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Robust control stability using the error loop 

 
 

Abstract - The paper formulates the error loop as a tool for designing robust stability control systems in the 
presence of structured and unstructured uncertainties. The error loop indicates that uncertainties can be 
accommodated through the design of the noise estimator, which is the unique feedback channel from plant to 
control. The real-time model that is embedded in the control unit and the noise estimator constitutes a state 
predictor. The embedded model consists of a controllable dynamics plus a disturbance dynamics fed by the noise 
estimator. It is shown that causality constraint prevents perfect cancellation of causal uncertainties (unknown 
disturbance), but makes the control law which is fed by the state predictor to play a role, thus offering a further 
degree of freedom. Employing asymptotic expansions of the closed-loop transfer functions, simple, explicit design 
formulae derive from stability inequalities. They relate closed-loop eigenvalues to model parameters and 
requirements, and define an admissible frequency band for the state predictor bandwidth. The paper restricts 
formulation to the univariate case. A simple example is provided with simulated and experimental data. 

 
Key words - Robust control, closed-loop, stability, error loop, embedded model control. 

 

1. Introduction 

1.1. Uncertainty and the error loop 

Closed-loop performance is affected by uncertain discrepancies between model and reality. Three kinds 

of discrepancies may be distinguished (Maciejowski, 1989, and Doyle, Francis and Tannenbaum, 1992) 

as in Figure 1. 

 

Figure 1 Block-diagram of embedded model and uncertainties. 
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Causal uncertainty, denoted by clouds, regards unpredictable actions, referred to as innovation, and 

formulated either as a white-noise or a bounded and arbitrary-signal class corresponding to dw  and uw  

in Figure 1. They are independent of the model state and command and only affect performance. The 

mechanism through which they affect a plant is not merely unpredictable, as they accumulate prior to be 

released. Causes of this kind are referred to as ‘unknown’ disturbance and their model, the disturbance 

dynamics D  in Figure 1, generates the signal class u ud D . The control goal is to cancel their effect less 

the innovation, as the latter occurs while the command is acting on the plant. Innovations dw  and uw  are 

necessary and sufficient for updating the state of D . They must be real-time estimated by correlating 

them to the model error me y y   through a noise estimator as in Canuto, Molano and Massotti (2010). 

This is the basic mechanism of the ‘disturbance observers’ pioneered by Johnson (1971) and Hostetter 

and Meditch (1973), and further studied and applied by Mita, Hirata, Murata and Zhang (1998), Bickel 

and Tomizula (1999), Schrijver and van Dijk (2002), Choi, Yang, Chung, Kim and Suh (2003), Katsura, 

Matsumoto and Ohnishi (2007). The Embedded Model Control of Canuto (2007) inspired by Donati and 

Vallauri (1984) develops around the concept that noise is the necessary and sufficient feedback from 

plant to control. The ensemble of noise estimator and design model, to be embedded as a real-time model 

in the control unit - hence the name embedded model - implements a one-step state predictor. 

The structured (or parametric) uncertainty  h  , denoted by a cloudy 3D box, either refers to 

discrepancies from the model class in the form of parameter uncertainty or to neglected relations between 

model variables (cross couplings). They must be distinguished from the known interconnections, that are 

denoted with  h   and must be treated as known disturbances. They have been extensively studied in the 

literature, as for instance by Chapellat, Dahleh and Bhattacharyya (1990), Foo and Soh (1993), Ross 

Barmish (1994), Calafiore and Dabbene (2002), Chen, Chou and Zheng (2005), Patre, MacKunis, 

Makkar and Dixon (2008). They may take several forms, from command-to-state to output-to state 

relations: only state-to-command relations are treated here since they affect the model eigenvalues. They 

are included in the so-called design model and implemented as a numerical simulator, but they are 

forcedly neglected in the embedded model, except for the known part h , and are surrogated by the 

unknown disturbance class uD . The advantage is that h  can be made implicitly known by ud  and 

therefore cancelled by u , thus favouring robustness of the model-based design since model-plant 

discrepancies encoded in e  are attenuated. The difficulty is that h , being output and command dependent 

cannot belong to uD , as the latter is defined as a class of command independent signals. This is one of the 

chief instability sources of any feedback control design, since feedback signals – in this case the 

estimated innovations dw  and uw  - spill components incoherent with the design model. Appropriate 

stability conditions need to be formulated and proved, which are shown to be mainly related to the noise 

estimator (and therefore to the state predictor) design. Specifically, frequency-domain design suggests to 

enlarge the state predictor bandwidth (BW) to allow estimation and cancellation of the dominant low 

frequency components. 

Unstructured uncertainty, denoted by a cloudy 3D box, refers to model-class discrepancies and 

uncertainties, which are unavoidable due to the embedded model finite order. They may take several 

forms as in Maciejowski (1989), Doyle, Francis and Tannenbaum (1992) and Ross Barmish (1994). The 

output fractional form (multiplicative form in Doyle, Francis and Tannenbaum, 1992) is adopted here as 
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in Canuto (2007) and in Canuto, Acuna-Bravo, Molano and Perez (2012). They are driven by the model 

output my  and yield the model error e  (plant minus model) as output, as follows 

  m m ye y y y w    P , (0) 

where y  is the measured plant output. The dynamic operator P  is the (uncertain) ‘neglected dynamics’, 

a term preferable to unstructured uncertainty, and yw  is the measurement error, which has been assumed 

adding to P . Components of (1) are completely neglected in the embedded model. Spilling e  to the 

command through feedback must be restricted, since, for what concerns P , it can be assimilated to a 

command-dependent output error. In addition yw  prevents accurate estimation of the innovations dw  

and uw , which difficulty leads to Kalman filter optimization (see Kwakernaak and Sivan, 1972). The 

uncertainty based design imposes to avoid noise estimation in the frequency band (usually at higher 

frequencies below Nyquist frequency) where P  dominates. 

As a result in robust design, structured and unstructured uncertainties must be accommodated by a trade-

off in the design of the state predictor bandwidth: a wider band is required to cancel structured 

discrepancies, a narrower band to prevent spilling of neglected dynamics. The design defines a stability 

interval where to place noise-estimator gains or, equivalently, the state-predictor eigenvalues. Converting 

eigenvalues into frequency domain, lower and upper bounds of the state-predictor bandwidth are 

obtained. The interval width depends on the ratio of the predictor and control-law eigenvalues, and on a 

stability margin. When the interval is void, robust design becomes unfeasible, which may be due to 

excessive stability margin (conservative design) or large uncertainty (poor modelling).  

 

Figure 2 Block-diagram of the error loop. 
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loop’ in Canuto (2007). Three main errors enter the loop in Figure 2: the model error e  defined in (1), 

the tracking error ye  and the prediction error ˆye  defined by  

 
ˆ ˆ

y m

y m m

e y y

e y y

 

 
, (0) 

where y  is the reference signal driving the loop and ˆmy  is the one-step prediction of the model output 

my . None of the above errors is measurable as they include the model output my , which is only available 

either as a signal class or from simulated runs. The corresponding measurable errors that are indicated as 

the output of the control unit in Figure 2, are made available by replacing my  either with ˆmy  or y  in (2). 

They correspond to the measured model error e , to the measured tracking error ˆye  and to the control 

error ye . They are defined as follows 

 

ˆ ˆ

ˆ ˆ ˆ

ˆ

m y

y m y y

y y y

e y y e e

e y y e e

e y y e e e e

   

   

     

. (1) 

1.2. Content of the paper 

In Section 3 the paper concentrates on the derivation and properties of the error loop. The main result is 

the following: structured and unstructured uncertainties may be accommodated by the state predictor 

sensitivity mS  and its complement mV   as shown in Figure 2. The result seems partly departing from 

most of the literature, where either the control law is dedicated to the purpose as in Solihin, Akmeliawati 

and Legowo (2011) or no distinction between control and state predictor is made. On the contrary, 

structured uncertainties must be real-time estimated so as to update the embedded model. This is 

obtained by shaping the lower-frequency part of the sensitivity mS . Unstructured uncertainties must be 

blocked from spilling into the embedded model in order to prevent instability. This is achieved by 

shaping the higher-frequency part of mV . Actually, as shown in Section 3, because of causality, which 

prevents cancelling innovation uw  in Figure 1, – uw  and dw  can only be causally estimated –, the state 

predictor is affected by the correction w c w mS S ML S  in Figure 2, right bottom, which depends on the 

control-law sensitivity cS , the controllable dynamics M  and the noise estimator wL . Causality adds a 

degree of freedom and shows how state predictor and control law intertwine in the overall control 

sensitivity S  and its complement V .  

Shaping mS  and S  is done by approximating them and their complements mV  and V  with low- and 

high-frequency asymptotes, respectively, within the Nyquist frequency band. Asymptotes can be related 

to noise estimator and control gains and to state predictor and state feedback eigenvalues. The intercept 

of the asymptotes with the zero dB line is interpreted as the (asymptotic) sensitivity and complement 

bandwidths. The main results is that a robust design accommodating structured and unstructured 

uncertainty defines an admissible region mf  of the bandwidth mf  of the state predictor sensitivity mS . 

The admissible region in turn depends on the control ratio /m cf f  , cf  being the bandwidth of cS , 

and on the stability margin 1 1  . Machinery and proof of the asymptotes are carried out step by step 

throughout the paper.  
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Main contributions are credited to be (i) the modelling procedure pivoting on the disturbance dynamics 

D  and on the driving noise as the sole plant-to-model feedback, (ii) the performance equation (63) 

including all the uncertainty contributions and their closed-loop accommodating filters, (iii) the 

derivation of (63) in Section 3, (iv) the asymptotic inequalities in Section 3 and their derivation 

throughout the paper. More sophisticated algorithms, simulation and in-field tuning may refine the 

resulting robust design. 

Formulation employs discrete-time transfer functions denoted as      y z z u zM . Sometimes z  is 

dropped. Since the paper aims to be introductory, the univariate case is treated. 

2. The embedded model and the uncertainty  

2.1. The embedded model and its realization  

2.1.1. Generalities 

A discrete-time dynamics is considered, which is associated to the time unit T , to the Nyquist frequency 

max 0.5 /f T  and to discrete times iT . The model output my  is the response to the command u  and to 

the disturbance d  as follows (see Figure 1) 

 
              
         

m y

u u c c

y z z u z d z z u z d z

d z d z w z h h

   

   

M M

x x
, (1) 

where 

      1
/c c c cC zI A B C N z z  M  (1) 

is irreducible and of order cn . To be simple,  cC N z  is assumed to be Hurwitz. The input signals u  and 

d  are scaled to the output units; yd  is the output disturbance to be used in Section 3. The disturbance d  

is decomposed into the following components: 

1) The unknown disturbance      u dd z z z D w  is driven by a noise vector dw  of size wn  through 

the irreducible dynamics   1

c d dM zI A G
 D  of order dn , with state vector dx . The disturbance 

must be rejected by the control action.  

2) The unpredictable noise  uw z  cannot be cancelled due to causality, since any sample ( )uw i  occurs 

while the command sample  u i  actuates plant and model.  

3) The nonlinear feedback    c ch hx x  depends on the state cx  of M ;  the unknown part  ch x  is 

treated as a structured uncertainty to be estimated and rejected by the control action. 

The disturbance dynamics D  plays the role of the weighting functions in Maciejowski (1989) and Doyle, 

Francis and Tannenbaum, (1992), but is designed to be parameter-free and explicitly coded in the control 

unit. A disturbance adding to the command is the simplest case, which is referred to as the collocated 

case. The not collocated case is treated in Canuto (2007). Signals dw  and uw  may be treated as white 

noise, but when statistics is unknown they may be also interpreted as bounded, arbitrary signals, whose 

average converges to a null value. Null value is therefore their best prediction.  

All the state variables of M  and D  are observable by the model output my . Low- and high-frequency 

asymptotes of M  for maxf f  are as follows 
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   

   

0

max

0 0lim /

lim /

m

f

m

f f

jf f f

jf f f 









M

M
, (1) 

where 0 0m   and 0m   imply a pole-zero excess of at least one. Since D  is sized 1 wn , it is post-

multiplied times the arbitrary transfer vector  d zL , 1wn  , in a way that no zero-pole cancellation 

occurs, and  

 
 
 

1 0lim

lim

z d d

z d d

z L

z L



 

  

  

L

L
. (2) 

Then, given  d zL  satisfying (7), we assume  

 
       

       

0

max

0 0lim /

lim /

d

f d d

d

d df f

jf jf jf f f

jf jf jf f f 









M D L

M D L
, (3) 

where 0 0 0d m   and 0d m    imply that dDL  possesses at least a unitary pole. The 
max

lim f f  

accounts for asymptotes in the region maxf f : they are due to poles in excess of the type   1
1z     

with 0 1  , and thus exclude pure delays.  

The noise dw  is multivariate, since D  is the composition of different stochastic signals, and each 

component is driven by different noise components. Moreover M  and D  are assumed to be strictly 

causal, which implies that the relevant output my  and ud  are a linear combination of state vectors only. 

D  is usually stylized from experimental spectral densities by whitening their perturbing sources as in 

Canuto and Rolino (2004) and Canuto (2008). The Embedded Model Control implements the control unit 

around equation (4) written in the form of a state equation. This entails the need of estimating the noise 

vectors  d iw  and  uw i  for updating controllable and disturbance states. As in Kalman filtering (see 

Kwakernaak and Sivan, 1972) the only way to the purpose is to extract the causal estimates w  and uw  

from the model error e  defined in (1).  

2.1.2. Example  

Consider a balanced robot arm moving, in a vertical plane, a mass m  that is distant l  from the rotation 

centre. The counter-clockwise rotation   with respect to the horizontal plane is denoted with my . The 

angular rotation my    is replaced by the angular increment T  . The arm is driven by a DC 

motor and is subject to gravity torque and friction. The total inertia on the gear output shaft is J . Gear 

backlash and torsional deformation are confined into neglected dynamics, as well as amplifier dynamics 

and LuGre friction dynamics (Canudas de Wit, Olsson, Åström and Lischinsky, 1995). Transfer 

functions and  h   in (4) hold 
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M x
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. (3) 

Parameters in (6) can be proved to hold 

 
 

0 0

1

0 0

2,  4

2d d

m m d d

f f f f T
 


 

   

   
. (3) 

The block diagram with input, state and output variables is in Figure 3. The noise size is 3wn   and the 

embedded model size parameters are 0 4n d d   . The block-diagram includes the reference 

dynamics to be explained in Section 2.3. Boxes marked with Σ  represent discrete-time integrators 

having the generic state equation 

         01 ,  0x i x i u i x x    . (4) 

Initial states are marked by a superimposed arrow. 

 

Figure 3 Block dagram of the Embedded Model of the example. 
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Similar design model and considerations apply to a ball and beam device (Keshmiri, Jahromi, Mohebbi, 

Amoozgar and Xie, 2012), when ball position is uncontrolled. The ball control would require a more 

complex dynamics than (9). 

2.2. Noise estimation and output prediction 

2.2.1. Generalities 

Noise estimation forces the embedded model to update and instantiate the signals  my i  and  ud i  into 

the realizations  ˆmy i  and  ˆ
ud i . The mark ^  denotes one-step prediction as the relevant signals only 

depend on the past measures   ,  0y i k k  . On the contrary, the noise estimates  d iw  and uw , and the 

actual (or measured) model error      ˆme i y i y i   are barred, meaning they depend on the present 

measure  y i . Thus one must distinguish between the a priori embedded model (4) and the a posteriori 

model which is implemented in the control unit and is forced by a realization e  of e . Consequently, 

unknown prediction errors establish between model signals and their prediction as follows 

 
 

ˆ ˆ

ˆˆ

y m m

d u c u

e y y

e d h d

 

  x
. (4) 

Defining the noise error as w u ue w w  , a first expression relating ê  to the errors in (12) is 

       ˆ ˆy d we z z e e z M . (4) 

To prove it, with the help of (4), rewrite the former equation in (12) as follows 

        ˆˆ =m m u u c c u u cy y u d w h h u d w h        M x x M x . (5) 

Equation (14) yields (13) with the help of the second equation in (12). 

A further expression derives from the linear and time-invariant noise-estimator, which is driven by the 

measured model error e  and is partitioned as follows  

 
     
     

d d

u w

z z e z

w z z e z





w L

L
,  (5) 

where dL  and wL  are suitable transfer functions having finite gains for 1z   and z  , i.e.  

 
 
 

1 0lim

lim

z w w

z w w

z l

z l



 





L

L
. (6) 

Specifically wL  must be all-pass for estimating the white noise uw , whereas dL  may be low-pass. 

Replacing (15) in (13) and dropping z  yields  

 
      ˆ

ˆ

c u u c d w

y

e h d w h e

d e e

      

  

M x x M DL L

MH MH
, (6) 
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where the output disturbance yd  in (4) has been used together with the overall feedback d w H DL L  

and the key error equality  

 ˆye e e  . (7) 

Assumptions on dL  and wL  imply H  to be proper. Inserting the sensitivity   1
1m

 S MH  and the 

complement 1m m V S  into (17), yields the second expression of ê , namely 

          ˆy m m ye z z e z z d z  V S , (7) 

which is illustrated in Figure 2.  

 

Figure 4 Embedded model and noise estimator. 

Figure 4 shows the noise estimator driving the disturbance dynamics. All the output variables of the 

embedded model are one-step anticipated as indicated by the boxed z . 

The coefficients of dL  and wL , i.e. the noise estimator gains, are fixed by the state-predictor closed-loop 

eigenvalues, i.e. by the poles of mS . The closed-loop spectrum is denoted as  

  11 ,...,1 ,...,1m m mk m       , (7) 

where c dn n n     is the order of the state predictor. Eigenvalues in (20) are written in terms of the 

complementary eigenvalue mk . When the latter is real and 0 1mk  , provides the frequency mkf  [Hz] 

through 2mk m mkf T   , where 1 1m     and 1m   as 0mk  . Asymptotic inequalities in 

Section 3 will be obtained by assuming equal and real eigenvalues, i.e.  

 2 ,  1,...,mk m mf T k      , (7) 

having set 1m  , i.e. 1m  . The frequency mf  is referred to as the state-predictor frequency. 

The low-frequency asymptote of mS  follows from (8) and holds 
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      

   

0

0 0

1

0 0 0

0
00 0 0

lim lim 1

1
lim

1 / /

m f m f d w

d

f d m
md w

jf jf

f

ff f l f f



 



    

 
   

   

S S M DL L

, (8) 

where 0 0m df f . The high-frequency asymptote of mV  follows from (6) and holds 

 
   

 

max max

1/

lim lim
m

m
f f m f f d w

m

m w

f
jf

f

f f l






 

  

 
    

 



V M DL L
. (9) 

The frequencies 0mf  and mf   are referred to as the sensitivity and complement bandwidths, and are 

proportional to mf  through the coefficients 0m  and m   that depend on the spectrum m  in (20). They 

hold 

 
0 0

0 0
c

m m m

m m m

n
w w m

f f

f f

l f





 







, (10) 

where the polynomial relation of 0wl  in (16) has been added. 

2.2.2. Example 

Since the noise size 3wn   is less than the order 0 4n d d    of the noise-to-output transfer function 

MD , a dynamic noise estimator is mandatory for stabilizing the closed-loop state predictor (embedded 

model and noise estimator), as in Canuto, Molano and Massotti (2010). To prove it, assume first a static 

noise estimator in (15), namely  

 
   

   

a a

a s

u u

w l
z e z

w l

w z l e z

   
   

   


. (11) 

The corresponding loop transfer function  d w MH M DL L  in (17) is found to be 

        
 

2

0 1 2
4

1 1

1

l z l z l
z z

z

   



M H , (12) 

and the denominator of mS  in (19) holds 

        4 2

0 1 21 1 1m z z l z l z l        . (13) 

Since the polynomial in (27) lacks the third degree coefficient, no gain set  0 1 2, ,l l l  exists capable of 

stabilizing mS .  



Published by Int. J. Mechatronics and Automation, Vol. 3, No. 2, 2013, pp.94-109 

12 
 

The only alternatives are either to add a fictitious noise on the angular increment   in Figure 3, as it is 

done by Kalman filters, or to employ a dynamic estimator capable of respecting noise layout and size. As 

an alternative interpretation of the dynamic estimator, we may think of replacing the missing input noise 

with a further output q  which is linearly independent of e . In fact, any dynamic filter, in the limit a 

delay, makes output independent of input. As a result, the number of available feedback channels from 

model error to noise double, from three to six. It can be shown that stability can only be recovered by 

tuning the six gains together with the parameters of the dynamic filter from e  to q .  

Assume a first-order filter   1
1q z e    , because the noise deficiency is just 1e wn n n   . The 

following noise estimator replaces (25): 

 
   

   

1

1

1

1

a a
d

s s

w u u

l m
z z

l m

z l z m









   
      
   

   

L

L

. (13) 

The seven gains in (28) must be explicitly related to the closed-loop eigenvalues, or, that is the same, to 

the poles of mS , whose cardinality is 5en n    . Equal eigenvalues are assumed, namely 

 1 ,...,1m m m     . Since the seven gains in (28) satisfy the following five equations 

 

2 2
0 0

3

4

5

 =5

 10

 10

 5

 

m

u w m w m

u u a m

a a s m

s m

l l f

l m l

l m l

m

 

 

 

 



  

  

  



, (13) 

their selection may be optimized. Equation (29) shows that the filter gain   is essential for recovering 

stability, as already mentioned. Moreover either the pair  ,  a um m  or  ,  a sl l  can be set to zero. The 

latter solution, i.e. 0a sl l  , is preferable, since forcing them to be zero reduces the contribution of e  

which is noisier than q . Using (29) and (24), the asymptote parameters in (22) and (23) become 

 

 1/4

4
0 0 0

/
4,  5

2 2

10
2,  

2 2

s m
m m m

u m
v m m

m
d f f

T T

l
m f f
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. (14) 



Published by Int. J. Mechatronics and Automation, Vol. 3, No. 2, 2013, pp.94-109 

13 
 

 

Figure 5 Block diagram of the embedded model plus noise estimator and control law. 

Figure 5 shows the block-diagram of the embedded model in Figure 3 plus the dynamic noise estimator 

(28) and the control law to be outlined in Section 3.1.2. Gains are denoted with circles. Dashed circles 

correspond to zero gains.  

 

Figure 6 Bode plots (magnitude) of the sensitivity transfer functions and ofits complement.  
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Figure 6 shows typical Bode plots (magnitude) of the predictor transfer functions (dashed lines), and of 

the overall transfer functions to be derived in Section 3.  

2.3. Reference dynamics and tracking error 

Performance refers to a class of reference signals y  which is assumed to satisfy the same dynamics as in 

(4), but corrupted by a known disturbance ud  as follows 

         uy z z u z d z M . (14) 

Here ud  is assumed to be known, which is not the case when it is recorded from measurements. The 

reference signal class is shaped by the open-loop command u , which is real-time computed by a 

reference generator (not treated here, see Figure 5) capable of matching operator requests and technology 

limits. Typically Model Predictive Control (Camacho and Bordons, 2003) is concerned with it. The 

reference state is denoted with x . 

Control performance is assessed by means of the tracking error y me y y  , satisfying  

 
         
      

y u u u

y c c c

e z z u d u d h w h z

e z C z C z

        

  

M

x x e
. (14) 

In the example, 0ud  , and the reference block-diagram is shown in Figure 3, bottom. The reference 

state vector is denoted by  

 
y 



 
  
 

x . (15) 

2.4. Model errors and uncertainties 

2.4.1. Generalities 

Following the literature (Maciejowski, 1989) two kinds of model errors are treated in addition to 

innovations dw  and uw . 

Structured uncertainty is defined by the uncertain ‘static’ feedback  ch x  connecting cx to u  as in (4). 

Being unknown, it cannot be explicitly cancelled by the control law in Section 3. The inclusion in (4) of 

the disturbance ud  allows to surrogate  h  , but at the cost of closed-loop degradation since a feedback 

link is replaced by a command-independent signal as ud . Closed-loop stability must be guaranteed.  h   

is assumed differentially bounded. The bound is obtained expanding h  around the reference state x  as 

follows 

 
      

  ,  0 1

c c

c

h h h

 

  

    

x x x x x

x x x x




. (15) 

If x  and the state tracking error c e x x  are bounded, also x  is bounded. Using (5) and (32), the first 

order expansion in (34) is written as  

         
   c

c

h N z
h z e z

C N z


  

x
x x x


 , (15) 
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and the parametric error he  is defined by 

          
   ,

h c

z
e z z h z e z

z





  

H x
M x x x


 , (15) 

where   has been defined in (5).      , z h N z H x x   is a polynomial having degree 

deg deghm   H , and bounded coefficients  

    ,max ,  0..., 1k k hh h k m   x x . (15) 

The same polynomial having the bounds in (37) as coefficients is denoted with  max , zH x .  

Unstructured uncertainty is defined as an uncertain dynamic operator  ,...myP  from the model output 

my  to the plant output y . Input-output stability and linear, time-invariance are assumed, implying that 

the model error (1) has the expression 

          ; ,  ;m ye z z y z w z z    P p P p P , (15) 

where P  is the uncertainty class defined by a parameter vector p  belonging to a bounded set  , 

and yw  is the measurement noise. The transfer function P  results from the sampled-data transform of a 

continuous-time dynamics enclosed between the plant zero-order hold and the output sampler. Since P  

is dropped from the embedded model, it may affect the overall stability, and calls for robust stability 

conditions. Here we assume that there exists a worst-case element  max max;zP p  in P  such that  

 
   

   
max max

max max

max

max max

max max max

0 arg max min arg max

f f f f

f f f f

f f

f f f f

  

   

  

     P

P P

P P

P

P

, (15) 

i.e. the peak of the worst case is the highest peak in the class P , and the peak frequency fP  is the 

lowest in the class P .  

2.4.2. Example 

Using (9), the transfer function in (36) is found to be 

 
 
 

    
 

1 0

2

1,
,  1,  2

1
h c

h z hH z
m n

z z

   


 
  



x  
, (15) 

where the bounds of the dimensionless coefficients in (40) are given in terms of the frequencies gf  and 

 f  , i.e. 

 
       

     
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22
0

sgn / / 2

sin / 2

v

g

h dA d T J f T

h mglT J f T

 
      

   


 

 




 
. (15) 

The frequency square in (41) is imposed by deg 2cn   . gf  is the ‘pendulum’ natural frequency of 

the arm, whereas  2 f   is the friction/inertia pole, depending on the reference angular rate  , 

and such that    0f f   . 
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Neglected dynamics is restricted to gear backlash and torsional deformation. Due to backlash, dynamics 

is nonlinear. It can be linearly approximated for mine e , the lower bound corresponding to the backlash 

width. Then  

 
        
     

12 2

2

1 1 1

2 ,  2 ,  

t t

T
t t t t t t t t

z z z z

f T f

 

       


      

  

P

p



 
, (15) 

expresses the fractional error between the motor-gear-arm dynamics having flexible transmission and the 

rigid body (9). The parameters in p  are the uncertain natural frequency tf  and the damping coefficient 

t . Typical Bode diagrams, including a ball and beam device, are in Canuto, Acuna-Bravo, Molano and 

Perez (2012). The response peak and the peak frequency in (39) hold 

     1

,min max ,minmin ,  max 2
tt f t tf f f z  



     P p P . (15) 

3. Control law and the error loop 

3.1. Control law and tracking error 

3.1.1. Generalities 

Given (4) and (31), in order to respect causality, the control law must depend either on the state variables 

or on their combinations like my  and ud , but not on uw . In addition, it must guarantee that the tracking 

error y me y y   is bounded, and that the mean value tends asymptotically to zero. The control law 

                   ˆ ˆu u c du z u z d z z e z e z d z h e z      C x  (15) 

can be shown to bound ye  under appropriate conditions on C , and on the prediction errors ˆye  and ˆde . In 

(44),  zC  is usually improper with a bounded low-frequency gain  0 1lim 0zc z C and  

  
max

1lim m
f f jf c f  
 C . (16) 

Inserting (44) into (32), simple manipulations yield  

                     ˆ ˆy y d w uI z z e z z z e z z e e z z w z     M C M C M M . (17) 

Then, by replacing (13) in (46), the tracking error equation follows 

          ˆy y c ue z e z z z w z  S M . (17) 

In (47) the control sensitivity   1
1c

 S MC  makes its appearance, and the sign of ˆye  is due to a 

different sign of my  in the errors. The asymptotes of cS M  and 1c c V S  can be found to be  
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The coefficients of C  derive from the poles of cS , of the order cn m   , and are designed to 

stabilize cS . Likewise in (20), the closed-loop spectrum is denoted with  

  11 ,...,1 ,...,1c c ck c       , (18) 

and equal eigenvalues are assumed, 2ck c cf T    . 1,...,k  . The control-law frequency is cf . 

Similar to (24) we can write  

 
0 0

c

c c c

n
c c

f f

c f




 


  (19) 

Equation (47) may be better understood if one restricts to a pair of ideal conditions. 

1) Model-based control law: it corresponds to ˆ 0de   and 0we  , and to ˆ 0ye   in (13), and to the ideal 

equality  

 y c ue w S M . (20) 

in (47). Performance only depends on the non-rejected noise uw  and initial conditions.  

2) Anti-causal law: it corresponds to include uw  in (44), which simplifies (47) to the ideal equality 

 ˆy ye e  . (21) 

Moreover, adding ˆ 0de   and 0we   (model-based assumptions), tracking error becomes zero, less 

the free-response. Anti-causal laws cannot be realized since  u i  depends on  1y i  , whereas 

 uw i  depends on  y i . In terms of transfer functions, it would mean 0c S  for maxf f  (the 

open switch in Figure 2 below c wS ML ), which is unrealizable because of the Bode’s integral 

theorem (Maciejowski, 1989, and Wu and Jonckheere, 1992).  

Clearly (47) is a combination of the ideal equalities (51) and (52).  

Figure 7 shows the whole control unit that is built around the embedded model: the control law interfaces 

model an plant, the noise estimator interfaces plant and model, and the reference generator interfaces 

operator/plant and model. The delay 1z , from control law to plant, balances the model one-step 

predictions. Digitization converts the computed command to a digital signal, and may include a nonlinear 

inversion. The opposite is denoted with D/A and provides the embedded model with the same command 

dispatched to the plant. 

The final expression relating ye  to the model error e  and to the output disturbance yd  in (4) is obtained 

as follows. Firstly, by replacing (15) and (18) in (47) one finds 

   ˆy c w y c we I e e   S ML S ML .  (22) 

Then, by replacing the prediction error ˆye  through (19) and by defining the overall ‘control sensitivity’ S  

and the complement 1 V S  as follows 

 1
m w

m w

w c w m

 

   



S S S

V S V S

S S ML S

, (23) 

the final expression is obtained  
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          ye z z e z z d z V S . (23) 

The following alternative expression of V  will be employed hereafter: 

  m c w m m c d m m c c d m      V V S ML S V S M H DL S V V S MDL S . (24) 

The high-frequency asymptotes of the two terms in (56) descend from (8), (23) and (48), and hold 

 

 

 

max

max

1

1
lim

lim /

m m

m c v
f f m c m

d

f f c d m d

f f f

ff

f f

 






  

 

 

 
   

 



V V

S MDL S

. (25) 

Thus, if 1d m    and v df f  , the former asymptote in (57) dominates and the asymptote simplifies 

to 

 
 

   

max

1

1/ 1 1/ 1

lim ,

/ ,  

m

v
f f v

m m
v v m v m c

f
jf f f

f

f f    



 




  

 
    

 
   

 

 

V V
. (26) 

The overall functions S  and V  combine the predictor transfer functions mS  and mV  with the causality 

correction wS . The latter is imposed by uw  not being rejected. Equation (55) is the basic ‘error loop’ 

equation, to be further elaborated by making explicit e  and yd . 

 

Figure 7 The control unit built around the embedded model. 

3.1.2. Example 

C  is a proportional plus derivative compensator, i.e. 

     01z c z c  C . (26) 
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Assuming that the poles of cS  are equal and collected in  1 ,1c c c     , the gain equations are 
2 2

0 02 ,  c c c cc c f      . The overall block diagram of the control unit is in Figure 5. The errors  

 
     
     

ˆ ˆ

ˆ ˆ

e i e i e i

e i e i e i

  

  

 

 
 (27) 

are the ‘measured’ tracking errors already defined in (3).  

3.2. Stability and performance versus structured and unstructured uncertainty 

3.2.1. Robust stability 

Input-output stability of (55) occurs if and only if  

1) S  is asymptotically stable, which in turn requires the stability of mS  and cS , and  

2) the input signals e  and yd  are bounded and causally independent of ye .  

The latter condition only occurs when structured and unstructured uncertainties are zero: 0h   P  (the 

open switches in Figure 2), i.e. 

 
   
          

y

y d u

e z w z

d z z z z w z



 M D w
, (27) 

and imply that the tracking error is only forced by an ‘unpredictable’ noise as in the Linear Quadratic 

Gaussian control (Kwakernaak and Sivan, 1972). 

On the contrary, making explicit structured and unstructured uncertainties in (55) by means of (38) and 

(4), and dropping z , the implicit ‘error loop' equation follows: 

      y y c y d ue y e h w w      V P SM x V SM Dw . (27) 

Equation (62) is made explicit in ye  through (34) and (36), which yields the stability equation 

        1 / y y d ue y w h w         V P S H x V P SM x Dw . (27) 

Equation (62) is graphically represented in Figure 2. There, the uncertainties in Figure 1 and the control 

unit are combined so as to build the ‘error loop’. The control unit, detailed in Figure 7, has been 

transformed by the above derivation into a combination of the ingredients of S  and V , namely, M  

(controllable dynamics), mS  (state predictor), cS  (control law and controllable dynamics) and wL  (noise 

estimator of uw ).  

Observe that  

1) the unstructured uncertainty P  is filtered by V , which being a low-pass filter, implies that P  

should become significant only at higher frequencies;  

2) the structured uncertainty H  is filtered by S , which being a high-pass filter, implies that H  

should become significant only at lower frequencies;  

A sufficient stability condition in terms of the frequency response may descend from the 'small-gain 

theorem' in Desoer and Vidyasagar (1975), and leads to  

          
max

max , / 1f f f f f f f      V P S H x , (27) 
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where 1  is a stability margin. Inequality (64), which is the key result, is similar but not equal to 

inequalities in Doyle, Francis and Tannenbaum (1992), where stability and performance inequalities are 

combined.  

3.2.2. Performance 

Inequality (64) allows to rewrite (63) as  

       1
1y y d ue y w h w       V P SM x Dw , (27) 

which becomes the performance inequality,   being a suitable norm. It is out of the paper aim to discuss 

and apply (65). It suffices to point out that it can be split in two components: 

1) the deterministic term  y h V P SM x  depending on the reference trajectory, 

2) the ‘random’ term  y d uw w V SM Dw  depending on noise components.  

Given   and the eigenvalue range derived from (64) in Section 3.3, the first term in (65) fixes the slew 

rate of the reference trajectory, whereas the random part fixes sensor and actuator noise. It has been 

already remarked that ye  is only available through simulated runs, and is related to the measured control 

error ye  - defined as reference minus measure - through the model error e  as in (3). Therefore, if the 

tracking error ye  is made bounded by (65) and ye e  - which are mandatory requirements - the 

control error ye  becomes the opposite of the model error e . Alternative and measurable conditions 

derive from the former decomposition of ye  in (3). In the case that ˆ 0ye  , which corresponds to 

approach  the anti-causal law (52), the control error becomes the opposite of the measured model error e , 

a condition that can be easily verified. 

3.3. Asymptotic stability inequalities 

Explicit expressions of (64) and (65) are obtained under the following assumptions. 

1) State predictor and control law have uniform but distinct eigenvalues as already stated in (21) and 

(49). Their ratio  

 / /m c m cf f     (27) 

is referred to as the control frequency ratio. 

2) The components of the inequality (64) reach their maximum values within separate frequency 

domains: the sensitivity frequency band, 0sf f , and the complementary sensitivity band, vf f  , 

to be defined below. 

Consider the former component in (64) due to parametric uncertainty, and replace  fS  with the low-

frequency asymptote  0 fS . The latter, derived from (22), (48) and (24), holds 

 
       

   

0

00

0 0 0 0 0

1/1/

0 0 0 0 0 0

lim im 1 / ,  

/ 1 / / 1 c

d

f f m c w s s

dd n
s m w m m s m

jf jf f f f f

f f l c f f  

     

    

S S S S ML
, (27) 

where 0 0/s w c   . Equation (67) affirms that the overall sensitivity BW 0sf  is narrower than the state 

predictor 0mf , because cS  is not zero. Since, as stated in Section 2.4,   / H x  is strictly proper and 

0degcn d  , the parametric component / S H  in (64) achieves its maximum close to 0sf . Then, 

replacing the coefficients of  H x  with their bound in (37), the following inequality results 
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            
max 0 max 0 0max , / 1 , /s s sf f f f f f f      S H x H x , (27) 

where 1s   accounts for the actual  fS  in the neighbourhood of 0sf .  

Maximization of the second component employs the asymptote (58). Considering (39) and assuming 

vf f P , a local maximum of    f f V P  occurs for vf f f   P , since  fV  in (58) is 

monotonically decreasing. Having the Example in mind (Section2.1.2 and following), we assume 

         
max max maxmax 1 / ;

v

v vf f f f f f f 

      P PV P P p , (27) 

where 1v   plays the role of s  in (68). 

Finally, (64) splits into the asymptotic inequalities  

 
  

   

1/

max max

0 max 0

/ ; ,  1

, / ,  1

v

v

s s

f f f

f f

 

   



    

 

P PP p

H x
, (27) 

where s  in (68) and v  in (69) have been absorbed by the stability margin 1/ .  

Given  , (70) can be solved for maxvf f   and 0 maxsf f . The first inequality in (70) provides an upper 

bound to vf  . The second is a polynomial inequality, that, since  maxdeg deg  H , provides a lower 

bound as 0sf  . Bounds in (70), if feasible, can be transformed into bounds on the state-predictor 

frequency mf , and on the control ratio   in (66), by replacing the expressions (67) and (58) of 0sf  and 

vf  , respectively. At the end, (70) can be replaced by 

    ,min ,max max, ,m m mf f f f      . (27) 

Inequality (71) proves the following. 

1) A robust design is driven by the predictor frequency mf , which is bounded from above by the 

neglected dynamics and bounded from below by the parametric uncertainty. 

2) The admissible band ,max ,min/ 1m m mf f f    depends on the control ratio 0   and on the stability 

margin 1 1  . The asymptotic approximations that have been adopted to obtain (71), tend to be 

accurate for 1  . 

Because of the assumptions made at the beginning of this section, the closed-loop eigenvalues entailed 

by (71) must be kept as first trial, to be refined by simulation and in-field. The admissible band 

  1mf    provides degrees-of-freedom to the performance inequality (65) as in Canuto (2004, 2008). 

3.4. Example: robust stability design 

Using (9), (28) and (59), the low-frequency asymptote of S and the high-frequency asymptote of V  can 

be written as  

 
     
   

4

0 0

3

1 1 / /

1

u s

u

z z l c m

z z l c




 
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 

S

V
. (27) 

They correspond to the asymptotes of the Bode plots in Figure 6. Expressing 0sf  and vf   in terms of mf  

and   as in (67) and (58), yields 
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The stability inequalities in (70) become 

 
 
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,min ,min
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 , 2

v g
s m s
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. (27) 

They have been solved for mf  and   in the Table I using the parameters of the same Table. 

 

TABLE I PARAMETERS AND DESIGN  
 

Parameter Symbol Unit Value Comments 

Gravity frequency  gf  Hz 0.11  

Friction frequency vf  Hz 0.25 0.75 mrad   

Transmission frequency ,mintf  Hz 22  

Damping ,mint   0.025  

Backlash mine  mrad ≤0.4  

Predictor frequency: case 1 ,maxmf  Hz 2.2 @ 0.5  , 1   

idem, case 2 ,maxmf  Hz 2.6 @ 0.5  , 0.4   

idem, case 3 ,maxmf  Hz 1.3 @ 0.5  , 0.2   

 

 

Three alternative eigenvalues, denoted as case 1, 2 and 3, have been selected: they correspond to the 

square marks on the line  ,maxmf   in Figure 8 and to  1, 0.4, 0.2  . As shown by Figure 9, 1   

corresponds to the widest admissible band mf , whereas 0.2   is a lower threshold since uncertainty 

cannot be more accommodated for 0.2  . In practice, given the state predictor frequency mf , the 

control law frequencies cf  and vf   in (73) become too wide, and the first inequality in (70) 

(accommodating the neglected dynamics) cannot be guaranteed. 
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Figure 8 Admissible state predictor frequency mf  for 0.5  . 

The design has been restricted to the upper bound  ,maxmf   and to the eigenvalue region 1   in order 

to force the control error ye  to stay within the target bounds in Figure 10. The frequency bounds ,maxmf  

and ,minmf  are shown in Figure 8 versus the eigenvalue ratio   for a stability margin 1 2  . The margin 

is sufficient since the worst-case uncertainties enter the bound expressions (74).  

Figure 9 shows the admissible frequency band mf . The horizontal dashed line corresponds to 1mf   

(the band has no width). The largest achievable stability margin is close to 4. The widest admissible band 

occur for 1  . 

 

Figure 9 The admissible frequency band mf  versus   and  . 
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4. Simulated and experimental results 

The alternative designs in Table I has been tested through simulation and a ball and beam device leaving 

the ball uncontrolled. Their performance have been compared through the control error ye . Angular 

position is measured with an incremental encoder on the gear output shaft. Encoder quantization is of the 

same order of the backlash in Table I. Up and down motion is driven by a suitable reference generator 

thataccounts for speed and current limits, which impose motion duration. Figure 10 shows the control 

error during up and down motion and intermediate halt intervals. Bounds to control error have been set 

larger during motion (dashed lines in Figure 10).  

 

Figure 10 Simulated control error for two different designs. 

Performance improves by increasing   from 0.2 (case 3) to 0.4 (case 2) and to 1 (case 1), as Figure 10 

shows. That is reasonable since a lower   in Figure 8 narrows the predictor BW and consequently 

increases the norm of the second term in the right-hand side of (65). This clearly occurs during motion, 

say from 9 s to 12 s in Figure 10, when friction, assumed unknown, cannot be fully cancelled by the 

predicted ˆ
ud  in (44). When the set-point is reached, control error is dominated by backlash and no 

significant difference appears. The case 1, not shown in Figure 10, behaves more or less as the case 2, 

except that the control error becomes more noisy, due to a larger control BW. Therefore, case 2 looks a 

good trade-off: the relevant transfer functions have been reported in Figure 6.  

Figure 11 shows the achievement of a set point for the cases 2 and 3. One may observe that the case 3 is 

much slower in the set point achievement, as anticipated above. The backlash effect cannot be cancelled, 

being smaller than the encoder quantization. It couples with sensor quantization and gives rise to a limit 

cycle around the set point not larger than 1 bit.  
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Figure 11 Set point achievement for two different designs. 

The trapezoidal angular position of the gear pivoting the beam is measured by the gear encoder and is 

shown in Figure 12. The difference between reference and measured angle - the control error - can be 

perceived from the enlargement in Figure 13, when the reference angle reaches the maximum value. The 

measured position reaches the maximum value after a damped oscillation ending in a limit cycle (the 

square wave overlapping the constant reference) imposed by backlash, friction and encoder quantization. 

Figure 12 shows the ball stroke (both simulated and experimental), that, being uncontrolled, swings 

between the beam extremes with some delay owing to friction.  
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Figure 12 Experimental and simulated gear and ball motion. 

  

Figure 13 Gear set point achievement (enlargement of Figure 12). 
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transient oscillation because an appropriate h  has been added to the control law for accounting viscous 

and static friction. The result highlights the different frequency bands where ˆ
ud  and  ˆ ch x  counteract 

the plant uncertainty. Assuming that the ‘anti-causal limit’ holds, ˆ
ud  is estimated within the sensitivity 

BW mf  in (30). On the contrary,  ˆ ch x , depending on the controllable state ˆ cx , is estimated within the 

control law BW cf , which, in absence of command limitations, may approach the Nyquist frequency 

max 0.5 / 100 Hzf T  . The limit cycles in Figure 13 are different in their period because of a different 

static friction. Experimental measurements in Figure 13 certify that the design model is a faithful 

description of the real plant. 

5. Conclusion 

The error loop, i.e. the loop from model to tracking error, points out which is the key design tool for 

accommodating uncertainties. The tool is the noise estimator, which is responsible for the noise estimates 

that update the disturbance state in the embedded model. Actually, causality constraint adds a further 

degree-of-freedom to the design, allowing the control law to play a role in making the design feasible, 

especially when contrasting stability and performance inequalities need to be satisfied. Employing 

asymptotic expansions of the closed-loop transfer functions, simple and explicit design formulae relating 

closed-loop eigenvalues to model parameters and requirements have been derived. Refinement may be 

pursued through simulation and in field.  
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