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Abstract

In recent papers [1, 2] the authors introduced a new method for simulating subsurface flow in a system
of fractures based on a PDE-constrained optimization reformulation, removing all difficulties related to mesh
generation and providing an easily parallel approach to the problem. In this paper we further improve
the method removing the constraint of having on each fracture a non empty portion of the boundary with
Dirichlet boundary conditions. This way, Dirichelet boundary conditions are prescribed only on a possibly
small portion of DFN boundary. The proposed generalization of the method in [1, 2] relies on a modified
definition of control variables ensuring the non-singularity of the operator on each fracture. A conjugate
gradient method is also introduced in order to speed up the minimization process.

Keywords: Fracture flows, Darcy flows, discrete fracture networks, optimization methods for elliptic prob-
lems, uncoupled large scale simulations

MSC subject calssification: 65N30, 65N15, 65N50, 65J15

1 Introduction

Efficient numerical simulation of underground flow is of great interest in a large variety of practical applications,
as for example enhanced oil/gas recovery, pollutant percolation and diffusion in aquifers, or carbon dioxide stor-
age. The underground fluid flow is a multi-scale heterogeneous phenomenon, occurring in complex geological
configurations usually characterized by networks of fractures surrounded by a porous rock matrix. The Discrete
Fracture Network (DFN) approach models underground systems of fractures as 3D networks of intersecting
discrete planar fractures. Diffusive phenomena in this system of fractures are governed by the Darcy law. At
fracture intersections, called traces, mass balance and pressure continuity are preserved. The geological char-
acteristics of the fractures, such as size, orientation, aspect ratio, density, permeability, are usually determined
relying on stochastic data [3], and only probability distribution of data are usually available for a specific geo-
logical site. A huge number of numerical simulations is then necessary in order to perform sensitivity analysis
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to the variability of the involved parameters. On the other hand, DFN simulations are very demanding from a
computational point of view. Problem size is usually huge, involving a very large number of fractures. Moreover,
for intricate fracture geometries, the generation of a good quality finite element triangulation conforming to
the traces usually requires the introduction of many unknowns on each fracture, independently of the quality
required for the numerical solution.

Many approaches are suggested in literature to circumvent these difficulties. A method based on a conforming
mesh with mixed non-conforming finite elements is proposed in [4], while in other cases modifications of the
geometry or of the mesh are introduced in order to preserve conformity and achieve a good quality mesh, such
as in [5, 4] or in [6]. A different approach is suggested in [7], where the solution in the fractures is expressed
as a function of the solution at the intersections. In other works it is suggested to rely on mortar methods to
ease meshing procedure, as for example in [8, 9]: with this approach the mesh conformity constraint is relaxed
but fracture meshes have to be aligned along the traces. In [10, 11, 12] the DFN is reduced into a system of
mono-dimensional pipes connecting the traces with the surrounding fractures both preserving fracture topology
and mitigating meshing related problems.

The present work further develops the approach introduced in [1, 2], in which the problem of the computation
of the hydraulic head in a DFN is reformulated as a PDE-constrained optimization problem. The overall problem
is split in a set of several independent sub-problems on each fracture of the system, coupled by the minimization
of a proper functional. The use of Extended Finite Elements allows to capture the correct behaviour of the
solution along traces even if grids are not conforming along fracture intersections and traces arbitrarily cut mesh
elements. This way the meshes may be generated on each fracture in a completely independent way, disregarding
fracture intersections and thus eliminating meshing difficulties.

Despite being applicable to very general DFN configurations, the formulation of the problem in the over-
mentioned approach requires a non empty portion of Dirichelet boundary on each fracture of the system. In
the present work a modification of the control variable and of the cost functional involved in the optimization
problem is introduced, eliminating this constraint and allowing to prescribe Dirichelet boundary conditions only
on (portion of) boundaries of a – possibly very small – subset of fractures. The use of a conjugate gradient
method for the minimization process is also described. The behaviour of the method on fairly complex networks
is shown through several numerical experiments.

The paper is organized as follows. In Section 2 we recall the physical model and the mathematical statement
of the continuous problem introduced in [1, 2]. In Section 3 the PDE-constrained optimization problem is
described along with the conjugate gradient algorithm used in the minimization process. Application of XFEM
ideas to the DFN context is briefly accounted for in Section 4. In Section 5 we introduce the discrete version
of the algorithm. Numerical experiments showing effectiveness of the method are reported and commented in
Section 6.

2 Description of the problem

2.1 Problem formulation

Our target is the computation of the hydraulic head H = P +ζ (being P = p/(̺g) the pressure head, p the fluid
pressure, g the gravitational acceleration constant, ̺ the fluid density, ζ the elevation) in a DFN given by the
union of a set of fractures. Let us model each fracture as an open planar polygonal set, Fi, with index i varying
in a set I. Let us also introduce on each fracture a 2D local coordinate system x̂i. Let Ω be the 3D set

Ω =
⋃

i∈I

Fi,
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and ∂Ω the boundary of Ω, split as usual in a set ΓD 6= ∅ with Dirichlet boundary conditions and a set ΓN with
Neumann boundary conditions, such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅.

Note that the intersection of the closure of each couple of fractures is either an empty set or a set of non
vanishing segments called traces, denoted by Sm, with index m varying in an index set M with cardinality ♯M.
For each fracture Fi, Si is the set of traces shared by Fi and other fractures while S indicates the set of all the
traces.

In the paper the following is assumed on the DFN: 1) Ω̄ is a connected set; 2) each trace Sm is shared by
exactly two polygonal fractures Fi and Fj , i 6= j, such that Sm ⊆ F̄i ∩ F̄j . The set of the two indices i and j
of the fractures Fi and Fj sharing trace Sm is denoted by ISm

= {i, j}, while for all i ∈ I, the subset Ji ⊂ I

contains indices of fractures with a non-empty intersection with Fi.
While referring the reader to [1] for more details, here we briefly recall the variational formulation of the

problem. Let us define ∀i ∈ I the following functional spaces:

Vi = H1
0(Fi) =

{

v ∈ H1(Fi) : v|ΓiD
= 0
}

and V ′
i their dual spaces. The hydraulic head Hi in each fracture belongs to the space

V D
i = H1

D(Fi) =
{

v ∈ H1(Fi) : v|ΓiD
= HD

i

}

,

where HD
i is the restriction of the Dirichlet boundary condition H|ΓD

= HD to ΓiD = ΓD ∩∂Fi. In what follows

ΓiD can be an empty set, but ΓD =
⋃

i

ΓiD 6= ∅.

Let Ki(x̂i) be, for all i ∈ I, a symmetric and uniformly positive definite tensor called hydraulic conductivity
tensor, which we assume dependent on the position and possibly different on each fracture. As documented in
[1], the global hydraulic head H in the whole system Ω is obtained solving the following problems ∀i ∈ I, which
model the diffusion of the hydraulic head on each fracture: find Hi ∈ V D

i such that ∀v ∈ Vi

∫

Fi

Ki ∇Hi∇vdΩ =

∫

Fi

qivdΩ +

∫

ΓN∩∂Fi

GN
i v|SdΓ +

∑

S∈Si

∫

S

[[

∂Hi

∂ν̂i
S

]]

S

v|SdΓ, (1)

where GN
i is the restriction to ΓiN = ΓN ∩ ∂Fi of the Neumann boundary condition GN imposed on ΓN . The

quantity ∂Hi

∂ν̂i
S

= (n̂i
S)T

Ki ∇Hi is the outward co-normal derivative of the hydraulic head, being n̂i
S the unit

vector normal to the trace S. The symbol
[[

∂Hi

∂ν̂i
S

]]

S
denotes the jump of the co-normal derivative along n̂i

S , being

this jump independent of the orientation of n̂i
S . According to (1), the diffusion of Hi is contributed by the

following terms: the external load in each facture (first term of the right hand side); the Neumann boundary
conditions (second term); the net flow of hydraulic head entering in the fracture at each trace (last term).

Equations (1) are coupled by the following matching conditions, which prescribe global continuity of the
hydraulic head and conservation of hydraulic fluxes across each trace Sm, m ∈ M:

Hi|Sm
−Hj |Sm

= 0, for i, j ∈ ISm
, (2)

[[

∂Hi

∂ν̂i
Sm

]]

Sm

+

[[

∂Hj

∂ν̂j
Sm

]]

Sm

= 0, for i, j ∈ ISm
. (3)

Note that due to condition (2) the hydraulic head H on the whole domain Ω belongs to the space

V D = H1
D(Ω) =

{

v ∈
∏

i∈I

V D
i : (v|Fi

)|Sm
= (v|Fj

)|Sm
, i, j ∈ ISm

, ∀m ∈ M

}

. (4)
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3 Optimization approach

Following the approach described in [1], instead of solving the coupled differential problems on the fractures
(1) ∀i ∈ I with the corresponding matching conditions (2), (3), we introduce a PDE-constrained optimization
problem. In order to ease notation and for a concise and clear description, in the following of this Section we
assume that the traces S ∈ S are disjoint, recalling that as stated in [1], this assumption can be dropped replacing
occurrences of each single trace S with the union of connected traces. Further, in our discrete formulation the
assumption naturally drops thanks to the choice of the functional spaces (see again [1]). Let us introduce for

each trace S ∈ S a suitable space US and its dual
(

US
)′

. Similar spaces are introduced on the set of traces
belonging to a fracture Fi, ∀i ∈ I, and on the full set of traces S:

USi =
∏

S∈Si

US , U =
∏

i∈I

USi .

Now, let us fix a trace S and let S ⊆ F̄i ∩ F̄j . We introduce suitable variables US
i , U

S
j ∈ US which will act

as control variables, defined as US
i = αHi|S +

[[

∂Hi

∂ν̂i
S

]]

S
and US

j = αHj |S
+
[[

∂Hj

∂ν̂
j

S

]]

S
respectively, where α is a

positive fixed parameter. This generalizes the approach proposed in [1] where US
i is set equal to flux jump, thus

allowing ΓiD = ∅ on possibly all but one fractures. We set

Ui = Π
S∈Si

US
i ∈ USi , U = Π

i∈I

Ui ∈ U ,

i.e. Ui is the tuple of functions US
i with S ∈ Si, and U is the 2(#M)-tuple of control functions on all traces in

Ω̄.
We also introduce the Riesz isomorphisms ΛUS : US → US ′

, ΛUSi : USi → USi
′
and ΛU : U → U ′ and the

following linear bounded operators and their duals:

Ai ∈ L(Vi, V
′
i ), 〈AiH

0
i , v〉V ′

i
,Vi

= (K∇H0
i ,∇v) + α

(

H0
i |Si

, v|Si

)

Si

,

AD
i ∈ L(V D

i , V ′
i ), 〈AD

i Ri H
D
i , v〉V ′

i
,Vi

= (K∇Ri H
D
i ,∇v) + α

(

(Ri H
D
i )|Si

, v|Si

)

Si

,

BS
i ∈ L(US , V ′

i ), 〈BS
i Ui, v〉V ′

i
,Vi

= 〈US
i , v|S〉US ,US ′ ,

Bi = Π
S∈Si

BS
i ∈ L(USi , V ′

i ), 〈BiUi, v〉V ′
i
,Vi

= 〈Ui, v|Si
〉USi ,USi ′ ,

with H0
i ∈ Vi, H

D
i ∈ V D

i , v ∈ Vi, and the operator Ri is the lifting of the Dirichlet boundary conditions on ΓiD

if not empty. Dual operators are A∗
i ∈ L(Vi, V

′
i ),

CS
i = (BS

i )∗ ∈ L(Vi,US ′
), Ci = (Bi)

∗ ∈ L(Vi,USi
′
).

The operator BiN ∈ L(H− 1

2 (ΓiN ), V ′
i ) imposing Neumann boundary conditions is defined such that

〈BiNG
N
i , v〉V ′

i
,Vi

= 〈GN
i , v|ΓiN

〉
H− 1

2 (ΓiN ),H
1

2 (ΓiN )
= 〈 ∂Hi

∂ν̂ΓiN

, v|ΓiN
〉
H− 1

2 (ΓiN ),H
1

2 (ΓiN )
.

Problems (1) can now be written as follows: ∀i ∈ I, find Hi ∈ V D
i , with Hi = H0

i + Ri H
D
i and H0

i ∈ Vi, such
that

AiH
0
i = qi + BiUi +BiNG

N
i −AD

i RiH
D
i , in Fi. (5)
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We remark that, if α > 0, the solution Hi to (5) exists and is unique for a non isolated fracture even if we set
Neumann boundary conditions on the whole ∂Fi.

We can now define the differentiable functional J : U → R as

J(U) =
∑

S∈S

JS(U)

=
∑

S∈S

(

||CS
i Hi(Ui) − CS

j Hj(Uj)||2US ′ + ||US
i − αΛ−1

USC
S
i Hi(Ui) + US

j − αΛ−1
USC

S
j Hj(Uj)||2US

)

=
1

2

∑

i∈I

∑

S∈Si

(

||CS
i Hi(Ui) − CS

j Hj(Uj)||2US ′ + ||US
i − αΛ−1

USC
S
i Hi(Ui) + US

j − αΛ−1
USC

S
j Hj(Uj)||2US

)

=
1

2

∑

i∈I

|| Π
S∈Si

(

CS
i Hi(Ui)−CS

j Hj(Uj)
)

||2
USi ′ +

1

2

∑

i∈I

||Ui+ Π
S∈Si

US
j − αΛ−1

USi
Π

S∈Si

(

CS
i Hi(Ui) + CS

j Hj(Uj)
)

||2USi ,(6)

where quantity ΠS∈Si

(

CS
i Hi(Ui) ± CS

j Hj(Uj)
)

denotes the tuple of functions
(

CS
i Hi(Ui) ± CS

j Hj(Uj)
)

with
S ∈ Si, and i, j ∈ IS . Moreover Hℓ(Uℓ) denotes the solution of (5) corresponding to the control variable Uℓ,
ℓ = i, j.

Proposition 1. Setting US = H− 1

2 (S) and letting CS
i ∈ L(Vi,H

1

2 (S)) be the trace operator, there exists a unique

control variable U vanishing the functional J(U) and a corresponding unique solution H satisfying problems (5)
∀i ∈ I that is solution to (1)-(3).

Proof. We sketch very briefly the proof as it follows from classical arguments. Resorting to the classical formu-
lation of the problem on sub-fractures as recalled in [1], it can be proven that exists a unique solution H ∈ V D

for the hydraulic head on the DFN satisfying (1), ∀i ∈ I, and (2), (3), ∀m ∈ M, that are trivially equivalent to
(5), ∀i ∈ I, and to

Hi|Sm
−Hj |Sm

= 0, US
i − αHi|S + US

j − αHj |S
= 0, for i, j ∈ ISm

, ∀m ∈ M. (7)

As in [1], since the vanishing of the two terms of the functional J is equivalent to the imposition of the
matching conditions (7), the thesis follows.

Based on previous discussion, problems (5) coupled with (7) are replaced by the following optimization
problem:

min J(U) subject to (5), ∀i ∈ I. (8)

In the following result we state optimality conditions for (8).

Proposition 2. The optimal control U ∈ U satisfying (8) is given by the system of conditions (5) and

Bi
∗Pi + ΛUSi

(

Ui + Π
S∈Si

US
j

)

− α Π
S∈Si

(

CS
i Hi(Ui) + CS

j Hj(Uj)
)

= 0, (9)

∀i ∈ I, where the functions Pi ∈ Vi are the solution of equation

A∗
iPi = Ci

∗Λ−1
USi

[

Π
S∈Si

(

CS
i Hi(Ui) − CS

j Hj(Uj)
)

+ α2 Π
S∈Si

(

CS
i Hi(Ui) + CS

j Hj(Uj)
)

]

−αCi
∗

(

Ui + Π
S∈Si

US
j

)

, in Fi,

(10)

in which homogeneus Dirichlet and Neumann boundary conditions on ΓiD and ΓiN , respectively, are prescribed.
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Proof. Let us differentiate the cost functional with respect to the control variable Ui:

J ′(U)(vi − Ui) =
∑

S∈Si

JS ′
(Ui)(vi − Ui)

= 2
∑

S∈Si

[

(

CS
i Hi(Ui) − CS

j Hj(Uj), C
S
i (Hi(vi) −Hi(Ui))

)

US′

+
(

US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj)), v

S
i − US

i − αΛ−1
US (CS

i Hi(vi) − CS
i Hi(Ui))

)

US

]

= 2

〈

Ci
∗Λ−1

USi
Π

S∈Si

(CS
i Hi(Ui) − CS

j Hj(Uj)), Hi(vi) −Hi(Ui)

〉

V ′
i
,Vi

+2

〈

ΛUSi Π
S∈Si

(US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj)), vi − Ui

〉

USi ′,USi

−2α

〈

C∗
i Π

S∈Si

(US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj)), Hi(vi) −Hi(Ui)

〉

V ′
i
,Vi

= 2
〈

A∗
iPi, A

−1
i Bi(vi − Ui)

〉

V ′
i
,Vi

+ 2

〈

ΛUSi Π
S∈Si

(US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj)), vi − Ui

〉

USi ′,USi

= 2

〈

Bi
∗Pi + ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj)), vi − Ui

〉

USi ′,USi

.

Thus, the vanishing of this last term yields (9).

Instead of solving equations (5), (9), (10), we set up a minimization process for problem (8). This is organized
in such a way that only the decoupled solution of the local problems (5) is needed. Here we use the Fletcher
and Reeves conjugate gradient method [13]. Let us denote by ∇J(Ui) the Frechet derivative of the functional J
with respect to the control variables on the fracture Fi, ∀i ∈ I, and by ∇J(U) the whole derivative:

∇J(Ui) = Bi
∗Pi + ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj))), (11)

∇J(U) = Π
i∈I

∇J(Ui). (12)

The method used is depicted in the following algorithm.
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Algorithm 3.

1. Set k = 0 and initial guess for control variable U0;

2. find H0 = H(U0) solving on each fracture the primal problem (5);

3. find P (U0) solving on each fracture the dual problem (10);

4. evaluate ∇J(U0) by equation (12);

5. set (δU)
0

= −Λ−1
U ∇J(U0);

6. While J(Uk) 6= 0 do:

6.1. choose a step-size λk along direction (δU)k
;

6.2. set Uk+1 = Uk + λk(δU)
k
;

6.3. ∀i ∈ I solve primal problem (5) to find Hi(U
k+1);

6.4. ∀i ∈ I solve dual problem (10) to find Pi(U
k+1);

6.5. evaluate ∇J(Uk+1) by (12);

6.6. set βk+1 = ‖∇J(Uk+1)‖2
U ′/‖∇J(Uk)‖2

U ′ ;

6.7. set (δU)
k+1

= −Λ−1
U ∇J(Uk+1) + βk+1δUk;

6.8. k = k + 1;

end do.

Let us evaluate the optimal step-size λ which can be used in the previous algorithm at steps 6.1-6.2. Given
a variation δUi for the control variable on each fracture Fi and δU =

∑

i∈I
δUi, let δHi ∈ Vi, ∀i ∈ I, be defined

as the solution of the problem

AiδHi = BiδUi, in Fi, (13)

corresponding to homogeneous Dirichlet and Neumann boundary conditions on ΓiD (if non-empty) and ΓiN ,
respectively.

Proposition 4. Let us increment the control variable U of a step λδU , the optimal step-size λ is

λ = −〈∇J(U), δU〉
U ′,U

{

∑

S∈S

(

||CS
i δHi − CS

j δHj ||2US′ + ||δUS
i + δUS

j ||2US + α2||CS
i δHi + CS

j δHj ||2US′

)

−2α
∑

i∈I

(

Π
S∈Si

(δUS
i + δUS

j ),Λ−1
USi

CiδHi

)

USi

}−1

. (14)

7



Proof. We have

J(U + λδU) =
∑

S∈S

||CS
i Hi(Ui) − CS

j Hj(Uj) + λ(CS
i δHi − CS

j δHj)||2US′

+
∑

S∈S

||US
i + US

j − αΛ−1
US(CS

i Hi(Ui) + CS
j Hj(Uj)) + λ(δUS

i + δUS
j − αΛ−1

US (CS
i δHi + CS

j δHj))||2US

= J(U) + 2λ
∑

i∈I

∑

S∈Si

(

(

CS
i Hi(Ui) − CS

j Hj(Uj), C
S
i δHi

)

US′ +
(

US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj)), δU

S
i

)

US

−α
(

US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj)),Λ

−1
USC

S
i δHi

)

US

)

− 2λ2α
∑

i∈I

∑

S∈Si

(

δUS
i + δUS

j ,Λ
−1
USC

S
i δHi

)

US

+λ2
∑

S∈S

(

||CS
i δHi − CS

j δHj ||2US′ + ||δUS
i + δUS

j ||2US + α2||CS
i δHi + CS

j δHj ||2US ′

)

Moreover,

J(U + λδU) − J(U) + 2λ2α
∑

i∈I

(

Π
S∈Si

(δUS
i + δUS

j ),Λ−1
USCiδHi

)

US

−λ2
∑

S∈S

(

||CS
i δHi − CS

j δHj ||2US′ + ||δUS
i + δUS

j ||2US + α2||CS
i δHi + CS

j δHj ||2US ′

)

= 2λ
∑

i∈I

((

Π
S∈Si

(CS
i Hi(Ui) − CS

j Hj(Uj), CiδHi

)

US ′

+

(

Π
S∈Si

(US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj))), δUi

)

US

−α
(

Π
S∈Si

(US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj))),Λ

−1
USCiδHi

)

US

)

= 2λ
∑

i∈I

(

〈

Ci
∗Λ−1

USi
Π

S∈Si

(CS
i Hi(Ui) − CS

j Hj(Uj), δHi

〉

V ′
i
,Vi

−α
〈

Ci
∗ Π

S∈Si

(US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj))), δHi

〉

V ′
i
,Vi

+

〈

ΛUSi Π
S∈Si

(US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj))), δUi

〉

USi ′,USi

)

= 2λ
∑

i∈I

〈

A∗
iPi, A

−1
i BiδUi

〉

V ′
i
,Vi

+ 2λ
∑

i∈I

〈

ΛUSi Π
S∈Si

(US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj))), δUi

〉

USi ′,USi

= 2λ
∑

i∈I

〈

B∗
i Pi + ΛUSi Π

S∈Si

(US
i + US

j − αΛ−1
US (CS

i Hi(Ui) + CS
j Hj(Uj))), δUi

〉

USi ′,USi

Then, deriving J (λ) := J(U + λδU) with respect to λ and vanishing this derivative, we get (14).

4 The Extended Finite Element Method in the DFN context

In this section we briefly describe a discretization approach via extended finite elements for DFN problems that
allows us to build the numerical triangulation independently of the traces disposition on each fracture. The
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solution to Problem (1) with matching conditions (2)-(3) is in general a continuous function with discontinuous
gradient along traces. A numerical solution based on standard Finite Elements (FE) would require the triangu-
lation to be conforming to the traces, this in turn requiring a coupling in the meshing process for all the fractures
in the system. The Extended Finite Element Method (XFEM) [14, 15, 16, 17], instead, introduces in the FE
approximation spaces additional basis functions, called enrichment basis functions, in order to reproduce the
irregular behaviour of the solution independently of the mesh. For a detailed description of the XFEM approach
we refer the interested reader to the cited references. Let us first consider for simplicity a single trace S on a
fixed fracture F . Let Vfem

δ be the standard FE trial and test spaces defined on the elements of a triangulation
on F non conforming to the trace and spanned by Lagrangian basis functions φk, for k ranging in an index set I.
Let Φ be a function well approximating the irregular behaviour of H in a neighbourhood of the trace S. Starting
from Φ and basis functions φk, using the Partition of Unity Method [18], new basis functions are introduced into

the space Vfem
δ , enriching its approximation capabilities. The additional basis functions are clearly required only

in the elements of the triangulation which are intersected by the trace. In this way the irregular behaviour of
the numerical solution is determined by the enrichment functions introduced, and is independent of the position
of elements with respect to the trace. The XFEM space is then:

Vxfem
δ = span

(

{φk}k∈I
, {φkΦ}k∈J

)

where J ⊂ I is the subset of the degrees of freedom involved in the enrichment. Consequently the approximate
solution with the XFEM will have the following structure:

hxfem
δ =

∑

k∈I

hxfem
k φk +

∑

k∈J

axfemk φkΦ,

where hxfem
k and axfemk are the unknowns related to the standard and enriching basis functions, respectively.

If more traces are present on the fracture F , the approach is simply generalized as follows: the XFEM space
is taken as

Vxfem
δ = span

(

{φk}k∈I
,∪m∈MF

{φkΦm}k∈Jm

)

where the subset of indices MF ⊂ M corresponds to the traces on F , and Φm and Jm are the enriching function
and the set of enriched nodes relative to m-th trace.

We end briefly recalling how enriching functions are selected in the DFN context, referring the reader to [19]
for more details in general cases and [1, 2] for details in the DFN simulations. For each fracture F , let Sm,
m ∈ MF be a trace on F . We distinguish two cases: a) Sm is entirely crossing the fracture (the trace is hence
a so called closed interface); b) one or more endpoints of Sm lie inside F (open interface). In the case of closed
interfaces, the enriching function Φm is suitably set as Ψm(x̂) = ‖x̄− x̂‖, where x̄ is the projection of x̂ on Sm

(see [17]).
In the case of open interfaces, Φm is still used for reproducing non-smooth behaviour on elements intersecting

the trace but not containing trace tips. For each trace tip lying inside F , we also add new enriching functions
(see [17]) defined as follows. Let σm =

{

s1, s2
}

be the set of trace tips of Sm. If sℓ lies inside F , we introduce
the enriching functions

Θm
sℓ(x) ∈

{

r cos
θ

2
, r2 cos

θ

2
,
√
r cos

θ

2

}

, sℓ ∈ σm

where r is the distance between the current point and trace tip, and θ is the polar angle of x̂ with respect to a
reference system centred into trace tip with the x-axis aligned to the trace, and oriented such that the trace lies

9
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Figure 1: Behaviour of trace tip enrichment functions

on the negative side. Tip enrichments are introduced only on elements containing traces endpoints. Functions
Θm

sℓ(x) are plotted, from left to right, in Figure 1. We remark that the choice of enrichments is quite arbitrary.
The selection here adopted is well suited to describe the nonsmooth behaviour of the solution around trace tip.
Other choices are possible, as well as the use of a larger number of enrichments around the tip. This latter
possibility could improve the description of the solution, but would increase the overall computational cost.

We refer the reader to [19, 1, 2] for more details about implementation of the XFEM, which include for example
methods to preserve FEM optimal convergence rates and correctly perform accurate numerical integration of
irregular functions.

5 Discretization of the constrained optimization problem

Following the paradigm “First optimize then discretize” we now describe the discrete version of the method
introduced in the previous section.

Let us introduce an independent triangulation Tδ,i on each fracture Fi, ∀i ∈ I. Let Vδ,i be the finite
dimensional trial and test spaces defined on the elements of Tδ,i and spanned by Lagrangian basis functions φi,k,
k ∈ Ii = {1, ..., Ni}. Let us denote by hi the discrete approximation of Hi, i ∈ I:

hi(x) =

Ni
∑

k=1

hi,kφi,k(x), ∀i ∈ I.

The algebraic formulation of the operator Ai in equation (5) is the usual one:

(Ai)kℓ =

∫

Fi

∇φi,k∇φi,ℓ dFi + α
∑

s∈Si

∫

S

φi,k |S
φi,ℓ|S

dγ,

where, overloading notation, we denote by Ai ∈ R
Ni×Ni , i ∈ I, also the matrix defining the discrete algebraic

operator. For all S ∈ S, let us fix a finite dimensional subspace of US for the discrete approximations uS
i and

uS
j of the control variables US

i and US
j . In the discrete version of the problem we choose US = L2(S) and

thus we can remove the constraint of disjoint traces made in Section 3 (see [1]). Let {ψS
k }k=1,...,NS

be the basis
introduced on the discrete control space on trace S. For application of gradient based methods, we choose a
common arbitrary basis for uS

i and uS
j , i, j ∈ IS , not necessarily depending neither on the mesh on Fi, nor on

10



the mesh on Fj . So we write

uS
l =

NS
∑

k=1

uS
l,kψ

S
k ∀l ∈ IS , S ∈ Si .

For each fracture Fi, we set NSi
=
∑

S∈Si
NS as the number of DOFs on traces of Fi. Given an index i ∈ I and

a fracture S ∈ Si, we define matrices BS
i ∈ R

Ni×NS as

(

BS
i

)

kℓ
=

∫

S

φi,k |S
ψS

l dγ.

Matrices BS
i , S ∈ Si, are then grouped row-wise to form the matrix Bi, which acts on a column vector ui

containing all the NSi
control DOFs corresponding to the traces of Fi, obtained collecting vectors uS

i , for S ∈ Si,
with the same ordering introduced for the traces on Fi and used in the definition of Bi. For each fracture Fi

let us introduce vectors hi ∈ R
Ni , hi = (hi,1, . . . , hi,Ni

)T , and pi ∈ R
Ni , pi = (pi,1, . . . , pi,Ni

)T . Furthermore, we

define vectors u ∈ R
NT

, with NT =
∑

i∈I
NSi

, and h ∈ R
NF

, with NF =
∑

i∈I
Ni, as u = (uT

1 , ...u
T
#I

)T and

h = (hT
1 , ...h

T
#I

)T . The algebraic formulation of the primal equations (5) is then

Aihi = q̃i +Biui, i ∈ I, (15)

where q̃i accounts for the term qi in (5) and for the weak discrete imposition of boundary conditions on the
fracture Fi. We proceed similarly for the equations (10), (11) and (13), in which the operators CS

i and B∗
i , i ∈ I,

are nothing but restriction operators. We thus obtain the algebraic equations for the definition of the discrete
approximations pi and δhi. Further, given two indices q, r ∈ I (possibly q = r), we define matrices CS

q,r and Cq,r

as

(CS
q,r)kℓ =

∫

S

φq,k |S
φr,ℓ|S

dγ, Cq,r =
∑

S∈Sq

CS
q,r.

The discrete counterpart of equations (10) and (13) ∀i ∈ I are

Aipi = Ci,ihi −
∑

j∈Ji

Ci,jhj − α[Biui +
∑

j∈Ji

Bjuj − α(Ci,ihi +
∑

j∈Ji

Ci,jhj)], (16)

Aiδhi = Biδui. (17)

The discrete gradient of the functional J(U) and the optimal step-size λ become

∇J(ui) = Pi|Si
+ ui − αhi(ui)|Si

+
∑

j∈Ji

(uj |Si

− αhj(uj)|Si

), (18)

∇J(u) = Π
i∈I

∇J(ui), (19)

λ = −
∑

i∈I

(∇J(ui), δui)Si

{

−2α
∑

i∈I

(δui + δuj |Si

, δhi|Si
)Si

+
∑

i∈I

(

||δhi|Si
− δhj |Si

||2Si
+ ||δui + δuj |Si

||2Si
+ α2||δhi|Si

+ δhj |Si

||2Si

)

}−1

. (20)

We end this Section with the discrete version of Algorithm 3.
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Algorithm 5.

1. Set k = 0 and initial guess for control variable u0;

2. find h0 = h(u0) solving on each fracture (15);

3. find p(u0) solving on each fracture (16);

4. evaluate ∇J(u0) by (19);

5. set (δu)0 = −∇J(u0);

6. While(stopping criterion not satisfied)

6.1. compute optimal step-size λk along direction (δu)
k

by (20);

6.2. set uk+1 = uk + λk(δu)
k
;

6.3. ∀i ∈ I find hi(u
k+1) by (15);

6.4. ∀i ∈ I find pi(u
k+1) by (16);

6.5. evaluate ∇J(uk+1);

6.6. set βk+1 = ‖∇J(uk+1)‖2
S/‖∇J(uk)‖2

S

6.7. set (δu)
k+1

= −∇J(uk+1) + βk+1δuk

6.8. k = k + 1;

We notice that, thanks to the minimization approach adopted, only the solution of many simple problems on
the fractures is required, with a small exchange of trace-related data among them. This algorithm is therefore
suitable for massively parallel computers and GPU-based computers.

5.1 Stopping criterion

The stopping criterion used in Algorithm 5 plays a relevant role for efficiency reasons. In fact, due to the arbitrary
intersections of the traces with elements independently placed on each fracture, the two terms of the functional
J do not vanish, in general. This follows from the fact that on each trace S the discrete functions hi|S and hj |S

with i, j ∈ IS are piecewise polynomials on different partitions of the trace. As a consequence, δhi|S − δhj |S
is

typically different from zero. Appropriate choice for stopping criteria is crucial in order to prevent a premature
stop of the algorithm far from the minimum of the functional, avoiding at the same time useless iterations when
we are already close to the minimum, when only negligible further reduction of the functional could be achieved
at the expenses of a large number of additional iterations. We will discuss this in the next Section.

6 Numerical Results

In this section we present some numerical experiments aiming at showing the behaviour of our algorithm in
relation to various stopping criteria and the quality of the solution obtained. After introducing the DFN problems
used for the simulations, and discussing stopping criteria used in our computations, we analyze the solution
obtained on the most complex DFN configuration investigated.
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6.1 DFN configurations

A set of four different DFN configurations is considered with an increasing number of fractures and traces as
described in Table 1.

Table 1: Problems description
DOFs (coarse grid) DOFs (fine grid)

Label #I #M h u h u
7fract 7 11 1140 163 4007 378
11fract 11 26 2244 337 7172 825
50fract 50 153 13211 2187 42161 5166
100fract 100 313 26512 4637 85900 10978

In Figure 2 we show section on the x − y plane of fracture systems. All fractures extend, orthogonally to
x − y plane, from z = 0 to z = 1, except for fractures in dashed line that range between z = 0 and z = 0.5.
Homogeneous or non-homogeneous Dirichelet boundary conditions are prescribed on the sides marked with a
dark circle or with a dark rectangle respectively, while homogeneous Neumann conditions are set on the other
edges. Problem formulation is as in equation (1), where the transmissivity is assumed constant and equal to
1, and the source term is q = 0 on all the fractures. For the discretization we use first order Lagrangian finite
elements and two different grids: a coarse grid with about 35 elements per unit area and a finer grid with about
100 elements per unit area. The corresponding number of DOFs is reported in Table 1. In all cases we set
the parameter α = 0.5 in the definition of the control variable and the starting guess for the control variable is
u0 = 0. For each configuration and grid, we define a reference solution obtained performing a large number of
gradient iterations in order to safely approach the minimum of the functional. As an example, to highlight the
complete non conformity of the mesh to the traces, we show in Figure 3 a zoom of the coarse grid for the DFN
problem with eleven fractures.

6.2 Stopping criteria

For each problem and grid a large set of simulations is performed, considering the different stopping criteria
described in the following.

In Figure 4 and Figure 5 we plot, for the various problems considered and for increasing number of iterations,
scaled by the number of problem traces, the distance in H1-norm between the reference solution and the current
solution, relative to the H1-norm of the reference solution: ‖hcurr − href ‖H1/‖href ‖H1 . The reference solution

Table 2: Exit criteria used in simulations
Label Criterion

t1 R1 = Jk − Jk−1 < tol1

t2 R2 = ||uk − uk−1|| < tol2

t3 R3 = Jk(Jk − Jk−1) < tol3

13
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Figure 3: Zoom of grid for 11fract problem.
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Figure 4: Relative distance in H1-norm of solution at different number of iterations, coarse grid. Right: zoom
at lower number of iterations.
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is obtained on the same grid, performing a very large number of conjugate gradient iterations. Figure 4, on the
left, gives an overview on a wide range of iterations for the coarse grid, while on the right provides a zoom at
lower iterations. Figure 5 provides a similar zoom for the finer grid. It should be noticed that the curves show
initially a strong decreasing trend and, after a number of iterations that is few times the number of problem
traces, variations of the solution with respect to the reference solution become smaller than 1%. Afterwards, the
curves become almost flat and a large number of iterations would be required for negligible improvements in the
solution. Therefore, we can see that the algorithm can provide a solution close to the best solution achievable
within a reasonably small number of iterations, this number being proportional to the total number of traces in
the system, with a proportionality factor in the order of few units.

As mentioned in Subsection 5.1, functional minimum is an unknown value different from zero. Hence, the
choice of a exit criterion able to stop iterations when we are close enough to the solution, while avoiding useless
iterations, is a crucial point. In Table 2 we report three possible criteria. Condition t1 detects small variations
in the functional values. Since the functional descent path can be step-like (see Figure 6 for an example), in
order to avoid premature stops, the algorithm is terminated when R1 < tol1 for a fixed number of subsequent
iterations (six, in our computations). Approaching functional minimum we have that R1 → 0. In Figure 7,
left, we show the relative distance of the computed solution from the reference solution, corresponding to several
values of the tolerance tol1. It can be noticed that a value around tol1 = 10−6 provides a good solution for all
the problems considered.

Similarly, condition t2 seeks small variations in the control variable. Again, to take into account possible
temporary stagnation during the descent process, iterations are stopped when R2 < tol2 six times subsequently.
Also in this case as the functional approaches its minimum R2 tends to zero. We can see in Figure 7, middle,
the behaviour of the solution in relation to the choice of tol2. The value tol2 = 10−7 appears to be a good choice.

As a possible alternative, criterion t3 aims at detecting functional minimum, again avoiding premature stop
at large values of the functional due to local stagnation. The rationale behind this criterion is to avoid stopping
the iterates when Jk − Jk−1 is small but Jk is not small as well. Algorithm is then stopped the first time that

R3 < tol3. Also in this case R3 can be arbitrarily reduced with iterations. We plot solution behaviour in relation
to tol3 in Figure 7, right. We notice that in this case low tolerance values, around tol3 = 10−8, should be chosen.

6.3 DFN system solution

We now show the quality of the numerical solution obtained on the more complex DFN configuration considered
herein. First we show in details the results obtained on two of the fractures in the 100fract system: the source
fracture 82 and the sink fracture 18 (see Figure 2). On the coarse grid, in Figures 8 and 9, left, we compare
the solution on fracture traces,

{

hi|S

}

S∈Si
, i = {18, 82}, and the solution on the traces of intersecting fractures,

{hj} with j ∈ Ji. We can see a very good agreement between these values, ensuring the global continuity of the
hydraulic head. In the right part of the same figures, we compare the co-normal derivative of solution on the

traces of the current fracture and on trace-twin fracture (with opposite sign). In these figures φ(h) =
[[

∂h
∂ν̂S

]]

S
.

Again, we can observe, as expected, a very good agreement between these values, ensuring flux conservation.
In Figure 10 we show, for the same fractures, the solution on the traces obtained with four different meshes.

Reported results show that, under grid refinement, the computed solutions are clearly approaching the same
values. In Figure 11 we plot the whole solution obtained with the coarse grid on the fractures 82 and 18. In
Figures 12 and 13 we report 3D pictures representing the DFN. The computing meshes are drawn and the
solution is reported on the fractures using a colorbar. The arrows point the source fracture 93 and the sink
fracture 7.

In Figure 14, left, the L2-norm of solution against iterations is plotted. The table of Figure 14, right, gives
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Figure 7: Relative distance in H1-norm from reference solution for different tolerances and stopping criteria.
Left: condition t1; middle: condition t2; right: condition t3. Coarse grid in dashed line, finer grid in solid line.
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Figure 8: Problem 100fract, source fracture 82, coarse grid. Solution on the traces (left) and co-normal
derivative (right) compared with corresponding values computed on trace-twin fractures.

an indication of the conservativity of the method on the whole network of fractures, as it reports the values of
the total fluxes discharged by the source fractures to the system and the total flux received by the sink fractures
from the system. As expected the data match very well.

7 Conclusions

Major drawbacks in DFN numerical simulations lie in the definition of a good quality finite element triangulation
and in the huge computational demand. The method introduced in [1, 2] and further developed in the present
work provides a possible approach for circumventing these difficulties. The proposed method allows a fully
independent triangulation on each fracture, thus eliminating any mesh related problem. Further, the method
can be easily implemented on parallel machines, since the DFN simulation is split in many sub-problems on
each fracture that can be solved independently by parallel processes, with little exchange of trace related data
between trace-twin processes.

The contribution of the present work to the method is twofold. We introduce a new definition of the control
variable for the optimal problem in order to eliminate the requirement of having a non-empty portion of the
boundary of each fracture with Dirichelet boundary condition. We also introduce a conjugate gradient method
for the optimization process in order to speed up convergence. By means of several numerical results we show
that our algorithm provides a good quality solution within a small number of iterations that increases linearly
with the number of traces in the system. The proportionality factor is in the order of few units for all the
problems considered. The main computational effort in each iteration is devoted to the resolution of the linear
systems on the fractures, that however are independent each other. Assuming that these linear systems have a
comparable dimension, the total cost of each iteration scales as the number of fractures. Effectiveness of some
stopping criteria for the gradient iterations is also discussed.

Further developments on the topic should include on one side an investigation of the scalability of the
algorithm using an increasing number of parallel processes on different parallel architectures, and on another
side the analysis of non-stationary problems. In the non-steady case, in order to reduce the computational effort,
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(right) compared with corresponding values computed on trace-twin fractures.
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Figure 12: Solution on the DFN 100fract. Arrow points source fracture 93.
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Figure 13: Solution on the DFN 100fract. Arrow points sink fracture 7.
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Figure 14: Problem 100fract: L2-norm of solution against iterations (left) and total fluxes on the source and
sink fractures (right).
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the application of reliable and efficient space-time a posteriori error estimates and adaptive algorithms, following
the approaches of [20, 21], could be fruitful.
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[15] N. Möes, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Internat.
J. Numer. Methods Engrg. 46 (1999) 131–150.
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