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Inference of analytical thermodynamic models for biological networks

Eliodoro Chiavazzo,1, ∗ Matteo Fasano,1 and Pietro Asinari1

1Energy Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

(Dated: November 13, 2012)

We present an automated algorithm for inferring analytical models of closed reactive biochemical
mixtures, on the basis of standard approaches borrowed from thermodynamics and kinetic theory
of gases. As an input, the method requires a number of steady states (i.e. an equilibria cloud in
the phase-space), and at least one time series of measurements for each species. Validations are
discussed for both the Michaelis-Menten mechanism (four species, two conservation laws) and the
mitogen-activated protein kinase - MAPK - mechanism (eleven species, three conservation laws).

PACS numbers: 05.20.Dd, 82.39.-k, 82.20.Wt

INTRODUCTION

The reverse engineering of biological networks from experimental observations has recently gained an increasing
attention, owing to remarkable advancements in modern high-throughput techniques for the generation of time series
data on metabolites, genes and other components of biological relevance [1]. However, due to high dimensionality,
the latter still remains a demanding task that often requires a priori knowledge on the system structure. Predictive
mathematical models are highly desirable, for instance, for the external control of cellular functions, and this has
motivated an intense effort in such a direction [2, 3]. In this work, we intend to investigate the ability of some classical
thermodynamic approaches for the automatic prediction of equilibria, dynamical behavior and system structure.
The main advantage of such an approach is that it does not require prior knowledge on the underlying biochemical
mechanism, and it is solely based on measurements of species concentrations in closed systems.
We focus on biological systems formed by several species interacting according to a web of (bio)chemical reactions

in closed systems under fixed temperature T and volume V . We further assume that dissipation is ensured by the
existence of a global Lyapunov function G, which is typically linked to a thermodynamic potential, and a unique
steady state (equilibrium) is reached after a sufficiently long time. Let the concentration of n species evolve in time
according to an autonomous system of ordinary differential equations (ODEs):

ẋ =
dx

dt
= f (x) , (1)

with x = [x1, ..., xn]
T
defining the system state (e.g. in terms of molar concentrations xi). Let xeq and G(x) be the

unique equilibrium state of the ODEs (1) and its global Lyapunov function, respectively. Hence, at all instant t, the
time derivative of G is non-positive, Ġ = ∇Gf ≤ 0, and it vanishes at steady state: Ġ (T, V, xeq) = 0. Time dynamics
(1) is often characterized by linear constraints (e.g. due to conservation of the mole number of elements forming the
chemical species). Thus, assuming the presence of r conserved quantities, there exists a fixed (r × n) matrix M such
that, at all time instants t:

Mx (t) = C, (2)

with C being an r−component column of fixed quantities (conserved moieties).

SEARCHING FOR CONSERVATION LAWS

Neither the number nor the expressions of the conservation laws (2) are typically known when investigating on a new
biological phenomenon, unless pre-existing knowledge on the reaction stoichiometry is available. For addressing the
above issues, the suggested approach is based upon the analysis of a collection of scattered steady states (experimental
equilibrium cloud), and at least one time series of species concentrations evolving from an arbitrary initial state. In
this work, we perform inspection of the equilibrium cloud by means of principal component analysis - PCA - [4] in
order to estimate the cloud dimension which, as discussed below, indicates the number of conservation laws. For the
sake of completeness, it is worth stressing that more recent non-linear techniques, such as diffusion maps [5], may be
also adopted for estimating the dimension r.



FIG. 1: Geometry underpinning the constrained minimization problems (8) and (14): Solutions are located where the affine
hyperplane x+ M̄ is tangent to the G function iso-lines. Vectors δx spanning the local tangent space to the equilibrium cloud
are thus linked to both the null space of the matrix M (M = kerM) and the second derivative matrix H of the Lyapunov

function G. As a result, orthogonality between the columns of M and the gradient of G (∇G) implies: M
T
Hδx = 0.

We notice that, in a perfectly closed system, thermodynamics and conservation laws rule the geometry of the
manifold collecting all the equilibrium states. As a result, the matrix M is fully determined upon computation of
the local tangent space to such a manifold. According to the pictorial representation in Fig. 1, we notice that the

following relationship holds: M
T
H∆X = 0. Here, the columns of the n× (n− r) matrix M = ker(M) span the null

space of M , H is the second derivative matrix of the Lyapunov thermodynamic function G while the columns of the
(n×r) matrix ∆X form a basis of the local tangent space of the equilibrium cloud. As a result, the following equation
holds:

M ′ =
[

ker
[

(

ker ∆XT
)T

H−1
]]T

, (3)

where the superscript T and the prime symbol ′ denote transposition and the orthonormal basis respectively. For
numerical purposes, a generic column δx of the matrix ∆X can be conveniently approximated by local interpolation or
finite differences. Nevertheless, we stress that adoption of (3) may lead to inaccurate results due to a poor estimate of
the vectors δx, or even to a lack of knowledge on the function G such as the activity coefficients for non-ideal mixtures
(see below). Therefore, below we describe a stochastic method, based on the Metropolis algorithm [6], enabling an
accurate computation of M by processing the time series of species concentrations. First, we initialize the k-th row,
Mk, of the conservation law matrix: This can be made either stochastically or even on the basis of the estimate (3).
We assume that all species concentrations are recorded at a discrete set of time instants (tj) between t1 and tm: The

latter data is thus available in the form of a time series, stored in the (n×m) data array X̂ = {x̂ij}, with the generic
element x̂ij denoting the concentration of the i-th species at the time instant tj . Next, we compute the following
deviation quantity:

dk =

m
∑

j=1

∣

∣

∣Ĉkj − C̄k

∣

∣

∣, (4)

where, for the k-th conservation law, the j-th term of the time series {Ĉkj} and its time-averaged value C̄k are defined
as:

Ĉkj =

n
∑

i=1

x̂ijMk (i), C̄k =





m
∑

j=1

Ĉkjdtj





/

(tm − t1),

with dtj the duration of the time interval corresponding to the term Ĉkj .



Eq. (4) provides with a non negative term, that vanishes if Mk describes a conservation law of the dynamical
system (1). Next, a refinement process is set, where at each step one randomly chosen element of Mk undergoes a
mutation. If mutation occurs at position i∗, we impose: Mk(i

∗) ± g, with g being a positive quantity. Mutation is
accepted with probability one, if it induces a decrease in the deviation quantity dk. Conversely, when an increase of

dk happens, acceptance only occurs with probability: e−∆dk/T̃ , with ∆dk and T̃ the incremental deviation quantity
and a tuning parameter that stipulates the frequency acceptance for ∆dk > 0, respectively. Upon convergence (i.e.
dk is stationary), if Mk is linearly independent with respect to the vector basis {M1, ...,Mk−1}, we retain the solution
and k is updated to k+1 (until k < r). Otherwise, the procedure is repeated starting from a new random vector Mk.

EQUILIBRIA OF IDEAL MIXTURES

Let µj be the chemical potential of the j−th species. For ideal systems, µj reads:

µj = µ0
j +RT lnxj , (5)

where R, V and xj = nj/V are the universal gas constant, the system volume and the molar concentration of the
j-th species, respectively, with nj denoting the corresponding number of moles.

For closed systems with fixed volume V and temperature T , the thermodynamic Lyapunov function G is provided
by Helmholtz potential as follows:

G = V
n
∑

j=1

xjµj − pV = V
n
∑

j=1

(

xjµ
0
j +RTxj lnxj

)

−RTV
n
∑

j=1

xj , (6)

where pressure is dictated by the ideal gas law of state: p = RT
∑n

j=1 xj . The equilibrium state of (1) can be

computed by global minimization of the function G̃:

G̃ = G+

r
∑

i=1

λi (Mix− Ci) , (7)

where λi, Mi and Ci are the i−th Lagrange multiplier, the i−th row of the matrix M and the i−th component of C,
respectively. In other words, xeq fulfills the following algebraic system:

1

V

∂G̃

∂xj
= µ0

j +RT lnxj +
∑r

i=1
λiM (i, j) = 0, ∀j = 1, ..., n

∂G̃

∂λk
= Mkx− Ck = 0, ∀k = 1, ..., r.

(8)

Let x̂eq
0 be a reference equilibrium point of (1) (e.g. measured by experiments), it follows:

µ0
j = −RT lnx̂eq

0j −

r
∑

i=1

λ0iM (i, j) , ∀j = 1, ..., n. (9)

Any other equilibrium state (corresponding to an arbitrary initial condition xin) can be computed by means of (8)
recast in the more explicit form:

−RT lnx̂eq
0j +RT lnxj +

∑r
i=1 (λi − λ0i)M (i, j) = 0, j = 1, ..., n

Mkx− Ck = 0, k = 1, ..., r

hence,

ln
(

xj/x̂
eq
0j

)

+
∑r

i=1 λ̄iM (i, j) = 0, j = 1, ..., n

Mkx−Mkx
in = 0, k = 1, ..., r.

(10)

with λ̄i = (λi − λ0i) /RT . The nonlinear algebraic system (10) enables to compute the equilibrium state of (1) xeq

corresponding to the initial condition xin (when the ideal system assumption is valid). More specifically, according to
(10), equilibrium states only depend on the r conserved quantities (under fixed temperature and volume) computed
by xin:

xeq = xeq (C1, ..., Cr) = xeq
(

Mxin
)

, (11)

and can be readily computed once an arbitrary equilibrium state x̂eq
0 and the matrix M are set.



EQUILIBRIA OF NON-IDEAL MIXTURES

For non-ideal systems, the chemical potential (5) takes the more general form [7, 8]:

µj = µ0
j +RT lnγjxj , (12)

where the j−th activity coefficient γj is typically a non-trivial function of the system state, while the thermodynamic
Lyapunov function G (for systems under fixed volume V and temperature T ) takes the form:

G = V
∑n

j=1

(

xjµ
0
j +RTxj ln γjxj

)

− pV. (13)

The steady state condition (∇G̃ = 0) thus yields:

1

V

∂G̃

∂xj
= µ0

j +RT (ln γjxj+1) +RT
∑n

i=1

xi

γi

∂γi
∂xj

−
∂p

∂xj

+
∑r

i=1
λiM (i, j) = 0, ∀j = 1, ..., n

∂G̃
∂λk

= Mkx− Ck = 0, ∀k = 1, ..., r.

(14)

Since the manifold collecting all steady states xeq
j can be conveniently parameterized by conserved quantities Ci,

in a neighborhood of an arbitrary point xeq
j , we assume that activities depend on the quantities Ci: γj = γj (Ci).

Moreover, due to the fundamental relationship in thermodynamics stipulating that (for any system) the j-th chemical
potential (12) is the partial derivative of Helmholtz potential with respect to the moles of the j-th species under fixed
volume, temperature and remaining species concentrations, namely

µj =
1

V

∂G

∂xj

∣

∣

∣

∣

V,T,xi 6=j

, (15)

the system (14) can be written as follows:

1

V

∂G̃

∂xj
= µ0

j +RT ln γjxj +
∑r

i=1
λiM (i, j) = 0, ∀j = 1, ..., n

∂G̃
∂λk

= Mkx− Ck = 0, ∀k = 1, ..., r.

(16)

Let us consider a reference solution whose equilibrium condition is x̂eq
0 (e.g. measured by experiments). The quantities

µ0
j can be computed as follows:

µ0
j = −RT ln γ0j x̂

eq
0j −

∑r

i=1
λ0iM (i, j) (17)

Upon substitution of (17) in (16), we obtain the following condition for equilibrium states of non-ideal mixtures:

−RT ln γ0j x̂
eq
0j −

∑r

i=1
λ0iM (i, j) +RT ln γjxj +

∑r

i=1
λiM (i, j) = 0, ∀j = 1, ..., n

Mjx− Cj = 0, k = 1, ..., r.
(18)

Around the reference point x̂eq
0 , activities can be approximated by a polynomial series up to a certain order, hence

the system (18) takes the final form:

ln
γjxj

γ0j x̂
eq
0j

+

r
∑

i=1

λ̄iM (i, j) = 0, ∀j = 1, ..., n

Mkx−Mkx
in = 0, k = 1, ..., r

γj ≈ γ0j +
∑r

i=1

∂γj

∂Ci

∣

∣

∣

0
(Ci − C0i) + ... , ∀j = 1, ..., n.

(19)

In the following, the expansion of activity coefficients is considered up to first order. Owing to the latter expansion,
the system (19) can be adopted for predicting the steady state of non-ideal mixtures in a vicinity of a reference
point x̂eq

0 , once the functions γj = γj(Ci) and the matrix M are properly estimated. Let xin be an arbitrary initial
state of (1). A possible criterion for choosing x̂eq

0 from the available cloud in the vicinity of the target equilibrium



corresponding to xin may be based on the minimal Euclidean distance between the points Mxin and Mx̂eq
0 , in the

space of conserved quantities.
Unknown constants in (19) (i.e. γ0j , ∂γj/∂Ci|0) can be estimated through optimization. To this end, here we

adopted a random procedure based on the Metropolis algorithm [6]. All the unknowns are first initialized: γ0j = 1,
∂γj/∂Ci|0 = 0, ∀i, j. Next, a refinement process starts, where at each step one randomly chosen quantity undergoes
a random mutation: ±ε, with ε being a small positive number. Mutations are accepted with probability one, if they
induce a decrease of the following error measure:

E =
s

∑

j=1

n
∑

i=1

∣

∣

∣

∣

∣

xeq
j (i)− x̂eq

j (i)

x̂eq
j (i)

∣

∣

∣

∣

∣

, (20)

where x̂eq
j is an equilibrium point from the cloud, xeq

j denotes the solution of (19) at Mx̂eq
j , while s is the number of

cloud points within a fixed neighborhood of interest around the reference point x̂eq
0 . Conversely, mutations that induce

an increase of the quantity (20) are accepted with probability: e−∆E/T̃ , with ∆E and T̃ the incremental deviation
quantity and a tuning parameter that stipulates the acceptance frequency for ∆E > 0, respectively. Finally, the
process is terminated when E becomes stationary. In the previous relative error measure (as in the following one), a
small threshold in computing zero concentrations avoids numerical singularities.
Remark-In this work, we make use of the above simple instance of a genetic algorithm for minimizing the functions

(4) and (20). However, to this end, more advanced strategies may be also adopted (e.g. alternative evolving strategies
of the unknowns) such as the ones reported in the classical work by Goldberg [9]. Moreover, we notice that inclusion
of higher order terms in the expansion of activity coefficients, may lead to a more general expression of the system
(19), although at the cost of a more demanding minimization of the error measure (20).

INFERENCE OF A THERMODYNAMIC MODEL

Modeling of biological systems often reveals processes with significant disparity of time scales [10]. As a result, the
dynamics of the latter multiscale systems is characterized by short bursts towards a low-dimensional manifold in the
phase space (also known as slow invariant manifold - SIM), where the subsequent dynamics is slower and it proceeds
along the manifold itself. This phenomenon may occur several times until a steady state is reached.

With this picture in mind, here we assume that, starting from arbitrary initial states, time evolution of the biological
systems under study can be regarded as a sequence of relaxation processes towards lower and lower dimensional
manifolds in the phase-space. More specifically, we assume that the ordinary differential equations (ODEs) governing
a closed biochemical system can be expressed in terms of several Bhatnagar-Gross-Krook (BGK) operators [11] as
follows:

dx
dt = − 1

τ1

(

x− x1
)

−
d
∑

i=2

1
τi

(

xi−1 − xi
)

−

1
τ∞

[

xd − xeq (C1, ..., Cr)
]

,
(21)

with fixed relaxation times, τ1 < ... < τd < τ∞, and xi belonging to a (d − i + 1)-dimensional SIM. The equation
system (21) is fully determined upon the definition of a procedure for computing all the manifold points xi. To this
end, here we follow one of the simplest way for approximating the SIM for dissipative systems, by constructing the so
called Quasi Equilibrium Manifold - QEM [12, 13] (also referred to as Constrained Equilibrium Manifold). Hence, by
a definition, a generic point xi on a QEM is computed by solving the following constrained minimization problem:

G (x) → min, Mx = C, Nx = Ξ, (22)

where N is a (d − i + 1) × n matrix, while the elements of Ξ represent (d − i + 1) additional conserved quantities
with respect to the problems (8) and (14). The proposed equation system (21) has been inspired by the works of
Levermore [14] and Gorban and Karlin (see, e.g., [15–17] and the kinetic model equations in the section 2.4 of [18]).
We also notice that a simple instance (i.e. two-step relaxation model) of (21) has been successfully employed for the
kinetic modeling of multicomponent gas mixtures [19, 20].
Relying upon the time series of species concentrations (reference data), an optimization procedure aiming at min-

imizing deviations between the solution of (21) and the reference data can be set up for estimating the unknown



quantities (i.e. the relaxation times τi and the matrix N). To this end, an optimization procedure may be adopted
for minimizing the following objective function:

E =
m
∑

j=1

n
∑

i=1

∣

∣

∣

∣

xj (i)− x̂j(i)

x̂j(i)

∣

∣

∣

∣

, (23)

where xj is a sample point along the solution trajectory of the dynamical system (21) (at the time instant tj , with
t1 < tj < tm), whereas x̂j(i) represents the concentration of the i-th species at the same time instant tj (e.g. recorded
by experiments). In this work, for validation purposes, x̂j(i) are provided by sample points along solution trajectories
of detailed kinetic models from the literature. To this end, the latter models are adopted as a black-box to produce
input data for the proposed approach, namely an equilibrium cloud and one time series for each species concentration.
No knowledge on conserved moieties (see the above section on their stochastic search) and on the web of species
interactions is requested. Conversely, some insights on species interactions may be extracted as an output of the
method, as described below.

Jacobian with linear conservation laws

Once the dynamical model (21) is determined, inspection of the corresponding Jacobian matrix J enables to draw
a network of interactions between the biochemical species (in a vicinity of a given state), where a large absolute value
of the element J(i, j) = ∂ẋi/∂xj |C1,...,Cr

denotes a strong direct influence of the species j on the dynamics of the

species i (hence a link from j to i). The adopted notation implies that the latter derivative is to be computed under
fixed quantities (C1, ..., Cr), hence its numerical approximation is not straightforward, and the following procedure is
adopted. A Jacobian matrix J fulfills the relation: f (c+ dc) ∼= f (c) + J (c) dc. Let us assume that the dynamics f
obeys r conservation laws, namely there exist a (r × n) matrix M such that:

Mf (c+ dc) = Mf (c) +MJdc ⇒ MJ = 0. (24)

The Jacobian J can be expressed as a linear combination of vectors spanning the null space of M . Let M be a
(n − r) × n matrix whose rows span the null space of M , the Jacobian J takes the general form J = ΛM , with Λ
being an unknown n× (n− r) matrix. Let the (n− r) directional derivatives

∂f

∂ki
'

f (c+ εki)− f (c)

ε
, (25)

be collected in a n × (n − r) matrix D, with ki the i−th row of M and the small parameter ε equals to the square
root of machine precision. We notice that the derivatives (25) are computed under the fixed quantities (C1, ..., Cr)

by a construction. Matrix J satisfies the condition: JM
T
= ΛMM

T
= D, namely the Jacobian takes the following

explicit form:

J = D
(

MM
T
)−1

M. (26)

Finally, interactions among species may be inferred by inspection of a cumulative Jacobian matrix, obtained by
summing up the absolute value of elements in the Jacobian matrix (26), at a discrete set of points along a given
solution trajectory of (21).

EXAMPLE: THE MICHAELIS-MENTEN MECHANISM

Let us consider the four chemical species (A1, A2, A3 and A4) involved in the two reversible reactions [12]: 1)
A1 +A2 ↔A3, 2) A3 ↔A2 +A4. A kinetic model of the above mechanism can be expressed on the basis of the mass

action law as follows (see [10] for details):

ẋ =









k−1 x3 − k+1 x1x2

k−1 x3 − k+1 x1x2 + k+2 x3 − k−2 x2x4

k+1 x1x2 − k−1 x3 + k−2 x2x4 − k+2 x3

k+2 x3 − k−2 x2x4









, (27)
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FIG. 2: Michaelis-Menten mechanism: A cloud of ten (randomly chosen) steady states are represented in the subspace:
A1 −A2 −A3. The reference point xeq

0
is reported by a star, while circles are adopted for the remaining steady states. Dashed

lines represent the equilibrium manifold as predicted by (10) (left-hand side). A time series for each species is reported starting
from an arbitrary initial condition (right-hand side).
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FIG. 3: (Color online). Top: Solution trajectories as predicted by the detailed kinetic model (27) (circles) and the
present model (21) with d = 1 (lines). In the latter case, optimal parameters were found to be: τ1 = 0.21, τ∞ = 6.2,
N = [−0.675,−0.273, 0.211, 0.652]. Down: Interaction among species as predicted by inspection of a cumulative Jacobian of
the detailed model (27) (left-hand side) and of the present model (right-hand side).

with k±i being the direct and reverse reaction rate constants of the reaction i, respectively. Here, the dynamical
system (27) is used as a black-box (with k+1 = 0.3, k−1 = 0.15, k+2 = 0.8 and k−2 = 2.0), whose behavior is to be
emulated by means of the proposed approach. Similarly, the two above reversible reactions are assumed unknown.
Conversely, as shown in Fig. 2, a discrete set of steady states and one time series for each species concentration are
the only accessible data. Here, principal component analysis [4] of the ten steady states in Fig. 2, reveals that they
lay on a two-dimensional surface with less than 1% variance. Eq. (3) and the stochastic search of conservation laws
(with g = 1 and T̃ = 10−4) deliver the following expressions for M :

M ′ =

[

0.258 0.516 0.775 0.258
0.577 −0.578 0 0.577

]

,

M =

[

1 0 1 1
0 1 1 0

]

,
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FIG. 5: (Color online). MAPK cascade: Equilibrium prediction in a neighborhood of a reference point C01 = 456, C02 = 508,
C03 = 404 where the matrix M is given by (28). The relative error, (100/n)

∑n

i=1
|xeq

i − x̂eq
i | /x̂eq

i , with x̂eq being consistent
with the detailed mechanism in [21], while xeq

i is predicted according to the ideal mixture approximation (10) (left-hand side)
and non-ideal mixture approximation (19) (right-hand side). Results refer to a spherical surface in the conserved quantity
space, with center C0 = [C01, C02, C03] and radius 7.

respectively, with the latter being the exact value of M (consistently with the detailed kinetic model (27)), and the
former only an approximation. As shown in Fig. 3 (top), an excellent agreement between the solution trajectories
of the detailed kinetic model (27) and the present system (21) is found, where d = 1 and initial conditions are the
ones reported on the right-hand side of Fig. 2. Here, the Lyapunov function G takes the form (6) while, by means
of the genetic algorithm [9] readily available in MATLAB [22], the optimal parameters in (21) and (22), are found
to be: τ1 = 0.21, τ∞ = 6.2, N = [−0.675,−0.273, 0.211, 0.652]. Finally, the cumulative Jacobian matrix is computed
for both the detailed model (27) and the present model (21). In Fig. 3 (down) we report a graphic representation,
where in both cases the Jacobian is normalized such that: 0 < J(i, j) < 1. The comparison shows that the present
approach is indeed capable of predicting the main features of the interaction network underlying the Michaelis-Menten
mechanism. For instance, consistently with the above reversible reactions, a weak (direct) interaction between the
first and the fourth species is observed.

EXAMPLE: MAPK MECHANISM

Let us consider the mitogen-activated protein kinase (MAPK) mechanism at the elementary step level [21],
where eleven species (ordered as: M, Mp, Mpp, MAPKK, MKP, M MAPKK, Mp MAPKK, Mpp MKP, Mp MKP,
Mp MKP∗, M MKP) interact according to a ten reaction mechanism. PCA [4] of the steady states in Fig. 4, reveals
that they lay on a three-dimensional surface with less than 1% variance, while Eq. (3) and implementation of the



above stochastic search for conservation laws (with fixed g = 1 and T̃ = 10−4) yield:

M ′ =





3.21 3.49 3.78 −0.263 −0.516
5.33 1.85 −1.64 −5.37 −1.85
0.31 −2.44 −5.17 2.17 4.92

2.98 4.13 3.26 3.15 2.98 2.72
0 −2.54 −3.49 −2.08 −0.003 3.19

2.49 −0.02 −0.25 0.851 2.49 5.01



 ,

M =





1 1 1 −1 0 0 0 1 1 1 1
1 1 1 0 −1 1 1 0 0 0 0
1 1 1 0 0 1 1 1 1 1 1



 ,

(28)

respectively. The latter matrix is in perfect agreement with the three conserved moieties described in [21] (i.e. linearly
dependent), while the former is a rough approximation. In the following computations, we always make use of the
latter exact matrix M . As shown in Fig. 5, the ideal mixture assumption introduces significant deviations between
predictions by (10) and the detailed model in [21], even in the vicinity of a reference state. However, a remarkable
improvement can be achieved by means of the system (19) for non-ideal mixtures. Here, around a reference point
(C0 = [456, 508, 404]), the parameters γ0 and ∂γi/∂Ck|0 were estimated trough the above optimization procedure

(with ε = 10−4, T̃ = 10−5) applied to the ten equilibrium points in Fig. 4 (circles on the left-hand side). As shown
in Fig. 5, adoption of the system (19) with optimal parameters significantly improves the accuracy of equilibrium
predictions (in the neighborhood of a reference point) compared to solutions of the system for ideal mixtures (10).
Moreover, a dynamical system (21) has been inferred with d = 1, d = 2 and d = 3, upon minimization of the function
(23) by means of the genetic algorithm [9] readily available in the MATLAB package [22]. The adopted input data
x̂j(i) are shown on the right-hand side of Fig. 4 while, for simplicity, the function G takes the ideal mixture expression
(6). In Fig. (6), a comparison between the solutions of the detailed kinetic model in [21] and of the dynamical system
(21) is reported for C1 = 415, C2 = 354, C3 = 467. In this case, we observe that a three relaxation process (d = 2) is
sufficient for achieving a good agreement. In the latter case, optimal parameters were found to be:

τ1 = 0.2, τ2 = 1.2, τ∞ = 250,

N =

[

−0.145 0.83 1.01 −4.76 2.24
−0.147 −3.38 1.53 −0.256 −1.52

−4.91 −3.76 3.24 3.08 2.78 2.17
−0.604 0.973 −0.518 −6.48 −3.40 1.35

]

.

(29)

Finally, as shown in Fig. 7, the cumulative Jacobian matrix of (21) (normalized such that: 0 < J(i, j) < 1) with d = 3
and the parameters (29) shares some common patterns with the cumulative Jacobian of the detailed model provided
in [21]. As an example, it arises the central role of the fifth species (MKP) in the biological network. Conversely, from
our simulations, we also notice that the present approach shows a tendency to over-predict the number of species
interactions (see, e.g., interactions of the first and eleventh species in Fig. 7). Moreover, for the sake of comparison, for
the case of Fig. 7, we computed that the 2−norm of the matrix (J − Jd) is 3.08, with J and Jd being the (normalized)
cumulative Jacobian matrix of (21) and detailed system, respectively. Conversely, on average, the 2−norm of the
matrix (Jrand − Jd) is 5.16 (+68% of prediction error), where Jrand is a uniformly distributed pseudorandom guess
of the (normalized) cumulative Jacobian.

CONCLUSIONS

In this work, we have presented an automatic procedure to infer analytical models for closed reactive biochemical
systems. The present method is solely based on a set of random steady states and one time series of species con-
centrations, with the main advantage that no prior knowledge on the underlying biochemical mechanism and system
structure is requested as an input. Firstly, the proposed method involves a search for conservation laws, typically due
to conservation of elements involved in the biochemical reactions. Secondly, equilibrium states are predicted by min-
imizing a thermodynamic potential under the above linear conservation laws, and two formulations are suggested for
both ideal and non-ideal (bio)chemical mixtures. Moreover, inspired by other applications from the kinetic theory of
gases [15–17, 19, 20], the species dynamics is imagined to have the general form of a sequence of hierarchical collapses
onto low dimensional manifolds (slow invariant manifolds - SIMs) in the phase-space at fixed rates. Hence, optimiza-
tion tools (i.e. genetic algorithms) have been adopted to both approximate points on the SIMs and evaluate relaxation
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FIG. 6: MAPK mechanism: Solution trajectories as predicted by the detailed kinetic model in [21] and the model (21) with
d = 1, d = 2 and d = 3. Conserved quantities are: C1 = 415, C2 = 354, C3 = 467.
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FIG. 7: (Color online). Interaction among species as predicted by inspection of a cumulative Jacobian J of the detailed kinetic
model in [21] (left-hand side) and of the present model (21) with d = 3 and the optimal parameters (29) (right-hand side).
The 2−norm of the matrices (J − Jd) and (Jrand − Jd) is 3.08 and 5.16 (+68% of prediction error), respectively. Here, Jd and
Jrand denote the Jacobian of the detailed kinetic model and a uniformly distributed pseudorandom guess of the (normalized)
cumulative Jacobian, respectively.

times. Finally, based on the Jacobian matrix of the latter dynamical system, some knowledge on the structure of
the interaction network may be revealed. Validation is carried out for two proven examples: The Michaelis-Menten
mechanism [12], and the MAPK cascade [21]. In both cases, we experience a good agreement of steady state and
time dynamics predictions, at least in a neighborhood of a given reference state (i.e. from experiments) and if enough
degrees of freedom are considered. Moreover, we notice that inspection of the cumulative Jacobian matrix can indeed
provide some preliminary insights on the biological network (i.e. species interactions) underlying the detailed kinetic
mechanism of the biological phenomenon under study. In this respect, we also stress that, from current computations,
a drawback of the proposed method was noticed, where a typically larger number of species interactions is predicted
by the method (false positives), compared to the true network. Here, for the sake of simplicity, smooth data from
detailed kinetic models were adopted as a reference. However, in the near future, we plan to investigate the perfor-
mances of the suggested method in real experiments, where time series of biochemical species are certainly affected
by noise.
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