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Multi-time delay, multi-point linear stochastic estimation
of a cavity shear layer velocity from wall-pressure
measurements

Davide Lasagna, Matteo Orazi, and Gaetano Iusoa)

Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Corso Duca
degli Abruzzi 24 Torino, 10129 Italy

(Received 19 March 2012; accepted 26 November 2012; published online 14 January 2013)

In this paper, the recently introduced multi-time-delay linear stochastic estimation
technique is thoroughly described, focusing on its fundamental properties and po-
tentialities. In the multi-time-delay approach, the estimate of the temporal evolution
of the velocity at a given location in the flow field is obtained from multiple past
samples of the unconditional sources. The technique is applied to estimate the veloc-
ity in a cavity shear layer flow, based on wall-pressure measurements from multiple
sensors. The cavity flow was investigated by performing simultaneous measurements
of a single hot-wire probe, traversed on a fine grid in the shear layer, and of multi-
ple wall-mounted condenser microphones in the cavity region. The paper compares
classical high-order single-time-delay estimation approaches with the multi-time-
delay technique, which is significantly more accurate as it produces a much lower
mean-square estimation error, thus providing a faithful reconstruction of the time-
evolution of the velocity field. This improved accuracy is strongly dependent on the
number n of past wall-pressure samples used in the estimate. In this paper, we also
demonstrate that the estimated velocity field only contains the signature of the rele-
vant flow mechanisms which correlate well with the wall-pressure, while incoherent
components are filtered out. The multi-time-delay approach successfully captures the
spatio-temporal dynamics of the velocity fluctuation distribution in the shear layer,
as it clearly resolves the dynamics of the relevant flow structures. The effect of the
number of sensors used in the estimate was also considered. In general, it was ev-
ident that use of more sensors leads to better accuracy, but as the number n of past
values increases, the gain becomes marginal. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4774337]

I. INTRODUCTION

The stochastic estimation technique is an established tool which offers a quantitative insight into
the spatio-temporal evolution of coherent structures and flow patterns.18 The stochastic estimation
framework was first introduced in fluid dynamics by Adrian1 as a means for approximating the
conditional average of the velocity vector u given an event E, and in order to identify and study
coherent structures in homogeneous isotropic turbulent flows. The conditional average was obtained
from unconditional statistics by estimating it as a Taylor series of increasing powers of the event.
When the expansion is truncated at the linear term the technique is called linear stochastic estimation
(LSE).

Since Adrian’s work the stochastic estimation technique has been constantly refined and applied
to a large amount of flows. Adrian and Moin2 used an extended event including the local deformation
tensor to fully capture the kinematic state of conditional eddies in homogeneous shear flows.
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Guezennec18 applied the technique to educe coherent structures in turbulent boundary layers. The
flow in a jet mixing layer flow was investigated by Cole et al.12 High-order Taylor expansions
were considered by Tung and Adrian36 for conditional eddies in isotropic turbulence, in which
the high-order terms appeared to have little influence. By contrast, Murray and Ukeiley,25 included
the quadratic term for the estimation of a supersonic cavity flow and showed a remarkable increase
in the fraction of recovered energy through the use of the quadratic stochastic estimation (QSE).
Multi-point stochastic estimation, whereby the event vector E specifies multiple conditions in more
than one location, was also considered, by Cole et al.,12 Guezennec,18 Hudy et al.,21 Murray and
Ukeiley,26 and others. These authors found that multi-point stochastic estimation leads to a more
“realistic” estimate than single-point conditional averages, since the interaction between the events
can be observed, unlike single-point estimates where events are taken in isolation.12

The stochastic estimation technique has also been used with wall-pressure as the unconditional
event. Naguib et al.27 studied the flow sources associated with surface pressure events in a turbulent
boundary layer. Interestingly, these authors showed that the extent to which the inclusion of a
quadratic or higher order term is necessary, strongly depends on the shape of the joint probability
density function (JPDF) between the conditional and unconditional events. In particular, if the
JPDF is Gaussian, then the linear estimate may be sufficient to capture the relation between the
two events. However, if this is not the case, a higher order may be recommended.8 Pressure as
the unconditional source was also used successfully by Garcia-Sagrado and Hynes16 to study the
coherent structures associated with wall-pressure fluctuations in the trailing edge region of an airfoil.
Related applications which use pressure-based estimation include the study of vortical structures
and of the associated pressure fluctuations in the surrounding of a subsonic round jet.29

Wall-pressure based stochastic estimation techniques were successfully applied to obtain esti-
mates of the velocity field in cavity flows, e.g., Murray and Ukeiley,26 Ukeiley and Murray,37 and
Zhang and Naguib.39 In particular, Ukeiley and Murray,37 successfully applied the QSE and showed
it to be an effective tool for the representation of the time-dependent phenomena of the velocity
field. Zhang and Naguib39 studied the evolution of the coherent structures generating the pressure
oscillations in a cavity, by using arrays of electret condenser microphones. Interestingly, the author
reported no significant improvement when the quadratic estimate was used.

Stochastic estimation techniques have been frequently applied together with low dimensional
modeling techniques, such as the proper orthogonal decomposition (POD; Berkooz et al.5). The
LSE-POD complementary technique, introduced by Bonnet et al.,7 allows the estimation of the
temporal dependence of the first POD coefficients, providing a temporally resolved low dimensional
estimate of the flow state. One advantage of the approach is that POD coefficients are scalar quantities
which are independent from the spatial location. This reduces the amount of coefficients necessary
to estimate the whole flow field.26 Examples of applications of this technique to gain insight into the
temporal dynamics of unsteady flows are copious in the literature, e.g., Murray and Ukeiley26 for
cavity flow, Hudy et al.21 for a back-facing step flow, and Iqbal and Thomas22 for a turbulent jet.

An important application of stochastic estimation techniques is that of real-time flow control,
where accurate estimates of the flow field must be available as input in order for the control scheme
to be effective.26 Stochastic estimation – POD complementary techniques have been widely used
for this goal to provide an instantaneous, low dimensional representation of the flow state. Pinier
et al.30 experimentally implemented an efficient closed-loop feedback control using such techniques
to delay flow separation over a NACA-4412 airfoil equipped with leading-edge zero-net-mass-flux
actuators.

Although it has been successfully used in several applications, some aspects of the classical
stochastic estimation technique could be improved. Cattafesta et al.10 termed this technique a “static
estimator” since it uses only one sample of the unconditional source to estimate the flow state,
resulting in a single-time-delay technique (STD). Because of this reason, the classical stochastic
estimation technique is not a robust estimation tool as it is affected by the presence of background
uncorrelated fluctuations which deteriorate its accuracy. To cope with this problem, several sensors
are needed to obtain estimates of good quality (Garcia-Sagrado and Hynes,16 Zhang and Naguib,39

and Murray and Ukeiley26), even in the case of the quadratic estimate. By contrast dynamic estimators
or observers can be more accurate in reproducing the complex dynamics of an unsteady flow.
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Rowley et al.,33 used a Kalman filter based dynamic observer to estimate the state of a cavity flow
from noisy pressure measurements, and observed better performance with respect to the classical
LSE technique.

Another drawback of the single-time-delay approach is that occurring for the case when the
conditional and unconditional sources are separated by a time lag due to a convection speed.
Naguib et al.27 embedded such time lag information in the estimate but for the single-time-delay
estimate such a lag must be known, for example, from cross-correlation analysis. To overcome
this problem, two approaches have been proposed. One approach is the so-called spectral linear
stochastic estimation (SLSE), proposed by Ewing and Citriniti15 to study an annular mixing layer
flow, treated in detail by Tinney et al.35 Such approach consists in estimating the conditional event in
the frequency domain and for this reason, for the case where there is a separation in time between the
events, the time lag is embedded in the spectral estimator. Furthermore, with this approach only those
frequency components for which the coherence spectrum between the conditional and unconditional
sources is high enough, and larger than a chosen threshold, are retained. The other components,
for which poor correlation exists, are suppressed by setting the coefficients corresponding to these
frequencies to zero. Tinney et al.35 observed that such an approach is necessary when the conditional
and unconditional sources have significantly different spectral characteristics or when they are of
different physical quantities.

Another approach which can overcome the time lag issue was proposed by Durgesh and
Naughton14 and is a multi-time-delay LSE-POD complementary technique. The approach devel-
oped by these authors consisted in using a given number of past and future measurements of the
pressure signal to estimate the time evolution of the first POD mode coefficients. This provided a low
dimensional, time-resolved reconstruction of the flow field at a given time instant. The authors ap-
plied this approach to a bluff body near wake, which was investigated by Particle Image Velocimetry
and wall-pressure measurements. The authors reported that the multi-time-delay approach (MTD)
was successful in capturing the dynamics of the wake and showed a significant improvement in
accuracy of the estimate with respect to the classical single-time-delay stochastic estimation tech-
nique. The authors also highlighted that the multiple time-delays must be optimized to match the
correlation peaks, in order to achieve best results.

The idea of using multiple past measurements for obtaining more accurate estimates was intro-
duced by Ukeiley et al.,38 which introduced dynamic stochastic estimation as a mean to obtain pre-
dictions of future values of the wall-pressure from multiple past values of the same wall-pressure time
history. These authors introduced auto-regressive and auto-regressive moving average approaches,
commonly used in system identification of dynamic systems, and found that it was possible to
accurately describe the time evolution of the wall-pressure.

Despite the seminal new ideas of Ukeiley et al.38 and the work of Durgesh and Naughton,14

several aspects of the MTD-LSE approach need to be further investigated and detailed. First, a
thorough analytic derivation of the method, which outlines its fundamental properties, needs to
be reported with an emphasis on fluid dynamics aspects. In particular, it is necessary to thor-
oughly describe the spectral properties of the estimated flow field and to focus on the residual
error of the estimate, how it is composed and which are its sources. Furthermore, a critical com-
parison of the MTD-LSE approach with single-time-delay techniques, whether linear of high-
order, is needed to fully appreciate the effectiveness and the convenience of the MTD approach,
in particular, with a strong focus on the number of past values used. In this regard, a full ex-
planation of the reasons why the MTD approach is preferable is required, with an emphasis on
both control applications and as a tool to obtain physical insight in complex flows. Finally, an
analysis on the effects of using more than one sensor and of its location in the flow field is
required to provide a practical rules of thumb for positioning the flow sensors in flow control
applications.

All these aspects need to be detailed to fully advance the state-of-the-art of flow estimation
techniques. In this paper, we address all of them and, as a demonstration, we apply the method to the
estimation of the spatio-temporal dynamics of the velocity fluctuations in a shear layer developing
over a curvilinear unconventional cavity. This is performed by using wall-pressure measurements
from multiple sensors mounted inside the cavity.
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FIG. 1. Sketches of the test section setup (a), and of the cavity geometry (b). The suction plate is located about 6L upstream
of the cavity cusp, the leading edge. The locations of the six microphones, 30 mm away from the center-line section, are also
shown in part (b).

In Sec. II, the experimental setup is presented. Section III is devoted to the mathematical
treatment of the technique, while Sec. IV is dedicated to presenting the results of the application of
the technique.

II. EXPERIMENTAL SETUP

A. Test section arrangement and cavity model

The experiment was conducted in a open-circuit type wind tunnel. The test section has width,
height, and length of 720, 300, and 3600 mm, respectively. Maximum speed in this wind tunnel was
about 25 m/s. The flow investigated developed in a cavity with a curvilinear geometry located on the
bottom surface of the wind tunnel test section, as shown is Figure 1(a). The flow in such curvilinear
geometries have been recently investigated by several authors, e.g., Lasagna et al.,23 Olsman et al.,28

Hokpunna and Manhart,20 and Donelli et al.,13 because of the interest in controlling flows past a
thick airfoil which trap a vortex in one of such cavities located on its upper surface. The shape of
the present cavity is the same used by Hokpunna and Manhart.20 The cavity had a nominal opening
length equal to L = 68 mm and a span of 420 mm, so that the aspect ratio was about 6.6. The cavity
spanned 58% of the test section width, leaving a free space of 150 mm between the cavity ends and
the vertical test section walls. This prevented interactions between the corner flows developing at the
angles of the test section with the cavity flow. The cavity was designed using a rib-like structure, and
its surface was made of 0.5 mm-thick poly-carbonate film. Figure 2(a) shows a drawing of the cavity
model. The thickness of the film was chosen to be as large as the manufacturing process allowed,
in order to prevent fluid-structure coupling induced by the fluid oscillations that were expected. The

D = 2mm

poly-carbonate film
microphone

t = 0.5mm

D = 9.7mm

hole

(b)(a)

FIG. 2. Drawing of the rib-like structure of the cavity model (a), and sketch of the mounting of microphone under the
poly-carbonate film (b).
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cavity was then embedded in the bottom surface of the test section, at a distance of about 1.0 m from
the upstream contraction section.

A 120 mm long perforated plate spanning the entire test section width was located 400 mm
upstream of the cavity leading edge as depicted in Figure 1(a). Suction through this plate allowed
the variation of the boundary layer properties at the cavity cusp. Great care was taken to ensure
that uniform suction was applied along the plate, in order to ensure characteristics of the incoming
boundary layer across the whole cavity span. This was achieved using ad hoc dividing vanes in the
drawer below the plate.

B. Velocity measurements

Extensive velocity measurements were performed using constant temperature hot wire anemom-
etry. An A.A. LabSystems AN1003 anemometer with a built-in signal conditioning unit was used to
measure the velocity component normal to sensor. A single-wire probe, (length 0.9 mm and diameter
5 μm), was used. The probe was frequently calibrated in situ in the middle of the vein and at a
sufficient distance upstream of the cavity to render negligible its influence.

To reduce interference effects generated by the probe holder on the shear layer flow, this was
tilted by 40 ◦ for both the calibration and the measurements, as shown in Figure 1(b). The probe
holder was fixed to a motorized two-axis traverse system located on the top of the test section. A
LabVIEW interface provided completely automated traversing and data-acquisition in x − y planes.

The cavity shear layer was preliminarily investigated in several spanwise sections to assess its 2D
properties. The second order statistics of the shear layer flow were reasonably constant in 90% of the
span with minor deviations at the ends. Therefore, more detailed measurements were subsequently
conducted in the centerline section only. Velocity profiles across the shear layer thickness where
measured at 46 locations along the x axis. For each profile, 34 points were opportunely distributed
across the shear layer thickness in the range −4δ < y < 4δ (δ is the 99% boundary layer thickness
at the cavity leading edge), concentrating the points in regions of stronger variations of the flow
properties. Furthermore, in order to correctly resolve the spatio-temporal dynamics of the estimated
velocities in the shear layer, as will be detailed later, the profiles were distributed along the x axis
with variable spacing, namely, 5 mm in the first third of the cavity length, 2 mm in the second third,
and 1 mm in the last.

C. Pressure fluctuations measurements

Pressure fluctuations measurements were performed using high-sensitivity electret condenser
microphones, of a similar type as those used by other authors, e.g., Zhang and Naguib,39 Garcia-
Sagrado and Hynes.16 The microphones, with a diameter and height of 9.7 and 6 mm, respectively,
were powered by a dedicated power supply unit through custom-made RC circuits. These micro-
phones, which only measure the fluctuating component, were positioned under the poly-carbonate
film of the cavity, and aligned with a 2 mm hole as shown in Figure 2(b). The large diameter of
the hole was chosen as a compromise between the need to maximize the signal to noise ratio and
minimization of spatial filtering effects.

Six microphones were located in a section of the cavity 30 mm away from the mid-span as
shown in Figure 1. This position was chosen to prevent the influence of the probe holder wake on
the measurements of the pressure fluctuation if the microphones were located in the central section.
The absence of any interference was ensured by verifying that the pressure spectra measured with
and without the probe holder in flow were equal. Five other microphones were located transversely
along the downstream shoulder of the cavity in the same position of microphone m5 with a spacing
of 60 mm, but results concerning these are not presented here.

The dynamic properties of the microphones were estimated by an ad hoc calibration similar
to that performed by Zhang and Naguib39 and Garcia-Sagrado and Hynes.16 The objective of
the calibration was to find the microphone transfer function H(f). These dynamic properties are
summarized in terms of gain in mV/Pa and phase delay, as a function of the frequency. The
calibration setup consisted of a flat plate located at a distance of 50 cm in front of a high power
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FIG. 3. Typical amplitude response of an electret condenser microphone.

loudspeaker, which produced a fluctuating pressure field on the plate. The electret microphones
were positioned on this plate with the same arrangement of the measurements described above.
A reference high-precision microphone was flush-mounted in the center of the plate. This was a
high quality 1/4 in. Brüel&Kjær (B&K) (type 4939) condenser microphone. This microphone has
pre-amplification, flat frequency response in the range 10–10 000 Hz and selectable gain by means
of a dedicated power-supply/signal conditioning unit.

The microphones calibration was performed according to system identification procedures,
described in detail by Ljung.24 A zero-mean Gaussian noise, pass-band filtered between 2 and
2500 Hz, was fed to the loudspeaker through an amplifier. Because the loudspeaker signal values
were sampled from a Gaussian distribution, large values exceeding the input capability of the
loudspeaker could occur. For this reason the signal was clipped between ±eth, a chosen threshold
voltage. However, since clipping the signal in the time domain affects the signal spectrum in the
frequency domain, the clipping and bandpass filtering were repeatedly applied to the signal, until it
reached satisfactory time and frequency domain characteristics.

Simultaneous measurements from the electret and the B&K microphone were sampled at a
frequency of 10 kHz and for 120 s. The length of the time histories was such as to provide
satisfactory convergence of the spectral characteristics of the signals. Transfer function estimates,
evaluated according to Bendat and Piersol,4 were then obtained as

H ( f ) = �Bm( f )

�B B( f )
, (1)

where �Bm(f) is the cross-spectral density between the voltage signal of the electret microphone and
the pressure signal of the B&K microphone, while �BB(f) is the power-spectral density of the B&K
microphone signal. All the spectral densities were obtained via the Welch algorithm, to improve the
quality of the spectral density estimate.

Amplitude and phase response plots were analyzed in detail for each microphone under test.
Figure 3 shows a typical amplitude response plot. As expected, the microphones significantly
attenuated low-range frequency components below 10 Hz. The gain of each microphone was found
to be sufficiently constant in the band 20–1000 Hz, in which most of the shear layer dynamics
were expected, and was practically constant in successive calibration experiments. The phase shift
introduced by the microphone was found to be negligible, of the order of 50 μs in the frequency range
of interest. For this reason, it was not taken into account in the subsequent analyses. Furthermore,
resonance effects due to the arrangement were not observed. Finally, in order to test the linearity
properties of the microphones, different calibration experiments with different amplitude of the
loudspeaker driving signal were performed. Linear behavior was observed for a range of pressure
amplitudes much larger than those expected in the cavity flow.
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During the cavity flow experiments, velocity and wall-pressure time histories of 217 samples were
simultaneously sampled at 8 kHz by 24 bit resolution National-Instruments 9239 data acquisition
modules, mounted on a NI cDAQ 9172 chassis. These units have a built-in anti-aliasing filter set
at 46% of the sampling frequency. The size of the time histories was chosen in order to guarantee
convergence of the second order statistics for both the velocity and wall-pressure.

III. MULTI-TIME-DELAY LINEAR STOCHASTIC ESTIMATION APPROACH

The LSE technique was introduced by Adrian1 as a means to approximate the conditional
average of the fluctuating velocity vector field given the occurrence of an event vector E. This
conditional average is defined as

û(x, t) = 〈u(x, t)|E〉 (2)

and can be expanded in a Taylor series of the event. In general, u indicates the velocity fluctuation,
since the mean flow is known and does not need to be estimated.8

As demonstrated by several authors, e.g., Picard and Delville,29 Naguib et al.,27 and Ukeiley
and Murray,37 the event can be also obtained from wall-mounted pressure sensors. For the single
sensor case, the event reads as

E = {pe < p(t) < pe + dp} (3)

and confines the wall-pressure into a small window between pe and pe + dp. The linearly truncated
Taylor expansion of the conditional average then reads as

û(x, t) = a(x)p(t) (4)

and the coefficients a(x) are obtained from unconditional statistics, i.e., two point correlations,
which result from a minimum square error procedure, fully described in Guezennec.18 This is a
single-time-delay approach, in that the event vector E specifies a condition on the wall-pressure
only at a single time instant. This time instant can be the present time t or can refer to a past time
t − τ , as shown, for example, by Naguib et al.27 The technique can then be used to reconstruct the
time-resolved dynamics of the conditional flow field, based on wall-pressure measurements.

The basic idea of the multi-time-delay approach is that in order to obtain a more accurate
time resolved reconstruction of the flow field û(x, t) at time t, multiple past wall-pressure samples
should be taken into account. Only past samples are considered here, since this would be the natural
approach to take in a real-time flow control scheme. For the single sensor case, this corresponds to
defining an event vector E of the form

E = {pe0 < p(t) < pe0 + dp, pe1 < p(t − �t) < pe1 + dp, . . . pen < p(t − n�t) < pen + dp},
(5)

which is made up of n + 1 simultaneous conditions on the past values of the wall-pressure time
history. This event vector can also be naturally extended to contain past samples from multiple
sensors, defining a multi-point, multi-time-delay stochastic estimation technique. The motivation
for specifying such an event vector derives from the observation that this expanded event imposes a
dynamic condition on the average of the flow field, which may provide a more detailed description of
the temporal evolution of the flow. On the other hand, specifying only a single-time-delay condition,
whether from single or multiple sensors, is an incomplete description of the dynamic state of the
flow and corresponds to an average over all the possible dynamic flow states.

Given these considerations, the linearly truncated expansion of the conditional average (2),
using the event of Eq. (5) and including multiple sensors, can be written as

û(x, t) =
M∑

j=1

n∑
k=0

bk j (x)p j (t − k�t). (6)

The first summation is done over the M available wall-pressure sensors, while the second is done
over the n + 1 samples of the wall-pressure time history. We call n the model order. It is immediately
apparent that the case n = 0 and M = 1 corresponds exactly to the definition of the single-point,
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single-time-delay linear stochastic estimation of Eq. (4). In this paper, only the linearly truncated
expansion is considered and treated, but extensions to higher order terms may also be developed.

The problem of finding the coefficients bk j (x) is solved in the same way as for single-time-
delay estimates, as described by Guezennec,18 by choosing the values of bk j (x) which provide a
minimum mean-square estimation error. However, for a multi-time-delay approach there are some
fundamental differences, briefly reviewed here in the following. For a more thorough description of
the least square method the reader is referred to Ljung.24

A. Single-point, multi-time-delay linear stochastic estimation

We first consider the problem of single-point estimates, M = 1, leaving the different details
specific to the multi-point approach, (M > 1), to Sec. III B. Furthermore, the problem of estimating
only one of the velocity components at a given point x0 is treated. This is, in fact, the “base” problem,
independently repeated over all the spatial locations and for all the available velocity components.

From simultaneous measurements of the velocity fluctuation u(t) at point x0 and of the wall-
pressure p(t), statistically significant collections of N samples are extracted: {u(i)}, {p(i)} i = 1, . . . ,
N, where p(i) = p(i�t), with �t being the sampling interval. Introducing a matrix notation, Eq. (6)
may be rewritten as

û(i) = ϕ(i)T θ , (7)

where ϕ(i) = [p(i) p(i − 1) ... p(i − n))]T is called the regressors vector at time instant i and θ

= [b0 b1 ... bn]T is the vector of the unknown coefficients. These two vectors have size (n + 1) × 1.
Furthermore, since data are not available for i < 0, the first full regressors vector can be obtained at
i = n − 1.

The unknown coefficients vector is found as the minimizing argument of the mean-square
estimation error defined as

E(θ ) = 1

N − n

N∑
i=n−1

[
u(i) − û(i)

]2 = 1

N − n

N∑
i=n−1

[
u(i) − ϕ(i)θ

]2

= 1

N − n

N∑
i=n−1

[
u(i) −

n∑
k=0

bk p(i − k)

]2

, (8)

and it is obtained by differentiating Eq. (8) with respect to θ and setting to zero, which yields a set
of linear equations called the normal equations[

1

N − n

N∑
i=n

ϕ(i)ϕT (i)

]
θ = 1

N − n

N∑
i=n

ϕ(i)u(i), (9)

compactly written as

Rθ = f. (10)

The matrix R has a particular structure which allows the computation of its elements in a fast and
convenient way. It is straightforward to see that

R = 1

N − n

N∑
i=n

⎡
⎢⎢⎢⎣

pi pi pi−1 pi . . . pi−n pi

pi−1 pi pi−2 pi . . . pi−n pi−1
...

...
. . .

...
pi−n pi pi−n pi−1 . . . pi−n pi−n

⎤
⎥⎥⎥⎦ , (11)

where pi = p(i). This means that

Ri j = rpp(κ), κ = j − i, (12)

where rpp(κ) is the auto-correlation function of the pressure signal, defined as

rpp(κ) = p(i)p(i + κ). (13)
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The matrix R is thus a Toeplitz matrix with size (n + 1) × (n + 1), which can be formed from
the auto-correlation function of the pressure signal, and reads as

R =

⎡
⎢⎢⎢⎣

rpp(0) rpp(1) . . . rpp(n)
rpp(1) rpp(0) . . . rpp(n − 1)

...
...

. . .
...

rpp(n) rpp(n − 1) . . . rpp(0)

⎤
⎥⎥⎥⎦ . (14)

The column vector f, of size (n + 1) × 1, can be obtained in a similar way, by considering that

f = 1

N − n

N∑
i=n

⎡
⎢⎢⎢⎣

pi

pi−1
...

pi−n)

⎤
⎥⎥⎥⎦ u(i) =

⎡
⎢⎢⎢⎣

rpu(0)
rpu(1)

...
rpu(n)

⎤
⎥⎥⎥⎦ , (15)

where we have introduced the cross-correlation function between the pressure and the velocity
rpu(κ) = p(i)u(i + κ).

The matrices R and f can thus be constructed from the auto- and cross-correlation functions of
the wall-pressure and velocity measurements. The computational time required for obtaining these
matrices can be significantly reduced by exploiting the correlation theorem and using fast Fourier
transform techniques to obtain the correlation function. Then the unknown coefficients vector can
be obtained by solving the linear system Rθ = f.

B. Multi-point multi-time-delay stochastic estimation

For a multi-point estimate with M > 1 sensors, the procedure described above is still valid, but
there are some small differences, detailed here. The regressors vector in Eq. (7) becomes a column
vector of M(n + 1) × 1 elements which reads as

ϕ(i) = [p1(i), p1(i − 1), . . . , p1(i − n), p2(i), p2(i − 1), . . . , p2(i − n), . . . pM (i),

pM (i − 1), . . . , pM (i − n)]T , (16)

and contains past values of the M wall-pressure time histories. Similarly, the unknown coefficients
vector θ reads as

θ = [b10, . . . , b1n, b20, . . . , b2n, . . . , bM0, bM1, . . . , bMn]T . (17)

The matrix R from the normal Eq. (10) is derived in the same way as before, but it is now a symmetric
block matrix, composed of M × M blocks of size (n + 1) × (n + 1). Each block is a Toeplitz matrix
made up of auto- or cross-correlation values between the wall-pressure sensors. The matrix has the
form

R =

⎡
⎢⎢⎢⎣

Rp1 p1 Rp1 p2 . . . Rp1 pM

Rp2 p1 Rp2 p2 . . . Rp2 pM

...
...

. . .
...

RpM p1 RpM p2 . . . RpM pM

⎤
⎥⎥⎥⎦ , (18)

where the ith, jth block Rpi p j , is such that

Rpi p j =

⎡
⎢⎢⎢⎣

rpi p j (0) rpi p j (1) . . . rpi p j (n)
rpi p j (1) rpi p j (0) . . . rpi p j (n − 1)

...
...

. . .
...

rpi p j (n) rpi p j (n − 1) . . . rpi p j (0)

⎤
⎥⎥⎥⎦ (19)

with rpi p j (κ) being the cross-correlation function between the ith and jth sensors signals.
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In a similar way, the column vector f from the normal equations, Eq. (10), becomes

f =

⎡
⎢⎢⎢⎣

Rp1u

Rp2u
...

RpM u

⎤
⎥⎥⎥⎦, (20)

where each of the M blocks Rpi u is a (n + 1) × 1 column vector composed of the values of the
cross-correlation function rpi u(κ) between pressure and velocity for k = 0, . . . n. The linear system
Rθ = f can then be solved for each spatial location and for each velocity component, yielding the full
set of coefficients bk j (x). With these and from new wall-pressure measurements the spatio-temporal
evolution of the flow can be estimated, using Eq. (6).

IV. RESULTS

Some basic results concerning the cavity flow investigated are shown first in this section, which
discusses the mean flow properties and the spectral characteristics of the velocity and wall-pressure.
This introduces the results of the application of the multi-time-delay stochastic estimation approach,
shown in detail in Secs. IV B and IV D, for the single- and multi-point approaches, respectively.

A. Mean flow and spectral analysis

The test conditions treated in this paper refer to a free-stream velocity equal to Ue = 5.80 m/s,
at which the Reynolds number based on the cavity length L = 68 mm is equal to ReL

= LUe/ν = 2.77 × 104. The level of suction operated on the perforated plate upstream of the
cavity is sufficient to produce a laminar boundary layer at the cavity leading edge. In fact, the
velocity profile, measured in x = −10 mm, reported in Figure 4, shows good agreement with a
least-squares fit of the Blasius laminar solution. The profile has a shape factor H = δ∗

0/θ0 = 2.19,
where δ∗

0 = 1.32 mm (displacement thickness), and θ0 = 0.60 mm (momentum thickness). The
boundary thickness δ0 is taken to be equal to 4.4 mm. With such a boundary layer the ratio L/θ0 is
equal to 113.

Figure 5 depicts the streamwise evolution of the mean velocity profile in four selected locations.
The velocity profile at x/L = 0.01 quickly changes from the boundary layer profile of Figure 4 to a
shear-layer-like profile. The profiles clearly evidence the thickening of the shear layer as it develops
downstream. In particular, the spreading of the shear layer occurs towards the interior of the cavity.

0.0 0.2 0.4 0.6 0.8 1.0
u(y)/Ue

0

1

2

3

4

5

6

7

8

y
[m

m
]

Experimental data

Blasius profile fit

FIG. 4. Mean velocity u(y)/Ue boundary layer profile at x = −10 mm. Experimental data and a Blasius solution fit are
depicted.
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FIG. 5. Mean velocity profiles u(y)/Ue at selected streamwise positions in the shear layer.

This indicates that the locus of the points y where u/Ue = 0.5 is deviated towards the inner region
of the shear layer, as found by Gharib and Roshko17 and Sarohia.34

Figure 6 shows a contour map of the non-dimensional root-mean-square value of the velocity
fluctuation u′

rms/Ue. The cavity cusp is located in the origin, and the downstream part of the cavity is
shown on the lower right part of the figure. The flow is from left to right. The most intense fluctuations
are observed in the impingement region, where the coherent structures developing in the shear layer
break up into small scale structures. This was also highlighted by smoke flow visualizations, not
reported here.

High levels of fluctuations can also be observed in the shear layer, especially for x/L > 0.5.
In fact, the amplitude of the velocity fluctuations grows as the shear layer develops downstream.
Although not shown here, the velocity fluctuations show a strong initial exponential growth up to
about 0.5 L, as also reported by several authors, e.g., Gharib and Roshko.17 From the figure, it is
evident that u′

rms/Ue reaches a peak in x/L = 0.6, followed by an enlargement of the region intense
fluctuations. Here, the largest part of the energy is due to the coherent oscillations due to Kelvin-
Helmoltz instability, a characteristic of cavity flows in the shear-layer mode (Rowley et al.32), where
strong coupling between velocity and pressure takes place.

This coupling was preliminary investigated at different wind tunnel speeds. A wall-pressure
time history was measured with each microphone at 55 velocities from 2 to 10 m/s and a power

0.0 0.2 0.4 0.6 0.8 1.0
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0.00 0.02 0.04 0.06 0.08 0.10 0.12
urms/Ue

FIG. 6. Contour map of the normalized root mean-square value of the velocity fluctuation u′
rms/Ue , across the whole cavity

shear layer. The cusp is set at the origin, flow is from left to right.
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FIG. 7. Velocity-frequency spectrogram of the wall-pressure time history from microphone m6. The contour map shows the
base ten logarithm of the power spectral density of the wall-pressure signal.

spectrum was computed for each of these. Results in the form of a velocity-frequency spectrogram
are shown in Figure 7 for microphone m6, which better highlights the characteristics of the wall-
pressure fluctuations of the shear layer flow. In the range of velocities between 2 and 5 m/s, and for
frequencies between 0 and 100 Hz, three different narrow energy concentration bands can clearly be
observed. These bands correspond to the second, third, and fourth natural instability modes of the
shear layer. Their frequencies can be predicted using the Rossiter equation, Rossiter,31 which reads
as

fn = Ue

L

n − α

M + 1/k
, (21)

where fn is the frequency of the nth mode, α is a parameter which takes into account the phase lag
between the impingement of a coherent structure and the production of an acoustic wave, k defines
the ratio of the phase velocity of the convective disturbances in the shear layer to the external velocity,
while M is the freestream Mach number. Good correlation between the experimental results and the
Rossiter equation are found by setting the phase lag α equal to zero, as it is commonly observed
in low Mach number flows (Cattafesta et al.9), and an average value of k approximately equal to
0.5. Interestingly, the first shear layer mode cannot be observed. The signature of these modes can
barely be detected for velocities larger than 7 m/s, for which the incoming boundary layer is fully
turbulent. Furthermore, the slope of the bands appears to increase as Ue increases, which means that
k slightly increased with the external velocity. This is probably due to the variation of the boundary
layer properties as the wind tunnel speed is increased.

The spectrogram is also characterized by high energy concentrated at a frequency of f = fwt

= 150 Hz, for all the velocities tested. This frequency has been identified as due to a wind tunnel
acoustic resonance (AGARD-AR-3363), which originated in the settling chamber of the wind tunnel.
The presence of this resonance was previously found in pressure fluctuation measurements in the
test section without the cavity installed.

There is a complex interaction between the wind tunnel acoustic resonance and the natural
instability modes. At velocities where the frequencies of natural instability modes of the shear layer
are close to fwt , the shear layer locks in to the forcing frequency. This condition is evidenced as a
strong increase of the wall-pressure fluctuations energy at the resonance frequency. This phenomenon
is evident at speeds equal to 5.6, 6.5, and 8.4, where lock-in between the fourth, third and second
natural shear layer mode occurs, respectively. Similar interactions with the wind tunnel acoustic
modes were also observed by Chatellier et al.11 and Olsman et al.28

Lock-in conditions also occur at non-integer frequencies of the wind tunnel resonance mode.
At Ue = 5 m/s, the second shear layer mode locks in to the first sub-harmonic of the wind tunnel
acoustic resonance for f = fwt/2 = 75 Hz. At slightly higher velocities, two energy bands bifurcate
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FIG. 8. Power spectral densities of the velocity signal at point P in x/L = 0.6, y/δ = 0.34 (a), and of the wall-pressure signals
for microphones m1, m5, m6 (b).

symmetrically with respect to this frequency. A similar interaction, but with lesser intensity, develops
at this same velocity for a frequency equal to f = 3/2 fwt .

The test conditions treated in this paper refer to Ue = 5.8 m/s, a velocity slightly higher than that
at which lock-in of the third mode occurs. For the purpose of the paper, the presence of the interaction
between the wind tunnel acoustic resonance and the shear layer oscillation is unimportant, since the
basic concepts discussed have general validity.

Figure 8(a) shows power spectral densities for the velocity time history in the point in the shear
layer where the most intense fluctuations have been observed, namely, at x/L = 0.6 and y/δ = 0.34.
This point is indicated as point P in the following, and well represents the spectral characteristics
of the whole shear layer flow. Figure 8(b) presents power spectral densities of the wall-pressure
measurements for microphone m1, located under the cusp, microphone m5, located in the shear
layer impingement region, and microphone m6, located a small distance downstream of microphone
m5, as shown in Figure 1. These microphones well represent the general behavior of the others and
will be used as references throughout the paper. The velocity spectrum shows several distinct peaks
at the fundamental wind tunnel resonance frequency fwt = 150 Hz and at its higher harmonics.
At a frequency of about 82 Hz the weak signature of one of the two modes developing from the
bifurcative behavior shown in Figure 7 is also visible.

The wall-pressure spectra of microphones m5 and m1, in Figure 8(b), are clearly dominated
by a peak at the wind tunnel resonance frequency, which represents most of the energy in the
signals. For microphone m5 the intensity of the peak is at least one order of magnitude larger,
(φp5 (150) = 2.3 Pa2/H z), than for microphones m1 and m6, (φp1 (150) = 0.084 Pa2/H z and
φp6 (150) = 0.059 Pa2/H z). The first harmonic, at f = 2 fwt is also clearly evident for all the
three microphone with the spectrum of microphone m5 having the highest value. Interestingly, the
signature of third harmonic, at f = 3 fwt = 450 Hz, is not captured by any the wall-pressure sensors.

Pressure-velocity cross-correlation coefficient functions ρupi (τ ) were computed for each micro-
phone and with each spatial location in the shear layer. For each location, the maximum value of
the correlation coefficient function was computed. In Figure 9, the spatial distribution of this peak
value is shown, for the same three microphones as above. Figure 9(c), related to microphone m6,
indicates poor correlation levels between the velocity and this pressure signal, mainly because this
microphone is located outside the cavity in a region where a wall-bounded flow is starting to develop.
On the other hand, higher levels of correlation, of the order of 0.6, are found in a large region when
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FIG. 9. Contour maps of the maximum cross-correlation coefficient function max ρupi (τ ) between the velocity and wall-
pressure signals, for microphone m1 (a), microphone m5 (b), and microphone m6 (c).

considering both microphones m1 and m5, Figures 9(a) and 9(b). The distributions for these two
microphones show two elongated lobes starting from x/L = 0.2, located symmetrically around y/δ
= 0, with the upper lobe extending more downstream. The level of correlation for microphones m1
and m5 grows as the shear layer develops downstream because of the strong amplification of the
velocity fluctuations due to the multiple modes of the Kelvin-Helmoltz instability.

In the frequency domain, the correlation between velocity and pressure is expressed by the
squared coherence function γ 2

upi
( f ), defined as

γ 2
upi

( f ) = |�upi ( f )|2
�u( f )�pi ( f )

, (22)

where �pi and �u are the power spectral density of the ith microphone pressure signal and of
the velocity signal, respectively, and �upi is the cross-spectral density between velocity and wall-
pressure signals. In Figure 10, squared coherence functions between velocity in the point P and
wall-pressure from the three microphones as before are shown. It can be observed that, for all
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FIG. 10. Squared coherence functions between velocity at point P and wall-pressure, for three microphones, i.e., microphone
m1 (a), microphone m5 (b), microphone m6 (c).

the microphones, γ 2
upi

is particularly large at the wind tunnel resonance frequency fwt and its first
harmonic. In the range of frequencies between 0 and 100 Hz, several other peaks can be observed.
In particular, the squared coherence presents two peaks at f = 63 and 82 Hz, which are due to
the bifurcative behavior at the first sub-harmonic of the wind tunnel resonance mode, as discussed
for Figure 7. Furthermore, for microphones m6 and m5 there is also some level of coherence at
frequencies around 3/2 fwt .

B. Single-point multi-time-delay stochastic estimation

A discussion regarding the linear and nonlinear single-time-delay stochastic estimation tech-
niques is now first presented. This serves as an introduction of the multi-time-delay approach,
discussed later in this section.

The shape of the JPDF between the wall-pressure and velocity fluctuations f(p, u) was prelimi-
narily investigated in detail, in order to provide some understanding of the relationship between the
two variables. As an example of these analyses, Figure 11(a) shows the iso-lines of the JPDF f(p1,
uP) of the wall-pressure fluctuations for microphone m1 and of the velocity fluctuations at point P.
Figures 11(c) and 11(b) present the probability density functions (PDF) of the wall-pressure fluc-
tuations from microphone m1 and velocity fluctuations at point P, respectively. It can be observed
that the joint probability density function in Figure 11(a) is strongly non-Gaussian and shows two
peaks in opposite locations, a larger one in (0.35, 0.65), the other, much weaker and not visible in the
figure, around (−0.4, −0.7). This bi-modal behavior is mainly due to the oscillatory characteristics
of the velocity signal. This is evident in Figure 11(b) where the PDF of the velocity fluctuation
signal is clearly characterized by a larger peak at u(t) ≈ 0.6 and a much weaker one at u(t) ≈ −0.85.
Interestingly, the PDF of the wall-pressure fluctuation measured by microphone m1, Figure 11(c),
is close to normality, with skewness and flatness equal to 0.05 and 2.92, respectively.
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FIG. 11. Joint probability density function f(p1, uP) of the wall-pressure fluctuations from microphone m1 and of the
velocity fluctuations at point P, (a). (c) and (b) show the probability density functions of the wall-pressure fluctuations from
microphone m1 and velocity fluctuations at point P, respectively.

In Figure 11(a), on the same plot of the JPDF, the conditional average of the velocity fluctuations
using 10 different wall-pressure events E using microphone m1 are shown with small black dots.
Each point is the conditional average of the velocity fluctuations 〈u(t) | E〉, where event E, defined
as pe − dp < p1(t) < pe + dp, confines the value of the wall-pressure within a small window of size
2dp = 0.1 Pa, centered around pe and which varies uniformly between −1.75 and 1.75 Pa. For each
value of pe shown in the figure, the grey error bars represent the standard deviation of the distribution
f(u | E), i.e., the probability density function of the velocity fluctuations given event E. This quantity
is representative of the scatter of the velocity fluctuations around the conditional average given
event E.

In the same plot, estimates of the velocity obtained using the classical single-time-delay stochas-
tic estimation technique are shown for the linearly truncated expansion of the conditional average
(LSE) and for a high order expansion, a seventh order case.

The figure indicates that in the range −1 Pa < p1(t) < 1 Pa, the linear and high-order approaches
provide similar estimates of the conditional average of the velocity fluctuations. However, the
nonlinear behavior of the conditional average, clearly evident for |p(t)| > 1.3, is well captured
only by the higher order expansion, which well matches the conditional average value over all the
range of wall-pressure events. The better approximation of the conditional average by the high order
expansion is clearly due to the non-Gaussianity of the JPDF, as also suggested by Naguib et al.27

and Brereton.8 In fact, if the JPDF was Gaussian the nonlinear terms of the Taylor expansion of the
conditional average would be identically zero. Despite the better approximation of the conditional
average by the high order expansion, a small difference in accuracy between the two estimates must
be expected, since the probability that |p(t)| > 1 Pa is slight.

It is important to observe that, in the present case, the great length of the error bars in
Figure 11 indicates that the conditional average and its approximations via the stochastic approach
are not able to accurately describe the velocity fluctuations. This is because the probability density
function f(u | E) shows a large variability of the velocity fluctuations around the conditional average.
This variability can be clearly expressed by introducing the normalized mean-square estimation
error. This parameter can be obtained by defining e(t) = u(t) − ˆu(t) as the local estimation error,
i.e., the difference between the measured velocity value and the estimated velocity value at time t.
By squaring and averaging this equation, and dividing by the variance of the velocity fluctuations
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FIG. 12. Normalized mean-square estimation error ε of the velocity fluctuations at point P, for the single-time-delay
stochastic estimation as a function of the Taylor expansion order. Microphone m1.

one obtains

ε = e2

u2
= 1 − û2

u2
, (23)

where the second equality holds because of the orthogonality principle, in the case where the estimate
is obtained by a least-square procedure, Ljung.24 The parameter ε is, therefore, a significant index
which describes the fraction of the original variance in u(t) which has not been recovered by the
estimate û(t). Furthermore, ε is bound in [0, 1].

In Figure 12, the normalized mean-square estimation error ε is reported for stochastic estimates
of increasing orders for the velocity fluctuations at point P, using microphone m1. It can be clearly
observed that there is a sharp decrease in ε after order two, then it reaches a plateau after an expansion
order equal to 5. This weak drop is due to the change of the sign of the second derivative of the
conditional average with respect to the event, which can only be captured by a polynomial in p(t) of
an order larger than 2. It must be noted, however, that there is only a marginal change in the value of
ε by going from a linear expansion to a fifth order expansion. This clearly indicates that more than
80% of the variance of the velocity fluctuations still cannot be captured by the single time approach,
no matter what the expansion order is.

For a multi-time-delay approach, in which n past samples are considered, one should study the
JPDF of the variables u(t), p(t), p(t − �t), . . . , p(t − n�t). However, this approach is complicated
by the high dimensionality of the problem, which renders this analysis intractable. Nevertheless, the
meaning of the ε parameter is preserved. In this regard, its value is clearly affected by the number
n of past samples taken for the estimate. In Figure 13, the dependence of ε on n is shown for the
single-point estimate of the velocity at point P, using microphones m1, m5, and m6. In this plot, the
single-time-delay linear stochastic estimation case, which corresponds to n = 0, is set for graphical
convenience at n = 0.5 on the semi-logarithmic plot. The figure clearly indicates that if n increases
the normalized mean-square estimation error decreases remarkably, well below the value reached for
the high order single-time-delay stochastic estimation approach in Figure 12. This clearly proves that
the multi-time-delay approach is more accurate than classical estimation techniques. The decrease
is monotone, starting from a drop-off value ñ up to larger values of n, where an asymptotic value
of ε is reached for n > n*. A different behavior occurs for each microphone. For microphone m1,
and equally for microphones m2, m3, and m4, not shown in the figure, the error decreases abruptly
after n = 20, reaching asymptotically a value of ε equal to about 0.24. On the other hand, using
microphone m6 produces a larger estimation error. This was expected, given the lower correlation of
the pressure fluctuations from microphone m6 with the shear layer velocity fluctuations, as reported
in Figure 9. Nevertheless, the asymptotic value is practically the same. Microphone m5 shows an
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FIG. 13. Normalized mean-square estimation error ε of the velocity fluctuations at point P with respect to the model order,
for different microphones.

intermediate behavior and produced lower errors than m1 for 1 ≤ n < 20, but larger errors for larger
value of n.

The meaning of the drop-off value ñ, of the order of 20 for all the three microphones, is that
statistically relevant information which can be used to increase the accuracy of the estimate, only
appears after a characteristic time lag ñ�t . This can be linked to a time lag for which the cross-
correlation function between the velocity and the wall-pressure fluctuations starts to become large.
For n > ñ, the error decreases strongly at particular values of n because for the corresponding time
lags the cross-correlation function is higher, meaning that important information is contained in the
pressure time history for these time delays. On the other hand, the asymptotic behavior which is
reached for large values of n, i.e., n*, may be intuitively explained with the fact that the wall-pressure
samples at these large lags in the past are statistically uncorrelated with the velocity fluctuation at
time t and thus they cannot enhance the accuracy of the estimate. Such a threshold time lag can be
roughly identified as the time lag for which the cross-correlation function is sufficiently close to zero
and, therefore, it may be related to characteristic time scales of the physical mechanisms involved.

It appears clear that a further advantage of the multi-time-delay technique is that it can cope
with situations where there is a time lag between the velocity and wall-pressure signals, a problem
recognized by Murray and Ukeiley26 among others, for the classical stochastic estimation approach.
In these cases, in fact, the cross-correlation function between these two variables shows a peak for
τ 	= 0. Therefore, the value of n can be set as large as is necessary in order to use all the previous
samples included in this time lag.

It should be noted that, in the present work, the relatively high value of n required to achieve
a satisfactory accuracy is mainly due to the short sampling interval which was used to acquire the
velocity and wall-pressure signals. In a real-time control application this sampling interval must
clearly be optimized. It should be sufficiently small to adequately resolve the relevant time scales of
the dominant flow mechanisms but as large as possible to reduce the number of past samples used.

The estimation accuracy of the multi-time-delay approach across the whole investigated flow
field is presented in Figure 14, which shows the contour map of the distribution of ε(x), for n = 1000,
using microphone m1. This model order was chosen as it was sufficient to guarantee convergence of
ε all over the shear layer. The distribution is characterized by two lobes across the shear layer where
the estimate is particularly accurate. This distribution closely resembles that of max ρup1 , reported
in Figure 9(a), and it replicates many of its features, such as the shape of the two lobes and the thin
region where ε is high, in y/δ = 0. This indicates, as expected, that for a multi-time-delay estimate
the mean-square estimation error is smaller if the cross-correlation coefficient function is “large.” A
more formal justification of this concept can be obtained by deriving the analytic expression for the
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FIG. 14. Contour map of the normalized mean-square estimation error ε across the whole shear layer.

normalized mean-square estimation error which reads as24

ε = 1 − 1

u2
fT R−1f, (24)

where the column vector f and the matrix R are defined in Eqs. (15) and (14), respectively. In
particular, the column vector f is made up of the values of the cross-correlation function rpu, while
R contains values of the auto-correlation function of the wall-pressure signal. The quadratic form
fT R−1f is strictly positive, since R is a positive definite matrix; furthermore, it depends on n.
This term defines a “size” of the cross-correlation function, which indicates how much information
regarding the flow velocity is contained in the wall-pressure time history. For example, if R is the
identity matrix, that is the case where p(t) is a unit variance Gaussian noise, the value of the quadratic
form reads as

fT R−1f = fT f =
n∑

i=0

rpu(i)2, (25)

which is clearly larger if rpu is large in modulus for as many lags as possible. This expression also
justifies the values of ñ and n*: the error starts to decrease for a value of n where the summation
of Eq. (25) starts to become large, i.e., when the cross-correlation starts to increase. On the other
hand, the summation reaches an asymptotic value because, for large i, rpu(i) is close to zero, and no
contribution is added by increasing i. For the general case of R, these concepts are still valid even if
obtaining the exact expression for fT R−1f in terms of rpu and rpp is more complicated.

From a theoretical point of view, it can be observed that the fraction of unrecovered variance in
the velocity signal, i.e., the remaining 24% of the energy for the case in Figure 13, has two sources.
The first is made up of uncorrelated components in the velocity time history. These components
cannot be recovered by any kind of technique, since their signature is not present in the wall-pressure
time history. The second source of error may be due to a nonlinear relationship in the dynamics
between velocity and wall-pressure, which cannot be captured by the proposed approach, which only
provides the best linear estimate. In the present analysis, only the linear multi-time-delay stochastic
estimation approach was considered, but Eq. (6) can be naturally extended to include high-order
nonlinear terms, which will certainly capture nonlinear processes in the flow. However, the extension
to high-order terms is more problematic from a numerical point of view, since the problem of finding
all the unknown coefficients of the nonlinear expansion suffers from the problem of the “curse of
dimensionality” (see Bishop6). In fact, in a linear multi-time-delay approach the number of unknown
coefficients grows linearly with n, whereas for an expansion of order two the number of coefficients
grows as n2, which renders the problem intractable when n becomes large.

To further highlight the capabilities of the multi-time-delay technique, an example of the
reconstruction of the temporal evolution of the velocity is shown in Figure 15. In this figure,
a short part of the measured velocity time history at point P is compared with those estimated
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FIG. 15. Detail of the measured and estimated velocity time histories at point P. The estimates are obtained using microphone
m1 and with different model orders, namely, n = 0 (LSE), and n = 1000 (MTD-LSE).

using the classical single-time-delay LSE approach, n = 0, and the multi-time-delay approach, for
n = 1000. In both cases, microphone m1 was used for the estimate. The accuracy of the estimate for
the multi-time-delay approach is markedly higher. The estimated time history closely follows the
measured signal, matching both the phase and the amplitude of the dominant oscillation of the shear
layer. Furthermore, the frequency content of the estimated time history looks much more similar
to that of the measured time history. By contrast, the classical single-time-delay linear stochastic
estimation does not faithfully represent the measured velocity signal, missing both the amplitude
and the phase of the main oscillation. The improvement of the multi-time-delay approach is even
clearer when observing the power spectral densities of the estimation error e(t), i.e., the difference
between the measured and estimated velocity signals of Figure 15. The spectra are reported in
Figure 16, for the STD approach, where n = 0, and for the MTD approach, where n = 1000, using
in both cases microphone m1 for the estimate.

For the MTD approach the spectral density of the estimation error for the frequencies corre-
sponding to the wind tunnel resonance mode and it first harmonic is at least one order of magnitude
lower than that of the single-time-delay approach. The latter fails to recover the main energy con-
tribution in the signal and also produces large errors for a wider range of frequencies. Interestingly,
for the multi-time-delay approach in particular, much of the error is concentrated in the side-bands
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FIG. 16. Power spectral density of the estimation error for the single-time-delay LSE approach, n = 0, and the multi-time-
delay approach, for n = 1000.
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FIG. 17. The contour maps show the reconstructed spatial distribution of the fluctuating velocity component in the shear
layer in four selected time instants. The time delay between successive snapshots of the sequence is 45�t, where �t = 1/8000
s is the sampling interval. The grey color shading represents the modulus of the velocity fluctuation. Eight iso-lines have been
drawn for values of û′/Ue equal to ±0.11, ±0.08, ±0.05, ±0.02; dashed contours indicate a negative value.

of the resonance modes. This is connected to the low value of the squared coherence function γ 2
up

for these frequencies, as evidenced in Figure 10. A further error contribution is also due to lower
frequencies, mainly because the microphones significantly attenuate this low range.

Figure 17 shows the time-resolved reconstruction of the spatial distribution of the non-
dimensional velocity fluctuation in the shear layer, using the MTD approach with n = 1000, with
microphone m1. The temporal resolution between successive snapshots is 45�t, i.e., one snapshot
out of every 45 reconstructed snapshots is shown. The estimated flow fields were obtained by first
computing the bk coefficients for every point in the shear layer where a velocity time history was
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acquired. Then, the time resolved estimate of the velocity in each point was obtained by using a
single wall-pressure time history.

It is clearly visible that the flow field shows a distinct spatial organization characterized by
a periodic alternation of regions of positive and negative velocity fluctuation. This feature is a
characteristic for a cavity flow in the shear-layer mode, Rowley et al.,32 where the flow is subject to
global instability in the form of convective Kelvin-Helmoltz waves excited by feedback from pressure
waves generated near the cavity trailing edge. The vertical dimension of the region interested by the
phenomenon is comparable to the size of the shear layer estimated from Figure 5.

The convection properties of the coherent structures in the shear layer are also well resolved by
the MTD approach. In fact, the coherent structures convection speed ratio κ = Uc/Ue was estimated
by performing cross-correlation analyses between estimated velocity time histories in adjacent points
at y/δ = constant, for all the point in the shear layer. Examination of the time lag, with respect to the
separation �x between the points, led to a map of κ as a function of the spatial location. The value
of κ was almost constant in all the shear layer for x/L < 0.7 and equal to about 0.5, decreasing to
about 0.4 only after x/L = 0.7. These values are in agreement with the previous findings of several
authors which investigated flows past rectangular cavities, e.g., Chatellier et al.11

Results in Figure 17 clearly indicate that the multi-time-delay approach is capable of faithfully
reconstructing the flow field structure. This allows a reliable interpretation of the dominant phe-
nomena and of their time evolution. In contrast, if the single-time-delay classical approach had been
used for this purpose, the resulting flow field would have lacked much of the physical information
obtained with the proposed technique.

C. Spectral properties of the multi-time-delay estimate

In the frequency domain, the velocity time history estimated with a multi-time-delay approach
has important properties, which are highlighted in this section.

For the single-point multi-time-delay estimate of one of the velocity components at a given
point x0, we can write that

û(i) =
n∑

k=0

bk p(i − k), (26)

i.e., the estimate of the velocity signal is the convolution of the wall-pressure signal with the vector
of coefficients bk. By taking the z-transform of this expression, Hayes,19 the convolution becomes a
multiplication

Û (z) = H (z)P(z), (27)

where z is a complex variable, Û (z) and P(z) are the z-transforms of the estimated velocity and
wall-pressure signals, respectively, while H(z) is called the transfer function, which reads as

H (z) = b0 + b1z−1 + b2z−2 + . . . + bnz−n, (28)

i.e., it is a polynomial of order n in z−1. The frequency response is obtained by evaluating the transfer
function on the unit circle in the complex plane, i.e., for z = ei2π f, obtaining

H (ei2π f ) = |H (ei2π f )|ei�(2π f ), (29)

where the real valued amplitude response |H(ei2π f)| and the phase response �(2π f) have been
conveniently separated. The amplitude response is important because it relates the spectra of the
wall-pressure signal to that of the estimated velocity signal. In fact, it can be shown that these spectra
are related by

�û( f ) = |H (ei2π f )|2�p( f ), (30)

meaning that each frequency component in the wall-pressure signal is amplified or attenuated in
the estimate as dictated by the amplitude response. On the other hand, the phase response �(2π f)
provides information regarding the phase difference between the wall-pressure and the estimated
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FIG. 18. Amplitude response plots related to estimates of the velocity at point P using different microphones: m1 – (a),
m5 – (b), and m6 – (c). The curves were obtained using different model orders. Note that n = 0 corresponds to the classical
single-time-delay linear stochastic estimation approach.

velocity signal at each frequency component. This gives insight regarding the time lags for the
important physical mechanisms in the flow.

In Figure 18, the amplitude response |Hi(ei2π f)| is shown for different model orders n. These are
related to the estimate of the velocity at point P, with the same three microphones used previously.
It can be seen that the amplitude response is a constant for the single-time-delay linear stochastic es-
timation approach, n = 0. This means that all the frequency components in the wall-pressure signal,
both noise and “signal” parts are equally scaled, by a factor which is equal to b2

0 = (rpu(0)/rpp(0))2.
This property has several drawbacks. In fact, the single-time-delay linear stochastic estimation ap-
proach is incapable of reconstructing a velocity field whose spectral characteristics are strongly
different from those of the wall-pressure signal. Furthermore, all the noise and incoherent contri-
butions are directly transferred to the estimated velocity field, which has practical consequences in
a flow control system, where accurate estimates of the flow state must be available to guarantee
satisfactory effectiveness of the control, Cattafesta et al.10

By contrast, for the multi-time-delay approach, if n increases, the transfer function gains the ca-
pability to selectively attenuate or amplify each frequency component independently. This increased
flexibility means that the drawbacks of the single-time-delay linear stochastic estimation approach
can be relaxed.

The transfer function coefficients bk are not chosen arbitrarily by specifying bandpass properties;
they are obtained from a least-square criterion. In this case, it can be demonstrated, Hayes,19 that for
n → ∞, the squared amplitude response of the transfer function of Eq. (28) tends to

|H (ei2π f )|2 = γ 2
up( f )

�u( f )

�p( f )
, (31)
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where �u(f) and �p(f) are the power spectral densities of the measured velocity and wall-pressure
signals, and γ 2

up( f ) is the squared coherence function, defined in Eq. (22). Equation (31) states that
by using the multi-time-delay approach, each frequency component in the pressure signal is first
scaled by the factor �u(f)/�p(f), to recover the energy of the measured velocity signal, but it is then
attenuated according to the value of the coherence between the signals, since 0 ≤ γ 2

up( f ) ≤ 1.
By substituting (31) in Eq. (30), it can be obtained that �û( f ) = γ 2

up( f )�u( f ), which means
that the velocity field estimated using a multi-time delay approach only contains those physical
mechanisms which make the velocity and wall-pressure signals strictly correlated. The incoherent
contributions are, therefore, eliminated from the estimate. This may be a robust tool for gaining
considerable insight in the dynamics of a flow, since the relevant coherent mechanisms responsible
for the large pressure fluctuations at the wall can be identified.

It can be also shown, that for n → ∞, the phase response �(f) of the transfer function of
Eq. (29) becomes

�( f ) = tan−1

{
Re(�up( f ))

I m(�up( f ))

}
, (32)

where Re{ · } and Im{ · } denote the real and imaginary parts of the cross-spectral density �up(f).
This equation states that, as n increases, the phase response of the transfer function H(ei2π f) of
Eq. (28) tends to the phase spectrum of the velocity-pressure joint time histories. The phase spectrum
fully contains the phase information regarding the velocity-pressure time histories at each frequency,
which can be thus effectively taken into account. This property has fundamental implications for
estimates in strongly convective flows, where there is a physical separation between the sensor and
the location where the velocity has to be estimated.

The above relations hold exactly for n → ∞. For a finite value of n, the amplitude and phase
responses are just approximations of their respective limit values. However, if n is sufficiently high,
i.e., of the order of n*, the approximation becomes more accurate and the properties discussed are
effective. Finally, it should be noted that the proposed approach is well known in filtering theory as
a finite impulse response Wiener filter.

A brief comparison of the MTD-LSE technique with the SLSE technique detailed by Tinney
et al.35 is now discussed. The two techniques have similar features since the transfer function obtained
from the MTD approach acts in a similar way to the spectral estimation coefficients of the SLSE
approach. In that case, one obtains a spectrum of the reconstructed signal which is exactly the same of
that of the original signal at those frequencies where the coherence is greater than an arbitrarily chosen
threshold. At other frequencies the spectrum is set to zero, so that only the coherent contributions
are retained. In this regard, the multi-time-delay approach shows a fundamental difference. In fact,
the MTD approach does not rely on any user chosen threshold but all the information available in
the wall-pressure signal is optimally used to obtain a minimum square error estimate, in which the
coherent components are retained proportionally to the value of the squared coherence function.
The multi-time-delay approach may be suited for flow state estimation in a real-time flow control
application. In fact, in a flow control system the computational time related with the control algorithm
must be smaller than the time scale of the physical mechanisms involved. In the multi-time-delay
approach, flow field estimates can be quickly obtained by convolution of the input signals from
the sensors with the coefficients bk obtained off-line, which is a computationally fast and efficient
problem on modern real-time control hardware. From this point of view, using the SLSE approach
to obtain flow field estimates requires to perform Fourier transforms of the input signals in the
frequency domain, which is a more demanding task.

D. Multi-point multi-time-delay stochastic estimation

Investigations were conducted to explore the effects of the number M of sensors on the accuracy
of the multi-time-delay estimate, for several model orders n. Different sets and combinations of
sensors were considered, but because of the large number of these combinations, results for only
a limited subset are reported. Figure 19 shows the effects of the model order n on the normalized
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FIG. 19. Normalized mean-square estimation error ε for the velocity at point P with respect to the model order, and for some
combinations of M sensors.

mean-square estimation error ε, for the estimate of the velocity at point P. The curves were obtained
using the combinations of sensors reported in Table I. These were the combinations, which for a
given M, yielded the minimum error for n = 1000, also reported in the same table.

As expected, if the number of sensors used in the estimate is increased, the mean-square
estimation error generally decreases. This means that a multi-point approach is more accurate than a
single-point technique. This is qualitatively in agreement with previous findings of several authors,
e.g., Cole et al.12 among others. These authors considered the multi-point estimate for the classical
single-time-delay approach and found it more accurate than the single-point technique. However,
the gain obtained by using more than one sensor depends on n and remarkably decreases if the model
order is large, i.e., if n > n*. For n = 1000, the decrease of ε brought by using all the six sensors
instead of just one is marginal, and of the order of 0.013. The values of ε for n = 1000, reported in
Table I, indicate that most of the marginal decrease is obtained for M = 2, with a smaller effect of
adding more than two sensors. There is also a slight gain by going from M = 5 to M = 6, i.e., by
adding microphone m6 to the estimate. This is due to the low cross-correlation levels between the
velocity fluctuations and the wall-pressure fluctuations measured by this microphone.

For n < 10, the single-point estimate using microphone m1 appears more accurate than the
multi-point estimate with M = 2 (microphones m2, m4), and M = 3 (microphones m2, m4, m3). This
is explained by considering that these two combinations of two and three sensors are not the optimal
combinations for these values of n. This aspect was investigated in detail for each model order
by evaluating the estimation accuracy resulting from all the possible combinations of M sensors.
Results of these analysis, not reported here for the sake of brevity, indicated that in general the
optimal combination, for given M, changes with the model order. Furthermore, it was found that for

TABLE I. Best combinations of M microphones and corresponding nor-
malized mean-square estimation error for the velocity at point P, for
n = 1000.

M Combination ε

1 m1 0.249
2 m2, m4 0.240
3 m2, m4, m3 0.239
4 m2, m4, m3, m1 0.237
5 m2, m4, m3, m1, m5 0.236
6 m2, m4, m3, m1, m5, m6 0.236
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FIG. 20. Contour maps of the normalized mean-square estimation error for the single-point estimate using microphone m1
(a), and for the multi-point estimate using all the six microphones (b). In both cases the model order n is set to 1000.

all the values of the model order, the estimation accuracy improves monotonically as the number of
sensors is increased if the optimal combinations are considered, justifying the apparent contradiction
of Figure 19 for n < 10.

The slight gain introduced by the multi-point estimation for large model orders is a general
feature of the whole shear layer flow field. Figure 20 shows contour maps of the distribution of the
normalized mean-square estimation error ε for the single-point, (M = 1), estimate using microphone
m1, Figure 20(a) and for multi-point estimate with M = 6, Figure 20(b). For both cases the model
order is set to 1000, larger than n*. It can be observed that in all the flow field the improvement of
the multi-point estimate is marginal and both approaches capture then same structure with nearly
the same level of accuracy. In fact, in the whole shear layer region the difference in ε between the
single- and multi-point estimates is not larger than 0.03.

The likely reason for the marginal gain introduced by the multi-point estimate is that, for large
model orders n, most of the required information regarding the flow dynamics is already contained
in a single wall-pressure time history. Therefore, if the same information is used two or more times
by using two or more sensors measurements, the quality of the estimate cannot improve much.

A further important aspect is related to the computational time required to estimate accurately
the flow state, which is an important consideration in a real-time flow control system. If the bjk

coefficients of Eq. (6) have been previously computed off-line, the computational time required for
the estimation of the flow velocity at a given location in the flow and at a given time t, is due, for the
multi-time-delay, multi-point technique, to the M convolution operations of the wall-pressure data
with the coefficients vectors. This computational effort is proportional to Mn and it is thus evident
that a compromise between accuracy and computational times must be accepted. In fact, if a larger
number of sensors is used, the estimate is more accurate but the associated computational effort
is larger and vice versa. In Figure 21, the normalized mean-square estimation error ε is reported
against the computational time Mn, for the multi-point case M = 6 and for the single-point case
using microphone m1. It can be seen that in the range 20 < Mn < 103 the single-point estimate



017101-27 Lasagna, Orazi, and Iuso Phys. Fluids 25, 017101 (2013)

100 101 102 103 104

Mn

0.0

0.2

0.4

0.6

0.8

1.0

M = 6 m1

FIG. 21. The normalized mean-square estimation error ε is plotted against the computational effort Mn required for flow
state estimation at a single spatial location, for the single- and multi-point multi-time-delay approaches.

produces a more accurate reconstruction of the flow field for a given computational effort. The same
consideration applies if a given error limit ε is set: in this case, the estimate is less computationally
expensive for the single-point case. This suggests that from a control point of view, for a cavity flow
one sensor may be sufficient to reproduce with sufficient accuracy and with short computational
times the relevant dynamics of the shear layer. In addition a single sensor approach would also limit
the complexity and the costs of the setup.

It should be noted that the number of sensors required for accurate flow estimation may depend
on the specific flow investigated. In fact, in this case the shear layer flow is predominantly driven
by the Kelvin-Helmoltz instability, a large scale organized phenomenon, well captured by the multi-
time-delay approach with a single sensor. Bluff bodies wakes and separating flows are also other
examples of flow fields where large scale organized structures are present which make the velocity
and wall-pressure highly correlated. On the other hand, a wall bounded flow exhibits a much more
complex organization, with a wide range of time and length scales. In this case, it is probable that a
larger number of sensor would be required to estimate the velocity field in large regions of the flow,
despite a multi-time-delay approach.

V. CONCLUSIONS

In this paper, the multi-time-delay, single- and multi-point linear stochastic estimation technique
has been further developed and described in detail. It has been applied as a demonstration to the
estimate of the temporal evolution of the velocity fluctuation in a cavity shear layer, based on wall-
pressure measurements. The proposed technique may provide a powerful tool in applications such
as modeling, prediction, and control of complex flows. In fact, properties highlighted in the paper,
such as low estimation error, low number of sensors required, and the low computational effort, are
key features in a flow control system, where accurate reconstruction of the spatio-temporal dynamics
of the flow and of its driving physical mechanisms is required.

In the paper, it is clearly demonstrated that the multi-time-delay approach outperforms the clas-
sical linear and nonlinear single-time-delay stochastic estimation technique in terms of mean-square
estimation error, producing a remarkable improvement in accuracy. In addition, this improvement
strongly depends on the number n of past samples of the wall-pressure time history taken into
account.

We also show that, in the spectral domain, the multi-time-delay linear stochastic estimation
technique produces estimated velocity time histories whose spectral content closely match that of
the time histories measured. This feature cannot be achieved by the classical single-time-delay
stochastic estimation approach, which produces a power spectrum of the estimated velocity time
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history by scaling the wall-pressure power spectrum by a constant. Furthermore, in the MTD-LSE
approach the phase lag between the velocity and wall-pressure time histories is taken into account
at each frequency, which means that it can cope with situations where the sensor and the estimation
location are separated by a physical distance.

With respect to the SLSE technique, the multi-time-delay approach eliminates the need to
choose a threshold to select the coherent frequency components to be retained in the estimate.
The same effect is achieved, for large n, by retaining each frequency component proportionally to
the level of the squared coherence between the velocity and wall-pressure. As a consequence, the
proposed technique makes use of all the available spectral information in the wall-pressure time
history, resulting in a minimum mean-square estimation error.

The multi-point, multi-time-delay linear stochastic estimation technique was also investigated in
detail. It was shown that, if n is large, the improvement in accuracy brought by using measurements
from multiple sensors is marginal with respect to the single-point case. This is explained by the fact
that the information needed to capture the important dynamics of the shear layer flow is already
contained in a single wall-pressure time history, and can be taken into account by using multiple past
values of the wall-pressure time history. Furthermore, the computational effort required to estimate
the flow field with the same level of accuracy was lower for the single-point case with respect to the
multi-point case.

This technique may offer invaluable insight into the spatio-temporal evolution of coherent
structures. In fact, the spatio-temporal evolution of the whole shear layer flow field was faithfully
reconstructed by the MTD-LSE technique and the dominant flow mechanism, i.e., the Kelvin-
Helmoltz instability of the shear layer, was clearly captured.

An important question for future studies will be to develop a nonlinear multi-time-delay stochas-
tic estimation technique. In fact, a high-order approach is required to fully capture nonlinear processes
in the flow, thus providing a more accurate identification and reconstruction of these mechanisms.
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