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ABSTRACT

Consider an n–component coherent system having random lifetime TX , whereX = (X1, . . . , Xn)

is the vector of the non-independent components’ lifetimes. Stochastic comparisons of the resid-

ual life of TX at a fixed time t ≥ 0, conditioned on {TX > t} or on {Xi > t, ∀i = 1, . . . , n},
are investigated. Sufficient conditions on the vector X that imply this comparison in the usual

stochastic order are provided, together with sufficient conditions under which the lifetime TX

satisfies the NBU aging property.

Key words Aging notions; Coherent systems; Path sets; Positive dependence concepts, Stochas-

tic orders.
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1 Introduction

Coherent systems are often considered in reliability theory to describe the structure and the

performance of complex systems. Consider an item formed by a number n of components, i.e.,

an n-component system. Its structure function ϕ : {0, 1}n → {0, 1} is a function that maps

the state vector x̂ = (x̂1, . . . , x̂n) of its components (where x̂i = 1 if component i is working

and x̂i = 0 if it is failed) to the state ŷ ∈ {0, 1} of the system itself. The system is said

to be coherent whenever every component is relevant (i.e., it affects the working or failure of

the system) and the structure function is monotone in every component (i.e., replacing a failed

component by a working component cannot cause a working system to fail). For example, k-out-

of-n systems, and series and parallel systems in particular, are coherent systems. See Esary and

Marshall (1970) or Barlow and Proschan (1981) for a detailed introduction to coherent systems

and related properties and applications.

Several problems and results dealing with aging properties for lifetimes of coherent systems,

or with stochastic comparisons among coherent systems, have been considered in reliability

literature. In particular, the closure property of some aging notions with respect to construction

of coherent systems has been investigated, in most of the cases assuming independence among

the lifetimes of the system’s components (see, e.g, Barlow and Proschan, 1981, Samaniego, 1985,

Deshpande et al., 1986, Franco et al., 2001, Li and Chen, 2004).

Among others, a natural question dealing with coherent systems is on the comparison be-

tween the reliability of a used coherent system and the reliability of a systems with used com-

ponents. Precisely, denoted with X the vector of the component’s lifetimes and with TX the

lifetime of the system, one can consider stochastic comparisons between the residual lifetimes

[TX − t | TX > t] and [TX − t | Xi > t, ∀i = 1, . . . , n], for t ≥ 0. In fact, it is commonly assumed

that the former is smaller, in some stochastic sense, than the latter. The intuitive explanation of

this fact is that the reliability of a system with all components being in working state is higher

with respect to the case with some of them being in failure state, even if the system is not in

failure state. This assertion, which is actually true under assumption of independence among

components (see, e.g., Pellerey and Petakos, 2002, or Li and Lu, 2003), is not always verified for

non-independent components, as shown for example in Section 2.

This problem, and similar problems, have been recently investigated for example in Khaledi

and Shaked (2007), Navarro et al. (2008) or Samaniego et al. (2009) under the assumption of

independence among components’ lifetimes, or in Zhang (2010), under assumption of exchange-

ability of components’ lifetimes. The purpose of this paper is to generalize some of the results

appearing in the above mentioned references, in particular providing conditions on the vector

X such that

[TX − t | TX > t] ≤st [TX − t | Xi > t, ∀i = 1, · · · , n], (1.1)
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even under the case of components having non independent or exchangeable lifetimes, where

≤st denotes the usual stochastic order (whose definition is recalled below). These conditions

are described in Section 2. As a corollary of the main result, a few statements that describe

conditions on X such that the system’s lifetime TX satisfies some of the most well-know aging

properties are presented in Section 3.

For ease of reference, some notations are introduced, and the definitions of several stochastic

orders and dependence concepts which will be used in sequel are recalled.

Throughout this note, the terms increasing and decreasing stand for non-decreasing and

non-increasing, respectively. A function ϕ : Rn → R is said to be increasing when ϕ(x) ≤ ϕ(y)

for x ≤ y, which denotes xi ≤ yi for all i = 1, · · · , n. All random variables under investigation

are non-negative, and expectations are implicitly assumed to be finite once they appear. The

notation [X | A] stands for the random object whose distribution is the conditional distribution

of X given the event A. The dimension of a random vector is clear from the context and

unless otherwise stated it is assumed to be n. We will denote with I = {1, · · · , n} the set of

component’s indices, and with Ii = {1, · · · , i}, for i = 1, · · · , n, their subsets. For any nonempty

A ⊂ I, XA and xA denote the random vector of those Xi’s with i ∈ A and the corresponding

constant vector, respectively. Besides, for any s ≥ 0, notation s denotes the constant vector

(s, · · · , s) with the dimension conforming to its circumstance. Finally, the following notation is

adopted: x ∧ y = (x1 ∧ y1, · · · , x1 ∧ y1), x ∨ y = (x1 ∨ y1, · · · , x1 ∨ y1), and u ∧ v = min{u, v},
u ∨ v = max{u, v}.

Some well-known stochastic orders are recalled in the following definition. Further details,

properties and applications of these orders may be found in Shaked and Shanthikumar (2007).

Definition 1.1. Given two random vectors (or variables) X and Y , X is said to be smaller

than Y in the:

(i) likelihood ratio order (denoted byX ≤lr Y ) if their joint densities f and g satisfies f(x)g(y) ≤
f(x ∧ y)g(x ∨ y) for any x and y;

(ii) stochastic order (denoted by X ≤st Y ) if E[ϕ(X)] ≤ E[ϕ(Y )] for any increasing function ϕ

with finite expectations;

(iii) increasing convex order (denoted by X ≤icx Y ) if E[ϕ(X)] ≤ E[ϕ(Y )] for any increasing

and convex function ϕ with finite expectations;

(iv) increasing concave order (denoted by X ≤icv Y ) if E[ϕ(X)] ≤ E[ϕ(Y )] for any increasing

and concave function ϕ with finite expectation;

(v) upper orthant order (denoted by X ≤uo Y ) if E[
∏n

i=1 ϕi(Xi)] ≤ E[
∏n

i=1 ϕi(Yi)] for any set

of non–negative increasing functions ϕi, i = 1 . . . , n such that expectations exist.

Recall that, in the univariate case, X ≤st Y if, and only if, P(X > t) ≤ P(Y > t) for all
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t ∈ R. The following two positive dependence notions also are well-known (see, e.g., Joe, 1997,

or Shaked and Shanthikumar, 2007).

Definition 1.2. A random vector X is said to be multivariate total positive of order 2 (MTP2)

if its joint density f satisfies f(x)f(y) ≤ f(x ∨ y)f(x ∧ y) for any x, y.

Definition 1.3. For a bivariate vector X = (X1, X2), X2 is said to be right tail increasing

(RTI) in X1 if [X2 | X1 > x1] is stochastically increasing in x1 (and similarly X1 is said to be

RTI in X2 if [X1 | X2 > x2] is stochastically increasing in x2).

It should be mentioned that MTP2 property implies RTI property in both directions, while

the reverse may not be true (see, e.g., Joe, 1997, or Müller and Scarsini, 2005, and references

therein).

Finally, we recall that for a coherent system having structure function ϕ the relationship

between the vector X of component’s lifetimes and system’s lifetime TX is described by the

relation TX = τ(X), where the coherent life function τ : Rn → R is defined as

τ(x1, . . . , xn) = sup{t ≥ 0 : ϕ(x̂1,t, . . . , x̂n,t) = 1},

where x̂i,t = 1 if xi > t, or x̂i,t = 0 if xi ≤ t, for i ∈ I. It should recall that coherent life functions

are increasing and such that

τ(t1 − s, . . . , tn − s) = τ(t1, . . . , tn)− s, (1.2)

for every s ≥ 0 and ti ≥ s, i ∈ I (see Esary and Marshall, 1970). Also, a subset J = {i1, . . . , iJ} ⊆
{1, . . . , n} of the components indices is said to be a path set if the system is working whenever

the components indexed in J are working.

2 Main results

First, we show that stochastic inequality (1.1) does not necessarily hold. In fact, let X =

(X1, X2) be such that

P((X1, X2) = (2, 1)) = 1/4

P((X1, X2) = (2, 2)) = 3/8

P((X1, X2) = (3, 1)) = 1/4

P((X1, X2) = (3, 2)) = 1/8

and let TX = max{X1, X2}. Letting t = 1.5 and s = 1 it holds that

P(TX − t > s|TX > t) =
P(max{X1, X2} > 2.5)

P(max{X1, X2} > 1.5)
= 3/8,
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while

P(TX − t > s|Xi > t, ∀i) = P(max{X1, X2} > 2.5, X1 > 1.5, X2 > 1.5)

P(X1 > 1.5, X2 > 1.5)
= 1/4,

so that (1.1) can not be satisfied.

The following statement provides the first sufficient condition under which the stochastic

comparison between [TX − t | TX > t] and [TX − t | Xi > t, ∀i = 1, . . . , n] does hold.

Theorem 2.1. Let X be a vector of component’s lifetimes such that, for any nonempty A ⊂ I

and s = (s, . . . , s) with s ≥ 0,

[XĀ − s | X > s] ≥st [XĀ − s | XA ≤ s,XĀ > s]. (2.1)

Then, (1.1) holds for any coherent system with lifetime TX = τ(X), i.e.,

[TX − s | TX > s] ≤st [TX − s | X > s], s ≥ 0.

Proof: Denote with J1, J2, . . . , Jℓ = I all possible path sets of the coherent system which has

lifetime TX . Then it holds that, for any s ≥ 0,

{TX > s} =

ℓ∪
i=1

{
XJi > s, XJ̄i

≤ s
}
.

For any s, t ≥ 0, let

ai = P(XJi > s, XJ̄i
≤ s), i = 1, · · · , ℓ,

bi = P(TX > s+ t, XJi > s, XJ̄i
≤ s), i = 1, · · · , ℓ.

We have

P(TX > s+ t | TX > s)

=
P (TX > s+ t, TX > s)

P(TX > s)

=

∑ℓ
i=1 P

(
TX > s+ t, XJi > s, XJ̄i

≤ s
)∑ℓ

i=1 P
(
XJi > s, XJ̄i

≤ s
)

=

∑ℓ
i=1 bi∑ℓ
i=1 ai

.

Now, for any path set Ji, denoted with ni its cardinality, consider the system corresponding

to the structure function ϕJi : {0, 1}ni → {0, 1} defined as ϕJi(x̂Ji) = ϕ(x̂Ji , 0J̄i), i.e., letting in

failed state all the components outside the path set. Let T i
XJi

= τi(XJi) denote the lifetime of

the subsystem whose structure function is ϕJi . Clearly, for any x̂ ∈ {0, 1}n we have ϕJi(x̂Ji) =
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ϕ(x̂Ji ,0J̄i) ≤ ϕ(x̂Ji , x̂J̄i
) = ϕ(x̂), so that {T i

XJi
> t} ⊆ {TX > t}. Moreover, since coherent life

functions are increasing, by (1.2) and (2.1) it holds that

bi
ai

= P(TX > s+ t | XJi > s, XJ̄i
≤ s)

= P(τ(X) > s+ t | XJi > s, XJ̄i
≤ s)

= P(τ(X − s) > t | XJi > s, XJ̄i
≤ s)

= P(τi(XJi − s) > t | XJi > s, XJ̄i
≤ s)

≤ P(τi(XJi − s) > t | XJℓ > s)

≤ P(τ(X − s) > t | XJℓ > s)

= P(τ(X) > s+ t | XJℓ > s)

= P(TX > s+ t | XJℓ > s)

=
bℓ
aℓ

, for any i = 1, · · · , ℓ.

Thus, biaℓ ≤ aibℓ for i = 1, · · · , ℓ. This invokes

aℓb1 + · · ·+ aℓbℓ ≤ a1bℓ + · · ·+ aℓbℓ

and hence ∑ℓ
i=1 bi∑ℓ
i=1 ai

≤ bℓ
aℓ

,

which is just

P(TX − s > t | TX > s) ≤ P(TX − s > t | X > s),

i.e., the assertion.

Theorem 2.1 has a very nice physical implication and describes conditions under which a

coherent system of used components is better than an used coherent system, in the sense of

having stochastically larger life length. This essentially claims that the positive dependence, or

the independence, among the components of the coherent system is a sufficient condition for

this property. Herewith, we address some other sufficient conditions for the assumption (2.1) to

hold.

Theorem 2.2. If the joint density of X = (X1, · · · , Xn) is MTP2, then (2.1) holds for any

nonempty A ⊆ I and s ≥ 0.

Proof: Recall that the MTP2 property of (X1, · · · , Xn) is equivalent to X ≤lr X. Taking A

and B as {XĀ > s,XA ≤ s} and {Xi > s, i = 1, · · · , n} respectively in Theorem 6.E.2 of

Shaked and Shanthikumar (2007), we immediately obtain

[X | X > s] ≥lr [X | XA ≤ s,XĀ > s].
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Now, by Theorem 6.E.4(b) of Shaked and Shanthikumar (2007) it follows that

[XĀ | X > s] ≥lr [XĀ | XA ≤ s,XĀ > s],

and, by Theorem 6.E.8 in the same reference, we have

[XĀ | X > s] ≥st [XĀ | XA ≤ s,XĀ > s],

for any s ≥ 0.

A long list of multivariate distributions are MTP2. For example, a large number of vectors

of lifetimes having an archimedean survival copula, or described by means of multivariate frailty

models, satisfy this property (see, on this aim, Bassan and Spizzichino, 2005, or Durante et al.,

2008, and references therein). Other examples may be found in Marshall and Olkin (1979) or

Joe (1997). However, there are also many cases where this property is not satisfied, like, for

example, when X does not admit a density. In this case, property (2.1) may be verified under

alternative conditions, described in the following two statements.

Before giving the next statements, observe that inequality (2.1) is verified by all joint dis-

tributions that satisfy the dynamic multivariate positive aging notions defined in Shaked and

Shanthikumar (1991) and references therein. Among them, the weaker one is the property in-

troduced in Norros (1985), called weakened by failures (WBF): a vector X is said to be WBF

if

[XĀ − s | XA = xA,XĀ > s] ≥st [XĀ − s | XA = xA, Xi = xi,XĀ−{i} > s]

for all A ⊆ I, i ∈ I, xA ≤ s and xi ≤ s. Clearly, the assumptions of Theorem 2.1 are satisfied

whenever X is WBF. The next result shows that inequality (2.1) is satisfied even under weaker

assumptions.

Theorem 2.3. If, for any B ⊂ Ā ⊆ I, any xB ≥ 0 and any yB̄ ≥ xB̄,

[XB − xB | XB > xB,XB̄ = yB̄] ≥uo [XB − xB | XB > xB,XB̄ = xB̄], (2.2)

then the inequality (2.1) holds.

Proof: Without loss of generality, let Ā = {1, · · · , k}, and fix s = (s, . . . , s), s ≥ 0. For

i = 2, · · · , k, set B = Ii−1 = {1, . . . , i − 1} in (2.2). Let us denote Īi = {i + 1, . . . , n} and

Īi−1 = {i, . . . , n}. Thus, for any yIi−1 ≥ xIi−1 ≥ s,

P(Xi > s+ t,XĪi
> s | XĪi−1

> s,XIi−1 = yIi−1)

≥ P(Xi > s+ t,XĪi
> s | XĪi−1

> s,XIi−1 = xIi−1),
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which implies

lim
∆→0+

P(Xi > s+ t,X > s, yIi−1 ≤ XIi−1 < yIi−1 +∆)

P(X > s, yIi−1 ≤ XIi−1 < yIi−1 +∆)

= lim
∆→0+

P(Xi > s+ t,XĪi
> s, yIi−1 ≤ XIi−1 < yIi−1 +∆)

P(Xi > s,XĪi
> s, yIi−1 ≤ XIi−1 < yIi−1 +∆)

≥ lim
∆→0+

P(Xi > s+ t,XĪi
> s, xIi−1 ≤ XIi−1 < xIi−1 +∆)

P(Xi > s,XĪi
> s, xIi−1 ≤ XIi−1 < xIi−1 +∆)

= lim
∆→0+

P(Xi > s+ t,X > s, xIi−1 ≤ XIi−1 < xIi−1 +∆)

P(X > s, xIi−1 ≤ XIi−1 < xIi−1 +∆)
.

This yields, for any i = 2, · · · , k and yB̄ ≥ xB̄ ≥ s,

P(Xi > s+ t | X > s,XIi−1 = yIi−1) ≥ P(Xi > s+ t | X > s,XIi−1 = xIi−1). (2.3)

Moreover, the inequality (2.2) implies, for yB̄ ≥ xB̄ and yB ≥ xB,

P(XB > yB | XB̄ = yB̄)

P(XB > xB | XB̄ = yB̄)
≥ P(XB > yB | XB̄ = xB̄)

P(XB > xB | XB̄ = xB̄)
.

Denote C the complimentary set of B with respect to Ā, i.e., B ∪C = Ā and B ∩C = ∅. Then,
B̄ = A ∪ C. Setting yC = xC , it follows that

P(XB > yB | XC = xC ,XA = tA) · P(XB > xB | XC = xC ,XA = vA)

≥ P(XB > xB | XC = xC ,XA = tA) · P(XB > yB | XC = xC ,XA = vA),

for every tA ≥ vA.

Fix any xA, and denote D1 = {vA : 0 ≤ vA ≤ xA}, D2 = {tA : tA ≥ xA}. By the previous

inequality we have ∫
D2

P(XB > yB | XC = xC ,XA = tA)dFXA|XC
(tA | xC)

·
∫
D1

P(XB > xB | XC = xC ,XA = vA)dFXA|XC
(vA | xC)

≥
∫
D2

P(XB > xB | XC = xC ,XA = tA)dFXA|XC
(tA | xC)

·
∫
D1

P(XB > yB | XC = xC ,XA = vA)dFXA|XC
(vA | xC),

and hence ∫
D2

P(XB > yB | XC = xC ,XA = tA)dFXA|XC
(tA | xC)∫

D2

P(XB > xB | XC = xC ,XA = tA)dFXA|XC
(tA | xC)

≥

∫
D1

P(XB > yB | XC = xC ,XA = vA)dFXA|XC
(vA | xC)∫

D1

P(XB > xB | XC = xC ,XA = vA)dFXA|XC
(vA | xC)

,
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i.e.,

P(XB > yB,XC = xC ,XA > xA)

P(XB > xB,XC = xC ,XA > xA)
≥ P(XB > yB,XC = xC ,XA ≤ xA)

P(XB > xB,XC = xC ,XA ≤ xA)
.

The last inequality is equivalent to

P(XB > yB | XC = xC ,XA > xA)

P(XB > xB | XC = xC ,XA > xA)
≥ P(XB > yB | XC = xC ,XA ≤ xA)

P(XB > xB | XC = xC ,XA ≤ xA)
, (2.4)

whenever yB ≥ xB.

Now, setting B = Ā, C = ∅, xB = s = (s, . . . , s) and yB = (s+ t, s, . . . , s) in (2.4) yields

P(X1 > t+ s | X > s)

=
P(X1 > t+ s,XA > s,XĀ > s)

P(XA > s,XĀ > s)

=
P(X1 > t+ s,XĀ > s | XA > s)

P(XĀ > s | XA > s)

≥ P(X1 > t+ s,XĀ > s | XA ≤ s)

P(XĀ > s | XA ≤ s)

= P(X1 > t+ s | XĀ > s,XA ≤ s), for any s, t ≥ 0.

That is,

[X1 − s | X > s] ≥st [X1 − s | XA ≤ s,XĀ > s], for any s ≥ 0. (2.5)

By (2.4) again, letting i = 2, · · · , k and C = Ii−1, it holds that, for s, t ≥ 0 and xIi−1 ≥ s,

P(Xi > t+ s | XIi−1 = xIi−1 ,X > s)

=
P(Xi > t+ s,XĀ > s | XIi−1 = xIi−1 ,XA > s)

P(XĀi−1
> s | XIi−1 = xIi−1 ,XA > s)

≥
P(Xi > t+ s,XĀ > s | XIi−1 = xIi−1 ,XA ≤ s)

P(XĀi−1
> s | XIi−1 = xIi−1 ,XA ≤ s)

= P(Xi > t+ s | XIi−1 = xIi−1 ,XA ≤ s,XĀ > s).

That is, for i = 2, · · · , k,

[Xi − s | XIi−1 = xIi−1 ,X > s] ≥st [Xi − s | XIi−1 = xIi−1 ,XA ≤ s,XĀ > s].

On the other hand, by (2.3), we have, for yIi−1 ≥ xIi−1 ≥ s,

[Xi − s | XIi−1 = yIi−1 ,X > s] ≥st [Xi − s | XIi−1 = xIi−1 ,X > s],

and thus,

[Xi − s | XIi−1 = yIi−1 ,X > s] ≥st [Xi − s | XIi−1 = xIi−1 ,XA ≤ s,XĀ > s]. (2.6)

Finally, by applying Theorem 6.B.3 of Shaked and Shanthikumar (2007) to (2.5) and (2.6), we

reach the desired result (2.1).

The following statement provides alternative conditions for (2.1) in the bivariate case.
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Theorem 2.4. If X2 is RTI in X1 and X1 is RTI in X2, then, for any s ≥ 0,

[X1 − s | X1 > s,X2 > s] ≥st [X1 − s | X1 > s,X2 ≤ s]

and

[X2 − s | X2 > s,X1 > s] ≥st [X2 − s | X2 > s,X1 ≤ s].

That is, the inequality (2.1) holds.

Proof: Let s, t ≥ 0 and denote

A = {X1 > s+ t,X2 > s} ,

B = {s+ t ≥ X1 > s,X2 > s} ,

C = {X1 > s+ t,X2 ≤ s} ,

D = {s+ t ≥ X1 > s,X2 ≤ s} .

Since X2 is RTI in X1, it holds that

P(A)

P(A ∪ C)
=

P(X1 > s+ t,X2 > s)

P(X1 > s+ t)
≥ P(X1 > s,X2 > s)

P(X1 > s)
=

P(A ∪B)

P(A ∪B ∪ C ∪D)
.

Note that A, B, C and D are mutually exclusive, the above inequality may be rephrased as

P(A)

P(A) + P(C)
≥ P(A) + P(B)

P(A) + P(C) + P(B) + P(D)
.

Equivalently,
P(A)

P(A) + P(C)
≥ P(B)

P(B) + P(D)
,

which implies

P(A) · P(D) ≥ P(B) · P(C),

and hence

P(A) · P(D) + P(A) · P(C) ≥ P(B) · P(C) + P(A) · P(C).

This is just
P(A)

P(A ∪B)
≥ P(C)

P(C ∪D)
.

Consequently, we have, for any s, t ≥ 0,

P(X1 > s+ t | X1 > s,X2 > s)

=
P(X1 > s+ t,X2 > s)

P(X1 > s,X2 > s)

=
P(A)

P(A ∪B)

≥ P(C)

P(C ∪D)

=
P(X1 > s+ t,X2 ≤ s)

P(X1 > s,X2 ≤ s)

= P(X1 > s+ t | X1 > s,X2 ≤ s).
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That is, [X1 − s | X1 > s,X2 > s] ≥st [X1 − s | X1 > s,X2 ≤ s].

In a completely similar manner, we also have, for any s ≥ 0

[X2 − s | X2 > s,X1 > s] ≥st [X2 − s | X2 > s,X1 ≤ s].

Thus, (2.1) is validated.

3 Sufficient conditions for positive aging

Conditions under which lifetimes of coherent systems satisfy aging properties have been studied

extensively in the literature (see, e.g., Barlow and Proschan, 1981, or Lai and Xie, 2006), in

most of the cases under the assumption of independence among component’s lifetimes. Some

interesting results dealing with the case of dependent components have been recently shown

for example in Hu and Li (2007) and Navarro and Shaked (2010), where conditions on the

joint density of the vector of component’s lifetimes such that parallel and series systems have

monotonic hazard and reverse hazard rates are described. Some results in the same spirit, but

for more general coherent systems and weaker aging notions, are provided in this section.

Denote with Xt = (X − t | X > t) the residual life of a random lifetime X at time t ≥ 0.

The following are among the most important univariate aging concepts

Definition 3.1. A nonnegative random variable X is said to be

(i) new better than used (NBU) if X ≥st Xt for all t ≥ 0;

(ii) new better than used in the 2nd stochastic dominance (NBU(2)) if X ≥icv Xt for all t ≥ 0;

(iii) new better than used in the increasing convex order (NBUC) if X ≥icx Xt for all t ≥ 0.

The aging notions defined above can be generalized to the multivariate setting as follows.

Denote with

Xt = [(X1 − t, · · · , Xn − t) | X1 > t, · · · , Xn > t]

the residual life vector of X at time t ≥ 0.

Definition 3.2. A nonnegative random vector X is said to be

(i) multivariate new better than used (M-NBU) if X ≥st Xt for all t ≥ 0;

(ii) multivariate new better than used in the 2nd stochastic dominance (M-NBU(2)) if X ≥icv Xt

for all t ≥ 0;

(iii) multivariate new better than used in the increasing convex order (M-NBUC) if X ≥icx Xt

for all t ≥ 0.
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Readers may refer to Pellerey (2008) or Li and Pellerey (2011) for examples of bivariate

distributions with the M-NBU property.

According to Theorem 5.1 of Barlow and Proschan (1981), a coherent system may inherit

the NBU property of its independent components. Theorem 3.1 below builds this preservation

property for coherent systems of dependent components. Note that the assumption in (2.1)

holds when all concerned components are mutually independent, thus Theorem 3.1 forms an

interesting extension for Theorem 5.1 of Barlow and Proschan (1981).

Theorem 3.1. Under the assumption of (2.1), any coherent system is NBU whenever the

components’ lifetimes vector X is M-NBU.

Proof: By Theorem 2.1 and inequality (1.2), we have

[TX − s | TX > s] ≤st [TX − s | X > s]
st
= TXs , for any s ≥ 0.

The M-NBU property of X implies Xs ≤st X for any s ≥ 0. Due to the monotonicity of the

coherent life functions, we have

TXs ≤st TX , for any s ≥ 0.

Thus, it holds that

[TX − s | TX > s] ≤st TX , for any s ≥ 0.

This completes the proof.

Example 3.1. Consider a random vector X having the joint survival function

F̄ (x1, · · · , xn) =
(
ebx1 + ebx2 + · · ·+ ebxn

n

)−θ

, θ, b > 0.

One may easily verify that the series system of these components has the reliability function

e−bθx of an exponential distribution and thus is NBU. In fact, it can be verified that X has

MTP2 density and satisfies the M-NBU property (Pellerey, 2008). According to Theorem 3.1,

any coherent system with its components having lifetimes X is also NBU.

Example 3.2. Consider the random vector X having a Marshall-Olkin bivariate exponential

distribution, i.e., having joint survival function

F (x1, x2) = P(X1 > x1, X2 > x2) = exp
{
− λ1x1 − λ2x2 − λ3(x1 ∨ x2)

}
,

with x1, x2 ≥ 0 and λi ≥ 0, i = 1, 2, 3. As show in Corollary 4.2 in Li and Pellerey (2011),

such a vector X satisfies the M-NBU property. Moreover, even if it does not satisfy the MTP2

property because of the singularity due to P(X1 = X2) > 0, it satisfies the RTI propery, as can

be easily verified. Thus, according to Theorem 3.1 and Theorem 2.4, the lifetime TX of any

coherent system whose components’ lifetimes are described by X is NBU.
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In a similar fashion, we may build the following result, which serves as a generalization of

Theorem 1 in Pellerey and Petakos (2002).

Theorem 3.2. Under the assumption (2.1), any coherent system with convex [concave] coherent

life function has a lifetime TX which is NBUC [NBU(2)] whenever the components vector X is

M-NBUC [M-NBU(2)].

As an immediate consequence, we get Corollary 3.1 below, which generalizes the preservation

properties of NBUC and NBU(2) aging notions under parallel (series) systems with independent

components due to Li et al (2000) and Li and Kochar (2001).

Corollary 3.1. Under the assumption (2.1), the lifetime of a parallel [series] system is NBUC

[NBU(2)] whenever the vector of components’ lifetimes X is M-NBUC [(M-NBU(2)].
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