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On the interaction between TCP-like sources and
throughput-efficient scheduling policies

Paolo Giaccone, Emilio Leonardi, Fabio Neri
Dipartimento di Elettronica, Politecnico di Torino (Italy

Abstract

We focus on the dynamic interaction in packet networks betwesgulated
Additive-Increase Multiplicative-Decrease (AIMD) traffsources anthax-scalar

scheduling policies (such as the popular Maximum Weightdkliag — MWM) at

switches. The latter were proved to be optimal in terms afubhput for stationary
unregulated traffic sources.

We describe the average dynamics of both traffic sources witchsqueues
through a system of Delay Differential Equations (DDESs),0adn properties are
throughly analyzed. Our study allows to gain importantgh$s both on the system
efficiency and on the long-term bandwidth share among cdimmsc

Our main finding is that AIMD sources amdax-scalarswitches co-exist well.

Keywords: Packet networks, optimal throughput scheduling, TCP/AIMD
sources, input queued switches, wireless systems.

1. Introduction

In recent years a significant effort has been devoted by thveonking research
community to the definition of efficient scheduling polictbat maximize the sys-
tem throughput in several application contexts, such aslegs, satellite networks
and high-capacity switching architectures [1, 4, 20, 23,287 32, 36]. This prob-
lem dates back to the early ‘90, when Tassiulas and Ephremiideheir seminal
work [34], have first shown that the maximization of throughjm anetwork of in-
teracting queuesgalso calledconstrained queueing systentan be achieved with
a dynamic scheduling policy according to which the selectibpacket transmis-
sions, at servers, is driven by the instantaneous queues sta

It is worth noticing that the scheduling policy proposed 3] i.e., the so-
called max-scalar policy and its later extensions [1, 20, 23, 27, 28, 36] (such
as the popular Maximum Weight Matching — MWM), do not requargy a pri-
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ori knowledge of the long-term traffic behavior, thereby esming amenable for
implementation in contexts in which traffic is highly dynanaind unpredictable.

Optimality of themax-scalarpolicy and its extensions has been proved, how-
ever, only under assumptions of stationarity and admiggikor the traffic flowing
through the system of queues. It is not clear how optimalcpesi behave in the
case of either non stationary, or rate-adaptive traffic gesjrwhich may induce
temporary overloads of some system architectural elemditts suspect that the
max-scalarscheduling policy and its extensions may be strongly uirigtine latter
case has probably refrained a massive deployment of suaigsoin commercial
systems.

Only recently the attention has been turned to the analysiseointeraction
between optimal dynamic policies and regulated traffic cegir Results in this
field can have a great practical significance in consideratiothe fact that the
majority of Internet traffic sources adopt the Transmis€amtrol Protocol (TCP)
and dynamically adapt their sending rate to the estimasdticttcongestion level
according to an Additive-Increase Multiplicative-DesegAIMD) scheme.

In [11, 29] the behavior of max-scalar policies under retaglasources has
been analyzed. However, the rate adaptation algorithmsiadered in [11, 29]
significantly differ from the AIMD source behavior, sincesthrequire the sources
to gather detailed and updated information about the n&tatattus.

We consider the dynamical behavior of max-scalar policieslen rate-
controlled sources executing an idealized TCP-like athorj driven only by losses
and delay information as observed by the sources. The averatamics of both
sources and queues are described through a fluid moded, system of Delay Dif-
ferential Equations (DDESs), whose qualitative properties throughly analyzed.
Our study allows to gain important insights both on the sysédficiency and on
the long-term bandwidth sharing among traffic flows.

Our findings are rather surprising and intriguing; the awopbf max-scalar
scheduling policies along with carefully designed ActiveigQe Management
(AQM) schemes permits to efficiently exploit the bandwidfrcomplex systems
such as either Input Queued (IQ) switches or wireless ceifithiout negatively
affecting the fairness of TCP flows.

Recently [33] and [37] showed that possible extreme unéaisrand rate oscil-
lations may occur at routers implementingnax-scalarscheduling policy when
the traffic is originated by TCP sources. However we empkasiat, differently
from our work, both [33] and [37] assume a classical dropgacket discarding
policy at the queues. We believe that conjugatingx-scalarscheduling policy
with a properly designed AQM packet dropping scheme is reegggo achieve a
good degree of fairness.



2. Systems of interacting queues

We consider a system @} discrete time, interacting queues. This provides an
abstract model for several different communication sdesasuch as the system
of transmission queues either at a wireless access poirgaiebite, or the Virtual
Output Queueing (VOQ) system in an 1Q switch.

In discrete time, the queue evolution is described by:

zq(n + 1) = [xq(n) + aq(n) - Mq(n)]+ 1<q¢<Q,

wherez,(n) represents the queue lengthy(n) represents the number of arrivals
at the queuey,(n) represents the amount of service received by quedering
time (n,n + 1] and[z]* denotesmax{0,z}. These quantities can be expressed
either in packets or in bytes. The set of achievable quewicsenates is subject to

a set of physical constraints, such as those expressingr eiipacity limits or the
effects of possible interference between signals.

We formalize the previous concepts saying that the vectoseofice rates
pu(n) = (m(n)--- pg(n)) belongs to a convex set of achievable rafgsi.e.,
u(n) € Swith S C Rf, for everyn.

We consider three possible application scenarios:

e Work-conserving server: in this first simple case, the bandwidthof a
work-conserving server is dynamically shared am@nhgueues. The sum of
service rates allocated to queues is bounded by the trasismisapacityj
of the serversS = {p: pg > 0and - pg < i}

We emphasize that this simple toy case has limited reakstgbut its analy-
sis can provide important insights on the behavior of moregex systems.
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Figure 1: AP x P IQ switch architecture with VOQ



Figure 2: A wireless station

e 1Q switch: Fig. 1 describes & x P input queued switching architecture
which represents the forwarding engine of a modern higfepmance In-
ternet router. An IQ switching architecture is a common faming en-
gine of modern high-performance Internet routers. IR & P 1Q switch,
each interface maintainB separate queues (called Virtual Output Queues -
VOQ), one per output portlf = P?). The switching fabric operates in a
synchronous fashion. At time slat a setr(n) of non contending packets,
calledmatching is selected for transfer through the switching fabric. dhat
ings can comprise no more that one packet per input port amdane than
one packet per output port. Denoting wit)(i) (1 < i < P) the set of
VOQs at inputi, and withOQ(j) (1 < 7 < P) the set of queues directed
to outputj, in order to be feasible (i.e. a matching), the service vegcto)
must satisfy the following capacity constraints:

Nq(n) € {0’ 1} Vq
qulQ(i) pq(n) <1
<

1< P
>_qe0q() Ha(n) <1 Jj<P

I/\ I/\

Finally, we denote witls the convex hull generated by the feasible service
vectors, i.e.S = {1 : pg = 0,2 crom Ha < 1, 2 ge0qi) Ha < 1}

Wireless scenario:it may represent a multi-beam satellite which transmits
data to@ different ground locations (as depicted in Fig. 2) or a trial
wireless station, such as a hode of a large-bandwidth WiMAslmetwork.
Packets destined for each location are stored in separateeguln this case
the transmission rate vectpfn) depends on the coding scheme and on the
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power used for transmitting the signals. Using an accesansetwhich or-
thogonalizes transmitted signals, we can assume thataheniission rate
g depends only on the powét, used for transmitting information from
as in [28]. We further assume, (F,) to be a regular concave function. In
addition, we assume that the total transmission pd#gris bounded.

Hence, the set of possible transmission rates defined as the convex
region defined by all the vectoys = (ui(P1), ..., png(Py), -, no(Pg))
wherezq P, < Py

The geometry of regios depends on the specification of functigng F,),
which in turn depend on the physical layer specification .[28]this paper,
just as matter of example, we assui¢o be a circular region, defined by
the following constraints:

fq(n) =0 L
D Hg(n) < p
wherefi is a positive constant. Note that this shape is an approiomaft the

achievable rate region in a multiple access channel MIM®@esy<cf. Fig. 8
in [13]) or in a fading environment (cf. Fig. 2.5 in [25]).

(1)

2.1. Max-Scalar policy definition

Under unregulated traffic sources, the problem of definiegitimal dynamic
scheduling policy and the associated throughput regionompdex systems of
infinite-size interacting queues has attracted signifiegention in the last decade
from the research community since the pioneering work [B4]assumingz,(n)
to form a sequence of i.i.d. random variables, and apphhied_yapunov function
methodology, it has been shown that a system of interactiegi€s achieves max-
imum throughput if the max-scalar scheduling polid9,,s is applied. According
to Py, at each time slot, the service vector is selected as follows:

Q
pu(n) = argmax > ag(n) @)
q=1

The result in [34] has been generalized and adapted to eliffeapplication
contexts in recent years. As matter of example, we just rieftall some of the

A scheduling policy achieves maximum throughput if the eysbf queues is stable under any
i.i.d. sequencey(n) such that(E[a1(n)], Elaz(n)],--- Elag(n)]) € S, i.e. the average arrival
rates are within the set of admissible service rates.



related works. In the packet switching context, severalistiaimed at the defini-
tion of the stability region in IQ switching architecturesilbaround a buffer-less
crossbar have appeared: papers [1, 20, 23, 32, 36] havesmlifferent exten-
sions of Py, g, which have been shown to achieve the maximum throughpa; st
bility properties for simpler scheduling policies have be¢so studied in [10, 36];

in [2, 4, 20], finally, the problem of the definition of the silitlh region in net-
works of 1Q switches has been considered. In the contextteflisa and wireless
networks, generalizations @&,,;5 have been proposed and shown to achieve the
maximum throughput in [21, 27, 28, 35]. Finally, [9] has gettieed the result
in [34] under more general exogenous arrival processeyiagm different analyt-
ical technique called fluid models. All previous works, heee have considered
unregulated stationary traffic sources.

2.2. Pus in three application scenarios
It is not difficult to particularize the policP,,s for the previous three scenar-
ios:

e Work-conserving server. Py;s selects simply the queue with the largest
gueue size i.e., this policy is usually referred as Longastu@ First (LQF)
scheduling.

e 1Q switch: Pyg selects the matching(n) to maximize}_ ..,y Zq(n),
thus degenerates in the popular maximum weight matching.

e Wireless scenario Assumings to be defined according to (s selects
the maximum service vectqi(n) € S parallel to the queue size vector
X(n):

_ mq(n) =

where || X (n)||2 is the square norm of vectaK (n), i.e., | X(n)|ls =

\/ 22 %a(n)?:

2.3. Pus under regulated sources: previous work

Only recently the attention has been turned to the analydiseointeractions
between optimal dynamical policies and adaptive trafficcest Papers [11, 29]
have shown thaP,;s behaves well in presence of regulated sources, and guaran-
tees an acceptable degree of fairness to flows also in casenpbtary overload.

*Note that, according t®.rs, u(n) = arg max,es 25:1 ~v4%q(n) can always be selected to
be an integer-valued vector; this is a consequence of theathilarity of regionS.



Switch A

Figure 3: The system under study

However, these papers have focused on congestion contciamisms signifi-
cantly different from TCP, which require that traffic sowcgrictly interact with
the network and gather detailed and up-dated informationtaihe queues status.

Let p,(n) be the aggregate arrival rate at quguequal to the overall sending
rate at the corresponding sources. In [11] sources werenassto adjusp,(n) on
the basis of the instantaneous queue size):

o K
Lq (n) + Yq

wherecq,, K and-, are suitable positive constants. Similarly, in [29] theerat
sources must be dynamically adapted on the basis of ins&mia queues lengths.
According to one of the proposals in [29]:

pe(n) =

e = min {52 1] )

whereV is a control parameter ang,,.. is the maximum allowed source sending
rate.
In both cases above, sources must be made aware of queuatszaghes.

3. Our system

We consider a TCP/IP infrastructure comprising a set ofshisgerconnected
through a network of switches/routers as depicted in Fid¢n particular we focus
on the network element identified in the figure as “switch Aliteh A represents
either an 1Q switch or a wireless station implementing thesalar scheduling
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policy, and acts as bottleneck for traffic flows traversin@.&., queuing and losses
processes at switches/routers different from A, depictedrales in Fig. 3, intro-
duce negligible effects on TCP dynamics).

3.1. The system model

Aim of our work is to study the behavior of AIMD-based congmstcontrol
mechanisms in networks of interacting queues.

In our analysis, each queyss fed with traffic originated in a set df/, TCP
sources. To study the interactions between sources an@ésjusa adopt a contin-
uous time fluid approach [26] in which the average dynamidsobih sources and
gueues are described by deterministic delay differentjaagons.

We assume that all th&/, TCP sources feeding queye&xperience a constant
round trip timer, (see Fig. 3). The fluid evolution of the average window size
wq(t) is driven by the classical, well-known AIMD fluid equationg]]2 derived by
the saw tooth behavior of the window:

dwg(t) 1 wy(t)

dt :E_ 9 ¢q(t) 4)

whereg,(t) represents the rate of congestion indications experieatthet by
sources. The first term on the right-hand side representgiiigve increase mech-
anism, while the second term represents the multiplicate@ease contribution.
We denote withV (t) = (w1 (t), wa(t), - - - wo(t)) the vector whose elements
represent the average transmitter window sizes (model@B €ongestion win-
dows) at timef for sources feeding queye
The fluid evolution of queue lengths (¢) is driven by the following equations:

—di‘;ft) [%wq(t —Tg) + Aq(t)} (1 —dg(t)) — pg(t) ifzy(t) >0 (5)

dx;ft) = max {0, [%wq(t = 7)) (1= dy(t) = g () } 1 2g(t) = 0
(6)

The first term on the right of (5) represents the aggregaiteahrate at queue
q; 74 is the average propagation delay between sources and quéugo,/r, is
the overall average sending rate of thg sources;\,(t) is the aggregate arrival
rate of unregulated traffiel,(¢) is the dropping probability at buffer, 1,(¢) is the
service rate of queugat timet. We denote withX (t) = (x1(t), z2(t), - - - zo(t))
the vector whose elements represent queues lengths at.tiruethermore, in the
following denote withk, the ratioA/, /r,.




We suppose that each quegémplements a RED/ECN [12] AQM scheme,
according to which packets are in general either droppedarked. Both drop-
ping probability d,(¢) and marking probabilitiesn,(t) are driven by the buffer
level. In particular, AQM schemes usually maintain a movawgragez, of the
instantaneous queue sizg, updated whenever a packet arrives according to the
rule:

Zg < (1 — 2)&q + 224

The instantaneous mark/drop probability is computed asetiton of 2, ac-
cording to some relatiotl, (t) = fa(Z4(t)) andmgy(t) = fm(Z4(t)) (for example,
mq(t) = 0 in the case of a pure dropping policy). For fluid modeling, veeda
characterization of the temporal evolution of the movingragez,(¢) as a con-
tinuous function of time. This was originally done in [26]here the authors have
shown that the evolution is represented by the differeetiplation:

dig(t) log(l—z) . log(1 — 2)

if z < landz,(t) = x4(t) if 2 =
e, d(t)~! = kqwg(t — = Tg) + Ag(t)-
We denote withX () = (Z1(t), Z2(¢),...,2¢g(t)) the vector whose elements
represent the moving average of the instantaneous quetie siz
The rate of congestion indications,(t) experienced by sources at timeas
given by:

1; 6(t) is the average packet inter-arrival time,

Pq(t) = %qrq) [f(@q(t =71+ 7)) (8)
wherew, (t — rq)/r, is the packet sending rate of sources at time, and f(y) =
fa(y) + fm(y) is the sum of packet marking and dropping probabilities fafey
size equal tay.

Finally, according to the definition @?,,s, queue service rates are determined
in the fluid model as the solutions of:

Q
p(t) = arg max > () ©)
q=1

wherep(t) = (u1(t), pa(t),-- - no(t)) is the fluid service vector andl is the set
of feasible service vectors.

Finally, absolutely continuous functional vectox (¢), X (¢), W (t)) satisfying
(4), (5), (7) and (9) represents a solution of the above dynagsten?

3Note thaty(t), is, by construction, continuous at every regular point§X6ft), X (¢), W (t)).
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3.2. A critical discussion of the assumptions

In this sub-section, we critically discuss the assumptarbsapproximations of
our model. First of all, we adopt a fluid approach to model lsattrces and queues
dynamics. Indeed, several recent works [3, 7, 15, 16, 263 leiarly shown that
the fluid approach is a viable alternative to detailed patsatl simulations for
the analysis of large-bandwidth IP networks (i.e., suppgra large number of
TCP flows). Moreover, fluid models were proved to be effectirehe parameter
design of AQM/ECN schemes in TCP/IP networks [18].

Fluid model equations can be formally derived from the jummcpss describ-
ing packet level dynamics throudhuid scalinglimits [6, 7, 9, 10]. This process
permits to tightly relate the qualitative properties of dlumodels to those of the
original system [6, 9, 10, 31]. In particular, [9, 10] haveosim that the through-
put performance of routers implementing max-scalar sdivegyolicies can be
derived from the analysis of the qualitative properties atifinodel solutions.

In this paper we skip a formal derivation of the fluid equasiothat can fol-
low exactly the same approach of [6, 7, 9, 10]. in Appendix Anepgort a brief
overview on how to derive the fluid equations. We concentratdanvestigation on
the analysis of the fluid model properties.

Since our goal is to analytically study the interaction betw TCP sources and
max-scalar scheduling at nodes, enlightening structugasties of the system
as a whole, we have tried to simplify as much as possible tkeri¢ion of ev-
ery architectural element. This is the reason why we haveefaddust the basic
AIMD mechanism of TCP, ignoring slow-start, time-outs,.ai¢e notice, however,
that this basic description of idealized AIMD sources isallguable to capture the
dominant dynamics of the system, providing fairly accurasults in several sce-
narios [7, 15].

We restrict our analysis to long-lived connections, ndijgcshort-lived con-
nections. This is essentially due to the fact that shoediflows can be assimilated
in the fluid model to unregulated flows (tetkg(¢) in (5)) as shown in [8, 17], since
the effect of AIMD congestion control feedback is not effeedue to their limited
durations.

We have neglected the effects of variable queuing delaylseround-trip time.
This assumption does not affect the system equilibriumtpalerived in our main
Theorem 1 in Sec. 4.1. Itis, however, needed to simplify thbikty analysis of
equilibrium points. In Sec. 6 we validate the whole anabjtimodel by comparing
it with an accurate simulation model of a TCP/IP networkf ta&es into accounts

Thus even if (9) may potentially admit an infinite number digions, only one can grant continuity

of (t) at regular points of X (¢), X (), W(t))
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all the delay effects.

In (4) and (8) we have implicitly assumed that all thg TCP sources feeding
gueueq experience the same propagation delay. This assumptiobecaglaxed
to the case in which sources feeding queumeay experience different propagation
delays, but the dispersion in their values is not too largethis case-, andr,
appearing in (4) and (8) can be reinterpreted in terms theigeevalues. The model
can be generalized when several classes of TCP source witfficant different
propagation delay coexist among th&, sources feeding queuge In this case an
equation for each class of sources [15] has to be written.ddewnin this paper we
do not address this extension.

At last, note that in fluid models the packet by packet desoripof the system
dynamics is completely neglected. The dynamics capturetidfiuid model are
those operating on the same timescales of the TCP contrdhanesn (around
tens/hundreds milliseconds). This means that essenfiligpresents the average
rates obtained by different flows according to the max-sgatdicy over time-
periods whose duration is comparable with the time-scatheofT CP dynamics.

4. Qualitative study of the model solutions

Now, we characterize the qualitative properties of the rhedlitions of the
above system of differential equations.

First, we investigate on the existence of equilibrium p®(ink., stationary solu-
tions) under the assumption of stationary traffic condgjare. \,(t) = A, Vg. We
show that under mild assumptions a unique equilibrium palwways exists. Then
we turn our attention to the problem of the equilibrium pattractiveness (sta-
bility). We conjecture that, by carefully designing the AQdheme equilibrium,
global attractiveness can be obtained. In simple cases avalde to analytically
prove the local attractiveness to the equilibrium pointilevim more complex cases
we report numerical results in support of our thesis. Unifuately, the problem of
establishing global attractiveness is very difficult, aad bnly received partial an-
swers for the simple case of TCP flows feeding a FIFO queue [18]

We emphasize that a unique, globally attractive, equiliforipoint unequivo-
cally determines the long-term behavior (i.e., forr oo) of system dynamics. As
a consequence, by looking at the equilibrium point, we gaipdrtant insights on
the system efficiency and long-term bandwidth share amongestions, as shown
in the next section.

4.1. System equilibrium point

The following statement fully characterizes the equilibomi points of our dy-
namical system.

11



Theorem 1. Consider a network with the following assumptions: (i) foes/ g
the arrival unregulated traffic rate is stationary, i.e,(t) = A,; (i) S is a convex
compact set in ﬁ with non null interior; (iii) f,,(y) and f;(y) are non decreasing
continuous and differentiable functions; (iv) for someté,, f4(B,) = 1; (V)
fly) = fm(y) + fa(y) is strictly increasing fol0 < y < By, with f(0) = 0. In
this case the system of differential equations (4), (5)a(® (9) admits a unigue
stationary solution X*, X*, W*) satisfying the following conditions:

u* =argmax G(u) (20)
HES
T, =1, (11)
zy =1 (hq(k)) (12)
2
wh = —— 13
"\ ) )

where

G) =3 [ hyayda

andh,(«) is the only positive solution of the equation:

kq\/i + g (1 — fd(x:;)) =«
f(xy)

The proof is given in Appendix B.

4.2. Stability analysis of the equilibrium point

Our conjecture is that, under reasonable traffic conditidhs equilibrium
point can be made attractive by carefully designifydx), f,.(z) andz.

Even if we are unable to provide a general formal proof of daint, we report
a wide range of partially numerical and analytical resuitsupport of our thesis.

We start analyzing the simplified case in which delays to agape packets
from the sources to the queue in (5) are neglected along wityd to propagate
congestion signals in (8). In this way the dynamical systescdbed by (4), (5),
(7) and (8) becomes a more treatable pure ordinary diffilesystem (with no
delays). Furthermore we assume- 1; henceg,(t) = x,(t) and system solutions
are unequivocally determined by the vec{of(¢), W (¢)) describing queues and
windows dynamics. Under these assumptions we are ablenmaflyr prove local
stability of the equilibrium point in the three previouslgrsidered scenarios.

12



4.2.1. Work-conserving server

The local asymptotic stability of the equilibrium point cha proved, in this
case, by using the Lyapunov function technique.

Suppose that the system igat 0 in an initial statg{ X (0), W (0)) sufficiently
close to the equilibrium pointX™*, W*). We denote wit X (¢), W (t)) the trajec-
tory of the system and consider the following functionalgpynov function):

L(X(t), W(t)) = max(zq — 23)? + B ) My(wg — wy)?

which represents a sort of “distance” between the curraie sind the equilibrium
point. Note that by definition: i)C(X (t), W (t)) > 0;ii) L(X(t),W(t)) = 0, if
and only if (X (¢), W (1)) = (X*,W*). Since?“X0W 1) o for almost every
t > 0 (as discussed in Appendix C), we can conclude that the ‘fuistabetween
the current system state and the equilibrium point is redpuerith time (i.e., the
trajectory gets closer and closer to the equilibrium point)

Beyond local stability, for different parameters settingtarting from 100 ran-
domly chosen initial conditions, in all cases we have nuoadl§i observed the
convergence toward the equilibrium point of the solutiofghe simplified (no
delays) dynamical system of equations.

4.2.2. 1Q switch

In case of the 1Q switch, a formal proof can be done only in {hec&l case
of a2 x 2 1Q switch by repeating arguments similar to the previous @asl using
the following Lyapunov function:

LIX (1), W(8) = max(U(r) = U")? + B3 My(wy — w))* +7 > (wq — 25)*
q q
wherer is one of theP! possible matchingd/ () its corresponding weight, and
U* the weight of the MWM at the equilibrium. Also in this scemarfor several
different parameters settings, starting from 100 randashbysen initial conditions
we have always observed the numerical convergence of thiiastw toward the
equilibrium point. The experiment was repeated bothXox 2 and4 x 4 1Q
switches.

4.2.3. Wireless scenario

In this case the local asymptotic stability of the system loamproved by lin-
earizing the system around the equilibrium point and chreckiie stability of the
linearized system. We report a sketch of the stability pfoofhe linearized system
in Appendix D.

13
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Figure 4: Dynamic behavior of a LQF server with two RED queUég trajectories on the left graph
show the moving average of the the queue lengths, whereasjbetories on the right graph show
the window sizes.

Also in this case, numerical experiments have shown thatisok converge to
the equilibrium point starting from randomly chosen idittanditions, suggesting
a global form of attractiveness for the equilibrium point.

4.3. Considering delays for the congestion signals

When considering the delays to propagate packets from esuocqueues in
(5), and to propagate congestion signals in (8), the prolmérefining general
conditions under which the equilibrium point is attractbecomes harder.

In the simpler case in which TCP sources interact with a eikdFO server
implementing an AQM scheme, sufficient conditions for lostability have been
obtained linearizing the system fluid equations in [18]. Asesult, paper [18]
provides guidelines for the design of AQM parameters baped simple relations
to the physical parameters of the system such as the numbetecdicting TCP
connections, the round-trip time and the capacity of theiguélowever, the same
guidelines cannot be applied in our scenarios.

Fig. 4 shows the dynamics of a work conserving LQF server giagatwo
RED queues® = 2). The trajectories were obtained by solving numerically th
original system of delayed differential equations in (8);Uusing an ad-hoc solver
developed in C. Physical parameters welé; = M; = 100, r; = ro = 10 ms,
7 = 1 = 0.4 andj = 10° pkt/s. Packets were dropped according to RED
loss profile. No marking was allowed. The RED parameters weie;;, = 100,
maxy, = 500 packetspn.x = 0.1, z = 10~%. Four trajectories corresponding to
four different initial conditions are plotted in Fig. 4. Atlhe trajectories converge
to the equilibrium point.
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Figure 5: Design guidelines for two RED queues served by a §€er. Stabilizing pairtz, Lrcq)
lie under the curves.

Under the same scenario, we investigated the settings dREi2 parameters
for which the system achieves an equilibrium point. In Figeesshow the stability
regions, for different RED parameters and number of TCP fl@daherently with
the approach followed in [18], we plot the stability regidansfunction of z and
L,eq, defined asl,cq = pmas/(maxy, —ming, ). Given each specifie value,
we implemented a binary search to find the maximum valug,Qf. for which
an equilibrium point was reached in less than 3 seconds. @wmdpwith Fig.12
of [18], the stability regions show a peculiar behavior: lEmge number of flows,
any value ofp,,., € (0,1) allows the system to converge, whereas for smaller
number of flows, the maximum allowed,,,., shows a non-monotonic behavior.
This shows that the design guidelines for a single FIFO gusuaot be applied in
our scenarios The investigation and proper characterizations of th@gdegiteria
for our scenarios have been left for future investigation.

5. System performance and fairness

In this section we explicitly characterize the equilibripoint for the three
previously defined scenarios, analyzing system performand fairness.

Before proceeding, however, we need to agree on an accemtabhition of
fair bandwidth allocation to TCP flows. This choice is ratbetical in light of the
fact that no global consensus exists in the networking conityion what a fair
allocation is. Our opinion is that, in the Internet contexgood reference model
is constituted by the bandwidth share obtained by TCP cdinmsctraversing a
FIFO buffer. In such a case, bandwidth is evenly distributgdthe system to
homogeneous connections (i.e., connections with the sanmal+trip time), while
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bandwidth is distributed among inhomogeneous connecfiensconnections with
different round-trip times) proportionally to the inversithe connection round trip
time, thereby achieving a rough form of proportional fagseln the following, we
will qualify the above reference bandwidth allocation as ‘tair allocation”.

5.1. Work-conserving server
In this simple case, it is rather straightforward to obtdiattthe equilibrium
point defined by (10)-(13) shows very surprising properties

ry =" wy, = w” Yq (14)
pq = (kqw™ + Ag)(1 = fa(2")) (15)

i.e., at the equilibrium queues have the same length, sehae the same average
window size, and service is provided to regulated trafficragates proportionally
to parametef k,.

The values forz* and w* can be explicitly computed; for example, in case
fm(zq) = 0andA; = 0; they are given by:

o fd_1<4 +5° - \4/ﬁ4 +8ﬁ2>

ot BT VB8
2

i
where = ———.
Zq kq

The long-term per-flow throughput, is determined by the parameters at the
equilibrium point through the simple relation

sy =L~ fala) (16)
q

Hence, the system bandwidth is distributed among conmeciimoportionally to
the inverse of the round-trip time, guaranteeing the sareage share to homo-
geneous connectionsThus, LQF provides the same long term bandwidth share
among connections that we expect when adopting a convah#RO policy at
the buffer!

As final remark we notice that, sincg, > 0 (see proof of Theorem 1), it
follows Zq wy = fi, and consequently, the system is always able to efficiently
exploit the available bandwidth.

4The fact that all queues are of the same length at the equitibmmediately derives from the
fact that all service rateg, are different from 0 at the equilibrium (see proof of TheorgmAs a
consequence sources experience the same marking/losbjpityband thus, have the same window
size.
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5.2. 1Q switch

In this case, the analytical characterization of the egpiilim point requires
the solution of a system &fP? + 2P — 1 non-linear equations. To simplify the
analysis, we assume that all the Virtual Output Queues arbyesome regulated
traffic sources (i.e., for every, k, > 0); we however emphasize that the analysis
can be easily extended to the more general case.

First we point out that the equilibrium point must satisfg fiollowing impor-
tant property:the weightU (7) of any possible matching, is always equal td/*
at the equilibriumi.e.:

Um) =Y a;=U" Vv

qe™

This property generalizes the property exhibited by LQFhi@ Work-conserving

queue.
As a consequenceX ™ lies in the linear span oM C RY?, with M =
{1, 12,...,1Y,0',0%,...,07}, whereI” is a vector whose-th elementl? is

one ifg € IQ(p) and null otherwise; an@? be a vector whose elemeff is one
if ¢ € OQ(p), and null otherwise. Dimension of spa¥() is 2P — 1, henceX*
can be expressed as a linear combinatioR Bf— 1 vectors selected withi.
Choosing the firsk P — 1 independent vectors iV, we can write:

P pP-1
X* =) apl’+ > B,0° (17)
p=1 p=1

for some positive values of the parametepsandj,,.
On the other hand, ratgg and queue sizes; are deterministically related by
the following systems of non-linear equations:

e
f(zg)

+ Ad> (1= fa(zg)) = pg 1<q¢<Q (18)

We notice that, since at the equilibrium point all the queass non empty
(i.e.,z; > 0, Vq), the service rate vector at the equilibrium maximizes toba
throughput |.e.zqelQ(i) ty = quOQ(j) py = 1 for every inputi and outputj.

The properties of the equilibrium point suggest that alghig case the system
tends to evenly distributing the bandwidth among homogesddP connections
(at the equilibrium), while it tends to distribute the bandilt among inhomo-
geneous connections proportionally to the inverse of ttmind-trip delay. This
feeling is confirmed by our numerical experiments; we haweided on al x 4
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IQ switch, loaded with inhomogeneous connections accgrttinthe following
class of scenarios, described by connection malfix= [M;;] and RTT matrix
R = [RZJ]
mo Qainmy OZQTTL(] a3m0
M = a3m0 mo g OZQTTL(]
| a®mo admg mo amg

ainmy OZQTTL(] a3m0 mo

ro  Bro B*ro Bro
Brg ro  Pro Bro
B*rg BPro 1o PBro

Bro  B%ro BPro 1o
wherel;; is the number of connections flowing from inpub outputj, and R;;
is the corresponding average round-trip timeyj, 7o, « and g are free positive
parameters. We have tried several cases for different valfie and 8 ranging
in the interval[1, 3]. In all cases the numerical results showed that relativel-ban
width obtained by connections at the equilibrium is pelfeptoportional tol /3,
independently from the actual values of the other scenaniarpeters.

We emphasize that not always a perfectly “fair” (in the poegly specified
sense) distribution of the bandwidth is achieved in IQ swa: Bandwidth shares
among TCP flows deviate from the “fair” distribution whenffi@asymmetries
among inputs or outputs ports are established (note thaiopietraffic patterns
were completely symmetrical with respects to both inputs @utputs ports). We
notice that, in the latter cases, forcing a “fair” distrilout of bandwidth among
TCP flows would cause a not complete exploitation of the swhi@ndwidth.

To better understand the behavior of the max-scalar pdiegsider a traffic
scenario comprisingomogeneou$CP flows (i.e., the same RTT matriX as be-
fore but with3 = 1) and a different connection matrix/’, in which the number
of connections at input 4 is increased by parameter 1 with respect ta\/:

R=

mo amyg a2m0 a3m0
M, . a3m0 mo g OZQTTL(]
| @®mog aPmyg mo amg

2 3
yamg yatmg ya’mg  ymg

The results are shown in the following matfix= [T;;], whereT;; is the average
throughput experienced at VQQ

¢ q ¢ ¢
S ¢ ¢ ¢
=1¢ ¢ ¢ ¢
/v ¢y ¢/v /v
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1
mo(a? +1)(a+1)

We notice that flows traversing input port 4 are penalizechimughput with
respect to other flows; this effect however has an easy extitsm connections
traversing input 4 are bottlenecked at the input port wheeg bbtain the maximum
possible “fair” share. All the other connections evenlyrshtine residual switch
bandwidth. Note that a perfectly “fair” distribution of béwwidths is possible only
at the cost of reducing the throughput of some connectidrssét not traversing
input 4) without any beneficial effect on the other connetdi¢those traversing
input 4). Thus the system, in this case, distributes bantivadcording to a max-
min fair scheme.

Several other numerical experiments (whose results arerapmrted for
brevity) have confirmed that th@ax-scalar policy at the equilibrium distributes
bandwidth among the connections according to a weighed mmaxfairness
scheme in which connection weights are proportional to thwerise of the con-
nection round-trip time

where¢ =

5.3. Wireless scenario

In this case, as already observed, queue services are @tovig the max-
scalar policy, proportionally to the queue lengths; at tipaildorium:

*
* .’L'q

o = e,

The quantitiesr; andw;, can be obtained solving the following systengfnon-
linear equationsyq:

*

wh = 2
T\ f=y)

Note that, differently from what happens for a work-consmg\server, in this
scenario the rule according to which bandwidth is subdd/idenong connection
aggregates has an impact on the global system throughput iddue to the
fact that vectors which lie on the boundary of regisn(i.e., vectors satisfying
Zq(,u*q)Q = f1) do not correspond to the same global system througﬁpém;.
Maximum system throughput is achieved when all the aggesgatceive the same
bandwidth (;; = [i/Q for every q), irrespectively of their parameter®/, and
rq. We notice, however, that in this case a significantly unéastribution of
throughputs to individual connections may result whenpatarsi/,, r, or \, are
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Figure 6: Wireless scenario with TCP traffic only: serveralabcey (on the left) and fairness index
n (on the right) vs A, /Mo, for different values of the ratio; /r».

strongly unbalanced. On the contrary the system that fdidiributes bandwidth
to connections (i.e. obeys to the Iaﬁa?i—ij = kq/ky, Vq,¢") may be significantly
inefficient in terms of system throuéhput.

We consider a wireless station hosting RED two queues (.e-, 2), to ease
the graphic presentation of numerical results. Howeveraikiderations apply to
the more general casg > 2. To obtain the solutions of the system of non-linear
equations, we have developed an an-hoc solver based on B&tyl{14].

We focus on two performance indexes. First, thieness index; defined as
the ratio between throughput-delay products of TCP flowsrmghg to first and
the second aggregate= r1s1/r2s2, having defineds, according to (16). Note
thatn = 1 corresponds to a “fair” distribution of bandwidth among T@®&vs.
Second, we consider treervice unbalance, among the two queues, defined as
X = pi/ps.

We have fixed the service ratg/, = 10° packets/s,M/; = 100 flows and
r1 = 10 ms. We have varied/, between 10 to 1000 flows, and betweenl and
100 ms, for a total of 49 different settings.

First we consider the case in which the wireless server isbfedegulated
traffic, only i.e.,A\; = Ay = 0. Fig. 6 shows; (on the right) andy (on the left), in
function of the ratioM; /M-, for different values of the ratio; /rs.

Bandwidth is distributed between aggregates in a ratheptmaway, in this
case; an aggregate gets more and more bandwidth by the systemthe relative
number of its flows increases. However, sincexhibits a sub-linear dependence
from parameter); /M, flows belonging to more numerous aggregates are pe-
nalized with respect to flows belonging to less numerouseagges, as shown in
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Figure 7: Wireless scenario with unregulated traffic & 1/71/3): server unbalancg (on the left)
and fairness index (on the right) vs.M1 /Mo, for different values of the ratig; /r2.

Fig. 6. Bandwidth shares obtained by connections dependalsound trip-time:
larger bandwidth is obtained by aggregates of connectiatisshiorter round-trip
times. However, since the flow bandwidth share increasedirsedxly with the
inverse of round-trip time, flows with shorter round-tript dgss than their “fair”
share.

We consider now the case in which unregulated traffic arategieue 2X; =
Vii/3). Fig. 7 reportsy andn. With respect to the previous case, the presence
of unregulated traffic at queue 2 induces a moderate petionbaf the relative
connections share, penalizing flows belonging to aggregjate

Furthermore, we investigated the effectypf.«, which is proportional to the
slope of the RED loss profile, i.e. to the “aggressivenesshefAQM scheme. We
consider the original scenario with only regulated trafficwhich we setr; =
10 ms andry = 100 ms, i.e. the case;/ro = 0.1 in Fig. 6. Now Fig. 8 shows
both the server unbalance and the fairness index for differalues ofp,,., and
different values of\/; /M,. Note thatk, represents also the minimum arrival rate
(i.e. obtained forw, = 1) at queueg. When M; /M, is small, thenk; ~ ko;
this condition corresponds to a symmetric scenario (evdreti€rogeneous) and
the server serves both queues almost at the same rate apdeactiie maximum
fairness, independently from,,... However, for large values off, /M,, ki =~
100k, and the server serves the first queue most of the time. Thialamie is
exacerbated by a more aggressive RED that penalizes the qu#usmallerk,,
i.e. with smaller arrival rate. This is also confirmed by ta@rfess index, which
varies by a factor 2 for different values pf,..; smaller values op,.., appear to
be preferable. We investigated also other scenarios witdlem /r, ratio, and
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Figure 8: Wireless scenario with TCP traffic only: serveralabcey (on the left) and fairness index
n (on the right) vs M, /Mo, for different values 0pmax in RED.

the effect ofp,ax becomes more negligible. We do not report here the detailed
results for the sake of space.

In conclusion, in the wireless scenario the max-scalacp@khibits a complex
behavior reaching an operational point which is middle wetydeen the maximum
throughput operational poini{ = 13) and the point corresponding to a fair dis-
tribution of bandwidth to connecﬂoné*—@ = ki/ko). So doing, a reasonable
trade off is achieved between the confllctlng requiremefmteptimizing global
performance (system throughput) and fairly distributirgndiwidths among TCP
flows.

6. Validation of the model

As final step we validate the prediction of our model againdétailed simu-
lator at packet level. To this end, we developed in OMNeT®}f8odules repre-
senting the systems of queues implementingntia-scalarscheduling policy. In
simulations, we fed the queues with standard TCP new-Remaea® provided by
the INET Framework [19].

First, we consider a simple scenario comprising a 1 Gbit/&kwonserving
server managing three queu€g & 3), and fed by 420 TCP flows. These TCP
flows are distributed among the three queues as follaWs:= 240, My = 120,
M3 = 60. Round-trip times of TCP flows have been randomly chosenrédowp
to a uniform distribution with support in the intervi6, 30 ms. A RED AQM
mechanism is implemented at the queuesn(;, = 10, maxy, = 500, Pmas =
0.05, z = 107%). A comparison between model predictions (labeled TEO) and
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Figure 9: Scenario 1: bandwidth shares among TCP aggredgadwidth obtained by aggregates,
averaged over intervé0, 35] s, are 604, 271 and 125 Mbit/s, respectively.

simulation results (labeled SIM) is reported in Fig. 9, whtdre bandwidth shares
evolution for the three traffic aggregates are plotted. $itran points are obtained
by averaging the bandwidth obtained by aggregates withthr@® windows. The
good agreement between model predictions and simulatguitseconfirms that
bandwidth shares obtained aggregates are roughly propattio parameters/,.

As second scenario, we consider a case in which all servereguare fed by
the same number of TCP flows (140); however flows traversiffgrdint queues
have different round-trip times. Round-trip times of flowaversing queué are
uniformly distributed in the intervall8, 22] ms; those traversing queeare dis-
tributed in the interval36, 44] ms; those traversing queBeare distributed in the
interval [54,66] ms. The same parameters of the previous scenario were used to
tune the RED mechanism. Also in this case, a good agreeméenedée model
predictions and simulation is shown in Fig. 10. The servediadth is distributed
to the aggregates proportionally to the inverse of theindstrip times.

As third scenario we have considered & 4 1Q switch with ports running at
1 Gbit/s. The analyzed traffic scenario, already considerdide previous section,
is represented by matricdd and R (Sec.5.2) withmy = 28, a = 2, 8 = 1 and
ro = 28 ms. The same RED parameters of the previous scenarios wete Tise
throughput obtained by simulation, averaged over intdBl35] s, is reported for
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Figure 10: Scenario 2: bandwidth shares among TCP aggeed@aedwidth obtained by aggregates,
averaged over intervé0, 35] s, are 530, 282 and 188 Mbit/s, respectively.

each input-output pair in the following matrix:

73 141 268 518

Tarnr — 524 71 139 266
270 531 67 132

133 257 526 84

Mbit/s

which matches very well with the average throughput estighély our model:

67 133 267 533
Trpo — 533 67 133 267

267 533 67 133

133 267 533 67

Mbit/s

These results validate the model and confirm that IQ switdlWwadth is efficiently
exploited by the max-scalar policy as predicted by the madefreover the long-
term bandwidth shares are almost exactly proportional/to as expected by the
model.

At last, we emphasize that we have validated the model piedsc against
simulations in several other scenarios, which are not dextin details for brevity.
In all cases the simulation results have confirmed modeligiieds.
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7. Conclusions

Max-scalar scheduling policies have previously been ppeddo optimize the
global system performance in several application contsdth as wireless net-
works, satellite networks and high-capacity router asdtitres.

Optimality of such scheduling policies was proved, howgoaty under as-
sumptions of stationarity and admissibility for the trafliawing through the sys-
tem of queues. Itis unclear how they behave in the case a@fraittn stationary, or
rate-adaptive traffic sources, that may induce temporagyloads of some system
architectural elements.

In this paper we investigated how max-scalar schedulingipslibehave under
TCP traffic sources. To this end, we have described the awahagamics of both
traffic sources and switch queues through a system of DelffgrBitial Equations
(DDEs), whose properties were throughly analyzed.

Our findings were rather surprising and intriguing; the aopof max-scalar
scheduling policies along with carefully designed AQM sulee permits to effi-
ciently exploit the bandwidth of complex systems such aseeitQ switches or
wireless stations without negatively affecting the fagmef TCP flows.

We recognize that research on max-scalar scheduling esli@s been driven
so far mainly by speculative interest, being such policéegdly ignored in prod-
ucts implementations. Still, we believe that max-scalaesdaling policies offer in-
teresting potentialities in application contexts wheradwidth over-provisioning
has significant costs (like in wireless networks). For thregsons the results of our
investigation, shedding some light on important aspecis dhe often neglected,
can stimulate a debate on the implementability of such sdhmedpolicies at nodes.

Complementary to our work, many open questions can be fenesed are left
for further investigation. First, a deeper characteraratif the convergence region
is needed to understand the range of AQM parameters thabarpatible with a
stable behavior of the system. Second, the sensitivityyaisabf the equilibrium
points is needed to design accurately the AQM scheme andaxsedtbble fairness
level. Third, the adopted methodology can be used to desggnAQM schemes,
tailored to support regulated traffic interacting with nsoalar scheduling policies.
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Appendix A. A brief survey on fluid limits

Fluid limits methodology has been originally introducedbsi [38] to estab-
lish the stability of cyclic networks of queues. Fluid limihave been extended
and successfully applied for the characterization of thhput/delay properties of
computer networks [6, 7, 9, 10].

The classical fluid limit approach applies to queuing systemith infinite
buffer capacity subject to unregulated sources. Considsistem of infinite ca-
pacity queues whose evolution is driven by:

xq(t) = xq(7) + ag(1,t) — pg(T,t) with 7 < ¢

wherea,(T,t) represents the number of arrivals at queua [7,t), and u,(7, 1)
represents the number of customers served at qu@ugr, ¢). The corresponding
fluid limits are obtained by applying a fluid scaling to queyaamics, i.e. by
considering for am; » € N, zy(t) = w4(rt)/r and then taking the limit for large
r:

Zy(t) = lim a7 (¢)

T—00 q

where the limit operator must be interpreted as a unifornit laver compact inter-
vals for a properly defined subsequence of functiefig¢) (according to a weak
Skorohod topology). Observe that if we assume that arrsatisfy the strong law
of large number, i.elim; o a4(7,t)/(t — 7) = Ay W.p.1 for some)\, > 0 and
every, thenz,(t) satisfies:

Tq(t) = Zg(7) + (t = T)Ag — a(7,1)

wheref(r,t) = lim,_,o p(r7, rt) /r. The importance of fluid limits resides in the
fact that the study of the fluid limiting trajectorias (¢) allows to gather insights
on the stability of the original system of queues; in patticuf z,(¢) = 0 for any

t > to, the original queue is (rate) stable, otherwise it is uristad/e remark that
that previous technique can be applied to both discrete gintecontinuous time
gueuing systems. In particular, [10] has derived the fluidts equations for 1Q
switches under max-weight scheduling policies.

When we considering TC/IP networks, the previous approacinat be di-
rectly applied because of the finite storage queuing systétosvever fluidifica-
tion can be still successfully applied reinterpreting theaming of the fluid scaling
operator according to the guidelines proposed in [6, 7].

®In this section; is used as a mute variable and it is not related,tappearing in the previous
sections
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First, we define a sequence of scaled systems. rTtheystem is obtained by
the original one by scaling up the number of TCP sourkgls = M, and the
transmission speed of queyes = ru,(t). By doing so, the per-flow share of the
capacity remains constant with respect-toAQM profiles are scaled as well in
the rth system, according t¢" (z) = f(rz). Finally, we define a rescaled version
of the queue sizey(t) = z,(t)/r and we analyze its behavior agrows large:
Tq(t) = lim, o 7 (t). Following the same approach in [6, 7], it can be shown
that z,(¢) satisfies the fluid equations described in Sec. 3.1. Obséatefltid
trajectories, in our case, describe the limiting dynamifogeoy high speed TCP/IP
systems, since they are obtained scaling up the datarateedidttleneck along
with the number of TCP flows.

Appendix B. Proof of Theorem 1

The stationary equilibrium is independent from the tembpdetays within the
system of different equations. Hence, we neglect the teahpletays.
By combining (4) and (8), the equation describing the TCPadyics becomes:

dw,(t) 1 wg (t)

a T_q - orq f(zq(t)) (B.1)

The equilibrium point,(X*,X*, W*), by definition, satisfies the set of algebraic
equations obtained by: (5), (7), (9), (B.1), setting to zbeotime derivatives. As a
consequence,X ™, X*, W*) is an equilibrium point of the dynamical system iff it
satisfies:

1 _(w*)2 i

(kqwg + Ag)(1 = fa(zy)) =pyq (B.3)
T, =7, (B.4)
u =arg rggg{Zaqu (B.5)

Note that, at the equilibrium point, for evegy it must bef (z;) > 0 andw; > 0,
otherwise (B.2) cannot be satisfied; as a consequence sagitefrom assumption
(iv) of the theorem, it results; > 0 and thus (B.3) (derived from (5)) is the only
relevant case describing the fluid window evolution.

Observe that (B.5) can be rewritten in the following way,@$iogu* € S:

> (s =gz >0 ¥neS (B.6)
q
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Now (B.3) and (B.2) allow to algebraically relate andzj, indeed from (B.2):

. 2
w, =
! fzg)
and thus substituting in (B.3) we obtain:
kqV/2 . "
N | (1= faz)) = u (B.7)
f(xy)

The function on the left hand side is strictly decreasindwispect to its argument,
:c;; > 0, moreover for:::;; — 0 it tends to+oo, while for x; = B,, by assumption

(v), itis null. As a consequence for every value,df, (B.7) always admits one
and only one solution in;. We denote withh,(p;) this solution. By construction
ry = he(py), and0 < hy(py) < By. Atlast, hy(uy) is strictly decreasing with its
argument. Considering again (B.@), satisfies:

S (it —nhg(u) 20 Vnes
q

Define: o
G =3 [ hyfa)da

whereG (1) by construction is a strictly concave function as it can t=lgaerified
by computing its Hessian (we recall thaf() is a strictly decreasing function, and
from assumption (iii) it is differentiable). Thus condii@B.6) can be rewritten as:

(n—p)VG*) <0  Vnes (B.8)
We conclude our proof, invoking the following lemma.

Lemma 1. In order to satisfy condition (B.8)* must be the only solution of the
following optimization problem:

p* = argmax G(u) (B.9)
HES

First, observe that, sina@(y) is strictly concave an@ is compact and convex,
(B.9) admits one and only one solution.

Second, we prove that the satisfaction of condition (B.8yiges a necessary
condition for the satisfaction of (B.8). Indeed, assumd fifadoes not satisfy
(B.9), then there exists € S such that:

G(n) > G(u")
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However, due to the concavity 6f(u):

G(n) <G") + (n—p)VGT)

from which (n — p*)VG(p*) > 0, which contradicts (B.8).
Finally, the fact that the solution of (B.9) also satisfies8)8s an immediate
conseguence of the Karush Kuhn-Tucker conditions.

Appendix C. Stability of the equilibrium point: work conser ving server

In this appendix we prove thﬁw < 0 almost for everyt > 0
around the equilibrium point. To simplify the calculation® suppose that the
AQM scheme adopts a pure marking policy at the equilibriurowelver the argu-
ments reported in this proof can be extended in a straigh#iat way to the more
general case.

Since z,4(t) and w,(t) are by definition absolutely continuous functions,
L(X (1), W(t)) = maxy(z4(t) — 2%)* + B3, My(w,(t) — w*)? is an absolutely
continuous function, and thus it is differentiable almast éveryt > 0. In the
following we will show that whenevew exists, it is negative.

We start by referring the results from Section 5.1; at theildgum point
every queue has the same length, and every source have ta@agarage window
size, i.e.,Vq, ; = z* andw; = w*. From (14) and (15), wher¢;(z*) < 1
andw* > 0, it holds p; > 0 for everyq. We denote withu,, the minimum
achieved rate at the equilibriumiy,i, = min, p;. Now fix time ¢ and suppose
maxg{|zq(t) — x*|, |wy(t) — w*|} < 6 for some smalb > 0. Let Qy(¢) be the set
of queues which are, at time at maximum distance from the equilibrium queue
sizes, i.e.Qq(t) = arg max,(zq(t) — z*)2.

If |Qo(t)| = 1, no problems of differentiability fo (X (¢), W (¢)) arise, how-
ever if |Qo(t)] > 1, L(X(t), W (t)) is not guaranteed to be differentiable tat
A sufficient and necessary condition for differentiabilis/that Qy(¢) = Qo(7)
wheneverr — t| is sufficiently small. This implies that all the queues withme
dg(t) _ dag(t)

/ -
R = — for everyq andq’ be

longing to Qy(¢) having the same length (moreover queues with differenttfeng
must have the same derivative when taken in absolute value).

Let us now partitionQy(¢) into two subsetsQ (t) and Q; (t), such that:
z,(t) > 2* foranyq € QF (t) andz,(t) < z* for anyq € Qy (t). The ser-
vices at those queues satisfy:

Z 1q(t) = fi and Z 1q(t) =0

q€QT (t) €9y (1)

length must have the same derivative
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whereji is the server capacity.
Case 1.First we assume tha@ ()| < @ and|Q; (t)| < Q; then:

S B S [rgg0) 2] (0 )

a€QF () q€Qf (t)
dx,(t
S O S )+ 0] (1 g ®)
q€Qy (1) qeQy (t)

As discussed above, all queues@g(¢) must have the same derivative. Hence,
after some calculations we obtain:
day(t) o
4€ Q) = |QF (== < D (kg +py) — i
q€Qg (t)

dg(t) .
q€Q; (t)

g€ Q) = [Q (1)

If we now definek = max, k,, and observe that

L — Z NZZMmin and,a— Z ,Ulz;z,umin

q€Q7 (1) q€9Q; (1)
we obtain:
dx (t) 2 Hmin
qc Qf(t) - -4 ok —
0 dt Q5 (1)]
— dx (t) » Hmin
ge QO (t) » — L2 > _k+ ==
o= g 2 (1)
For enough smalf,
dx (t) Hmin Hmin
€ of(t) » =4 - < -
1€ () dt 2|07 (t)] 20

dxq(t) Hmin > Hmin
i AG, 0 2Q

qge Qy(t) —

and we can claim:

dmaxy (zy(t) — x*)? dzy(t)
=2
dt dt

(zq(t) — 2*) < —’“‘gm |z4(t) — 2*|  (C.1)
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Now consider source; for smalld we can exploit a first order Taylor's expan-
sion ofw,(t) around(w*, z*); from (B.1):

dwg(t) _ —2w* f(2*)(wy(t) — w*) — f'(a*) (w*)*(w4(t) — 2*)
at 2rg (C.2)

and we can claim:

Ld(wg(t) —w*)?  dwgy(t)

w* () (w —w* 2 I (% *)2
_ 2 f( )(27:]1(75) ) _ f (xQ)riw ) (’U)q(t) _ ’U)*)(ﬁq(t) _ SC*) + 0(62)
(C.3)
wheref’(z*) = d‘];(j) . Combining (C.1) and (C.3), we obtain:

|zq(t) — ™| = 2Bw" f(x¥) Z [kq(wq(t) - w*)Q] -

q

B @) (2D kgl (t) = w*) () — 2)] + 0(6?)

q

Note that the first two terms are negative, while the lattey dra indefinite sign.
However the whole is negative ffis chosen such that:

6 (") ()P Y ky <
q

BQ

Case 2.Now we consider the cas@{ (t)| = Q or |Q, ()| = Qi.e., all the queues
at timet are of the same length, () = z(¢). Repeating similar considerations as
before, we obtain:

L) (4(4) - a%) < %(1 = Fa)@() =) Y [kg(wg(t) - w")]

q

From which, exploiting a first order Taylor’s expansionfgf:) aroundz* and then
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(C.2), it follows that:

2 x * *
7 ; et — ) 0) - 271 — 127
S =) k20" S Z[ "F]-

q

f(x)( [Zk wg(t) — w* ](w(t)—a: ) + 0(6?)

can be made always negative choosing

21— f(*))
> Q)

Appendix D. Stability of the equilibrium point: wireless station

Denoting withAw,(t) = wy(t) —w; andAz,(t) = x4(t) — z;, the linearized
dynamical system of equations compri€€g equations. The first set @) equa-
tions are obtained linearizing (B.1):

dAw,(t) 2wy f(zp)Awg  (wy)*f' (@) Azg
dt o 2r, 27y

The other() equations are obtained linearizing the queue dynamicgiegsa

dAgg( ) (1 - fd( ))Awq (kqu + )‘q)fd/(x*)AI'q—
1
2[| X+ |2 2HX*H2 g Lo
4 d
wheref’(z7) = J;(Z) andfye;) = fg( z) B

The asymptotic stability of the equilibrium poiff, 0) in the above linearized
system of equations can be studied using standard teclsidime first step con-
sists in rewriting the above system of equations in its stesh€orm:

dy (t)

= AY (1)
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whereY () is the vector state
(Awq (), Azq(t), Awa(t), Aza(t) ... Awg(t), Azg(t))

A sufficient and necessary condition f@r, 0) to be asymptotically stable is that
matrix A is stable, i.e., all eigenvalues dfhave real part strictly negative.

We have verified the stability of matrid computing the characteristic poly-
nomial of A and applying the standard Routh-Hurtwits criterion; weevable to
evaluate the characteristic polynomial symbolically tigio Maple [22] but we do
not report the details for brevity.
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