the liquid phase are compared with the simulation results obtained.
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Figure 5.27: Comparison of the predicted 𝑑32 (mm) with the experimental data (in green), for
the case at 250 rpm and 0.093 vvm after 200 s. The value zero is plotted for the 𝑑32 where the
PBM is not solved.

As it is possible to observe from the figure, two different values of the coefficient appearing
in Lamont and Scott correlation (see Eq. (2.48)) were tested. The value of 1.13 proposed
by Kawase et al. (1987) results in the best agreement with the experimental data, although
the quality of the results deteriorates with increasing of gas flow rate and stirring speed.
This behavior could be explained with missing dependency in the mass transfer coefficient
correlation or, more probably, in a underestimation of the gas-liquid interfacial area probably
due to consider all bubbles with spherical shape factor.

Other typical results of mass transfer test are the contour plots of mean oxygen concen-
tration in gas phase and in liquid phase reported in Fig. 5.29. The concentration profile in
liquid phase shows another effect of mixing, that keeps a similar flat profile (changing only
on magnitude) during all the mass transfer simulation. In fact, as soon as the moles of oxy-
gen pass from the gas phase to the liquid, these are rapidly distribute within the reactor due
to the combined effect of viscosity molecular and turbulent viscosity. In gas phase, instead,
it is possible to see a deviation from the flat profile, as expected when the mass transfer
process occurs. From the figure it is possible to notice a very limited variation of oxygen
concentration from point to point into the reactor, justified by the fact that the solubility of
oxygen in water liquid is low and there are only few moles of oxygen passing into the liquid
phase; most of them comes out from the upper part of the reactor.

5.3.5 Conclusions
In this part of the work, the results obtained with a multidimensional PBM approach for the
simulation of an aerated stirred tank reactor were presented and discussed. Two different
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Figure 5.28: Comparison of the predicted temporal evolution of the dimensionless oxygen con-
centration in the liquid with the experimental data for the operating conditions investigated and
for different constant values of Lamont and Scott 𝑘𝐿 correlation.
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Figure 5.29: Contours of oxygen concentration (mol/m3) at 250 rpm and 0.052 vvm after 200 s.
Left: Concentration in the gas phase. Right: Concentration in the liquid phase.

QBMM were coupled to the commercial CFD code FLUENT to predict the evolution of
the gas-liquid system for a real stirred reactor, for which experimental data concerning local
BSD and mass transfer rate are available (Laakkonen et al., 2006). Results of DQMOM
predictions with two quadrature nodes showed that bubble size distribution and mean Sauter
diameter predictions are in qualitative and quantitative agreement with experiments, in spite
of the intrinsic non-conservative approach of the method.

As far as mass transfer was investigated to reproduce the experimental oxygen absorp-
tion curve in liquid phase, CQMOM was successfully employed. With this method, it is
possible to accurately track the evolution of the bubble distribution both in terms of size and
composition. The mean Sauter diameter profiles show also with this method a satisfactory
agreement with the experimental data available. Moreover, a fitting procedure relating to the
coefficient appearing in Lamont and Scott 𝑘𝐿 correlation was carried out, showing that the
value proposed by Kawase et al. (1987) gives a satisfactory agreement when the predicted
absorption curves are compared with the experiments, especially at lower stirring speeds
and gassing rates.
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Chapter 6

Conclusions

In this dissertation, various aspects related to the formulation and the solution of the Popu-
lation Balance Models (PBM) for the simulation of mass transfer in gas-liquid systems are
discussed. In Chapter 2 the derivation of the PBM for gas-liquid systems is reported; this
modeling framework is however general enough to be applied to any dispersed multiphase
system. Two different formulations are proposed: a monovariate PBM, in which the state
of the population of the dispersed gaseous phase (i.e. bubbles) is described by means of
one internal coordinate, namely bubble size, and a bivariate PBM, in which not only bub-
ble size, but also bubble composition is used to characterize the distribution. Moreover, an
overview of the common phenomenological models for bubble collision and mass transfer
is included; however only those representing an acceptable good trade off between accuracy
and ease of implementation are actually used in the simulations. Chapter 2 ends with the
description of a very promising class of approximate solution methods for PBM, namely the
Quadrature-based Moment Methods (QBMM), and with the application of QBMM to the
problem investigated in this thesis.

Chapter 3 introduces the governing equations for the fluid dynamics of a gas-liquid sys-
tem, obtained by starting from the local and instantaneous balance equations for each phase
and by applying the proper averaging technique, resulting in the popular multifluid model.
Appropriate submodels for the closure of the governing equations are here provided, with
particular attention to the modeling of interfacial forces and turbulence. Since all this is
necessary to describe and numerically calculate the motion of bubbles in a spatially inho-
mogeneous system through Finite-Volume schemes, some aspects related to the coupling
with the PBM approach are discussed.

In Chapter 4, the methodology presented in the previous chapters is applied to the de-
scription of simplified systems: first the predictions given by QBMM are compared with
Monte Carlo simulations of bubble coalescence, breakage, injection/extraction and mass
transfer for a zero-dimensional system. The results of this comparison (by using CQMOM
and DQMOM) show that a good accuracy is achieved by using a reduced number of quadra-
ture nodes (𝑁 ≤ 4) and therefore solving a very limited number of equations. However,
some issues related to mass transfer are detected: in this case it is shown that as at least three
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quadrature nodes are needed to properly calculate the bubble concentration of the chemi-
cal species on interest. Furthermore, mass transfer tests show that the bivariate formulation
helps to better describe the physics of the system. In fact, only considering both the distri-
butions versus bubble size and bubble composition the evolution of the system is properly
simulated. This aspect becomes of fundamental importance in the case of fast chemical
reactions, where a variance with respect to bubble composition may be generated and sus-
tained. In this particular case, CQMOM performs slightly better than DQMOM due to its
quadrature assumption, but further studies are needed to point out the actual usefulness of
this approach to chemical reactions.

When the advection in physical space is taken into account, even in a very simplified
mono-dimensional system, the original DQMOM formulation, written in terms of primitive
quantities, may suffer from the incapability of properly conserving important conservative
quantities of bubble population, as the moments of the distribution. These cases arise when,
for example, the turbulent transport of bubble momentum is negligible compared to advec-
tion and the dominant diffusion mechanism is numerical diffusion. In this cases a conser-
vative formulation, DQMOM-FC is tested and proven to be very efficient in preserving the
correct evolution in space and time of the moments of the bubble distribution. Results also
show that CQMOM is a very stable and efficient algorithm, in fact by transporting the mo-
ments, it automatically conserves the physical quantities of interest. The inversion algorithm
was found to be very stable and moments always invertible as long as first-order upwind was
used as spatial discretization scheme.

In Chapter 5 QBMM are coupled to different CFD codes to predict the evolution of the
dispersed gaseous phase for different realistic gas-liquid systems. As mass transfer is an
non-stationary process that takes place for long time periods, particular attention is paid to
the QBMM implementation in order to reduce the computational costs; this is, for example,
the reason why a reduced number of quadrature nodes is used. Results concerning averaged
quantities of the distribution show that even with only two quadrature nodes the PBM-CFD
simulations are in qualitative and quantitative agreement with experiments. However, the
issue related to mass transfer is still present and the obtained results confirm that a three
quadrature nodes should be used. Furthermore, the results collected in Chapter 5 show the
impact of the details of the numerical implementation of QBMM in CFD codes on stabil-
ity and on the final computational costs. The commercial CFD code used (i.e., FLUENT)
provides an environment to implement additional equations, that lacks flexibility, resulting
in a poor management of the computing resources available. In this sense, the use of open
source codes, here used to describe a monovariate bubble distribution, is found to be very
promising and certainly will be extended to multivariate cases in the future.

Among different QBMM, it was observed that the use of solution methods based on
conservative quantities (i.e., QMOM and CQMOM) is recommended, since for different
reasons DQMOM and DQMOM-FC are not suitable for simulate mass transfer in spatially
inhomogeneous systems. The former method fails because of the underestimation of the gas
volume fraction and the consequent wrong calculation of the means oxygen concentration in
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the gas phase; while the latter method may require a very short time step compared, making
the overall computational costs unacceptable.

Eventually the simulation of real gas-liquid systems (i.e., a stirred tank reactor and a
bubble column), for which experimental data concerning the local bubble size distribution
(BSD) and mass transfer are performed. The results show how the proposed methodology
is effective: in general very good agreement with the experimental data is observed for all
the operating conditions investigated, without a tedious tuning of model parameters.

In conclusion, in this dissertation the coupled QBMMand CFDmethodologies is proven
to be applied to the simulation of mass transfer in real gas-liquid systems. The future possi-
ble developments on this topic may be the inclusion of thermal effects and the presence of
chemical reactions.
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