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On the interaction between TCP-like sources and
throughput-efficient scheduling policies

Paolo Giaccone, Emilio Leonardi, Fabio Neri
Dipartimento di Elettronica, Politecnico di Torino (Italy)

Abstract

We focus on the dynamic interaction in packet networks between regulated
Additive-Increase Multiplicative-Decrease (AIMD) traffic sources andmax-scalar
scheduling policies (such as the popular Maximum Weight Matching – MWM) at
switches. The latter were proved to be optimal in terms of throughput for stationary
unregulated traffic sources.

We describe the average dynamics of both traffic sources and switch queues
through a system of Delay Differential Equations (DDEs), whose properties are
throughly analyzed. Our study allows to gain important insights both on the system
efficiency and on the long-term bandwidth share among connections.

Our main finding is that AIMD sources andmax-scalarswitches co-exist well.

Keywords: Packet networks, optimal throughput scheduling, TCP/AIMD
sources, input queued switches, wireless systems.

1. Introduction

In recent years a significant effort has been devoted by the networking research
community to the definition of efficient scheduling policiesthat maximize the sys-
tem throughput in several application contexts, such as wireless, satellite networks
and high-capacity switching architectures [1, 4, 20, 23, 27, 28, 32, 36]. This prob-
lem dates back to the early ‘90, when Tassiulas and Ephremides, in their seminal
work [34], have first shown that the maximization of throughput in anetwork of in-
teracting queues(also calledconstrained queueing systems) can be achieved with
a dynamic scheduling policy according to which the selection of packet transmis-
sions, at servers, is driven by the instantaneous queues state.

It is worth noticing that the scheduling policy proposed in [34], i.e., the so-
called max-scalar policy, and its later extensions [1, 20, 23, 27, 28, 36] (such
as the popular Maximum Weight Matching – MWM), do not requireany a pri-
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ori knowledge of the long-term traffic behavior, thereby appearing amenable for
implementation in contexts in which traffic is highly dynamic and unpredictable.

Optimality of themax-scalarpolicy and its extensions has been proved, how-
ever, only under assumptions of stationarity and admissibility for the traffic flowing
through the system of queues. It is not clear how optimal policies behave in the
case of either non stationary, or rate-adaptive traffic sources, which may induce
temporary overloads of some system architectural elements. The suspect that the
max-scalarscheduling policy and its extensions may be strongly unfairin the latter
case has probably refrained a massive deployment of such policies in commercial
systems.

Only recently the attention has been turned to the analysis of the interaction
between optimal dynamic policies and regulated traffic sources. Results in this
field can have a great practical significance in consideration of the fact that the
majority of Internet traffic sources adopt the TransmissionControl Protocol (TCP)
and dynamically adapt their sending rate to the estimated traffic congestion level
according to an Additive-Increase Multiplicative-Decrease (AIMD) scheme.

In [11, 29] the behavior of max-scalar policies under regulated sources has
been analyzed. However, the rate adaptation algorithms considered in [11, 29]
significantly differ from the AIMD source behavior, since they require the sources
to gather detailed and updated information about the network status.

We consider the dynamical behavior of max-scalar policies under rate-
controlled sources executing an idealized TCP-like algorithm, driven only by losses
and delay information as observed by the sources. The average dynamics of both
sources and queues are described through a fluid model, i.e.,a system of Delay Dif-
ferential Equations (DDEs), whose qualitative propertiesare throughly analyzed.
Our study allows to gain important insights both on the system efficiency and on
the long-term bandwidth sharing among traffic flows.

Our findings are rather surprising and intriguing; the adoption of max-scalar
scheduling policies along with carefully designed Active Queue Management
(AQM) schemes permits to efficiently exploit the bandwidth of complex systems
such as either Input Queued (IQ) switches or wireless cells,without negatively
affecting the fairness of TCP flows.

Recently [33] and [37] showed that possible extreme unfairness and rate oscil-
lations may occur at routers implementing amax-scalarscheduling policy when
the traffic is originated by TCP sources. However we emphasize that, differently
from our work, both [33] and [37] assume a classical drop-tail packet discarding
policy at the queues. We believe that conjugatingmax-scalarscheduling policy
with a properly designed AQM packet dropping scheme is necessary to achieve a
good degree of fairness.
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2. Systems of interacting queues

We consider a system ofQ discrete time, interacting queues. This provides an
abstract model for several different communication scenarios such as the system
of transmission queues either at a wireless access point or asatellite, or the Virtual
Output Queueing (VOQ) system in an IQ switch.

In discrete time, the queue evolution is described by:

xq(n+ 1) = [xq(n) + aq(n)− µq(n)]
+ 1 ≤ q ≤ Q,

wherexq(n) represents the queue length,aq(n) represents the number of arrivals
at the queue,µq(n) represents the amount of service received by queueq during
time (n, n + 1] and [x]+ denotesmax{0, x}. These quantities can be expressed
either in packets or in bytes. The set of achievable queue service rates is subject to
a set of physical constraints, such as those expressing either capacity limits or the
effects of possible interference between signals.

We formalize the previous concepts saying that the vector ofservice rates
µ(n) = (µ1(n) · · · µQ(n)) belongs to a convex set of achievable ratesS, i.e.,
µ(n) ∈ S with S ⊂ IRQ

+, for everyn.
We consider three possible application scenarios:

• Work-conserving server: in this first simple case, the bandwidtĥµ of a
work-conserving server is dynamically shared amongQ queues. The sum of
service rates allocated to queues is bounded by the transmission capacitŷµ
of the server:S = {µ : µq ≥ 0 and

∑

q µq ≤ µ̂}.
We emphasize that this simple toy case has limited real interest, but its analy-
sis can provide important insights on the behavior of more complex systems.
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Figure 1: AP × P IQ switch architecture with VOQ
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Figure 2: A wireless station

• IQ switch: Fig. 1 describes aP × P input queued switching architecture
which represents the forwarding engine of a modern high-performance In-
ternet router. An IQ switching architecture is a common forwarding en-
gine of modern high-performance Internet routers. In aP × P IQ switch,
each interface maintainsP separate queues (called Virtual Output Queues -
VOQ), one per output port (Q = P 2). The switching fabric operates in a
synchronous fashion. At time slotn, a setπ(n) of non contending packets,
calledmatching, is selected for transfer through the switching fabric. Match-
ings can comprise no more that one packet per input port and nomore than
one packet per output port. Denoting withIQ(i) (1 ≤ i ≤ P ) the set of
VOQs at inputi, and withOQ(j) (1 ≤ i ≤ P ) the set of queues directed
to outputj, in order to be feasible (i.e. a matching), the service vector µ(n)
must satisfy the following capacity constraints:











µq(n) ∈ {0, 1} ∀q
∑

q∈IQ(i) µq(n) ≤ 1 1 ≤ i ≤ P
∑

q∈OQ(j) µq(n) ≤ 1 1 ≤ j ≤ P

Finally, we denote withS the convex hull generated by the feasible service
vectors, i.e.,S = {µ : µq ≥ 0,

∑

q∈IQ(i) µq ≤ 1,
∑

q∈OQ(j) µq ≤ 1}

• Wireless scenario: it may represent a multi-beam satellite which transmits
data toQ different ground locations (as depicted in Fig. 2) or a terrestrial
wireless station, such as a node of a large-bandwidth WiMAX mesh network.
Packets destined for each location are stored in separate queues. In this case
the transmission rate vectorµ(n) depends on the coding scheme and on the
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power used for transmitting the signals. Using an access scheme which or-
thogonalizes transmitted signals, we can assume that the transmission rate
µq depends only on the powerPq used for transmitting information fromq,
as in [28]. We further assumeµq(Pq) to be a regular concave function. In
addition, we assume that the total transmission powerPtot is bounded.

Hence, the set of possible transmission ratesS is defined as the convex
region defined by all the vectorsµ = (µ1(P1), . . . , µq(Pq), . . . , µQ(PQ))
where

∑

q Pq ≤ Ptot.

The geometry of regionS depends on the specification of functionsµq(Pq),
which in turn depend on the physical layer specification [28]. In this paper,
just as matter of example, we assumeS to be a circular region, defined by
the following constraints:

{

µq(n) ≥ 0 ∀q
∑

q µ
2
q(n) ≤ µ̂

(1)

whereµ̂ is a positive constant. Note that this shape is an approximation of the
achievable rate region in a multiple access channel MIMO system (cf. Fig. 8
in [13]) or in a fading environment (cf. Fig. 2.5 in [25]).

2.1. Max-Scalar policy definition

Under unregulated traffic sources, the problem of defining the optimal dynamic
scheduling policy and the associated throughput region in complex systems of
infinite-size interacting queues has attracted significantattention in the last decade
from the research community since the pioneering work [34].By assumingaq(n)
to form a sequence of i.i.d. random variables, and applying the Lyapunov function
methodology, it has been shown that a system of interacting queues achieves max-
imum throughput1 if the max-scalar scheduling policyPMS is applied. According
toPMS , at each time slotn, the service vector is selected as follows:

µ(n) = argmax
γ∈S

Q
∑

q=1

γqxq(n) (2)

The result in [34] has been generalized and adapted to different application
contexts in recent years. As matter of example, we just briefly recall some of the

1A scheduling policy achieves maximum throughput if the system of queues is stable under any
i.i.d. sequenceaq(n) such that(E[a1(n)], E[a2(n)], · · ·E[aQ(n)]) ∈ S , i.e. the average arrival
rates are within the set of admissible service rates.
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related works. In the packet switching context, several studies aimed at the defini-
tion of the stability region in IQ switching architectures built around a buffer-less
crossbar have appeared: papers [1, 20, 23, 32, 36] have proposed different exten-
sions ofPMS, which have been shown to achieve the maximum throughput; sta-
bility properties for simpler scheduling policies have been also studied in [10, 36];
in [2, 4, 20], finally, the problem of the definition of the stability region in net-
works of IQ switches has been considered. In the context of satellite and wireless
networks, generalizations ofPMS have been proposed and shown to achieve the
maximum throughput in [21, 27, 28, 35]. Finally, [9] has generalized the result
in [34] under more general exogenous arrival processes applying a different analyt-
ical technique called fluid models. All previous works, however, have considered
unregulated stationary traffic sources.

2.2. PMS in three application scenarios

It is not difficult to particularize the policyPMS for the previous three scenar-
ios:

• Work-conserving server: PMS selects simply the queue with the largest
queue size i.e., this policy is usually referred as Longest Queue First (LQF)
scheduling.

• IQ switch: PMS selects the matchingπ(n) to maximize
∑

q∈π(n) xq(n),

thus degenerates in the popular maximum weight matching.2

• Wireless scenario: AssumingS to be defined according to (1),PMS selects
the maximum service vectorµ(n) ∈ S parallel to the queue size vector
X(n):

µq(n) =
xq(n)

‖X(n)‖2
√

µ̂ (3)

where ‖X(n)‖2 is the square norm of vectorX(n), i.e., ‖X(n)‖2 =
√

∑

q xq(n)
2.

2.3. PMS under regulated sources: previous work

Only recently the attention has been turned to the analysis of the interactions
between optimal dynamical policies and adaptive traffic sources. Papers [11, 29]
have shown thatPMS behaves well in presence of regulated sources, and guaran-
tees an acceptable degree of fairness to flows also in case of temporary overload.

2Note that, according toPMS , µ(n) = argmaxγ∈S

∑Q

q=1
γqxq(n) can always be selected to

be an integer-valued vector; this is a consequence of the unimodularity of regionS .
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However, these papers have focused on congestion control mechanisms signifi-
cantly different from TCP, which require that traffic sources strictly interact with
the network and gather detailed and up-dated information about the queues status.

Let ρq(n) be the aggregate arrival rate at queueq, equal to the overall sending
rate at the corresponding sources. In [11] sources were assumed to adjustρq(n) on
the basis of the instantaneous queue sizexq(n):

ρq(n) =
αqK

xq(n) + γq

whereαq, K andγq are suitable positive constants. Similarly, in [29] the rate of
sources must be dynamically adapted on the basis of instantaneous queues lengths.
According to one of the proposals in [29]:

ρq(n) = min
{[ V

2xq(n)
− 1
]+

, ρmax

}

whereV is a control parameter andρmax is the maximum allowed source sending
rate.

In both cases above, sources must be made aware of queue sizesat switches.

3. Our system

We consider a TCP/IP infrastructure comprising a set of hosts interconnected
through a network of switches/routers as depicted in Fig. 3.In particular we focus
on the network element identified in the figure as “switch A”. Switch A represents
either an IQ switch or a wireless station implementing the max-scalar scheduling
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policy, and acts as bottleneck for traffic flows traversing it(i.e., queuing and losses
processes at switches/routers different from A, depicted as circles in Fig. 3, intro-
duce negligible effects on TCP dynamics).

3.1. The system model

Aim of our work is to study the behavior of AIMD-based congestion control
mechanisms in networks of interacting queues.

In our analysis, each queueq is fed with traffic originated in a set ofMq TCP
sources. To study the interactions between sources and queues, we adopt a contin-
uous time fluid approach [26] in which the average dynamics ofboth sources and
queues are described by deterministic delay differential equations.

We assume that all theMq TCP sources feeding queueq experience a constant
round trip timerq (see Fig. 3). The fluid evolution of the average window size
wq(t) is driven by the classical, well-known AIMD fluid equation [26], derived by
the saw tooth behavior of the window:

dwq(t)

dt
=

1

rq
− wq(t)

2
φq(t) (4)

whereφq(t) represents the rate of congestion indications experiencedat timet by
sources. The first term on the right-hand side represents theadditive increase mech-
anism, while the second term represents the multiplicativedecrease contribution.

We denote withW (t) = (w1(t), w2(t), · · ·wQ(t)) the vector whose elements
represent the average transmitter window sizes (modeling TCP congestion win-
dows) at timet for sources feeding queueq.

The fluid evolution of queue lengthsxq(t) is driven by the following equations:

dxq(t)

dt
=
[Mq

rq
wq(t− τq) + λq(t)

]

(1− dq(t))− µq(t) if xq(t) > 0 (5)

dxq(t)

dt
= max

{

0,
[Mq

rq
wq(t− τq) + λq(t)

]

(1− dq(t))− µq(t)
}

if xq(t) = 0

(6)

The first term on the right of (5) represents the aggregate arrival rate at queue
q; τq is the average propagation delay between sources and queueq; Mqwq/rq is
the overall average sending rate of theMq sources;λq(t) is the aggregate arrival
rate of unregulated traffic;dq(t) is the dropping probability at bufferq; µq(t) is the
service rate of queueq at timet. We denote withX(t) = (x1(t), x2(t), · · · xQ(t))
the vector whose elements represent queues lengths at timet. Furthermore, in the
following denote withkq the ratioMq/rq.
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We suppose that each queueq implements a RED/ECN [12] AQM scheme,
according to which packets are in general either dropped or marked. Both drop-
ping probabilitydq(t) and marking probabilitiesmq(t) are driven by the buffer
level. In particular, AQM schemes usually maintain a movingaveragêxq of the
instantaneous queue sizexq, updated whenever a packet arrives according to the
rule:

x̂q ← (1− z)x̂q + zxq

The instantaneous mark/drop probability is computed as a function of x̂q ac-
cording to some relationdq(t) = fd(x̂q(t)) andmq(t) = fm(x̂q(t)) (for example,
mq(t) = 0 in the case of a pure dropping policy). For fluid modeling, we need a
characterization of the temporal evolution of the moving averagex̂q(t) as a con-
tinuous function of time. This was originally done in [26], where the authors have
shown that the evolution is represented by the differentialequation:

dx̂q(t)

dt
=

log(1− z)

δ(t)
x̂q(t)−

log(1− z)

δ(t)
xq(t) (7)

if z < 1 andx̂q(t) = xq(t) if z = 1; δ(t) is the average packet inter-arrival time,
i.e.,δ(t)−1 = kqwq(t− τq) + λq(t).

We denote withX̂(t) = (x̂1(t), x̂2(t), . . . , x̂Q(t)) the vector whose elements
represent the moving average of the instantaneous queue size.

The rate of congestion indicationsφq(t) experienced by sources at timet is
given by:

φq(t) =
wq(t− rq)

rq

[

f(x̂q(t− rq + τq))
]

(8)

wherewq(t− rq)/rq is the packet sending rate of sources at timet−rq andf(y) =
fd(y) + fm(y) is the sum of packet marking and dropping probabilities for buffer
size equal toy.

Finally, according to the definition ofPMS , queue service rates are determined
in the fluid model as the solutions of:

µ(t) = argmax
γ∈S

Q
∑

q=1

γqxq(t) (9)

whereµ(t) = (µ1(t), µ2(t), · · · µQ(t)) is the fluid service vector andS is the set
of feasible service vectors.

Finally, absolutely continuous functional vector(X(t), X̂(t),W (t)) satisfying
(4), (5), (7) and (9) represents a solution of the above dynamic system.3.

3Note thatµ(t), is, by construction, continuous at every regular points of(X(t), X̂(t),W (t)).
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3.2. A critical discussion of the assumptions

In this sub-section, we critically discuss the assumptionsand approximations of
our model. First of all, we adopt a fluid approach to model bothsources and queues
dynamics. Indeed, several recent works [3, 7, 15, 16, 26] have clearly shown that
the fluid approach is a viable alternative to detailed packet-level simulations for
the analysis of large-bandwidth IP networks (i.e., supporting a large number of
TCP flows). Moreover, fluid models were proved to be effectivefor the parameter
design of AQM/ECN schemes in TCP/IP networks [18].

Fluid model equations can be formally derived from the jump process describ-
ing packet level dynamics throughfluid scalinglimits [6, 7, 9, 10]. This process
permits to tightly relate the qualitative properties of fluid models to those of the
original system [6, 9, 10, 31]. In particular, [9, 10] have shown that the through-
put performance of routers implementing max-scalar scheduling policies can be
derived from the analysis of the qualitative properties of fluid model solutions.

In this paper we skip a formal derivation of the fluid equations, that can fol-
low exactly the same approach of [6, 7, 9, 10]: in Appendix A wereport a brief
overview on how to derive the fluid equations. We concentrateour investigation on
the analysis of the fluid model properties.

Since our goal is to analytically study the interaction between TCP sources and
max-scalar scheduling at nodes, enlightening structural properties of the system
as a whole, we have tried to simplify as much as possible the description of ev-
ery architectural element. This is the reason why we have modeled just the basic
AIMD mechanism of TCP, ignoring slow-start, time-outs, etc. We notice, however,
that this basic description of idealized AIMD sources is usually able to capture the
dominant dynamics of the system, providing fairly accurateresults in several sce-
narios [7, 15].

We restrict our analysis to long-lived connections, neglecting short-lived con-
nections. This is essentially due to the fact that short-lived flows can be assimilated
in the fluid model to unregulated flows (termλq(t) in (5)) as shown in [8, 17], since
the effect of AIMD congestion control feedback is not effective due to their limited
durations.

We have neglected the effects of variable queuing delays on the round-trip time.
This assumption does not affect the system equilibrium points derived in our main
Theorem 1 in Sec. 4.1. It is, however, needed to simplify the stability analysis of
equilibrium points. In Sec. 6 we validate the whole analytical model by comparing
it with an accurate simulation model of a TCP/IP network, that takes into accounts

Thus even if (9) may potentially admit an infinite number of solutions, only one can grant continuity
of µ(t) at regular points of(X(t), X̂(t),W (t))
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all the delay effects.
In (4) and (8) we have implicitly assumed that all theMq TCP sources feeding

queueq experience the same propagation delay. This assumption canbe relaxed
to the case in which sources feeding queueq may experience different propagation
delays, but the dispersion in their values is not too large. In this caserq andτq
appearing in (4) and (8) can be reinterpreted in terms the average values. The model
can be generalized when several classes of TCP source with significant different
propagation delay coexist among theMq sources feeding queueq. In this case an
equation for each class of sources [15] has to be written. However in this paper we
do not address this extension.

At last, note that in fluid models the packet by packet description of the system
dynamics is completely neglected. The dynamics captured bythe fluid model are
those operating on the same timescales of the TCP control mechanism (around
tens/hundreds milliseconds). This means that essentially(4) represents the average
rates obtained by different flows according to the max-scalar policy over time-
periods whose duration is comparable with the time-scale ofthe TCP dynamics.

4. Qualitative study of the model solutions

Now, we characterize the qualitative properties of the model solutions of the
above system of differential equations.

First, we investigate on the existence of equilibrium points (i.e., stationary solu-
tions) under the assumption of stationary traffic conditions, i.e.λq(t) = λq ∀q. We
show that under mild assumptions a unique equilibrium pointalways exists. Then
we turn our attention to the problem of the equilibrium pointattractiveness (sta-
bility). We conjecture that, by carefully designing the AQMscheme equilibrium,
global attractiveness can be obtained. In simple cases we are able to analytically
prove the local attractiveness to the equilibrium point, while in more complex cases
we report numerical results in support of our thesis. Unfortunately, the problem of
establishing global attractiveness is very difficult, and has only received partial an-
swers for the simple case of TCP flows feeding a FIFO queue [18].

We emphasize that a unique, globally attractive, equilibrium point unequivo-
cally determines the long-term behavior (i.e., fort→∞) of system dynamics. As
a consequence, by looking at the equilibrium point, we gain important insights on
the system efficiency and long-term bandwidth share among connections, as shown
in the next section.

4.1. System equilibrium point

The following statement fully characterizes the equilibrium points of our dy-
namical system.
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Theorem 1. Consider a network with the following assumptions: (i) for every q
the arrival unregulated traffic rate is stationary, i.e.,λq(t) = λq; (ii) S is a convex
compact set in IRQ+ with non null interior; (iii) fm(y) andfd(y) are non decreasing
continuous and differentiable functions; (iv) for some finite Bq, fd(Bq) = 1; (v)
f(y) = fm(y) + fd(y) is strictly increasing for0 ≤ y ≤ Bq, with f(0) = 0. In
this case the system of differential equations (4), (5), (7)and (9) admits a unique
stationary solution(X∗, X̂∗,W ∗) satisfying the following conditions:

µ∗ =argmax
µ∈S

G(µ) (10)

x̂∗q =x∗q (11)

x∗q =f−1(hq(µ
∗
q)) (12)

w∗
q =

√

2

f(x∗q)
(13)

where

G(µ) =
∑

q

∫ µq

0
hq(α)dα

andhq(α) is the only positive solution of the equation:




kq
√
2

√

f(x∗q)
+ λq





(

1− fd(x
∗
q)
)

= α

The proof is given in Appendix B.

4.2. Stability analysis of the equilibrium point

Our conjecture is that, under reasonable traffic conditions, the equilibrium
point can be made attractive by carefully designingfd(x), fm(x) andz.

Even if we are unable to provide a general formal proof of our claim, we report
a wide range of partially numerical and analytical results in support of our thesis.

We start analyzing the simplified case in which delays to propagate packets
from the sources to the queue in (5) are neglected along with delays to propagate
congestion signals in (8). In this way the dynamical system described by (4), (5),
(7) and (8) becomes a more treatable pure ordinary differential system (with no
delays). Furthermore we assumez = 1; hence,̂xq(t) = xq(t) and system solutions
are unequivocally determined by the vector(X(t),W (t)) describing queues and
windows dynamics. Under these assumptions we are able to formally prove local
stability of the equilibrium point in the three previously considered scenarios.
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4.2.1. Work-conserving server
The local asymptotic stability of the equilibrium point canbe proved, in this

case, by using the Lyapunov function technique.
Suppose that the system is att = 0 in an initial state(X(0),W (0)) sufficiently

close to the equilibrium point(X∗,W ∗). We denote with(X(t),W (t)) the trajec-
tory of the system and consider the following functional (Lyapunov function):

L(X(t),W (t)) = max
q

(xq − x∗q)
2 + β

∑

q

Mq(wq − w∗
q)

2

which represents a sort of “distance” between the current state and the equilibrium
point. Note that by definition: i)L(X(t),W (t)) ≥ 0; ii) L(X(t),W (t)) = 0, if
and only if(X(t),W (t)) = (X∗,W ∗). SincedL(X(t),W (t))

dt
< 0, for almost every

t > 0 (as discussed in Appendix C), we can conclude that the “distance” between
the current system state and the equilibrium point is reducing with time (i.e., the
trajectory gets closer and closer to the equilibrium point).

Beyond local stability, for different parameters settings, starting from 100 ran-
domly chosen initial conditions, in all cases we have numerically observed the
convergence toward the equilibrium point of the solutions of the simplified (no
delays) dynamical system of equations.

4.2.2. IQ switch
In case of the IQ switch, a formal proof can be done only in the special case

of a2× 2 IQ switch by repeating arguments similar to the previous case and using
the following Lyapunov function:

L(X(t),W (t)) = max
π

(U(π) − U∗)2 + β
∑

q

Mq(wq − w∗
q)

2 + γ
∑

q

(xq − x∗q)
2

whereπ is one of theP ! possible matchings,U(π) its corresponding weight, and
U∗ the weight of the MWM at the equilibrium. Also in this scenario, for several
different parameters settings, starting from 100 randomlychosen initial conditions
we have always observed the numerical convergence of the solutions toward the
equilibrium point. The experiment was repeated both for2 × 2 and 4 × 4 IQ
switches.

4.2.3. Wireless scenario
In this case the local asymptotic stability of the system canbe proved by lin-

earizing the system around the equilibrium point and checking the stability of the
linearized system. We report a sketch of the stability prooffor the linearized system
in Appendix D.
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Also in this case, numerical experiments have shown that solutions converge to
the equilibrium point starting from randomly chosen initial conditions, suggesting
a global form of attractiveness for the equilibrium point.

4.3. Considering delays for the congestion signals

When considering the delays to propagate packets from sources to queues in
(5), and to propagate congestion signals in (8), the problemof defining general
conditions under which the equilibrium point is attractivebecomes harder.

In the simpler case in which TCP sources interact with a single FIFO server
implementing an AQM scheme, sufficient conditions for localstability have been
obtained linearizing the system fluid equations in [18]. As aresult, paper [18]
provides guidelines for the design of AQM parameters based upon simple relations
to the physical parameters of the system such as the number ofinteracting TCP
connections, the round-trip time and the capacity of the queue. However, the same
guidelines cannot be applied in our scenarios.

Fig. 4 shows the dynamics of a work conserving LQF server managing two
RED queues (Q = 2). The trajectories were obtained by solving numerically the
original system of delayed differential equations in (4)-(9), using an ad-hoc solver
developed in C. Physical parameters were:M1 = M2 = 100, r1 = r2 = 10 ms,
τ1 = τ2 = 0.4 and µ̂ = 105 pkt/s. Packets were dropped according to RED
loss profile. No marking was allowed. The RED parameters were: minth = 100,
maxth = 500 packets,pmax = 0.1, z = 10−4. Four trajectories corresponding to
four different initial conditions are plotted in Fig. 4. Allthe trajectories converge
to the equilibrium point.
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Under the same scenario, we investigated the settings of theRED parameters
for which the system achieves an equilibrium point. In Fig. 5we show the stability
regions, for different RED parameters and number of TCP flows. Coherently with
the approach followed in [18], we plot the stability regionsin function of z and
Lred, defined asLred = pmax/(maxth−minth). Given each specificz value,
we implemented a binary search to find the maximum value ofpmax for which
an equilibrium point was reached in less than 3 seconds. Compared with Fig.12
of [18], the stability regions show a peculiar behavior: forlarge number of flows,
any value ofpmax ∈ (0, 1) allows the system to converge, whereas for smaller
number of flows, the maximum allowedpmax shows a non-monotonic behavior.
This shows that the design guidelines for a single FIFO queuecannot be applied in
our scenarios. The investigation and proper characterizations of the design criteria
for our scenarios have been left for future investigation.

5. System performance and fairness

In this section we explicitly characterize the equilibriumpoint for the three
previously defined scenarios, analyzing system performance and fairness.

Before proceeding, however, we need to agree on an acceptable definition of
fair bandwidth allocation to TCP flows. This choice is rathercritical in light of the
fact that no global consensus exists in the networking community on what a fair
allocation is. Our opinion is that, in the Internet context,a good reference model
is constituted by the bandwidth share obtained by TCP connections traversing a
FIFO buffer. In such a case, bandwidth is evenly distributedby the system to
homogeneous connections (i.e., connections with the same round-trip time), while
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bandwidth is distributed among inhomogeneous connections(i.e., connections with
different round-trip times) proportionally to the inverseof the connection round trip
time, thereby achieving a rough form of proportional fairness. In the following, we
will qualify the above reference bandwidth allocation as the “fair allocation”.

5.1. Work-conserving server
In this simple case, it is rather straightforward to obtain that the equilibrium

point defined by (10)-(13) shows very surprising properties:

x∗q = x∗ w∗
q = w∗ ∀q (14)

µ∗
q = (kqw

∗ + λq)(1− fd(x
∗)) (15)

i.e., at the equilibrium queues have the same length, sources have the same average
window size, and service is provided to regulated traffic aggregates proportionally
to parameter4 kq.

The values forx∗ andw∗ can be explicitly computed; for example, in case
fm(xq) = 0 andλd = 0; they are given by:

x∗ = f−1
d

(4 + β2 −
√

β4 + 8β2

4

)

w∗ =
β +

√

β2 + 8

2

whereβ =
µ̂

∑

q kq
.

The long-term per-flow throughputsq is determined by the parameters at the
equilibrium point through the simple relation

sq =
w∗

rq
(1− fd(x

∗)) (16)

Hence, the system bandwidth is distributed among connections proportionally to
the inverse of the round-trip time, guaranteeing the same average share to homo-
geneous connections.Thus, LQF provides the same long term bandwidth share
among connections that we expect when adopting a conventional FIFO policy at
the buffer!

As final remark we notice that, sincex∗q > 0 (see proof of Theorem 1), it
follows

∑

q µ
∗
q = µ̂, and consequently, the system is always able to efficiently

exploit the available bandwidth.

4The fact that all queues are of the same length at the equilibrium immediately derives from the
fact that all service ratesµq are different from 0 at the equilibrium (see proof of Theorem1). As a
consequence sources experience the same marking/loss probability, and thus, have the same window
size.
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5.2. IQ switch

In this case, the analytical characterization of the equilibrium point requires
the solution of a system of2P 2 + 2P − 1 non-linear equations. To simplify the
analysis, we assume that all the Virtual Output Queues are fed by some regulated
traffic sources (i.e., for everyq, kq > 0); we however emphasize that the analysis
can be easily extended to the more general case.

First we point out that the equilibrium point must satisfy the following impor-
tant property:the weightU(π) of any possible matchingπ, is always equal toU∗

at the equilibrium, i.e.:

U(π) =
∑

q∈π

x∗q = U∗ ∀π

This property generalizes the property exhibited by LQF in the work-conserving
queue.

As a consequence,X∗ lies in the linear span ofM ⊂ IRN2

+ , with M =
{I1, I2, . . . , IP , O1, O2, . . . , OP }, whereIp is a vector whoseq-th elementIpq is
one if q ∈ IQ(p) and null otherwise; andOp be a vector whose elementOp

q is one
if q ∈ OQ(p), and null otherwise. Dimension of span(M) is 2P − 1, henceX∗

can be expressed as a linear combination of2P − 1 vectors selected withinM.
Choosing the first2P − 1 independent vectors inM, we can write:

X∗ =

P
∑

p=1

αpI
p +

P−1
∑

p=1

βpO
p (17)

for some positive values of the parametersαp andβp.
On the other hand, ratesµ∗

q and queue sizesx∗q are deterministically related by
the following systems of non-linear equations:

(

kq
√
2

√

f(x∗q)
+ λd

)

(1− fd(x
∗
q)) = µ∗

q 1 ≤ q ≤ Q (18)

We notice that, since at the equilibrium point all the queuesare non empty
(i.e.,x∗q > 0, ∀q), the service rate vector at the equilibrium maximizes the global
throughput i.e.,

∑

q∈IQ(i) µ
∗
q =

∑

q∈OQ(j) µ
∗
q = 1 for every inputi and outputj.

The properties of the equilibrium point suggest that also inthis case the system
tends to evenly distributing the bandwidth among homogeneous TCP connections
(at the equilibrium), while it tends to distribute the bandwidth among inhomo-
geneous connections proportionally to the inverse of theirround-trip delay. This
feeling is confirmed by our numerical experiments; we have focused on a4 × 4
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IQ switch, loaded with inhomogeneous connections according to the following
class of scenarios, described by connection matrixM = [Mij ] and RTT matrix
R = [Rij ]:

M =









m0 αm0 α2m0 α3m0

α3m0 m0 αm0 α2m0

α2m0 α3m0 m0 αm0

αm0 α2m0 α3m0 m0









R =









r0 βr0 β2r0 β3r0
β3r0 r0 βr0 β2r0
β2r0 β3r0 r0 βr0
βr0 β2r0 β3r0 r0









whereMij is the number of connections flowing from inputi to outputj, andRij

is the corresponding average round-trip time;m0, r0, α andβ are free positive
parameters. We have tried several cases for different values of α andβ ranging
in the interval[1, 3]. In all cases the numerical results showed that relative band-
width obtained by connections at the equilibrium is perfectly proportional to1/β,
independently from the actual values of the other scenario parameters.

We emphasize that not always a perfectly “fair” (in the previously specified
sense) distribution of the bandwidth is achieved in IQ switches. Bandwidth shares
among TCP flows deviate from the “fair” distribution when traffic asymmetries
among inputs or outputs ports are established (note that previous traffic patterns
were completely symmetrical with respects to both inputs and outputs ports). We
notice that, in the latter cases, forcing a “fair” distribution of bandwidth among
TCP flows would cause a not complete exploitation of the switch bandwidth.

To better understand the behavior of the max-scalar policy,consider a traffic
scenario comprisinghomogeneousTCP flows (i.e., the same RTT matrixR as be-
fore but withβ = 1) and a different connection matrixM ′, in which the number
of connections at input 4 is increased by parameterγ > 1 with respect toM :

M ′ =









m0 αm0 α2m0 α3m0

α3m0 m0 αm0 α2m0

α2m0 α3m0 m0 αm0

γαm0 γα2m0 γα3m0 γm0









The results are shown in the following matrixT = [Tij ], whereTij is the average
throughput experienced at VOQij:

T =









ζ ζ ζ ζ
ζ ζ ζ ζ
ζ ζ ζ ζ

ζ/γ ζ/γ ζ/γ ζ/γ








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whereζ =
1

m0(α2 + 1)(α + 1)
.

We notice that flows traversing input port 4 are penalized in throughput with
respect to other flows; this effect however has an easy explanation: connections
traversing input 4 are bottlenecked at the input port where they obtain the maximum
possible “fair” share. All the other connections evenly share the residual switch
bandwidth. Note that a perfectly “fair” distribution of bandwidths is possible only
at the cost of reducing the throughput of some connections (those not traversing
input 4) without any beneficial effect on the other connections (those traversing
input 4). Thus the system, in this case, distributes bandwidth according to a max-
min fair scheme.

Several other numerical experiments (whose results are notreported for
brevity) have confirmed that themax-scalar policy at the equilibrium distributes
bandwidth among the connections according to a weighed max-min fairness
scheme in which connection weights are proportional to the inverse of the con-
nection round-trip time.

5.3. Wireless scenario

In this case, as already observed, queue services are provided, by the max-
scalar policy, proportionally to the queue lengths; at the equilibrium:

µ∗
q =

x∗q
‖X∗‖2

µ̂

The quantitiesx∗q andw∗
q can be obtained solving the following system of2q non-

linear equations,∀q:


















(kqw
∗
q + λq)(1− fd(x

∗
q)) =

x∗q
‖X∗‖2

µ̂

w∗
q =

√

2

f(x∗q)

Note that, differently from what happens for a work-conserving server, in this
scenario the rule according to which bandwidth is subdivided among connection
aggregates has an impact on the global system throughput. This is due to the
fact that vectors which lie on the boundary of regionS (i.e., vectors satisfying
∑

q(µ
∗
q)

2 = µ̂) do not correspond to the same global system throughput
∑

q µ
∗
q.

Maximum system throughput is achieved when all the aggregates receive the same
bandwidth (µ∗

q = µ̂/Q for every q), irrespectively of their parametersMq and
rq. We notice, however, that in this case a significantly unfairdistribution of
throughputs to individual connections may result when parametersMq, rq orλq are
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Figure 6: Wireless scenario with TCP traffic only: server unbalanceχ (on the left) and fairness index
η (on the right) vs.M1/M2, for different values of the ratior1/r2.

strongly unbalanced. On the contrary the system that fairlydistributes bandwidth

to connections (i.e. obeys to the law
µ∗
q−λq

µ∗

q′
−λq′

= kq/kq′ , ∀q, q′) may be significantly

inefficient in terms of system throughput.
We consider a wireless station hosting RED two queues (i.e.,Q = 2), to ease

the graphic presentation of numerical results. However allconsiderations apply to
the more general caseQ > 2. To obtain the solutions of the system of non-linear
equations, we have developed an an-hoc solver based on GSL library [14].

We focus on two performance indexes. First, thefairness indexη defined as
the ratio between throughput-delay products of TCP flows belonging to first and
the second aggregateη = r1s1/r2s2, having definedsq according to (16). Note
that η = 1 corresponds to a “fair” distribution of bandwidth among TCPflows.
Second, we consider theservice unbalanceχ among the two queues, defined as
χ = µ∗

1/µ
∗
2.

We have fixed the service rate
√
µ̂ = 105 packets/s,M1 = 100 flows and

r1 = 10 ms. We have variedM2 between 10 to 1000 flows, andr2 between1 and
100 ms, for a total of 49 different settings.

First we consider the case in which the wireless server is fedby regulated
traffic, only i.e.,λ1 = λ2 = 0. Fig. 6 showsη (on the right) andχ (on the left), in
function of the ratioM1/M2, for different values of the ratior1/r2.

Bandwidth is distributed between aggregates in a rather complex way, in this
case; an aggregate gets more and more bandwidth by the systemwhen the relative
number of its flows increases. However, sinceχ exhibits a sub-linear dependence
from parameterM1/M2, flows belonging to more numerous aggregates are pe-
nalized with respect to flows belonging to less numerous aggregates, as shown in
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Figure 7: Wireless scenario with unregulated traffic (λ2 =
√
µ̂/3): server unbalanceχ (on the left)
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Fig. 6. Bandwidth shares obtained by connections depend also on round trip-time:
larger bandwidth is obtained by aggregates of connections with shorter round-trip
times. However, since the flow bandwidth share increases sub-linearly with the
inverse of round-trip time, flows with shorter round-trip get less than their “fair”
share.

We consider now the case in which unregulated traffic arrivesat queue 2 (λ2 =√
µ̂/3). Fig. 7 reportsχ andη. With respect to the previous case, the presence

of unregulated traffic at queue 2 induces a moderate perturbation of the relative
connections share, penalizing flows belonging to aggregate2.

Furthermore, we investigated the effect ofpmax, which is proportional to the
slope of the RED loss profile, i.e. to the “aggressiveness” ofthe AQM scheme. We
consider the original scenario with only regulated traffic,in which we setr1 =
10 ms andr2 = 100 ms, i.e. the caser1/r2 = 0.1 in Fig. 6. Now Fig. 8 shows
both the server unbalance and the fairness index for different values ofpmax and
different values ofM1/M2. Note thatkq represents also the minimum arrival rate
(i.e. obtained forwq = 1) at queueq. WhenM1/M2 is small, thenk1 ≈ k2;
this condition corresponds to a symmetric scenario (even ifheterogeneous) and
the server serves both queues almost at the same rate and achieves the maximum
fairness, independently frompmax. However, for large values ofM1/M2, k1 ≈
100k2 and the server serves the first queue most of the time. This unbalance is
exacerbated by a more aggressive RED that penalizes the queue with smallerkq,
i.e. with smaller arrival rate. This is also confirmed by the fairness index, which
varies by a factor 2 for different values ofpmax; smaller values ofpmax appear to
be preferable. We investigated also other scenarios with smaller r1/r2 ratio, and
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the effect ofpmax becomes more negligible. We do not report here the detailed
results for the sake of space.

In conclusion, in the wireless scenario the max-scalar policy exhibits a complex
behavior reaching an operational point which is middle way between the maximum
throughput operational point (µ∗

1 = µ∗
2) and the point corresponding to a fair dis-

tribution of bandwidth to connections (µ∗
1−λ1

µ∗
2
−λ2

= k1/k2). So doing, a reasonable
trade off is achieved between the conflicting requirements of optimizing global
performance (system throughput) and fairly distributing bandwidths among TCP
flows.

6. Validation of the model

As final step we validate the prediction of our model against adetailed simu-
lator at packet level. To this end, we developed in OMNeT++[30] modules repre-
senting the systems of queues implementing themax-scalarscheduling policy. In
simulations, we fed the queues with standard TCP new-Reno sources provided by
the INET Framework [19].

First, we consider a simple scenario comprising a 1 Gbit/s work-conserving
server managing three queues (Q = 3), and fed by 420 TCP flows. These TCP
flows are distributed among the three queues as follows:M1 = 240, M2 = 120,
M3 = 60. Round-trip times of TCP flows have been randomly chosen according
to a uniform distribution with support in the interval[26, 30] ms. A RED AQM
mechanism is implemented at the queues (minth = 10, maxth = 500, pmax =
0.05, z = 10−5). A comparison between model predictions (labeled TEO) and
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Figure 9: Scenario 1: bandwidth shares among TCP aggregates. Bandwidth obtained by aggregates,
averaged over interval[20, 35] s, are 604, 271 and 125 Mbit/s, respectively.

simulation results (labeled SIM) is reported in Fig. 9, where the bandwidth shares
evolution for the three traffic aggregates are plotted. Simulation points are obtained
by averaging the bandwidth obtained by aggregates within 200 ms windows. The
good agreement between model predictions and simulation results confirms that
bandwidth shares obtained aggregates are roughly proportional to parametersMq.

As second scenario, we consider a case in which all server queues are fed by
the same number of TCP flows (140); however flows traversing different queues
have different round-trip times. Round-trip times of flows traversing queue1 are
uniformly distributed in the interval[18, 22] ms; those traversing queue2 are dis-
tributed in the interval[36, 44] ms; those traversing queue3 are distributed in the
interval [54, 66] ms. The same parameters of the previous scenario were used to
tune the RED mechanism. Also in this case, a good agreement between model
predictions and simulation is shown in Fig. 10. The server bandwidth is distributed
to the aggregates proportionally to the inverse of their round-trip times.

As third scenario we have considered a4 × 4 IQ switch with ports running at
1 Gbit/s. The analyzed traffic scenario, already consideredin the previous section,
is represented by matricesM andR (Sec.5.2) withm0 = 28, α = 2, β = 1 and
r0 = 28 ms. The same RED parameters of the previous scenarios were used. The
throughput obtained by simulation, averaged over interval[20, 35] s, is reported for
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each input-output pair in the following matrix:

TSIM =









73 141 268 518
524 71 139 266
270 531 67 132
133 257 526 84









Mbit/s

which matches very well with the average throughput estimated by our model:

TTEO =









67 133 267 533
533 67 133 267
267 533 67 133
133 267 533 67









Mbit/s

These results validate the model and confirm that IQ switch bandwidth is efficiently
exploited by the max-scalar policy as predicted by the model; moreover the long-
term bandwidth shares are almost exactly proportional toMq, as expected by the
model.

At last, we emphasize that we have validated the model predictions against
simulations in several other scenarios, which are not described in details for brevity.
In all cases the simulation results have confirmed model predictions.
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7. Conclusions

Max-scalar scheduling policies have previously been proposed to optimize the
global system performance in several application contextssuch as wireless net-
works, satellite networks and high-capacity router architectures.

Optimality of such scheduling policies was proved, however, only under as-
sumptions of stationarity and admissibility for the trafficflowing through the sys-
tem of queues. It is unclear how they behave in the case of either non stationary, or
rate-adaptive traffic sources, that may induce temporary overloads of some system
architectural elements.

In this paper we investigated how max-scalar scheduling policies behave under
TCP traffic sources. To this end, we have described the average dynamics of both
traffic sources and switch queues through a system of Delay Differential Equations
(DDEs), whose properties were throughly analyzed.

Our findings were rather surprising and intriguing; the adoption of max-scalar
scheduling policies along with carefully designed AQM schemes permits to effi-
ciently exploit the bandwidth of complex systems such as either IQ switches or
wireless stations without negatively affecting the fairness of TCP flows.

We recognize that research on max-scalar scheduling policies has been driven
so far mainly by speculative interest, being such policies largely ignored in prod-
ucts implementations. Still, we believe that max-scalar scheduling policies offer in-
teresting potentialities in application contexts where bandwidth over-provisioning
has significant costs (like in wireless networks). For thesereasons the results of our
investigation, shedding some light on important aspects that are often neglected,
can stimulate a debate on the implementability of such scheduling policies at nodes.

Complementary to our work, many open questions can be foreseen and are left
for further investigation. First, a deeper characterization of the convergence region
is needed to understand the range of AQM parameters that are compatible with a
stable behavior of the system. Second, the sensitivity analysis of the equilibrium
points is needed to design accurately the AQM scheme and meeta suitable fairness
level. Third, the adopted methodology can be used to design new AQM schemes,
tailored to support regulated traffic interacting with max-scalar scheduling policies.
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Appendix A. A brief survey on fluid limits

Fluid limits methodology has been originally introduced byDai [38] to estab-
lish the stability of cyclic networks of queues. Fluid limits have been extended
and successfully applied for the characterization of throughput/delay properties of
computer networks [6, 7, 9, 10].

The classical fluid limit approach applies to queuing systems with infinite
buffer capacity subject to unregulated sources. Consider asystem of infinite ca-
pacity queues whose evolution is driven by:

xq(t) = xq(τ) + aq(τ, t)− µq(τ, t) with τ < t

whereaq(τ, t) represents the number of arrivals at queueq in [τ, t), andµq(τ, t)
represents the number of customers served at queueq in [τ, t). The corresponding
fluid limits are obtained by applying a fluid scaling to queue dynamics, i.e. by
considering for any5. r ∈ IN, xrq(t) = xq(rt)/r and then taking the limit for large
r:

x̄q(t) = lim
r→∞

xrq(t)

where the limit operator must be interpreted as a uniform limit over compact inter-
vals for a properly defined subsequence of functionsxrnq (t) (according to a weak
Skorohod topology). Observe that if we assume that arrivalssatisfy the strong law
of large number, i.e.,limt→∞ aq(τ, t)/(t− τ) = λq w.p.1 for someλq ≥ 0 and
everyτ , thenx̄q(t) satisfies:

x̄q(t) = x̄q(τ) + (t− τ)λq − µ̄(τ, t)

whereµ̄(τ, t) = limr→∞ µ(rτ, rt)/r. The importance of fluid limits resides in the
fact that the study of the fluid limiting trajectories̄xq(t) allows to gather insights
on the stability of the original system of queues; in particular, if x̄q(t) = 0 for any
t > t0, the original queue is (rate) stable, otherwise it is unstable. We remark that
that previous technique can be applied to both discrete timeand continuous time
queuing systems. In particular, [10] has derived the fluid limits equations for IQ
switches under max-weight scheduling policies.

When we considering TC/IP networks, the previous approach cannot be di-
rectly applied because of the finite storage queuing systems. However fluidifica-
tion can be still successfully applied reinterpreting the meaning of the fluid scaling
operator according to the guidelines proposed in [6, 7].

5In this section,r is used as a mute variable and it is not related torq appearing in the previous
sections
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First, we define a sequence of scaled systems. Therth system is obtained by
the original one by scaling up the number of TCP sourcesM r

q = rMq and the
transmission speed of queuesµr

q = rµq(t). By doing so, the per-flow share of the
capacity remains constant with respect tor. AQM profiles are scaled as well in
therth system, according tof r(x) = f(rx). Finally, we define a rescaled version
of the queue sizexrq(t) = xq(t)/r and we analyze its behavior asr grows large:
x̄q(t) = limr→∞ xrq(t). Following the same approach in [6, 7], it can be shown
that x̄q(t) satisfies the fluid equations described in Sec. 3.1. Observe that fluid
trajectories, in our case, describe the limiting dynamics of very high speed TCP/IP
systems, since they are obtained scaling up the datarate of the bottleneck along
with the number of TCP flows.

Appendix B. Proof of Theorem 1

The stationary equilibrium is independent from the temporal delays within the
system of different equations. Hence, we neglect the temporal delays.

By combining (4) and (8), the equation describing the TCP dynamics becomes:

dwq(t)

dt
=

1

rq
−

w2
q(t)

2rq
f(xq(t)) (B.1)

The equilibrium point,(X∗, X̂∗,W ∗), by definition, satisfies the set of algebraic
equations obtained by: (5), (7), (9), (B.1), setting to zerothe time derivatives. As a
consequence,(X∗, X̂∗,W ∗) is an equilibrium point of the dynamical system iff it
satisfies:

1

rq
=
(w∗

q )
2

2rq
f(x∗q) (B.2)

(kqw
∗
q + λq)(1− fd(x

∗
q)) =µ∗

q (B.3)

x̂∗q =x∗q (B.4)

µ∗ =argmax
α∈S

∑

αqx
∗
q (B.5)

Note that, at the equilibrium point, for everyq, it must bef(x∗q) > 0 andw∗
q > 0,

otherwise (B.2) cannot be satisfied; as a consequence, necessarily from assumption
(iv) of the theorem, it resultsx∗q > 0 and thus (B.3) (derived from (5)) is the only
relevant case describing the fluid window evolution.

Observe that (B.5) can be rewritten in the following way, choosingµ∗ ∈ S:
∑

q

(µ∗
q − ηq)x

∗
q ≥ 0 ∀η ∈ S (B.6)
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Now (B.3) and (B.2) allow to algebraically relateµ∗
q andx∗q , indeed from (B.2):

w∗
q =

√

2

f(x∗q)

and thus substituting in (B.3) we obtain:




kq
√
2

√

f(x∗q)
+ λq





(

1− fd(x
∗
q)
)

= µ∗
q (B.7)

The function on the left hand side is strictly decreasing with respect to its argument,
x∗q ≥ 0, moreover forx∗q → 0 it tends to+∞, while for x∗q = Bq, by assumption
(v), it is null. As a consequence for every value ofµ∗

q, (B.7) always admits one
and only one solution inx∗q. We denote withhq(µ∗

q) this solution. By construction
x∗q = hq(µ

∗
q), and0 < hq(µ

∗
q) ≤ Bq. At last,hq(µ∗

q) is strictly decreasing with its
argument. Considering again (B.6),µ∗ satisfies:

∑

q

(µ∗
q − ηq)hq(µ

∗
q) ≥ 0 ∀η ∈ S

Define:

G(µ) =
∑

q

∫ µq

0
hq(x)dx

whereG(µ) by construction is a strictly concave function as it can be easily verified
by computing its Hessian (we recall thathq() is a strictly decreasing function, and
from assumption (iii) it is differentiable). Thus condition (B.6) can be rewritten as:

(η − µ∗)∇G(µ∗) ≤ 0 ∀η ∈ S (B.8)

We conclude our proof, invoking the following lemma.

Lemma 1. In order to satisfy condition (B.8)µ∗ must be the only solution of the
following optimization problem:

µ∗ = argmax
µ∈S

G(µ) (B.9)

First, observe that, sinceG(µ) is strictly concave andS is compact and convex,
(B.9) admits one and only one solution.

Second, we prove that the satisfaction of condition (B.9) provides a necessary
condition for the satisfaction of (B.8). Indeed, assume that µ∗ does not satisfy
(B.9), then there existsη ∈ S such that:

G(η) > G(µ∗)
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However, due to the concavity ofG(µ):

G(η) ≤ G(µ∗) + (η − µ∗)∇G(µ∗)

from which(η − µ∗)∇G(µ∗) > 0, which contradicts (B.8).
Finally, the fact that the solution of (B.9) also satisfies (B.8) is an immediate

consequence of the Karush Kuhn-Tucker conditions.

Appendix C. Stability of the equilibrium point: work conser ving server

In this appendix we prove thatdL(X(t),W (t))
dt

< 0 almost for everyt > 0
around the equilibrium point. To simplify the calculationswe suppose that the
AQM scheme adopts a pure marking policy at the equilibrium. However the argu-
ments reported in this proof can be extended in a straightforward way to the more
general case.

Since xq(t) and wq(t) are by definition absolutely continuous functions,
L(X(t),W (t)) = maxq(xq(t)− x∗)2 + β

∑

q Mq(wq(t)− w∗)2 is an absolutely
continuous function, and thus it is differentiable almost for everyt > 0. In the
following we will show that wheneverdL(X(t),W (t))

dt
exists, it is negative.

We start by referring the results from Section 5.1; at the equilibrium point
every queue has the same length, and every source have the same average window
size, i.e.,∀q, x∗q = x∗ andw∗

q = w∗. From (14) and (15), wherefd(x∗) < 1
andw∗ > 0, it holds µ∗

q > 0 for every q. We denote withµmin the minimum
achieved rate at the equilibrium:µmin = minq µ

∗
q. Now fix time t and suppose

maxq{|xq(t)− x∗|, |wq(t)−w∗|} < δ for some smallδ > 0. LetQ0(t) be the set
of queues which are, at timet, at maximum distance from the equilibrium queue
sizes, i.e.,Q0(t) = argmaxq(xq(t)− x∗)2.

If |Q0(t)| = 1, no problems of differentiability forL(X(t),W (t)) arise, how-
ever if |Q0(t)| > 1, L(X(t),W (t)) is not guaranteed to be differentiable att.
A sufficient and necessary condition for differentiabilityis thatQ0(t) = Q0(τ)
whenever|τ − t| is sufficiently small. This implies that all the queues with same

length must have the same derivative, i.e.,
dxq(t)

dt
=

dxq′(t)

dt
for everyq andq′ be-

longing toQ0(t) having the same length (moreover queues with different lengths
must have the same derivative when taken in absolute value).

Let us now partitionQ0(t) into two subsets,Q+
0 (t) andQ−

0 (t), such that:
xq(t) ≥ x∗ for any q ∈ Q+

0 (t) andxq(t) < x∗ for any q ∈ Q−
0 (t). The ser-

vices at those queues satisfy:
∑

q∈Q+

0
(t)

µq(t) = µ̂ and
∑

q∈Q−

0
(t)

µq(t) = 0
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whereµ̂ is the server capacity.
Case 1.First we assume that|Q+

0 (t)| < Q and|Q−
0 (t)| < Q; then:

∑

q∈Q+

0
(t)

dxq(t)

dt
=

∑

q∈Q+

0
(t)

[

kqwq(t) + λq

]

(1− f(xq(t))) − µ̂

∑

q∈Q−

0
(t)

dxq(t)

dt
=

∑

q∈Q−

0
(t)

[

kqwq(t) + λq

]

(1− f(xq(t)))

As discussed above, all queues inQ0(t) must have the same derivative. Hence,
after some calculations we obtain:

q ∈ Q+
0 (t)→ |Q+

0 (t)|
dxq(t)

dt
<

∑

q∈Q+

0
(t)

(δkq + µ∗
q)− µ̂

q ∈ Q−
0 (t)→ |Q−

0 (t)|
dxq(t)

dt
>

∑

q∈Q−

0
(t)

(−δkq + µ∗
q)

If we now definêk = maxq kq, and observe that

µ̂−
∑

q∈Q+

0
(t)

µ∗
q ≥ µmin and µ̂−

∑

q∈Q−

0
(t)

µ∗
q ≥ µmin

we obtain:

q ∈ Q+
0 (t)→

dxq(t)

dt
< δk̂ − µmin

|Q+
0 (t)|

q ∈ Q−
0 (t)→

dxq(t)

dt
> −δk̂ +

µmin

|Q−
0 (t)|

For enough smallδ,

q ∈ Q+
0 (t)→

dxq(t)

dt
< − µmin

2|Q+
0 (t)|

< −µmin

2Q

q ∈ Q−
0 (t)→

dxq(t)

dt
>

µmin

2|Q−
0 (t)|

>
µmin

2Q

and we can claim:

dmaxq′(xq′(t)− x∗)2

dt
= 2

dxq(t)

dt
(xq(t)− x∗) < −µmin

Q
|xq(t)− x∗| (C.1)
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Now consider sourceq; for smallδ we can exploit a first order Taylor’s expan-
sion ofwq(t) around(w∗, x∗); from (B.1):

dwq(t)

dt
=
−2w∗f(x∗)(wq(t)−w∗)− f ′(x∗)(w∗)2(xq(t)− x∗)

2rq
(C.2)

and we can claim:

1

2

d(wq(t)− w∗)2

dt
=

dwq(t)

dt
(wq(t)− w∗) =

− 2w∗f(x∗)(wq(t)− w∗)2

2rq
− f ′(x∗)(w∗)2

2rq
(wq(t)− w∗)(xq(t)− x∗) + o(δ2)

(C.3)

wheref ′(x∗) =
df(x)

dx

∣

∣

∣

∣

x=x∗

. Combining (C.1) and (C.3), we obtain:

dL(X(t),W (t))

dt
< −µmin

Q
|xq(t)−x∗| − 2βw∗f(x∗)

∑

q

[

kq(wq(t)−w∗)2
]

−

βf ′(x∗)(w∗)2
∑

q

[

kq(wq(t)− w∗)(xq(t)− x∗)
]

+ o(δ2)

Note that the first two terms are negative, while the latter has an indefinite sign.
However the whole is negative ifβ is chosen such that:

δf ′(x∗)(w∗)2
∑

q

kq <
µmin

βQ

Case 2.Now we consider the case|Q+
0 (t)| = Q or |Q−

0 (t)| = Q i.e., all the queues
at timet are of the same lengthxq(t) = x(t). Repeating similar considerations as
before, we obtain:

dxq(t)

dt
(x(t)− x∗) ≤ 1

Q
(1− f(x(t)))(x(t)− x∗)

∑

q

[

kq(wq(t)− w∗)
]

From which, exploiting a first order Taylor’s expansion off(x) aroundx∗ and then
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(C.2), it follows that:

dL(X(t),W (t))

dt
=

2

Q

∑

q

[

kq(wq(t)− w∗)
]

(x(t)− x∗)(1− f(x∗))−

2

Q
f ′(x∗)(x(t) − x∗)2

∑

q

kq − 2βw∗f(x∗)
∑

q

[

kq(wq(t)− w∗)2
]

−

βf ′(x∗)(w∗)2
[

∑

q

kq(wq(t)− w∗)
]

(x(t)− x∗) + o(δ2)

can be made always negative choosing

β >
2(1− f(x∗))

Qf ′(x∗)(w∗)2

Appendix D. Stability of the equilibrium point: wireless station

Denoting with∆wq(t) = wq(t)−w∗
q and∆xq(t) = xq(t)−x∗q , the linearized

dynamical system of equations comprises2Q equations. The first set ofQ equa-
tions are obtained linearizing (B.1):

d∆wq(t)

dt
= −

2w∗
qf(x

∗
q)∆wq

2rq
−

(w∗
q)

2f ′(x∗q)∆xq

2rq

The otherQ equations are obtained linearizing the queue dynamics equations:

d∆xq(t)

dt
= kq(1− fd(x

∗
q))∆wq − (kqw

∗
q + λq)fd

′(x∗q)∆xq−
1

2‖X∗‖2
∆xq +

1

2‖X∗‖2
∑

q′ 6=q

∆xq′

wheref ′(x∗q) =
df(x)

dx

∣

∣

∣

∣

x=x∗
q

andf ′
d(x

∗
q) =

dfd(x)

dx

∣

∣

∣

∣

x=x∗
q

.

The asymptotic stability of the equilibrium point(0, 0) in the above linearized
system of equations can be studied using standard techniques. The first step con-
sists in rewriting the above system of equations in its standard form:

dY (t)

dt
= AY (t)
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whereY (t) is the vector state

(∆w1(t),∆x1(t),∆w2(t),∆x2(t) . . .∆wQ(t),∆xQ(t))

A sufficient and necessary condition for(0, 0) to be asymptotically stable is that
matrixA is stable, i.e., all eigenvalues ofA have real part strictly negative.

We have verified the stability of matrixA computing the characteristic poly-
nomial ofA and applying the standard Routh-Hurtwits criterion; we were able to
evaluate the characteristic polynomial symbolically through Maple [22] but we do
not report the details for brevity.
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