POLITECNICO DI TORINO
Repository ISTITUZIONALE

ZipStream: improving dependability in Dynamic Partial Reconguration

Original

ZipStream: improving dependability in Dynamic Partial Reconguration / DI CARLO, Stefano; Gambardella, Giulio; Huynh
Bao, T.; Prinetto, Paolo Ernesto; Rolfo, Daniele; Trotta, Pascal. - ELETTRONICO. - (2013), pp. 1-6. (Intervento
presentato al convegno IEEE 8th International Design and Test Symposium (IDT) tenutosi a Marrakesh, MA nel 16-18
Dec. 2013) [10.1109/IDT.2013.6727128].

Availability:
This version is available at: 11583/2504958 since:

Publisher:
IEEE Computer Society

Published
DOI:10.1109/IDT.2013.6727128

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024



ZipStream: improving dependability in Dynamic
Partial Reconfiguration

Stefano Di Carlo, Giulio Gambardella, Trong Huynh Bao*, Paolo Prinetto, Daniele Rolfo, Pascal Trotta
Politecnico di Torino
Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24, 1-10129, Torino, Italy
Email: {name.familyname} @polito.it
*Email: trong.huynhbao@studenti.polito.it

Abstract—Dynamic Partial Reconfiguration allows to dynam-
ically change the behaviour of a portion of the FPGAs by
downloading new information in the configuration memory of the
device. Since modern Systems-on-Programmable-Chips (SoPCs)
make extensive use of this feature, many reconfigurable area are
placed in the device, with several configurations for each area.
This comes at a cost in terms of dependability of the system and
of memory occupation. The proposed methodology focuses on
increasing the dependability of partially reconfigurable systems
by safely storing compressed configuration data inside the FPGA.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are devices
composed of interconnected functional blocks that can be
programmed to accomplish a desired logic function.

Because of their programmable nature, they have often been
used for prototyping and debug [1]. With technology shrinking
and technical improvements, the performance gap between
FPGAs and Application Specific Integrated Circuits (ASICs)
has progressively decreased [2]. As a result, FPGAs are
now commonly used also in final release implementations,
primarily in small quantities and ad-hoc custom products, like
space applications [3] [4].

The use of FPGAs in safety critical systems introduces new
challenges in the design phase. Nevertheless, their flexibility
allows the designer to devise innovative methodologies to
increase the system dependability. Dynamic Partial Recon-
figuration (DPR) is a widely used feature, offered by Xilinx
FPGAs. DPR gives the designer the capability to reconfigure
a certain portion of the device at run-time, without influencing
the other portions of the design.

The partial reconfiguration process consists of downloading
the information listed in the partial bitstream in the config-
uration memory, through the Internal Configuration Access
Port (ICAP) [5]. At the end of the reconfiguration, the recon-
figured partition is able to accomplish the desired function.
In a System-On-Programmable-Chip (SoPC) requiring a high
level of flexibility, many reconfigurable partitions can be
inserted. Each partition can be exploited to time-multiplex
the same hardware resources for different functional modules,
by loading configurations at different times. This significantly
increases the number of partial bitstreams to be stored.
Partial bitstreams may be stored either inside the FPGA or in

an external memory.

Storing the partial bitstream inside the FPGA provides a
high level of dependability, since the Block RAMs (BRAMs)
(i.e., internal memory in Xilinx” FPGA) in the device are, in
general, protected by correction codes [6], and the connection
to the ICAP is safer then the one to external devices. However,
this high dependability comes at the cost of an increased
internal memory occupation, that, in many designs, proved
to be a very critical issue.

Storing configuration data in an external memory enables to
store many partial bitstreams. However, the external connec-
tions increase the probability of reading faulty data.

To solve the resources utilization problem, many approaches
have been proposed to compress the partial bitstream data in
order to decrease the memory occupation in the FPGA [7]
[81 [9] [10] [11]. Most of them use lossless data compression
schemes, like Lempel-Ziv based [12] [13]. Since they require
very smart and big hardware decompressor, these approaches
clearly led to a decrease in terms of available logic resources.
In the proposed paper we describe ZipStream, an innovative
methodology to improve the dependability in dynamically
reconfigurable systems by backuping compressed partial bit-
streams.

For each reconfigurable partition, a compressed partial bit-
stream is stored internally. To achieve a very high compression
ratio and a very low usage of resources for the decompressor,
a special partial bitstream, called black-box, is exploited. If
a reconfiguration process fails, the non-reconfigurable portion
of the system may be damaged, too. The reconfigurable par-
tition is then configured with the associated black-box partial
bitstream. This reconfiguration restores the non-reconfigurable
system functionalities and results in a system graceful degra-
dation, in which the non-reconfigurable portion of the SoPC
is still working, even if the reconfigured partition will not be
able to provide the original desired function.

The paper is organized as follows: Section II introduces the
DPR and the related dependability issues. Section III briefly
introduces compression algorithms. Section IV describes the
ZipStream methodology, while experimental results, gathered
targeting the Xilinx FPGA architecture, are shown in Section
V. Section VI concludes the paper.



II. DYNAMIC PARTIAL RECONFIGURATION

Dynamic Partial Reconfiguration (DPR) extends the native
FPGA flexibility. It enables to dynamically change function-
alities of a section of a circuit (Partition), while the rest of the
design is left unchanged and fully functional. Therefore, the
ability to time-multiplex hardware modules at run-time enables
to design complex systems reducing cost, board space, and
power consumption.

The partial reconfiguration process can be activated at run-time
by downloading a partial bitstream inside the FPGA through
a configuration port (e.g., ICAP in Fig. 1). These information
are written inside the configuration memory of the SRAM-
based FPGA.

PARTIAL

PARTITION
D BITSTREAM 1

F PG A N PARTIAL
BITSTREAM 2

RECONF. PARTIAL
MODULE 3 BITSTREAM 3

Figure 1: Dynamic Partial Reconfiguration scheme

RECONF.
MODULE 1

The ICAP provides the highest bandwidth (i.e., 3.2 Gbps [14]),
speeding up the reconfiguration process.

After the whole partial bitstream has been downloaded in
the ICAP, the addressed section of the configuration memory
is modified. These modifications change the behavior of the
reconfigurable partition. Unfortunately, this alteration of the
configuration memory can introduce some dependability is-
sues. In fact, even if the changes address just the reconfigured
partition, an error occurring during the configuration memory
writing may affect the proper functioning of the static part of
the design, as well. This because when a partial reconfiguration
design is placed and routed, static routes (i.e., routes associated
to non-reconfigurable portion of the design) can route through
reconfigurable partitions [5].

When the partial bitstream is corrupted, some connections can
be broken, entailing critical system failures. In such a case a
complete reconfiguration of the FPGA is needed to restore the
system.

The ICAP provides a built-in CRC check at the end of the
reconfiguration process, in order to check if the downloaded
bitstream is corrupted. This "late" check doesn’t provide any
protection to the system, since the corrupted reconfigurable
partition is already active, potentially damaging the device.
A different approach must therefore be added at design time
to prevent faulty reconfigurations. Xilinx, in the Partial Re-
configuration User Guide [5], takes care of the partial bit file
integrity. In particular, the proposed solution requires both a

software and a hardware layer [5].

This solution guarantees, also for faulty reconfigurations, that
the rest of the system (i.e., static portion) continues to function.
Nevertheless, it introduces an amount of latency due to the
adopted buffering mechanisms that, in some cases, is not
acceptable.

In addition, the recovery mechanism is not described by
Xilinx, and the choice is left to the user. A widely used
approach consists in reading again the bitstream and trying
to reconfigure again with the same bit file. This process must
be handled by a reconfiguration manager and leads to a very
long reconfiguration time. Moreover, it does not assure that
the reconfiguration process will finally ends properly.

In fact, if the bitstream read from the external memory is
definitely corrupted, the reconfiguration process will always
be stopped.

A widely used more dependable solution requires to store the
bitstream inside the FPGA. Since the BRAMs of the device
are protected by Error Correction Codes (ECCs), the bitstream
will be safely stored. Nevertheless, this will come at a cost in
terms of memory occupation, that in modern SoPCs is a really
critical resource. An effective solution is to compress the data
to be stored, in order to reduce the memory occupation.

The next section presents an overview of compression algo-
rithms, taking into account the complexity required for the
hardware implementation.

III. COMPRESSION ALGORITHMS OVERVIEW

A compression algorithm aims at decreasing the size of an
original array of data, involving encoding information. The
achieved compression can be either lossy or lossless.

Lossy algorithms reduce the dimension of the array by elim-
inating marginal information. Usually, a lossy compression
achieves a high compression rate, but the original data can
not be reconstructed. Examples of lossy compressions are
MPEG?2, JPEG and MP3 [15].

Lossless compression algorithms allow the original array to
be reconstructed from the compressed data. Lossless data
compression is usually based on the statistical model of the
input data, exploiting redundancy to compress the original
data. Therefore, the achieved compression rate is closely
related to the statistics of the data to be compressed.

Two main lossless encoding algorithms are used: Huffiman
Coding and Arithmetic Coding. In both cases, the most fre-
quently used characters are coded by fewer bits, while less
frequently occurring characters are coded by more bits. This
led to fewer bits used in total.

Huffman coding [16] is the most well-known and widely used
variable-length code. It separates the input data into symbols
(choosing their lengths) and replaces each symbol by a code.
Arithmetic coding, instead, encodes the entire message into a
single number. Arithmetic coding [17] achieves high compres-
sion rates for particular statistical models, whereas it implies
higher computational complexity. Huffman compression is
simpler and faster, but produces poor results for models that
deal with uniform symbol probabilities. It provides very high



compression ratios when input data are very redundant.
Another kind of compression algorithm, based on the char-
acteristics of the data to be compressed, is the Run-length
encoding (RLE) [16]. In RLE, sequences of the same value
are stored as a single data and the number of occurrences in
the sequence.

IV. ZIPSTREAM

ZipStream is a novel methodology to increase the level of
dependability in reconfigurable FPGA systems by internally
backuping special compressed bitstreams. The solution is
based on storing in the FPGA a compressed partial bitstream
for each reconfigurable partition. When a corrupted bitstream
(i.e., checked by the ICAP built-in CRC) is read from the
external memory, at the end of the reconfiguration the static
part of the system may be damaged (see Section II). In order to
restore in a very short time the static system functionalities,
an internally stored black-box [18] bitstream configures the
corrupted reconfigurable partition.

Since the main goal is to assure the proper functioning of the
system, the compressed bitstream will reconfigure the target
partition with a black-box module, able to ensure the static
connections passing through the reconfigurable partition to be
correctly restored.

The black-box partial bitstreams, generated by the Xilinx
PlanAhead tool, encompass just the information of the static
part of the reconfigurable partition, since there is neither logic
nor nets associated with this partition. The main peculiarity
of this special bitstream is that it embedds a lot of data
redundancy exploitable for an efficient compression.

In general, a partial bitstream contains information items
related to the logic and routing resources present in the asso-
ciated reconfigurable partition. A black-box partial bitstream
carries just the information about the static connections of
the design which routes through the targeted reconfigurable
partition. Since it does not contain any information associated
with the logic resources, it includes long sequences of zeros.
Since the ICAP CRC check does not occur until the end
of a reconfiguration process, a faulty bitstream loaded from
the external memory may damage the static portion of the
design, including connections associated to the reconfiguration
controller. In this case, the system will not be able to restore
the faulty partition by a black-box module. Thus, to make the
ZipStream methodology effective, a Design-for-Dependability
(DfD) rule must be adopted at design time.

In addition, the features of the black-box partial bitstreams
enable the use of an ad-hoc designed compression algorithm
based on the Huffman encoding (see Section IV-A), whose
decompressor requires very low hardware resources.

The ZipStream approach consists of three different steps:

o apply the optimal Compression algorithm to the partial
bitstreams in software;

o design the Hardware Decompressor to be implemented
in hardware;

o apply the DfD design rule to the system design.

A. Compression Algorithm

The partial bitstream file is a stream of data to be down-
loaded in the ICAP, composed of hundreds of 32-bit words. To
compress these data, a combination of two different algorithms
has been used to achieve a high compression rate.

Since the bitstreams to be compressed are characterized by
many sequences of zeros, the first applied algorithm was the
Run-Length Encoding (RLE).

The RLE encodes a sequence of consecutive zeros by a binary
number. Obviously, the insertion of 1-bit flag to distinguish
normal symbol or encoded symbol is required. This encoding
is based on splitting the stream of bits in symbols. All symbols
have the same length in terms of number of bits. The length
clearly has a great impact on the compression ratio, since the
symbol probability changes with the symbols’ length. In order
to enhance the flexibility of the methodology, the software
compressor is able to automatically calculate the symbol
length to achieve the best compression rate. To do this, the
RLE algorithm is applied with three different symbol lengths
(e.g., 8, 16 and 32 bits). The set of lengths has been chosen
to better fit the data in the hardware, since the decompressor
should save these data in a BRAM, 8-bit words addressable.
After applying the RLE algorithm, the software generates the
compressed bitstreams, using the best symbol length configu-
ration.

Afterwards, the Huffman encoding is applied on the RLE
encoded bitstreams. Huffman coding has been chosen by
evaluating the hardware resources needed in the decoder for
both Huffman and Arithmetic coding. In fact, the complexity
of the Huffman decoder is definitely lower than the Arithmetic
one.

The Huffman encoding process consists of two steps: Huffiman
tree construction and Single side Growing Huffman encoding.
The Huffman tree construction implements the following al-
gorithm: occurrences of all words are evaluated, then the array
of words is sorted in descending order of frequency, in order
to correctly generate the Huffman tree. This frequency-sorted
binary tree is then used to assign the symbols to the words
in the standard Huffman encoding. The more frequent is the
word, the shorter will be the assigned code.

Nonetheless, since these data must be stored inside the FPGA
BRAMs, the trade-off between performances and storage
occupation need to be considered carefully. Considering the
hardware implementation, the data structures should not be
too complex to reduce the logic area occupation.

In this context, the Single-side Growing Huffman (SGH) tree
[19] proved to be the most efficient in terms of memory
occupation [20]. The reader may refer to [20] for more
information.

The previously constructed Huffman tree is translated into a
SGH tree.

In the proposed methodology the SGH tree coding pro-
cess is fully computed by software, providing as output the
compressed bitstream. Table I is an example of Single-side
Growing Huffman table, in which the symbols are listed in



order of code length. The translation table must be stored

Table I: Single-side Growing Huffman table

Symbols | Code
sl 0

s2 1

s3 1000
s4 1001
s5 1010
s6 1011
s7 1100
s8 1101
s9 11100
s10 111010
sl 111011
s12 111100
s13 111101
sl4 111110
s15 111111

inside the FPGA internal memory. The memory occupation
has been reduced thanks to a smart approach based on the
special features of the SGH table. In fact, it is easy to group
the code words depending on the number of the prefix ones.
This introduces the possibility to decode the code words in a
hierarchical way (see Sec. IV-B and Sec. V).

The hierarchical decoding is done in two different steps. Code
word groups can be simply identified by using hardwired logic,
while symbols decoding is done exploiting a Look-Up-Table
approach. As example, when symbols length is 8 bits, and the
code length is 12 bits, the original memory size needed to
store the LUT is 4 KB. In our solution, the LUT size is only
128 B.

After the coding algorithm outputs the code word for each
symbol, the Look-Up-Table (LUT) ROM is generated to store
the data in the FPGA.

B. Hardware Decompressor

The decompressor (or decoder) is hardware implemented
in the device logic. The decompressor performs the Huffman
decoding on the input code words, and then the RLE, if
necessary, providing in output the original bitstream data. Fig.
2 shows the architecture of the hardware decoder.

Initially, the 16-bit value of the REG C register, that represents
the number of already decoded bits of the input packet, is
0. The 16-bit packet received in input is stored in REG B
register. The packet is passed directly to the LUT ADDR
DECODER, without performing the shift operation. The LUT
ADDR DECODER decodes the group which the code word
belongs to, by counting the number of leading 1 in the code
word. After identifying the group, the LUT ADDR DECODER
generates the address for the LUT ROM, which contains the
SGH table.

The LUT ROM outputs the symbol associated to the input
code word and the relative code length. The symbol is then
passed to the RUN-LEN DECODER, while the code length is

HUFFMAN DECODER

| BARREL SHIFTER

|

1

ACCUMULATOR
LUT ADDR DECODER
m
LUT ROM
RUN-LEN DECODED
DECODER WORDS

Figure 2: Decompressor architecture

accumulated by the 16-bit ACCUMULATOR and the result is
stored in the REG C register. The value of this register controls
the BARREL SHIFTER shift operations.

The BARREL SHIFTER module shifts the input packet of
the number of bits indicated by REG C, flushing the already
decoded bits. In this way, only the undecoded bits appear at
the input of the LUT ADDR DECODER.

In case there is an overflow in the ACCUMULATOR, it means
that a codeword is split between two consecutive packets,
so the next packet is received in REG B register, while the
previous packet is moved to the REG A register.

REG A and REG B values are concatenated and input to
the BARREL SHIFTER. The described operations are repeated
recursively until no more input packets are received.

The output symbol from the LUT ROM is finally decoded by
the RUN-LEN DECODER, if necessary. This decoder checks
the flag bit in symbols. Whenever the flag is asserted, it
implies that this symbol has to be decoded by the RUN-
LEN DECODER. The RUN-LEN DECODER read the binary
value of the symbol and output a sequence of consecutive
zeros with a length equal to that value. The output of the
RUN-LEN DECODER represents the decoded words of the
bitstream, that can be passed to the ICAP interface exploiting
the reconfiguration controller.

The operations of the hardware decompressor are managed
by the reconfiguration controller. The controller is directly
connected to the ICAP interface to download the bitstream
with correct timing.

At run time, when a reconfiguration request is received, the
controller read an external stored bitstream in order to recon-
figure a partition. If an error at the end of the reconfiguration
process is detected by the ICAP, the controller starts reading
the compressed black-box bitstream from the internal BRAM
of the FPGA. Then, it manages the decoding process and it
provides the decoded words to the ICAP interface.



C. Design-for-Dependability rule

As mentioned above, a corrupted partial bitstream, read

from the external memory, can led to a system damage. To
avoid the corruption of the connections of the modules used
to restore the correct behaviour of the static part of the system,
a simple DfD rule must be adopted.
The rule aims at enclosing all the aforementioned connections
in such a way that they cannot be routed trough a reconfig-
urable partition. This can be achieved by including in a non-
reconfigurable partition all the critical blocks:

« Reconfiguration Controller (RC)

o ICAP

o BRAMs, that store the black-box bitstreams
o Decompressor

This rule ensures that all connections between these blocks,
that are necessary after a faulty reconfiguration, do not pass
through the faulty reconfigured partition. Thus, the correct
functioning of these modules is guaranteed also after a faulty
reconfiguration.

Fig. 3 shows an example of how these blocks can be protected.
The highlighted block on the top of the device represents

Reconfigurable
Partition

RC +
Decompressor
+ BRAM

Internal
Configuration
Access Port

Figure 3: Example of protecting the critical blocks

the reconfigurable partition. The non-reconfigurable partition,
in the middle of the device, includes the Reconfiguration
Controller, the Hardware Decompressor, and the BRAM that
stores the black-box bitstream associated to the reconfigurable
partition. The ICAP cannot be included in a partition, thus it
is advisable to verify that the few connections between this
interface and the RC do not pass through the reconfigurable
partition.

V. EXPERIMENTAL RESULTS

The ZipStream methodology is composed by the Huffman
software encoder and the hardware decoder. First of all, many
partial bitstreams were generated using Xilinx PlanAhead Tool
v14.2, targeting Virtex 4 XC4VFX12-FF668-10C FPGA. The
design includes the Leon3 soft-core [21] and many different
reconfigurable partitions.

Five different reconfigurable partition sizes (i.e., 1,2,3,4 and
5 frames) have been tested. The black-box module has been
placed in 10 different positions in the device, in order to have
10 different partial bitstreams for each partition.

To correctly encode the bitstream file and to find the solu-
tion that guarantees the best compression ratio, several com-
pression algorithms have been tried. First, black-box partial
bitstreams are encoded with the standard Huffman algorithm
(Huffman 32, 16 and 8 in Fig. 4 and Fig. 5), splitting in
different word length configurations: 32 bits, 16 bits, 8 bits.
Then, a combination of Huffman and Run-length encoding is
used to compress the bitstreams (Huffman+RLE 32, 16 and 8
in Fig. 4 and Fig. 5).

Fig. 4 and Fig. 5 shows the compression rate in different
scenarios. The graph plots average compression ratio, between
the 10 partial bitstreams considering 5 different partition
dimensions. The combination column, in Fig. 5, shows the
average compression rate in the 50 different bitstreams.

The compression rate is computed as the ratio of compressed
data plus the LUT (i.e., SGH tree) size over the original data.

® Huffman 32 ® Huffman 16 = Huffman 8

B Huffman+RLE 32 @ Huffman+RLE 16 M Huffman+RLE 8

30.00%

25.00%

20.00%

15.00% -

10.00%

5.00% -

0.00% -

stream 1 stream 2

stream O

Figure 4: Compression rates for streams 0, 1 and 2

Easily to conclude from Fig. 4 and Fig. 5 that, when word
length configuration for Huffman encoding is larger than
8 bits, the overhead of Run-length encoding contributes a
portion in the encoded bits and does not bring any benefit.
However, the combination of Huffman encoding and Run-
length encoding has a good impact when bit length is 8 bits.
On overall, the compression rate is around 22% in all cases,
it means that we could save 78% of storage size. The best
compression rate that can achieved by the proposed solution
is 19%, and the best choice is the combination of Huffman



B Huffman 32 B Huffman 16 H Huffman 8

B Huffman+RLE 32 ® Huffman+RLE 16 ® Huffman+RLE 8

30.00%

25.00%

20.00%

15.00%

10.00% -

5.00% -

0.00% -+

combination

stream 3 stream 4 stream 5

Figure 5: Compression rates for streams 3, 4, 5 and average
compression rates

code and Run-length encoding with a word length of 8 bits.
The maximum working frequency of the decompressor is
163.55 MHz, with an area occupation of 189 slices (i.e., 3%
of the device), including the reconfiguration controller.
Thanks to this implementation, since the ICAP works at 100
MHz, the decoder is able to provide a 32-bit word each
clock cycle, i.e., with the same throughput required by the
configuration port, reaching the highest reconfiguration data
throughput.

Finally, to prove the effectiveness of the ZipStream methodol-
ogy different faulty bitstreams have been stored in an external
memory and loaded to the ICAP. The internal 32 bit CRC
module, which polynomial is Ox8F6E37A0, is able to detect 3
faults in each bitstream [22]. In all cases the reconfiguration
controller was able to restore the proper function of the static
portion of the system, after the error notification asserted by
the ICAP built-in CRC.

VI. CONCLUSION

This paper presented ZipStream, an innovative methodology
for increasing dependability in partially reconfigurable sys-
tems. The proposed methodology enhances the dependability
of the system by storing a compressed bitstream inside the
device as backup. This partial bitstream guarantees the proper
behaviour of the whole system by reconfiguring the partition
with a blank module, that perhaps correctly routes the static
connections through the reconfigurable partition. The optimal
compression algorithm has been studied by evaluating both
compression ratio and area occupation. The experimental
results clearly show that this methodology has no impact on
performances and allows a fast reconfiguration process.

ACKNOWLEDGMENT

The authors would like to express their sincere thanks to
the whole design team of Ansaldo STS for their helpful hints
and guidelines.

(1]

[2]

(3]

[4

=

[5]
[6]
[71

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

REFERENCES

O. Melnikova, I. Hahanova, and K. Mostovaya, “Using multi-FPGA
systems for ASIC prototyping,” in CAD Systems in Microelectronics,
2009. CADSM 2009. 10th International Conference - The Experience of
Designing and Application of, pp. 237-239, feb. 2009.

C. Valderrama, L. Jojczyk, P. Possa, and J. Gazzano, “FPGA and
ASIC convergence,” in Programmable Logic (SPL), 2011 VII Southern
Conference on, pp. 269-274, April 2011.

S. Di Carlo, A. Miele, P. Prinetto, and A. Trapanese, “Microprocessor
fault-tolerance via on-the-fly partial reconfiguration,” in Test Symposium
(ETS), 2010 15th IEEE European, pp. 201-206, May 2010.

B. Osterloh, H. Michalik, S. Habinc, and B. Fiethe, “Dynamic partial
reconfiguration in space applications,” in Adaptive Hardware and Sys-
tems, 2009. AHS 2009. NASA/ESA Conference on, pp. 336-343, August
2009.

Xilinx Corporation, Partial Reconfiguration User Guide, October 2010.
Xilinx Corporation, Virtex-6 FPGA Memory Resources, April 2011.

R. Stefan and S. Cotofana, “Bitstream compression techniques for Virtex
4 FPGAs,” in Field Programmable Logic and Applications, 2008. FPL
2008. International Conference on, pp. 323-328, September 2008.

J. H. Pan, T. Mitra, and W.-F. Wong, “Configuration bitstream com-
pression for dynamically reconfigurable FPGAs,” in Computer Aided
Design, 2004. ICCAD-2004. IEEE/ACM International Conference on,
pp. 766-773, November 2004.

H. Gu and S. Chen, “Partial reconfiguration bitstream compression
for Virtex FPGAs,” in Image and Signal Processing, 2008. CISP "08.
Congress on, vol. 5, pp. 183-185, May 2008.

M. Huebner, M. Ullmann, F. Weissel, and J. Becker, “Real-time con-
figuration code decompression for dynamic FPGA self-reconfiguration,”
in Parallel and Distributed Processing Symposium, 2004. Proceedings.
18th International, p. 138, April 2004.

M. Martina, G. Masera, A. Molino, F. Vacca, L. Sterpone, and M. Vi-
olante, “A new approach to compress the configuration information of
programmable devices,” in Design, Automation and Test in Europe,
2006. DATE °06. Proceedings, vol. 2, p. 4 pp., March 2006.

J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,” Information Theory, IEEE Transactions on, vol. 23, pp. 337—
343, May 1977.

J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” Information Theory, IEEE Transactions on,
vol. 24, pp. 530-536, September 1978.

Xilinx Corporation, Partial Reconfiguration of Xilinx FPGAs Using ISE
Design Suite, July 2011.

J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. Legall, eds.,
MPEG Video Compression Standard. London, UK, UK: Chapman &
Hall, Ltd., 1996.

H. Books, Articles on Coding Theory, Including: Huffman Coding, Run-
Length Encoding, Bch Code, Hamming Code, Hamming Distance, Reed
"Solomon Error Correction, Prefix Code, Binary Symmetric Channel,
Unary Coding, Low-Density Parity-Check Code. Hephaestus Books,
2011.

G. G. Langdon, “An introduction to arithmetic coding,” IBM J. Res.
Dev., vol. 28, pp. 135-149, Mar. 1984.

Xilinx Corporation, PlanAhead User Guide, ug632 (v11.4) ed., Decem-
ber 2009.

R. Hashemian, “Memory efficient and high-speed search huffman cod-
ing,” Communications, IEEE Transactions on, vol. 43, pp. 2576-2581,
October 1995.

Y.-J. Chuang and J.-L. Wu, “An SGH-tree based efficient huffman
decoding,” in Information, Communications and Signal Processing, 2003
and Fourth Pacific Rim Conference on Multimedia. Proceedings of the
2003 Joint Conference of the Fourth International Conference on, vol. 3,
pp. 1483-1487 vol.3, dec. 2003.

J. Gaisler, “A portable and fault-tolerant microprocessor based on the
SPARC v8 architecture,” in Dependable Systems and Networks (DSN),
2002. International Conference on, pp. 409—415, June 23-26, 2002.

P. Koopman, “32-bit cyclic redundancy codes for internet applications,”
in Dependable Systems and Networks (DSN), 2002. International Con-

ference on, pp. 459-468, December 2002.



