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Steklov problems in perforated domains
with a coefficient of indefinite sign

Valeria Chiado Piat, Sergey A. Nazarov, Andrey L. Piatnitski

Abstract

We consider homogenization of Steklov spectral problem for a divergence form
elliptic operator in periodically perforated domain under the assumption that the
spectral weight function changes sign. We show that the limit behaviour of the
spectrum depends essentially on wether the average of the weight function over the
boundary of holes is positive, or negative or equal to zero. In all these cases we
construct the asymptotics of the eigenpairs.

The revised version is published in Networks and heterogeneous media 7 (2012) 151-
178. DOI 10.3934/nhm.2012.7.151

Introduction

The paper studies Steklov spectral problem in a periodically perforated domain for the
Laplace operator or for more general divergence form elliptic operator with periodic coef-
ficients, under the assumptions that the Steklov condition is imposed on the perforation
boundary and that the corresponding periodic weight function changes sign.

Previously, periodic homogenization of a bulk spectral problem with sign-changing
density for an elliptic operator or an elliptic system was carried out in recent works
[12], [11]. It was shown that the asymptotic behaviour of spectrum depends crucially on
whether the mean value of the weight function is positive, or negative, or equal to zero.

The idea of studying Steklov and other spectral problems with sign-changing weight
function arose during the conference ”Differential Equations and Related Topics” in
Moscow in 2007. It occur after the talk ”Homogenization in perforated domains with
Fourier boundary conditions” that focused on homogenization of elliptic problems with
Fourier boundary condition on the perforation surface under the assumption that the co-
efficient of the boundary operator changes sign. It turned out that the limit behaviour of
solutions depend crucially on whether the average of this coefficient over the perforation
surface is positive, or negative, or equal to zero (see [4] for further details).

Steklov spectral problem, although has many common features with the bulk problem,
differs essentially from the bulk problem due to the facts that the surface volume of the
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perforation tends to infinity, as the period vanishes, and that the perforation geometry is
asymptotically singular.

The detailed formulation of the studied Steklov problem is
−∆uε = 0 in Ωε,
∂uε
∂νε

= λερεuε, on Γε,

uε = 0, on ∂Ω,
; (0.1)

here Ω is a smooth bounded domain, Ωε is the corresponding perforated domain, Γε is the
surface of a smooth periodic perforation consisting of disjoint inclusions, νε is the exterior
unit normal on Γε, and ε is a small positive parameter. We assume that the function ρ is
periodic and changes sign (see Section 1 for further details).

We also study a slightly more general problem of the form
−div

(
a
(x
ε

)
∇uε) = 0 in Ωε,

∂uε
∂νaε

= λερεuε, on Γε,

uε = 0, on ∂Ω,

(0.2)

with a periodic symmetric matrix a(y) that satisfies the uniform ellipticity conditions,
νaε = a(x/ε)νe.

We first prove that the spectrum of the considered Steklov problem is discrete and,
since the weight function ρ defines an indefinite metric on the perforation border (see
[?])), the spectrum consists of two infinite sequences, one converges to +∞ and another
to −∞.

We show that the asymptotic behaviour of spectrum in (0.1), as ε → 0, depends
essentially on whether the average of ρ over the surface of the hole is greater than zero,
or less than zero, or equal to zero.

If the average of ρ is positive (negative), then the positive (negative) part of the
spectrum behaves in a regular way and admits homogenization like in the classical case
when ρ > 0. In particular, for any k ∈ N, the k-th positive eigenvalue is of order ε, and
the corresponding eigenfunction has a bounded H1 norm. The convergence result in this
case is presented in Theorem 1.4.

If ρ has zero average then both positive and negative eigenvalues have finite limits
and the limit behaviour of the corresponding eigenpairs can be described in terms of the
effective quadratic operator pencil. This operator pencil has a very simple structure and
can be reduced to a standard eigenvalue problem for an elliptic operator in Ω. Notice
that in this case the k-th negative and positive eigenfunctions are bounded in H1-norm.
The asymptotic behaviour of the spectrum in the case of zero average ρ is described in
Theorem 1.7.

Finally, if the average of ρ is positive then the negative part of the spectrum of (0.1)
(or (0.2)) shows a singular behaviour. Namely, for any k ∈ N the k-th negative eigenvalue
is of order 1/ε and the corresponding eigenfunctions are rapidly oscillating.
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We show that studying the negative part of the spectrum can be reduced to study-
ing the negative part of the spectrum of an auxiliary problem that exhibits more regular
behaviour. This reduction is done by means of factorization with the first negative eigen-
function of the corresponding cell periodic spectral problem. Further details can be found
in Theorem 1.5 and its proof.

1 Setting of the problem and main results

In this section we provide a detailed set up of the studied Steklov spectral problem,
introduce necessary notation and auxiliary problems, and then formulate the main results
of the paper.

Let Ω be a smooth bounded domain in Rn. We denote by Y = (0, 1)n the unit cube
of Rn, and by ω = Y \B the perforated reference cell, for a given closed set B ⊂ Y with
sufficiently smooth boundary ∂B = Γ. Setting

Jε = {z ∈ Zn : ε(Y + z) ⊂ Ω}, (1.3)

we define Bε =
⋃
z∈Jε

ε(z+B), Γε =
⋃
z∈Jε

ε(z+ Γ). Then a perforated domain is introduced

as
Ωε = Ω \Bε.

Notice that, according to (1.3), Bε does not intersect the external boundary ∂Ω.

Remark 1.1. Another possibility is not to remove the perforation in the vicinity of ∂Ω.
Instead, we can keep this part of perforation and impose the homogeneous Dirichlet bound-
ary condition on it. We denote

Ω̃ε = Ω \
⋃
z∈Zn

ε(z +B). (1.4)

Throughout this paper we assume that the exterior boundary ∂Ω has the regularity
C2,α. In many our statements this regularity can be replaced with just Lipschitz conti-
nuity of the boundary. However, in this case we obtain only convergence results without
estimating the rate of convergence.

In what follows the symbol Γ# stands for the periodic extension of Γ in Rn. Also, the
lower index # in the functional space notation indicates that the corresponding functions
are periodic.

Given a function ρ ∈ L∞# (Γ), we study the asymptotic behaviour of the eigenvalue
problems 

−∆uε = 0 in Ωε,
∂uε
∂νε

= λερεuε, on Γε,

uε = 0, on ∂Ω,
(1.5)
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as ε→ 0. The corresponding weak formulation reads
uε ∈ Hε,∫

Ωε

∇uε · ∇v dx = λε

∫
Γε

ρεuεvdσx ∀v ∈ Hε,
(1.6)

where
Hε = {v ∈ H1(Ωε) : v = 0 on ∂Ω}

is a Hilbert space equipped with the scalar product

(u, v)Hε =

∫
Ωε

∇u · ∇v dx,

and σx denotes the (n− 1)-dimensional surface measure.

We also consider a similar problem in Ω̃ε
−∆uε = 0 in Ω̃ε,
∂uε
∂νε

= λερεuε, on Γε,

uε = 0, on ∂Ω̃ε \ Γε.

(1.7)

Every solution uε of problem (1.5) or (1.7) can be extended to the whole domain Ω as a
function ũε ∈ H1

0 (Ω), with uniform estimates∫
Ω

|∇ũε|2dx ≤ c0

∫
Ωε

|∇uε|2 dx,
∫

Ω

|ũε|2dx ≤ c0

∫
Ωε

|uε|2 dx

for all ε > 0 and for some c0 > 0 that does not depend on ε (see, for instance, [1]). In the
sequel, abusing slightly the notation, we still denote this extension by uε. Let us notice
that, thanks to the above inequality, the usual Friedrichs inequality in Hε holds true with
a constant c1 independent of ε, i.e.,∫

Ωε

u2 dx ≤ c1

∫
Ωε

|∇u|2 dx ∀u ∈ Hε. (1.8)

Throughout this paper we assume that the coefficient ρ satisfies the condition of indefi-

nite sign

σy({y ∈ Γ : ρ(y) > 0}) > 0 and σy({y ∈ Γ : ρ(y) < 0}) > 0. (1.9)

The limit behaviour of problems (1.5) appears to be different if the mean value ρ of ρ,

ρ =
1

σy(Γ)

∫
Γ

ρ(y)dσy(y), (1.10)

is zero or non zero.
We begin by considering problem (1.5) for a fixed positive ε.
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Proposition 1.2. For each ε > 0 the spectrum of problem (1.5) consists of two sequences
of eigenvalues

0 < λε1 ≤ λε2 ≤ . . . ≤ λεj → +∞ (1.11)

0 > λε−1 ≥ λε−2 ≥ . . . ≥ λε−j → −∞ as j → +∞ (1.12)

Moreover, for all ε > 0 there exists an orthonormal basis in Hε of eigenfunctions uεj ∈ Hε

which are solutions to problem (1.5) corresponding to λε = λεj, and for all i, j ∈ Z \ {0}∫
Ωε

∇uεi · ∇uεj dx = δij. (1.13)

Furthermore,
λε1 and λε−1 are simple. (1.14)

The proof of this proposition will be given in Section 2.
Similar statement holds true for problem (1.7). Orthogonality condition in this case

reads ∫
Ω̃ε

∇uεi · ∇uεj dx = δij. (1.15)

If ρ > 0, the asymptotic analysis of the positive eigenvalues (1.11) as ε→ 0 involves
the spectral properties of the Dirichlet problem{

−div(aeff∇u) = λρσx(Γ)u in Ω,
u = 0 on ∂Ω.

(1.16)

where aeff is a symmetric positive definite constant (n × n)-matrix whose associated
quadratic form is defined by

aeffξ · ξ = inf

{∫
ω

|ξ +∇w(y)|2dy : w ∈ H1
#(Y )

}
∀ξ ∈ Rn, (1.17)

and H1
#(Y ) denotes the space of Y -periodic functions ϕ(y) with finite norm

‖ϕ‖H1
#(y) =

(∫
Y

(|ϕ|2 + |∇ϕ|2)dy

)1/2

.

The function wξ that provides a minimum in (1.17) has the form wξ = ξ · χ with the
vector-function χ being a periodic solution to the classical cell problem{

∆χ = 0 in ω,

∇χ · ν = −ν(y) on Γ.
(1.18)
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From the classical theory of elliptic operatotrs it follows that the spectrum of (1.16) is
discrete and consists of a sequence {λj}j∈N of positive eigenvalues,

0 < λ1 ≤ λ2 ≤ . . . ≤ λj → +∞ as j → +∞, (1.19)

and that the corresponding eigenfunctions {uj}j∈N ∈ H1
0 (Ω) form, under proper normal-

ization, an orthonormal basis in L2(Ω). For our purposes it is convenient to normalize uj,
j ∈ N, as follows ∫

Ω

aeff∇ui · ∇ujdx = δij. (1.20)

Then ∫
Ω

uiuj dx = (ρλiσx(Γ))−1δij. (1.21)

In what follows we use the notation

Λ = {λj : j ∈ N}.

The asymptotic analysis of negative eigenvalues in (1.12) as ε→ 0 requires two more
auxiliary spectral problems. The first one is stated in the periodicity cell with periodic
boundary conditions: 

−∆p = 0 in ω,
∂p
∂ν

= αρp, on Γ,

p is Y -periodic.

(1.22)

The corresponding weak formulation reads
∫
ω

∇p · ∇w dy = α

∫
Γ

ρpw dσy ∀w ∈ H1
#(Y ),

p ∈ H1
#(Y ).

(1.23)

Here, α is the spectral parameter. The statement below describes the behaviour of spec-
trum of problem (1.22). This statement will be proved in Section 2. The proof is more
involved than that of Proposition 1.2 because the quadratic form related to (1.23) is not
coercive.

Proposition 1.3. Let ρ > 0. Then the spectrum of problem problem (1.22) is discrete
and consists of two sequences of eigenvalues

0 = α1 < α2 ≤ . . . ≤ αj → +∞ as j → +∞, (1.24)

0 > α−1 > α−2 ≥ . . . ≥ α−j → −∞ as j → +∞. (1.25)

Moreover α1, α−1 are simple and the associated eigenfunctions p1, p−1 ∈ H1
#(Y ) ∩ L∞(ω)

can be normalized as follows

p±1 > 0 in ω,

∫
Γ

ρ(p±1)2 dσy = ±1. (1.26)
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Finally, if ∂ω ∈ C2,α and ρ ∈ Cα(∂B), then p± ∈ C2(ω), and 0 < C− ≤ p± ≤ C+ for
some constants C− and C+.

Now, we introduce the second spectral problem, which is stated in the whole set Ω
and involves a new weight function ρ∗ = ρ∗(y) and its mean value ρ∗:

ρ∗ = ρ p2
−1, (1.27)

ρ∗ =
1

σy(Γ)

∫
Γ

ρ∗(y)dσy. (1.28)

Due to Proposition 1.3, ∫
ω

|∇p−1|2 dy = α−1

∫
Γ

p2
−1ρ dσy > 0,

and hence

ρ∗ =
1

σy(Γ)

∫
Γ

ρ∗ dσy =

∫
Γ

p2
−1ρ dσy < 0. (1.29)

Define by ãeff the constant positive definite (n × n)-matrix whose associated quadratic
form is defined by

ãeffξ · ξ = inf

{∫
ω

|ξ +∇w(y)|2(p−1(y))2dy : w ∈ H1
#(Y )

}
∀ξ ∈ Rn, (1.30)

Notice that a minimum in (1.30) is attained at the function w̃ξ = ξ · χ̃ with the vector-
function χ̃ being a periodic solution to the following cell problem{

div
(
(p−1)2(I +∇χ̃)

)
= 0 in ω,

∇χ̃ · ν = −ν(y) on Γ,
(1.31)

here I stands for the unit matrix.
We now introduce the effective spectral problem:{

−div(ãeff∇v) = κρ∗σy(Γ)v in Ω,
v = 0 on ∂Ω,

(1.32)

where κ is a spectral parameter.
Problem (1.32) is classical. Since ρ∗ < 0, the spectrum of this problem consists of a

sequence
0 > κ−1 > κ−2 ≥ κ−3 ≥ · · · ≥ κ−j −→ −∞, as j →∞. (1.33)

The corresponding eigenfunctions {v−j}j∈N, under proper normalization, form an or-
thonormal basis in L2(Ω). However, we normalize them in a different way. Namely, we
assume that ∫

Ω

ãeff∇v−i · ∇v−jdx = δij. (1.34)
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The following results concern the case of ρ > 0. It should be noted that, in this case,
the positive and the negative parts of the spectrum show totally different behaviour. We
first deal with the positive part of the spectrum.

Theorem 1.4. Let ρ > 0, and let (λεj , u
ε
j) be the j-th eigenpair of problem (1.5), (1.13),

or problem (1.7) with j > 0. Then

(i) For all j ∈ N
λεj
ε
→ λj as ε→ 0, (1.35)

where λj is the j-th eigenvalue of problem (1.16).

(ii) Under the additional assumption that Ω is a C2,δ domain with some δ > 0 the rate
of convergence in (1.40) can be estimated as follows: for every j ∈ N there exist
constants εj, Cj > 0 such that∣∣∣∣λεjε − λj

∣∣∣∣ ≤ Cj
√
ε for all ε ∈ (0, εj). (1.36)

(iii) If, for j ∈ N, λj is an eigenvalue of problem(1.16) of multiplicity mj, λj−1 < λj =
λj+1 = . . . = λj+mj−1 < λj+mj

, then there exist orthogonal mj×mj matrices U ε and
constants εj > 0 and Cj > 0 such that, for all ε ∈ (0, εj],∥∥∥∥∥uεj+l−1 −

mj∑
k=1

U εlk uj+k−1

∥∥∥∥∥
L2(Ω)

≤ Cj
√
ε, l = 1, · · · ,mj, (1.37)

∥∥∥∥∥uεj+l−1 −
mj∑
k=1

U εlk U ε
j+k−1

∥∥∥∥∥
Hε(Ω)

≤ Cj
√
ε, l = 1, · · · ,mj (1.38)

with U ε
j (x) = uj(x) + εχ(x/ε)∇uj(x), here χ is a solution of problem (1.18).

(iv) The function {U ε
j } are almost orthogonal and normalized in Hε that is∣∣∣〈U ε

k , U
ε
l 〉Hε − δk,l

∣∣∣ ≤ C
√
ε. (1.39)

The same results hold true for problem (1.7)

We turn to the negative part of the spectrum. Here, in addition to the above as-
sumptions, we suppose that the boundary of B has regularity C2,α and that ρ is Hölder
continuous, ρ ∈ Cα(∂B). Here we only consider problem (1.7).

Theorem 1.5. Let ρ > 0, and let (λε−j, u
ε
−j) be the j-th negative eigenpair of problem

(1.7), (1.15). Then
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(i) For all j ∈ N
1

ε

(
λε−j −

α−1

ε

)
→ κ−j as ε→ 0, (1.40)

where α−1 is defined in (1.25), and κ−j is the j-th (negative) eigenvalue of problem
(1.32).

(ii) If Ω is a C2,δ domain for some δ > 0 then for every j ∈ N there exist constants
εj, Cj > 0 such that∣∣∣∣1ε(λε−j − α−1

ε

)
− κ−j

∣∣∣∣ ≤ Cj
√
ε for all ε ∈ (0, εj). (1.41)

(iii) If, for j ∈ N, κ−j is an eigenvalue of problem (1.32) of multiplicity m−j, κ−j =
κ−(j+1) = . . . = κ−(j+mj−1), then there exist orthogonal m−j ×m−j matrices U ε and
constants ε−j > 0 and C−j > 0 such that, for all ε ∈ (0, ε−j],∥∥∥∥∥ uε−(j+l−1)

‖uε−(j+l−1)‖L2(Ω)

−
mj∑
k=1

U εlk vε−(j+k−1)

∥∥∥∥∥
L2(Ω)

≤ C−j
√
ε, l = 1, · · · ,mj, (1.42)

with vε−j(x) = (‖v−j‖L2(Ω)
)−1v−j(x)p̂−1(x/ε); here p̂−1 is the eigenfunction of prob-

lem (1.22) that corresponds to α−1 and is normalized by∫
ω

(p̂−1(y))2dy = 1.

(iv) The functions {U ε
−j}, U ε

−j(x) = v−j(x) + εχ̃(x/ε)∇v−j(x), are almost orthogonal
and normalized in Hε that is∣∣∣〈U ε

−k, U
ε
−l〉Hε − δk,l

∣∣∣ ≤ C
√
ε. (1.43)

Remark 1.6. In contrast with problem (1.7) we cannot assure that the interval
(
α−1/ε, 0

)
belongs to the resolvent set of spectral problem (1.5). If there are eigenvalues of problem
(1.5) on this interval, then the corresponding eigenfunctions concentrate in the vicinity of
∂Ω that is they are of boundary layer type.

In order to write down the limit problem in the case ρ = 0 we introduce one more
cell problem: 

−∆θ = 0 in ω,
∂θ

∂ν
= ρ, on Γ,

θ is Y -periodic ,

(1.44)
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Since ρ = 0, this problem is solvable, its solution is unique up to an additive constant.
Denote

Ξ =

∫
Γ

ρ(y)θ(y)dσy =

∫
ω

∇θ(y) · ∇θ(y)dy > 0,

and consider the following operator pencil{
−div(aeff∇u) = λ2Ξu in Ω,

u = 0 on ∂Ω.
(1.45)

and a spectral problem {
−div(aeff∇u) = νΞu in Ω,

u = 0 on ∂Ω.
(1.46)

with aeff defined in (1.17).
Since (1.46) has a discrete spectrum 0 < ν1 < ν2 ≤ ν3 ≤ · · · ≤ νj → ∞, and all

the eigenvalues νj are positive, the spectrum of (1.45) is discrete, real and consists of two
series

λ+
j =
√
νj, λ−j = −√νj, j = 1, 2, . . . (1.47)

Here, for the corresponding eigenfunctions, we impose the following normalization condi-
tions ∫

Ω

aeff∇ui · ∇ujdx+ Ξ
√
νiνj

∫
Ω

uiujdx = δij. (1.48)

Theorem 1.7. Let ρ = 0, and let (λεj , u
ε
j), j ∈ Z \ {0}, be the j-th eigenpair of problem

(??), (1.13). Then

(i) For all j ∈ N
λε±j → λ±j , as ε→ 0, (1.49)

where λ±j are defined in (1.47).

(ii) Under the additional assumption that Ω is a C2,δ domain with some δ > 0, for every
j ∈ N there exist constants εj, Cj > 0 such that∣∣λε±j − λ±j ∣∣ ≤ Cj

√
ε for all ε ∈ (0, εj). (1.50)

(iii) If, for j ∈ N, νj is an eigenvalue of problem(1.46) of multiplicity mj, νj−1 < νj =
νj+1 = . . . = νj+mj−1 < νj+mj

, then there exist orthogonal mj ×mj matrices U ε and
constants εj > 0 and Cj > 0 such that, for all ε ∈ (0, εj],∥∥∥∥∥uε±(j+l−1) −

mj∑
k=1

U εlk uj+k−1

∥∥∥∥∥
L2(Ω)

≤ Cj
√
ε, l = 1, · · · ,mj, (1.51)
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∥∥∥∥∥uε±(j+l−1) −
mj∑
k=1

U εlk U ε
±(j+k−1)

∥∥∥∥∥
Hε(Ω)

≤ Cj
√
ε, l = 1, · · · ,mj (1.52)

with U ε
±j(x) = uj(x) + εχ(x/ε)∇uj(x) + λ±j θ(x/ε)uj(x), here χ and θ are solutions

of problems (1.18) and (1.44), respectively.

(iv) The function {U ε
j } are almost orthogonal and normalized in Hε that is∣∣∣〈U ε

k , U
ε
l 〉Hε − δk,l

∣∣∣ ≤ C
√
ε, k, j ∈ Z \ {0}. (1.53)

2 Preliminary statements

We begin this section by recalling some inequalities valid in Hε. In what follows we denote

ωiε = ε(ω + i), Γiε = ε(Γ + i), i ∈ Zn.

Poincaré-Wirtinger inequality. Under our assumptions on Ωε and Γε, there exist a positive
constant k such that for each u ∈ Hε the following inequality holds:∫

Γε

|u− uε|2dσx ≤ k ε

∫
Ωε

|∇u|2 dx, (2.54)

where we denote by uε(·) the piece-wise constant function obtained by taking the mean
value of u over each perforated cell ωiε, i.e.,

uε(x) =
1

|ωiε|

∫
ωi
ε

u(y)dy, if x ∈ ωiε; (2.55)

here |ωiε| stands for the Lebesgue measure of ωiε. The above inequality remains valid if
uε is replaced with the piece-wise constant function being equal in each ωiε to the surface
average of u over Γiε.

Trace inequality ∫
Γε

|u|2dσx ≤ kt

(
ε−1

∫
Ωε

|u|2 dx+ ε

∫
Ωε

|∇u|2) dx
)
, (2.56)

Both inequalities can be easily obtained from the standard Poincaré-Wirtinger and trace
inequalities, (see [2], [14]) by means of scaling arguments.

Given g ∈ L2(Γε), consider the following boundary value problem with non-homogeneous
Neumann boundary conditions on Γε

−∆uε = 0 in Ωε,
∂uε
∂nε

= g, on Γε,

uε = 0, on ∂Ω.
(2.57)
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The corresponding weak formulation reads
uε ∈ Hε,∫

Ωε

∇uε · ∇v dx =

∫
Γε

gvdσx ∀v ∈ Hε,
(2.58)

where
Hε = {v ∈ H1(Ωε) : v = 0 on ∂Ω}

is a Hilbert space equipped with the scalar product

(u, v)Hε =

∫
Ωε

∇u · ∇v dx.

Proposition 2.1. For every g ∈ L2(Γε) there exists a unique solution uε ∈ Hε to problem
(2.57). Moreover uε satisfies the following a-priori estimate

||uε||Hε ≤ cε−1/2||g||L2(Γε), (2.59)

where the constant c > 0 is independent of ε.

Proof. The existence and uniqueness of uε is a straightforward consequence of the Reisz
representation theorem for the problem

a(u, v) = F (v) ∀v ∈ H,

where

a(u, v) =

∫
Ωε

∇u · ∇v dx, F (v) =

∫
Γε

gv dσx, H = Hε.

Moreover, replacing v = uε in the weak formulation (2.58), and using Friedrichs and trace
inequalities (1.8), (2.56),we obtain that

||uε||2Hε
=

∫
Ωε

|∇ue|2 dx =

∫
Γε

guε dσx ≤ ||g||L2(Γε)||uε||L2(Γε) ≤

≤ ||g||L2(Γε)

(
kt

(
ε−1

∫
Ωε

|u|2 dx+ ε

∫
Ωε

|∇u|2) dx
))1/2

≤

≤ cε−1/2||g||L2(Γε)||uε||Hε .

Dividing by ||uε||Hε we obtain the desired inequality (2.59).

We introduce the operator Kε : Hε → Hε in the following way. For every u ∈ Hε, we
define Kεu as the unique solution to the problem∫

Ωε

∇(Kεu) · ∇v dx =

∫
Γε

ρεuv dσx, ∀v ∈ Hε. (2.60)

The existence and uniqueness of Kεu follows directly from Proposition 2.1.

12



Proposition 2.2. The operator Kε : Hε → Hε is linear, compact and self-adjoint.

Proof. The linearity and self-adjointness of Kε follows directly from its definition (see
(2.60)). In order to prove the compactness of Kε notice that formula (2.60) defines a
bounded linear operator K̃ε that maps L2(Γε) in Hε. Since Kε is the composition of the
trace operator Hε 7→ L2(Γε) and K̃ε, the desired compactness follows from the compact-
ness of the mentioned trace operator (see, for instance, [8]).

Assume that µε 6= 0 is an eigenvalue of the operator Kε and uε is a corresponding
eigenfunction. It means that

Kεuε = µεuε

i.e. 
−∆uε = 0 in Ωε,
∂uε
∂nε

= 1
µε
ρεuε, on Γε,

uε = 0, on ∂Ω,

Thus, λε = 1
µε

is an eigenvalue of problem (1.5). Now, we recall the spectral properties of
Kε.

From general spectral theory, the spectrum of the operator Kε is at most countable,
it consists of two sequences (possibly finite or empty) of positive and negative eigenvalues,
and of zero. The latter implies the essential spectrum of Kε. Every non-zero eigenvalue
has finite multiplicity. We denote by µεj , µ

ε
−j the positive and negative eigenvalues, for

every j ∈ N \ {0}, with the convention that the positive eigenvalues are enumerated in
decreasing order, the negative ones in increasing order, and each eigenvalue is repeated a
number of times equal to its multiplicity. Moreover, we denote by uεj , and uε−j a sequence of
corresponding Hε-normalized eigenfunctions. The following variational characterizations
hold true

µε1 = max
u ∈ Hε,
u 6= 0

∫
Γε

u2ρε dσx∫
Ωε

|∇u|2 dx
, (2.61)

µε−1 = min
u ∈ Hε,
u 6= 0

∫
Γε

u2ρε dσx∫
Ωε

|∇u|2 dx
. (2.62)

For each j ∈ N, j ≥ 2 one has also

µεj = max
(u,uεi )Hε=0,

i=1,...,j−1

∫
Γε

u2ρε dσx∫
Ωε

|∇u|2 dx
= min

dimV=j−1
max
u∈V ⊥

∫
Γε

u2ρε, dσx∫
Ωε

|∇u|2 dx
, (2.63)
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µε−j = min
(u,uε−i)Hε=0,

i=1,...,j−1

∫
Γε

u2ρε dσx∫
Ωε

|∇u|2 dx
= max

dimV=j−1
min
u∈V ⊥

∫
Γε

u2ρε dσx∫
Ωε

|∇u|2 dx
, (2.64)

where V ⊥ stands for the orthogonal complement of V in Hε.

Remark 2.3. From (2.56) and the fact that ρ ∈ L∞(Γ), it follows that there exists a
positive constant k0 such that

εµεj ≤ k0

(
ε2 +

1

βεj

)
for all ε > 0, j ∈ N, (2.65)

where βεj is the j-th eigenvalue of the Laplacian with homogeneous Neumann boundary
conditions at the boundary of the perforation. More precisely, {βεj}∞j=1, 0 < βε1 ≤ βε2 ≤ . . . ,
is the spectrum of the problem

−∆vεj = βεjv
ε
j in Ωε,

∂vεj e

∂νε
= 0, on Γε,

vε = 0, on ∂Ω,

(2.66)

It is known (see, for instance, [13]) that for all j ∈ N

βεj → βj as ε→ 0, (2.67)

with βj eigenvalue of the corresponding homogenized problem{
−div(aeff∇vj) = βj|ω|vj in Ω,
vj = 0, on ∂Ω,

(2.68)

and
βj → +∞, as j → +∞. (2.69)

Proposition 2.4. If ρ satisfies condition (1.9), then for each ε > 0 the sets

{j ∈ N : µεj > 0} and {j ∈ N : µε−j < 0}

have infinitely many elements.

Proof.
Step 1. We first prove that

µε−1 < 0 < µε1.

Letting
ρ+
ε = max {ρε, 0} ρ−ε = min {ρε, 0},

14



under our assumption (1.9) on ρ we have∫
Γε

ρερ
+
ε dσx > 0.

Denote by {uη}η>0 a family of functions uη ∈ Hε such that ‖
√
ρ+
ε − uη‖L2(Γε)

−→ 0, as

η → 0. Such functions uη can be easily constructed by means of smoothing
√
ρ+
ε on Γε.

Since ∫
Γε

ρεu
2
η dσx −→

∫
Γε

ρερ
+
ε dσx,

as η → 0, then for all sufficiently small η > 0 it holds∫
Γε

ρεu
2
η dσx > 0. (2.70)

It remains to combine the last inequality with (2.61) in order to conclude that µε1 > 0.
In a similar way, one can prove that µε−1 < 0.

Step 2. Our next goal is to show that for any j ∈ N the inequalities µε−j < 0 and µεj > 0
hold.

Assume that µε1 > 0, . . . , µεj−1 > 0, and let uε1, . . . , u
ε
j−1 be the corresponding normal-

ized eigenfunctions, 〈uεi , uεk〉Hε = δik with i, k = 1, 2, . . . , j − 1.
Consider a collection of sets {Sεi }

j
i=1 with Sεi ⊂ {x ∈ Γε : ρ(x) > 0}, σx(Sεi ) > 0,

Sεi ∩ Sεk = ∅, i 6= k, and denote χεi the characteristic functions of these sets.
Let χδ,ε1 , . . . , χδ,ej be elements of Hε such that ‖χεi − χ

δ,ε
i ‖L2(Γε) ≤ δ, i = 1, . . . , j. It is

clear that for sufficiently small δ > 0 the functions χδ,ε1 , . . . , χδ,εj are linearly independent.

Therefore, there is a non-trivial linear combination Ξ = βδ,ε1 χδ,ε1 + · · ·+ βδ,εj χδ,εj such that
〈Ξ, uεi 〉Hε = 0, i = 1, . . . , j − 1.

It is also clear that for sufficiently small δ > 0 we have∫
Γε

Ξ2ρ+ dσx > 0.

Using Ξ as a test function in (2.63) we conclude that µεj > 0. In the same way one can
show that µε−j < 0.

It remains to use the induction.

Proof of Proposition 1.2. All the statements of Proposition 1.2 except for (1.14) follow
from the spectral properties of the operator Kε, the fact that λεj = (µεj)

−1, and from
Proposition 2.4.

It remains to prove (1.14): we will do it for λε1, the proof for λε−1 being analogous. We
first show that each eigenfunction u related to λε1 does not change sign in Ωε.
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Assume the contrary. Then there is an eigenfunction u related to λε1 such that u+ =
max {u, 0} and u− = min {u, 0} are non-trivial functions. Clearly,∫

Γε

ρε(u
+)2dσx > 0 and

∫
Γε

ρε(u
−)2dσx > 0.

Indeed, if
∫

Γε
ρε(u

+)2dσx ≤ 0, then
∫

Γε
ρε(u

−)2dσx ≥ 1. Since
∫

Ωε
|∇u−|2dx <

∫
Ωε
|∇u|2dx,

this contradicts the variational principle (2.63). Therefore,
∫

Γε
ρε(u

+)2dσx > 0. Similarly,∫
Γε
ρε(u

−)2dσx > 0.
By (2.63) we have∫

Ωε

|∇u−|2dx ≤ λε1

∫
Γε

ρε(u
−)2dσx,

∫
Ωε

|∇u+|2dx ≤ λε1

∫
Γε

ρε(u
+)2dσx.

Summing up these inequalities and considering the relation∫
Ωε

|∇u|2dx = λε1

∫
Γε

ρε(u)2dσx

we conclude that ∫
Ωε

|∇u+|2dx = λε1

∫
Γε

ρε(u
+)2dσx.

Thus, u+ is an eigenfunction related to λε1. Then u+ is a non-negative solution of the
equation ∆u+ = 0 in Ωε, and the fact that u+ is equal to zero at interior points of Ωε

contradicts the maximum principle.
If we assume that there are two linearly independent positive eigenfunctions u, v ∈ Hε

related to λε1, then∫
Ωε

(u− cv)dx = 0, for c =
(∫

Ωε

vdx
)−1

∫
Ωε

udx.

Therefore, u− cv is an eigenfunction that changes sign. This contradiction shows that λε1
is simple.

Proof of Proposition 1.3. Our goal is to show that for sufficiently small δ > 0 the quadratic
form

J (u) =

∫
ω

|∇u(y)|2dy + δ

∫
Γ

ρ(y)(u(y))2dσy

is coercive that is
J (u) ≥ C(δ)‖u‖2

H1(ω)
for all u ∈ H1

#(Y ) (2.71)

with C(δ) > 0. The spectral problem for the operator associated with J reads
∫
ω

∇p · ∇w dy + δ

∫
Γ

ρpw dσy = α̃

∫
Γ

ρpw dσy ∀w ∈ H1
#(Y ),

p ∈ H1
#(Y ).

(2.72)
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The spectrum of this problem coincides with the spectrum of problem (1.23) shifted by
δ. Exploiting (2.71) by the same arguments as in the proof of Proposition 1.2 one can
deduce that the spectrum of (2.72), and thus of (1.23), is discrete and consists of two
infinite sequences of eigenvalues, one of these sequences tends to −∞, another to +∞.

Other statements of Proposition 1.3 can be justified in the same way as in the proof
of Proposition 1.2.

To prove (2.71) we represent ρ as ρ = ρ + ρ̂ with ρ > 0 defined in (1.10). For an
arbitrary function u ∈ H1

#(Y ) denote u = (σy(Γ))−1
∫

Γ
u(y)dσy, û = u− u. Then∫

Γ

ρu2dσy =

∫
Γ

(
ρu2 + ρ̂

(
u+ û

)2)
dσy =

∫
Γ

(
ρu2 + 2ρ̂uû+ ρ̂û2

))
dσy

≥
∫

Γ

(
ρu2 − Cρ(|uû|+ û2)

)
dσy

with Cρ = 2‖ρ‖L∞ . Using the trace and Poincare inequalities we deduce that for any
δ1 > 0 ∫

Γ

Cρ(|uũ|+ ũ2)dσy ≤
∫

Γ

Cρ

(
δ1u

2 +
( 1

δ1

+ 1
)
û2
)
dσy

≤
∫

Γ

Cρδ1u
2dσy + C1

( 1

δ1

+ 1
)∫

ω

|∇u|2dy.

Combining the last two inequalities and choosing δ1 in such a way that Cρδ1 = 1
2
ρ we

obtain ∫
Γ

ρu2dσy ≥
∫

Γ

1

2
ρu2dσy − C1

( 1

δ1

+ 1
)∫

ω

|∇u|2dy.

This yields

J (u) ≥
∫
ω

|∇u|2dy +
δ

2

∫
Γ

ρu2dσy − C1δ
( 1

δ1

+ 1
)∫

ω

|∇u|2dy.

Finally, taking δ such that C1δ
(
(1/δ1) + 1

)
≤ 1/2, we get

J (u) ≥ 1

2

∫
ω

|∇u|2dy +
δ

2

∫
Γ

ρu2dσy ≥ C(δ)‖u‖2
H1(ω).

3 The case ρ > 0

The aim of this section is to prove Theorem 1.4. We begin with an auxiliary statement.
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Lemma 3.1. Let uε, u ∈ H1
0 (Ω), ||uε||H1

0
≤ c, uε → u strongly in L2(Ω) and ρ > 0. Then

ε

∫
Γε

ρεu
2
ε dσx → ρσy(Γ)

∫
Ω

u2dx, as ε→ 0. (3.73)

Moreover, for all v ∈ H1
0 (Ω)

ε

∫
Γε

ρεuεv dσx → ρσy(Γ)

∫
Ω

uvdx, as ε→ 0. (3.74)

Proof. Let us denote by ûε the piece-wise constant function that takes the value of the
average of uε in each ε-cell that is

ûε(x) = ûεj if x ∈ Y i
ε ,

ûεj =
1

|ωεj |

∫
ωε
j

uεdx.

Note that, by our assumptions and Poincaré inequality, it follows that ûε → u strongly
in L2(Ω) as ε→ 0. In fact∫

Ω

|uε − ûε|2dx =
∑
j

∫
Y i
ε

|uε − ûεj|2dx ≤ cε2
∑
j

∫
Y i
ε

|∇uε|2dx ≤ cε2. (3.75)

In order to prove (3.73), we write

ε

∫
Γε

ρεu
2
ε dσx = ε

∫
Γε

ρεû
2
ε dσx + ε

∫
Γε

ρε(u
2
ε − û2

ε) dσx. (3.76)

The first term can be rearranged as follows

ε

∫
Γε

ρεû
2
ε dσx = ε

∑
j

∫
Γε
j

ρε(ûεj)
2δσx =

= ε
∑
j

(ûεj)
2εn−1

∫
Γ

ρ(y) dσy = ρσy(Γ)

(∫
Ω

(ûε)
2dx+ o(1)

)
.

Hence, by (3.75), we can conclude that

ε

∫
Γε

ρεû
2
ε dσx → ρσy(Γ)

∫
Ω

u2 dx

as ε→ 0. The second term in (3.76) is negligible, since∣∣∣∣ε ∫
Γε

ρε(u
2
ε − û2

ε) dσx

∣∣∣∣ ≤ ε

∫
Γε

|ρε| |uε − ûε| |uε + ûε| dσx ≤
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≤ ε

(∫
Γε

|ρε| |uε − ûε|2 dσx
)1/2(∫

Γε

|ρε| |uε + ûε|2 dσx
)1/2

.

The first term on the right hand side can be estimated by means of Poicaré inequality.
We have

ε

(∫
Γε

|ρε| |uε − ûε|2 dσx
)1/2

≤ ε‖ρ‖1/2

L∞

(
ε

∫
Ωε

|∇ue|2dx
)1/2

≤ cε3/2.

The second term can be estimated by means of the trace inequality:(∫
Γε

|ρε| |uε + ûε|2 dσx
)
≤
(

2‖ρ‖
L∞

∫
Γε

u2
ε dσx + 2‖ρ‖

L∞
σy(Γ)

∫
Ωε

u2
εdx

)1/2

≤ c

(
ε−1

∫
Ωε

u2
εdx+ ε

∫
Ωε

|∇uε|2dx
)
.

Hence, combining the last two inequalities, we finally have∣∣∣∣ε∫
Γε

ρε(u
2
ε − û2

ε) dσx

∣∣∣∣ ≤ cε1/2,

and (3.73) follows.
To prove (3.74) it suffices to notice that

uεv =
1

2
(uε + v)2 − 1

2
u2
ε −

1

2
v2,

then (3.73) applies.

Proof of Theorem 1.4.
We begin by obtaining the following estimates

c− ≤ ε−1λεj ≤ cj for all ε > 0, 0 < c− < cj <∞. (3.77)

Let us first justify the lower bound. Due to (2.61), (2.56) and the Poincaré inequality, one
has

1

λε1
= µε1 = sup

u∈Hε

∫
Γε
u2ρε dσx∫

Ωε
|∇u|2 dx

≤ ‖ρ‖
L∞

sup
u∈Hε

∫
Γε
u2 dσx∫

Ωε
|∇u|2 dx

≤ k‖ρ‖
L∞
ε−1

with a constant k that does not depend on ε. This yields the desired lower bound.
Let us now prove the upper bound in (3.77) for j = 1. From (2.61) we derive

1

λε1
= µε1 = sup

u∈Hε

∫
Γε
u2ρε dσx∫

Ωε
|∇u|2 dx

≥
∫

Γε
ϕ2ρε dσx∫

Ωε
|∇ϕ|2 dx
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for any ϕ ∈ Hε. In particular, if we choose ϕ ∈ C∞0 (Ω), ϕ 6= 0, then∫
Ωε

|∇ϕ|2 dx→ |ω|
∫

Ω

|∇ϕ|2 dx > 0,

where |ω| denotes the Lebesgue measure of ω. By Lemma 3.1 with uε = ϕ, we get

ε

∫
Γε

ρεϕ
2 dσx → ρσy(Γ)

∫
Ω

ϕ2dx > 0.

Therefore, there exist two constants ε0 > 0 and c > 0 such that

µε1 ≥
∫

Γε
ρεϕ

2 dσx∫
Ωε
|∇ϕ|2 dx

≥ c

ε
∀ε ∈ (0, ε0). (3.78)

This implies the estimate

0 < λε1 ≤
ε

c
.

It remains to denote c1 = 1/c.

In order to justify the upper bound for j > 1, we consider a set of non-zero C∞0 (Ω)
functions ϕ1, . . . , ϕj with disjoint supports. Since these functions are orthogonal in Hε,
there is a non-trivial linear combination φε = γε1ϕ1 + · · ·+ γεjϕj such that

(φε, uε1)Hε = . . . = (φε, uεj−1)Hε = 0.

Then, by (2.63),

µεj ≥
∫

Γε
(φε)2ρε dσx∫

Ωε
|∇φε|2 dx

Using the fact that the functions ϕi have disjoint supports, it is easy to check that∫
Γε

(φε)2ρε dσx =

j∑
i=1

(γεi )
2

∫
Γε

(ϕi)
2ρε dσx,

∫
Ωε

|∇φε|2 dx =

j∑
i=1

(γεi )
2

∫
Ωε

|∇ϕi|2 dx.

By (3.78), there are c > 0 and ε0 > 0 such that∫
Γε

ρεϕ
2
i dσx ≥

c

ε

∫
Ωε

|∇ϕi|2 dx for all ε ∈ (0, ε0), i = 1, . . . , j.

Multiplying these inequalities by (γεi )
2 and summing up the resulting relations yields

µεj ≥
c

ε
.

This implies the required upper bound in (3.77).
The proof of (1.40)-(1.52) relies on several technical statements.
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Proposition 3.2. Let {(λεj(ε), uεj(ε))} be a family of normalized eigenpairs of problem (1.5)

or, equivalently, (1.6), and assume that, perhaps for a subsequence,
λεj(ε)
ε
→ λ, as ε→

0. Then λ is an eigenvalue of the limit problem (1.16). If, in addition, uεj(ε) converges to

u weakly in H1
0 (Ω) for the same subsequence of ε, then u 6= 0, and (λ, u) is an eigenpair

of (1.16).

Proof. Since the family {uεj(ε)} is bounded in H1
0 (Ω), we may assume without loss of

generality that uεj(ε) ⇀ u weakly in H1
0 (Ω). Then uεj(ε) → u in L2(Ω), and by Lemma 3.1,

1 =

∫
Ωε

|∇uj(ε)|2 dx = λε

∫
Γε

ρεu
2
j(ε) dσx −→ λρσy(Γ)

∫
Ω

u2dx.

Therefore,
∫

Ω
u2dx > 0, and u 6= 0.

Our goal is to show that∫
Ω

aeff∇u · ∇ϕdx = λρσy(Γ)

∫
Ω

uϕdx ∀ϕ ∈ H1
0 (Ω) (3.79)

with aeff defined in (1.17). To this end, we consider the following auxiliary homogenization
problem ∫

Ωε

∇vε · ∇ϕdx =
λρσy(Γ)

|ω|

∫
Ωε

uϕdx ∀ϕ ∈ Hε (3.80)

stated in the perforated domain Ωε. It is well-known in homogenization theory (see, for
instance, [?]) that, as ε → 0, the (extended) solution vε tends weakly in H1

0 (Ω) and
strongly in L2(Ω) to a function v ∈ H1

0 (Ω) being a unique solution of the homogenized
problem ∫

Ω

aeff∇v · ∇ϕdx = λρσy(Γ)

∫
Ω

uϕdx ∀ϕ ∈ H1
0 (Ω). (3.81)

By the lower-semicontinuity of the H1-norm and the boundedness of the extension oper-
ators, we have∫

Ω

|∇v −∇u|2dx ≤ lim inf
ε→0

∫
Ω

|∇vε −∇uε|2dx ≤ c0 lim inf
ε→0

∫
Ωε

|∇vε −∇uε|2dx.

Using in equations (1.6) and (3.80) the test functions ϕ = vε and ϕ = uε, yields∫
Ωε

|∇vε −∇uε|2dx =

∫
Ωε

|∇vε|2dx+

∫
Ωε

|∇uε|2dx− 2

∫
Ωε

∇vε · ∇uεdx =

=
λρσy(Γ)

|ω|

∫
Ωε

uvεdx+ λε

∫
Γε

ρεu
2
ε dσx+
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−λε
∫

Γε

ρεuεvε dσx −
λρσy(Γ)

|ω|

∫
Ωε

uuεdx.

Since uε → u and vε → v in L2(Ω), the following limit relations hold, as ε→ 0:

λρσy(Γ)

|ω|

∫
Ωε

uvεdx→ λρσy(Γ)

∫
Ω

uvdx,

−λρσy(Γ)

|ω|

∫
Ωε

uuεdx→ −λρσy(Γ)

∫
Ω

u2dx.

Furthermore, by Lemma 3.1,

λε

∫
Γε

ρεu
2
ε dσx → λρσy(Γ)

∫
Ω

u2dx,

−λε
∫

Γε

ρεuεvε dσx → −λρσy(Γ)

∫
Ω

uvdx.

Combining the above inequalities, we arrive at the estimate∫
Ω

|∇v −∇u|2dx ≤ c0 lim inf
ε→0

∫
Ωε

|∇vε −∇uε|2dx = 0,

which implies that v = u. Thus, (3.79) holds true.

The proof of the fact that any eigenpair of the limit operator is approached by the
eigenpairs of ε-problems relies on the so-called Lemma on ”eigenvalues and eigenvectors”
(see [9]). For the reader’s convenience we formulate it here.

Lemma 3.3. Let A : H → H be a linear compact self-adjoint operator in a Hilbert space
H. Suppose that there are a real number µ and a vector u ∈ H, such that ||u||H = 1 and

||Au− µu||H ≤ α. (3.82)

Then, there is an eigenvalue µi of the operator A such that

|µi − µ| ≤ α. (3.83)

Moreover, for any d > α there exists a vector u such that

||u− u||H ≤ 2αd−1, ||u||H = 1, (3.84)

and u is a linear combination of eigenvectors of the operator A corresponding to eigen-
values of A in the closed segment [µ− d, µ+ d].
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In the sequel we refer to µ and u in (3.82) as almost eigenvalue and eigenvector of A.
We proceed with other technical statements.

Lemma 3.4. Let f ∈ L∞per(ω) and g ∈ L∞(∂ω) satisfy∫
ω

f(y) dy −
∫

Γ

g(y) dσy = 0. (3.85)

Then there exists c > 0 such that∣∣∣∣∫
Ωε

f
(x
ε

)
uv dx− ε

∫
Γε

g
(x
ε

)
uv dσx

∣∣∣∣ ≤ cε‖∇(uv)‖L2(Ωε) (3.86)

for all u, v ∈ Hε such that ∇(uv) ∈ L2(Ωε). Also, for any u, v ∈ Hε it holds∣∣∣∣∫
Ωε

f
(x
ε

)
uv dx− ε

∫
Γε

g
(x
ε

)
uv dσx

∣∣∣∣ ≤ cε‖u‖Hε‖v‖Hε . (3.87)

If for f ∈ L2
#(ω) and g ∈ L2(∂ω) condition (3.85) is fulfilled then there is c > 0 such that∣∣∣∣∫

Ωε

f
(x
ε

)
uv dx− ε

∫
Γε

g
(x
ε

)
uv dσx

∣∣∣∣ ≤ cε‖∇(uv)‖L2(Ωε) (3.88)

for all u ∈ W 1,∞(Ω) and v ∈ Hε.

Proof. Let ψ ∈ H1(ω) be a solution to problem
∆ψ = f in ω,
∂ψ
∂ν

= g, on Γ,
ψ Y -periodic.

(3.89)

Then ψε(x) = ψ
(
x
ε

)
is εY -periodic, it belongs to H1

loc(Rn) and satisfies

∇xψε = ε−1(∇yψ)
(x
ε

)
, ∆xψε = ε−2(∆yψ)

(x
ε

)
.

Writing down the integral identity∫
Ωε

(∆yψ)
(x
ε

)
uv dx =

∫
Ωε

f
(x
ε

)
uv dx,

after integration by parts one has∫
Ωε

f
(x
ε

)
uv dx− ε

∫
Γε

g
(x
ε

)
uv dσx = −ε

∫
Ωε

(∇yψ)
(x
ε

)
∇(uv) dx,
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from which (3.86) and (3.88) follow immediately.
In order to justify (3.87) we consider the functions uε and vε introduced in (2.55). Notice
that

‖uε‖L2(Ωε) ≤ ‖u‖L2(Ωε), ε‖uε‖2
L2(Γε) ≤ c‖u‖2

L2(Ωε).

Denoting f ε = f(x/ε) and gε = g(x/ε), and using (2.54) and Cauchy-Schwartz inequality,
we get ∣∣∣∣∫

Ωε

f εuv dx− ε
∫

Γε

gεuv dσx

∣∣∣∣ ≤ ∣∣∣∣∫
Ωε

f εuεv dx− ε
∫

Γε

gεuεv dσx

∣∣∣∣
+

∣∣∣∣∫
Ωε

f ε(u− uε)v dx− ε
∫

Γε

gε(u− uε)v dσx
∣∣∣∣ ≤ ∣∣∣∣∫

Ωε

f εuεv dx− ε
∫

Γε

gεuεv dσx

∣∣∣∣
+Cε‖u‖Hε‖v‖Hε ≤

∣∣∣∣∫
Ωε

f εuεvε dx− ε
∫

Γε

gεuεvε dσx

∣∣∣∣
+

∣∣∣∣∫
Ωε

f εuε(v − vε) dx− ε
∫

Γε

gεuε(v − vε) dσx
∣∣∣∣+ Cε‖u‖Hε‖v‖Hε

≤ Cε‖u‖Hε‖v‖Hε ;

here we have also used (3.85).

The proof of the next statement is quite similar to the proof of (3.87) and can be
found, for instance, in [5, Ch.1, Lemma1.1].

Lemma 3.5. Let h ∈ L∞# (Y ) be such that∫
Y

h(y) dy = 0. (3.90)

Then there exists c > 0 such that for all u, v ∈ H1
0 (Ω)∣∣∣∣∫

Ω

h
(x
ε

)
uv dx

∣∣∣∣ ≤ cε||u||H1
0 (Ω)||v||H1

0 (Ω). (3.91)

We will also need cut-off functions in the vicinity of the exterior boundary ∂Ω. For
γ > 0 denote Ω(γ) = {x ∈ Ω : dist(x, ∂Ω) > γ}.

Lemma 3.6. Let ψ ∈ L2
per(Y ), and let h > 0 be a positive number. Then, there exists

c > 0 such that ∣∣∣∣∫
Ω\Ω(hε)

ψ
(x
ε

)
v dx

∣∣∣∣ ≤ cε3/2‖∇v‖
L2(Ω)

, (3.92)

and, if Γε ∩ (Ω \ Ω(hε)) 6= ∅,∣∣∣∣∫
Γε∩(Ω\Ω(hε))

ψ
(x
ε

)
v dσx

∣∣∣∣ ≤ c
√
ε‖∇v‖

L2(Ω)
. (3.93)

for all ε > 0, and all v ∈ H1
0 (Ω).

24



Proof. By the Hardy inequality (see, for instance [10]), there exists a constant c > 0 such
that

‖v‖L2(Ω\Ω(γ)) ≤ cγ‖∇v‖L2(Ω) (3.94)

for all constants γ > 0 and for all v ∈ H1
0 (Ω). Then, combining this estimate with the

Cauchy-Schwartz inequality, we get∣∣∣∫Ω\Ω(hε)
ψ
(
x
ε

)
v dx

∣∣∣ ≤ ‖ψ (xε) ‖L2(Ω\Ω(hε))‖v‖L2(Ω\Ω(hε))

≤ cε‖ψ
(
x
ε

)
‖L2(Ω\Ω(hε))‖∇v‖L2(Ω).

(3.95)

Denote J(hε) = {j ∈ Zn : ε(Y + j)∩ (Ω\Ω(hε)) 6= ∅}, and let #J(hε) be the cardinality
(the number of elements) of J(hε). Clearly, #J(hε) ≤ C(h)ε1−n. Thus,

‖ψ
(x
ε

)
‖2
L2(Ω\Ω(hε))

≤ #J(hε)εn‖ψ‖2
L2(Y ) ≤ Cε.

To obtain (3.92) it remains to combine this inequality with (3.95). The proof of (3.93)
relies also on the fact that for all ε-cell Y ε

i∫
Γε∩Y ε

i

v2 dσx ≤ c

(
ε−1

∫
Y ε
i

v2dx+ ε

∫
Y ε
i

|∇v|2dx

)
.

Summing up these estimates over i ∈ J(hε) and using (3.94) yields∫
Γε∩Ω\Ω(hε)

v2 dσx ≤ c

(
ε−1

∫
Ω\Ω(hε)

v2dx+ ε

∫
Ω\Ω(hε)

|∇v|2dx
)
.

Combining the preceding inequality with (3.94) and the fact that |Ω \ Ω(hε))| ≤ cε we
immediately obtain (3.93).

Proposition 3.7. Let λj, j ∈ N, be an eigenvalue of problem (1.16). Then there exist a
family {k(ε)}ε>0, k(ε) ∈ N, such that

λεk(ε)

ε
→ λj, as ε→ 0, (3.96)

where λεk(ε) is an eigenvalue of problem (1.5).

Proof. Let Ψε be a family of C∞0 (Ω) functions such that Ψε(x) = 1 if the distance from x
to ∂Ω is greater than 2ε, 0 ≤ Ψε ≤ 1, and |∇Ψε(x)| ≤ 2/ε for all x ∈ Ω.

Denote Ũ ε
j (x) = u0

j(x) + εΨε(x)χ(x/ε)∇u0
j(x), and U ε

j (x) = u0
j(x) + εχ(x/ε)∇u0

j(x).
It is straightforward to check that, under our assumptions on regularity of ∂Ω, we have

‖Ũ ε
j − U ε

j ‖L2(Ω) ≤ Cε3/2, ‖Ũ ε
j − U ε

j ‖H1(Ω) ≤ Cε1/2.
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Let us compute the norm of Ũ ε
j in Hε. Denoting the unit n× n matrix by I we have∫

Ωε

∇Ũ ε
j · ∇Ũ ε

j dx =

∫
Ωε

|∇̃u0
j + Ψε∇yχ

(x
ε

)
∇u0

j + εΨεχ
(x
ε

)
∇∇u0

j + ε∇Ψεχ
(x
ε

)
∇u0

j |2dx

=

∫
Ωε

|(I +∇yχ(x/ε))∇u0
j |2dx+O(ε);

here we have used the facts that |ε∇Ψε| ≤ C, the support of ∇Ψε is a subset of 2ε-
neighbourhood of ∂Ω, and u0

j is a C2(Ω) function. Recalling the formula for the effective
matrix aeff , normalization condition (1.20), and using once again the C2 smoothness of
u0
j we conclude that∫

Ωε

∇Ũ ε
j · ∇Ũ ε

j dx =

∫
Ω

aeff∇u0
j · ∇u0

j dx+O(ε) = 1 +O(ε). (3.97)

Similarly, one can show that∣∣∣ ∫
Ωε

∇Ũ ε
j · ∇ϕdx−

∫
Ω

aeff∇u0
j · ∇ϕdx

∣∣∣ ≤ C
√
ε‖ϕ‖H1

0 (Ω) (3.98)

for any ϕ ∈ H1
0 (Ω).

We proceed with estimating the norm ‖KεŨ ε − (ελj)
−1Ũ ε‖Hε . After straightforward

rearrangement we have∥∥KεŨ ε− 1

ελj
Ũ ε
∥∥
Hε

= sup
ϕ∈Bε

(
KεŨ ε− 1

ελj
Ũ ε, ϕ

)
Hε

= sup
ϕ∈Bε

∫
Ωε

(
∇(KεŨ ε)·∇ϕ− 1

ελj
∇Ũ ε·∇ϕ

)
dx

= sup
ϕ∈Bε

(∫
Γε

ρεŨ εϕdσx −
1

ελj

∫
Ωε

∇Ũ ε · ∇ϕdx
)

with Bε = {ϕ ∈ H1
0 (Ω) : ‖ϕ‖Hε = 1}. By Lemma 3.4,∣∣∣ ∫

Γε

ρεŨ εϕdσx −
∫

Γε

ρŨ εϕdσx

∣∣∣ ≤ C‖ϕ‖H1 .

Thus,

∥∥KεŨ ε − 1

ελj
Ũ ε
∥∥
Hε
≤ sup

ϕ∈Bε

(∫
Γε

ρŨ εϕdσx −
1

ελj

∫
Ωε

∇Ũ ε · ∇ϕdx
)

+ C.

It remains to use (3.98) and once again Lemma 3.4 to obtain

∥∥KεŨ ε − 1

ελj
Ũ ε
∥∥
Hε
≤ sup

ϕ∈Bε

(
ρ

ε

σy(Γ)

|ω|

∫
Ωε

u0
jϕdx−

1

ελj

∫
Ω

aeff∇u0
j · ∇ϕdx

)
+ C +

C1√
ε
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≤ sup
ϕ∈Bε

(
ρ

ε
σy(Γ)

∫
Ω

u0
jϕdx−

1

ελj

∫
Ω

aeff∇u0
j · ∇ϕdx

)
+ C +

C1√
ε

= C +
C1√
ε
.

This estimate combined with (3.97) and Lemma 3.3 yields∣∣∣µεk − 1

ελj

∣∣∣ ≤ C +
C1√
ε

for some k = k(ε) and for all sufficiently small ε. Therefore,

|λεk(ε) − ελj| ≤ Cε3/2, (3.99)

and (3.96) follows.

We should also understand better the convergence of spectrum in the vicinity of
multiple eigenvalues of the limit operator.

Lemma 3.8. Let λj be an eigenvalue of (1.16) of multiplicity m, λj−1 < λj = · · · =
λj+m−1 < λj+m. Then there are at least m families {λεk1(ε)}, . . . , {λεkm(ε)}, ki(ε) 6= kl(ε) if
i 6= l, such that

(ε)−1λεki(ε) −→ λj, as ε→ 0.

Proof. For each i ∈ {0, 1, . . . ,m− 1} we construct U ε
j+i = u0

j+i + εχ(x/ε)φε(x)∇u0
j+i as in

the proof of Proposition 3.7. Then∥∥∥KεU ε
j+i −

1

ελi
U ε
j+i

∥∥∥
Hε

≤ C√
ε
, i = 0, . . . ,m− 1. (3.100)

In the same way as in the proof of Proposition 3.7 one can check that

|(U ε
j+i, U

ε
j+l)Hε − δil| ≤ C

√
ε, 0 ≤ i, l ≤ m− 1. (3.101)

Denote by λεk1(ε),. . . , λεkN (ε) the eigenvalues that belong to the interval ε(λj − ε1/4, λj +

ε1/4) with N = N(ε). According to Lemma 3.3 there are linear combinations of the

corresponding eigenfunctions V ε
i =

N(ε)∑
s=1

βεisu
ε
ks(ε) such that ‖U ε

j+i − V ε
i ‖Hε ≤ Cε1/4. From

(3.100) and (3.101) it follows that N(ε) ≥ m for all sufficiently small ε, this yields the
desired statements.

The opposite inequality is granted by

Lemma 3.9. Assume that there are families k1(ε), . . . , kN(ε), ki 6= kl if i 6= l, such that,
for a subsequence,

1

ε
λεki(ε) −→ λj, as ε→ 0, i = 1, . . . , N.

Then the multiplicity of λj is at least N .
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Proof. Consider the eigenpairs (λεki(ε), u
ε
ki(ε)

) with the eigenfunctions satisfying (1.20).
Then, for a subsequence,

uεki(ε) ⇀ vi weakly in H1
0 (Ω), i = 1, . . . , N.

It was shown in Proposition 3.2, that vi are eigenfunctions of the homogenized problem
with eigenvalue λj, and that

δil = lim
ε→0

(
uεki(ε), u

ε
kl(ε)

)
Hε

= λjρσy(Γ) (vi, vl)L2(Ω).

Therefore, {vi}Ni=1 are nontrivial and orthogonal in L2(Ω), and thus the multiplicity of λj
is at least N .

Now the statements (i), (ii) and (iv) of Theorem 1.4 are immediate consequence of
Propositions 3.2 and 3.7, Lemmata 3.8 and 3.9 and estimate (3.99).

In order to justify the statement (iii) we consider an eigenvalue λj of (1.16) that has
multiplicity mj, mj ≥ 1, so that λj = · · · = λj+mj−1. Choosing dj = 1

3
min(1/λj−1 −

1/λj, 1/λj − 1/λj+mj
), with the help of item (i) we conclude that for all sufficiently small

ε an eigenvalue (λεi )
−1 belongs to the interval ε−1

(
(λj)

−1 − dj, (λj)−1 + dj
)

if and only if
j ≤ i ≤ j + mj − 1. Using (3.100) and applying Lemma 3.3 with d = ε−1dj, we obtain
that there exist βεil such that

‖U ε
j+i −

mj−1∑
l=0

βεilu
ε
j+l‖Hε

≤ C
√
ε.

This estimate combined with (3.101) implies the desired statement (iii). The proof can
be found in []. We omit the details. This completes the proof of Theorem 1.4.

Remark 3.10. If in the conditions of Theorem 1.4 we suppose that Ω and ω are just
Lipschitz continuous domains then the statements on convergence of the spectrum remain
valid, however, the estimates for the rate of convergence might fail to hold. More precisely,
in the case of Lipschitz continuous ∂Ω and ∂ω the following statement holds:

• For any j ∈ N the limit relation (1.40) is valid.

• Let λj be an eigenvalue of (1.16) of multiplicity mj with mj ≥ 1, that is λj = · · · =
λj+mj−1. Then there is a orthogonal matrix βεil, 0 ≤ i, l ≤ mj − 1, such that

lim
ε→0

∥∥uεi+j − mj−1∑
l=0

βεilul+j
∥∥
L2(Ω)

= 0. (3.102)
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The proof follows the same strategy as in the case of sooth domains Ω and ω. We leave
the details to the reader.

Remark 3.11. The convergence of eigenspaces related to multiple eigenvalues of the effec-
tive spectral problem can be expressed in terms of the so-called Mosco convergence, see [] for
its definition. Namely, if λj is an eigenvalue of (1.16) of multiplicity mj with λj = · · · =
λj+mj−1, mj ≤ 1, then span{uεj , . . . , uεj+mj−1} Mosco-converges to span{uj, . . . , uj+mj−1}.

4 The case ρ = 0

In this section we prove Theorem 1.7. Our first goal is to show that there exists κ1 > 0
such that for all sufficiently small ε > 0 the estimate holds

µε1 ≥ κ1 (4.103)

with µε1 defined in (2.61). To justify this estimate we substitute in (2.61) a test function
of the form uε(x) = ϕ(x)(u + επ

(
x
ε

)
) with u ∈ R+, ϕ ∈ C∞0 (Ω), ϕ 6= 0, and π ∈ C∞# (Y )

such that

γπ =

∫
Γ

ρ(y)π(y) dσy > 0.

It is easy to check that

lim
ε→0

∫
Ωε

|∇uε|2dx = u2|ω|
∫

Ω

|∇ϕ|2 dx+

∫
Ω

ϕ2dx

∫
Y

|∇π(y)|2dy > 0.

The surface integral can be estimated as follows

lim
ε→0

∫
Γε

ρεu
2
ε dσx = lim

ε→0

∫
Γε

ρεϕ
2u2 dσx

+ lim
ε→0

2ε

∫
Γε

ρεϕ
2uπ

(x
ε

)
dσx + lim

ε→0
ε2

∫
Γε

ρεϕ
2π2
(x
ε

)
dσx =

= u2

∫
Γ

yρ(y) dσy

∫
Ω

∇(ϕ2)dx+ 2γπu

∫
Ω

(ϕ)2 dx = 2γπu

∫
Ω

(ϕ)2 dx > 0;

here we have also used Lemma 3.1. This implies (4.103) for all sufficiently small ε.
Similar lower bounds can be obtained for µεj with j > 1. However, since these bounds

will follow from the asymptotics constructed later on in this section, we do not bother the
reader with their proof here.

An upper bound for µε1 easily follows from (3.87). Indeed, since ρ = 0, for any u ∈
H1

0 (Ω) by (3.87) we have∫
Γε

ρεu
2 dσx ≤ c‖u‖2

H1(Ωε) ≤ c‖∇u‖2
L2(Ωε).
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In view of (2.61) this yields
µε1 ≤ κ2. (4.104)

Estimates (4.103) and (4.104) suggest that the asymptotic series for λε±j and uε±j
should be of the form

λε±j = λ+ ελ1 + . . . , uε±j = u(x) + εu1(x, x/ε) + . . .

with u1(x, y) being periodic in y. Substituting these series in (1.5) and collecting power-like
terms in the resulting equation and boundary condition, we conclude that

u1(x, y) = εχ(y)∇u(x) + ελ±jθ(y)u(x),

where χ and θ are solutions of problems (1.18) and (1.44), respectively, and

−div
(
aeff∇u

)
= λ2Ξu in Ω, u = 0 on ∂Ω.

Remark 4.1. Notice that the first order term in λ is not presented in the limit equation.
Indeed, the formal derivation yields a first order term of the form

λDu(x) ·
(∫

Γ

θ(y)ν(y) dσy −
∫
ω

∇yθ(y)dy
)
,

this term is equal to zero.

Proof of Theorem 1.7.
The following statement can be proved in exactly the same way as Proposition 3.7

and Lemma 3.8 in the previous section. We leave its proof to the reader.

Lemma 4.2. Let λj be an eigenvalue of (1.45) of multiplicity m, m ≥ 1, λj−1 < λj =
· · · = λj+m−1 < λj+m. Then there are at least m families {λεk1(ε)}, . . . , {λεkm(ε)} such that

ki(ε) 6= kl(ε) if i 6= l, and
λεki(ε) −→ λj, as ε→ 0.

The statements similar to those of Proposition 3.2 and Lemma 3.9 also remain valid.

Proposition 4.3. Let {(λεj(ε), uεj(ε))} be a family of normalized eigenpairs of problem (1.5)

or, equivalently, (1.6), and assume that, perhaps for a subsequence, λεj(ε) → λ, as ε→ 0.

Then λ is an eigenvalue of the limit problem (1.45). If, in addition, uεj(ε) converges to u

weakly in H1
0 (Ω) for the same subsequence of ε, then u 6= 0, and (λ, u) is an eigenpair of

(1.45).

Lemma 4.4. Assume that there are families k1(ε), . . . , kN(ε), ki 6= kl if i 6= l, such that,
for a subsequence,

λεki(ε) −→ λj, as ε→ 0, i = 1, . . . , N.

Then the multiplicity of λj is at least N .

Lemmata 4.2 and 4.4 and Proposition 4.3 imply the desired statements of Theorem
1.7.
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5 Proof of Theorem 1.5

The goal of this section is to prove Theorem 1.5. Thus it is assumed here that ρ > 0.
We begin by introducing a new unknown function and a new spectral parameter in (1.7).
Namely, we set

uε(x) = p−1

(x
ε

)
vε(x), λ =

α−1

ε
+ λ̃

with p−1 and α−1 defined in (1.22)–(1.26), respectively. Substituting these expressions in
(1.7) we deduce after straightforward rearrangements that in terms of vε and λ̃ problem
(1.7) reads

−div
(
ã(x/ε)∇vε

)
= 0 in Ω̃ε,

ã(x/ε)Dvε · νε = λ̃(p−1(x/ε))2ρ(x/ε)vε on Γε,

vε = 0 on ∂Ω̃ε \ Γε;

(5.105)

here we have denoted ã(y) = (p−1(y))2 I. For the sake of brevity in this section we use
the notation ãε(x) = ã(x/ε) and ρ̃ε(x) = (p−1(x/ε))2ρ(x/ε). We remind that under our
regularity assumptions, p(·) is a smooth positive function.

Since by construction (see (1.26))∫
Γ

(p−1(y))2ρ(y) dσy < 0,

Theorem 1.4 applies to the negative part of the spectrum of problem (5.105). Although, in
contrast with (1.7), in (5.105) we do not deal with the Laplacian but with a more general
divergence form elliptic operator with periodic coefficients, the results stated in Theorem
1.4 remain valid. Namely, using exactly the same arguments as in the proof of Theorem
1.4 one can show that the statements (i)–(iv) of Theorem 1.4 hold true for the negative
part of the spectrum of problem (5.105).

In order to complete the proof of Theorem 1.5 it remains to prove that on the interval(
α−1

ε
, 0) there are no eigenvalues of problem (1.7).

Proposition 5.1. The interval
(
α−1

ε
, 0
)

belongs to the resolvent set of problem (1.7).

Proof. The proof relies on Floquet-Bloch representation of uε and follows the line of the
proof of Theorem 5 and Lemma 11 in [11].

References

[1] E. Acerbi, V. Chiado Piat, G. Dal Maso, D. Percivale, An extension theorem from
connected sets, and homogenization in general periodic domains, Nonlinear Anal. 18
(1992) 481-496.

31



[2] R. A. Adams, Sobolev spaces, Academic Press, New York, 1975.

[3] H. Attouch, Variational convergence for functions and operators. Pitman, London,
1984.

[4] V. Chiado Piat, A. Piatnitski, Γ-convergence approach to variational problems in
perforated domains with Fourier boundary conditions, ESAIM: COCV (2008) DOI:
10.1051/cocv:2008073.

[5] G. Chechkin, A. Piatnitski, A. Shamaev, Homogenization. Methods and applications.
American Mathematical Society, Providence, 2007.

[6] D. Cioranescu, J. Saint Jean Paulin, Homogenization in open sets with holes. J.
Math. Anal. Appl. 71, No.2 (1979), 590–607.

[7] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order,
Springer-Verlag, Berlin, 1997.
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