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Steklov problems in perforated domains
with a coefficient of indefinite sign

Valeria Chiado Piat, Sergey A. Nazarov, Andrey L. Piatnitski

Abstract
We consider homogenization of Steklov spectral problem for a divergence form
elliptic operator in periodically perforated domain under the assumption that the
spectral weight function changes sign. We show that the limit behaviour of the
spectrum depends essentially on wether the average of the weight function over the
boundary of holes is positive, or negative or equal to zero. In all these cases we
construct the asymptotics of the eigenpairs.

The revised version is published in Networks and heterogeneous media 7 (2012) 151-
178. DOI 10.3934/nhm.2012.7.151

Introduction

The paper studies Steklov spectral problem in a periodically perforated domain for the
Laplace operator or for more general divergence form elliptic operator with periodic coef-
ficients, under the assumptions that the Steklov condition is imposed on the perforation
boundary and that the corresponding periodic weight function changes sign.

Previously, periodic homogenization of a bulk spectral problem with sign-changing
density for an elliptic operator or an elliptic system was carried out in recent works
[12], [11]. It was shown that the asymptotic behaviour of spectrum depends crucially on
whether the mean value of the weight function is positive, or negative, or equal to zero.

The idea of studying Steklov and other spectral problems with sign-changing weight
function arose during the conference ”Differential Equations and Related Topics” in
Moscow in 2007. It occur after the talk "Homogenization in perforated domains with
Fourier boundary conditions” that focused on homogenization of elliptic problems with
Fourier boundary condition on the perforation surface under the assumption that the co-
efficient of the boundary operator changes sign. It turned out that the limit behaviour of
solutions depend crucially on whether the average of this coefficient over the perforation
surface is positive, or negative, or equal to zero (see [4] for further details).

Steklov spectral problem, although has many common features with the bulk problem,
differs essentially from the bulk problem due to the facts that the surface volume of the



perforation tends to infinity, as the period vanishes, and that the perforation geometry is
asymptotically singular.
The detailed formulation of the studied Steklov problem is

—Au, =0 in 0.,

gﬁz - /\speuea on Fea ; (01>
u:. =0, on 051,

here €2 is a smooth bounded domain, €2, is the corresponding perforated domain, I'; is the
surface of a smooth periodic perforation consisting of disjoint inclusions, v, is the exterior
unit normal on I'., and ¢ is a small positive parameter. We assume that the function p is
periodic and changes sign (see Section 1 for further details).

We also study a slightly more general problem of the form

e = AePelle, on ', (0.2)
u. = 0, on 0f),

with a periodic symmetric matrix a(y) that satisfies the uniform ellipticity conditions,
Ve =a(x/e)ve.

We first prove that the spectrum of the considered Steklov problem is discrete and,
since the weight function p defines an indefinite metric on the perforation border (see
[?])), the spectrum consists of two infinite sequences, one converges to +oo and another
to —oo.

We show that the asymptotic behaviour of spectrum in (0.1), as ¢ — 0, depends
essentially on whether the average of p over the surface of the hole is greater than zero,
or less than zero, or equal to zero.

If the average of p is positive (negative), then the positive (negative) part of the
spectrum behaves in a regular way and admits homogenization like in the classical case
when p > 0. In particular, for any k£ € N, the k-th positive eigenvalue is of order €, and
the corresponding eigenfunction has a bounded H! norm. The convergence result in this
case is presented in Theorem 1.4.

If p has zero average then both positive and negative eigenvalues have finite limits
and the limit behaviour of the corresponding eigenpairs can be described in terms of the
effective quadratic operator pencil. This operator pencil has a very simple structure and
can be reduced to a standard eigenvalue problem for an elliptic operator in 2. Notice
that in this case the k-th negative and positive eigenfunctions are bounded in H'-norm.
The asymptotic behaviour of the spectrum in the case of zero average p is described in
Theorem 1.7.

Finally, if the average of p is positive then the negative part of the spectrum of (0.1)
(or (0.2)) shows a singular behaviour. Namely, for any k& € N the k-th negative eigenvalue
is of order 1/e and the corresponding eigenfunctions are rapidly oscillating.

2



We show that studying the negative part of the spectrum can be reduced to study-
ing the negative part of the spectrum of an auxiliary problem that exhibits more regular
behaviour. This reduction is done by means of factorization with the first negative eigen-
function of the corresponding cell periodic spectral problem. Further details can be found
in Theorem 1.5 and its proof.

1 Setting of the problem and main results

In this section we provide a detailed set up of the studied Steklov spectral problem,
introduce necessary notation and auxiliary problems, and then formulate the main results
of the paper.

Let  be a smooth bounded domain in R™. We denote by Y = (0,1)" the unit cube
of R”, and by w =Y \ B the perforated reference cell, for a given closed set B C Y with
sufficiently smooth boundary 0B = I'. Setting

Jo={2€Z" : (Y +2) CQ}, (1.3)
we define B. = |J e(z+ B), I'. = |J e(z+71). Then a perforated domain is introduced
as z€Je z€Je

0. =Q\ B..

Notice that, according to (1.3), B. does not intersect the external boundary 9f.

Remark 1.1. Another possibility is not to remove the perforation in the vicinity of 0.
Instead, we can keep this part of perforation and impose the homogeneous Dirichlet bound-
ary condition on it. We denote

Q. =0\ |J ez +B). (1.4)

ZEL™

Throughout this paper we assume that the exterior boundary 9€2 has the regularity
C?“. In many our statements this regularity can be replaced with just Lipschitz conti-
nuity of the boundary. However, in this case we obtain only convergence results without
estimating the rate of convergence.

In what follows the symbol I'y, stands for the periodic extension of I" in R". Also, the
lower index # in the functional space notation indicates that the corresponding functions
are periodic.

Given a function p € LE(T'), we study the asymptotic behaviour of the eigenvalue

problems
—Au, =0 in Q,,

gﬁz = A\petle, on T, (1.5)
u:. =0, on 051,



as € — 0. The corresponding weak formulation reads

u. € H,
(1.6)
Vu, -Vvdx = )\5/ peusvdo, v € H,
Q. e
where
H.={ve H(Q.):v=0o0n 00}
is a Hilbert space equipped with the scalar product
(u,v)g. = | Vu-Vude,
Qe
and o, denotes the (n — 1)-dimensional surface measure.
We also consider a similar problem in €2,
“Au.=0  inQ.,
B = Acpeue, on T, (1.7)
u. =0, on 09\ I'..

Every solution u. of problem (1.5) or (1.7) can be extended to the whole domain €2 as a
function @. € Hg (), with uniform estimates

/ Vi |?dr < cg/ |Vu|* d, / . de < co [ |uc*dx
Q Q. Q Q.

for all € > 0 and for some ¢y > 0 that does not depend on ¢ (see, for instance, [1]). In the
sequel, abusing slightly the notation, we still denote this extension by wu.. Let us notice
that, thanks to the above inequality, the usual Friedrichs inequality in H. holds true with
a constant ¢; independent of ¢, i.e.,

/ wdr <c [ |Vul*dr  Vu€ H.. (1.8)
€ QS

Throughout this paper we assume that the coefficient p satisfies the condition of indefi-
nite sign

o,{yel:p(ly)>0}) >0 and o,({y el :p(y) <0})>0. (1.9)
The limit behaviour of problems (1.5) appears to be different if the mean value 7 of p,

! / p(y)do, (1), (1.10)

7= oM

is zero or non zero.
We begin by considering problem (1.5) for a fixed positive e.
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Proposition 1.2. For each € > 0 the spectrum of problem (1.5) consists of two sequences
of eigenvalues
0<AT <A <. <A = 400 (1.11)

0>A; >A,>... 22, = —00 asj— +00 (1.12)

Moreover, for all € > 0 there exists an orthonormal basis in H. of eigenfunctions u5 € H.
which are solutions to problem (1.5) corresponding to . = X5, and for all i,j € Z\ {0}

Furthermore,
Al and A2, are simple. (1.14)

The proof of this proposition will be given in Section 2.
Similar statement holds true for problem (1.7). Orthogonality condition in this case
reads

Qe

If 5 > 0, the asymptotic analysis of the positive eigenvalues (1.11) as € — 0 involves
the spectral properties of the Dirichlet problem

. eff — \7 i
{ —div(a® Vu) = Xpo,(I')u in Q, (1.16)

u=0 on 0f).

where a°® is a symmetric positive definite constant (n x n)-matrix whose associated

quadratic form is defined by

a®f¢ . ¢ = inf {/ €+ Vw(y)|*dy : w € H;E(Y)} Ve e R, (1.17)

and H4(Y') denotes the space of Y-periodic functions ¢(y) with finite norm

1/2
lellngn = ([l + 19e)a)

The function we that provides a minimum in (1.17) has the form we = § - x with the
vector-function y being a periodic solution to the classical cell problem

Ax=0 i
X e (1.18)
Vx-v=-v(y) onl.



From the classical theory of elliptic operatotrs it follows that the spectrum of (1.16) is
discrete and consists of a sequence {\;},en of positive eigenvalues,

O<)\1§)\2§§)\j—>+00 asj%—l—oo, (119)

and that the corresponding eigenfunctions {u;};en € H{(2) form, under proper normal-
ization, an orthonormal basis in L*(Q2). For our purposes it is convenient to normalize u;,
7 € N, as follows

/ a®™Vu,; - Vujdr = §;;. (1.20)
Then '
/Uin dx = (pAioL(T)) 165 (1.21)
In what follows we use the not;cion
A={);:jeN}L

The asymptotic analysis of negative eigenvalues in (1.12) as ¢ — 0 requires two more
auxiliary spectral problems. The first one is stated in the periodicity cell with periodic
boundary conditions:

—Ap=0 in w,
% = app, on I, (1.22)

D is Y-periodic.

The corresponding weak formulation reads

. - 1

/va Vw dy oc/Fppdey Vw € Hy(Y), (1.23)
pe HL(Y).

Here, « is the spectral parameter. The statement below describes the behaviour of spec-

trum of problem (1.22). This statement will be proved in Section 2. The proof is more

involved than that of Proposition 1.2 because the quadratic form related to (1.23) is not
coercive.

Proposition 1.3. Let p > 0. Then the spectrum of problem problem (1.22) is discrete

and consists of two sequences of eigenvalues
0= <ay<...<a; = +00 asj— +oo, (1.24)

0>a ;>0 9>...2a_j = —00 asj— +o0. (1.25)

Moreover oy, a_y are simple and the associated eigenfunctions py,p_; € H#(Y) N L>®(w)
can be normalized as follows

pr1 >0 inw, /,o(pﬂ)2 do, = +£1. (1.26)
r
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Finally, if dw € C** and p € C(0B), then px € C*(w), and 0 < C_ < pL < C* for
some constants C_ and CT.

Now, we introduce the second spectral problem, which is stated in the whole set ()
and involves a new weight function p* = p*(y) and its mean value p*:

ph=pp, (1.27)
I
7= [ 7w, (1.28)

Due to Proposition 1.3,

/ IVp_i*dy = a_, /pz_lpday >0,
w I

and hence

7=y =
p = p do, = | p~,pdo, <O. 1.29
ay(T) Jr Y r ! Y ( )

Define by a°f the constant positive definite (n x n)-matrix whose associated quadratic
form is defined by

e -g =t { [ 64 VuPoao) ey we | veer (1

Notice that a minimum in (1.30) is attained at the function W = £ - ¥ with the vector-
function y being a periodic solution to the following cell problem

di DI +VY) =0 in w,
v ((p-1)*(T+ V) in w (131)
Vx-v=—-v(y) on T,
here I stands for the unit matrix.
We now introduce the effective spectral problem:
—div(aVov) = 3p"0,(T)v in ©,
{ v=20 on 0f), (1.32)

where ¢ is a spectral parameter.
Problem (1.32) is classical. Since p* < 0, the spectrum of this problem consists of a
sequence
0> 1> 9>03> 2> ; — —00, as j — 00. (1.33)

The corresponding eigenfunctions {v_;};en, under proper normalization, form an or-
thonormal basis in L?*(€2). However, we normalize them in a different way. Namely, we
assume that

/ ELGHV’U,¢ . VU,de‘ = (51] (134)
Q
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The following results concern the case of p > 0. It should be noted that, in this case,
the positive and the negative parts of the spectrum show totally different behaviour. We
first deal with the positive part of the spectrum.

Theorem 1.4. Let p > 0, and let (A5, u5) be the j-th eigenpair of problem (1.5), (1.13),
or problem (1.7) with j > 0. Then

(i) For allj € N

£

) ase—0, (1.35)
€
where \; is the j-th eigenvalue of problem (1.16).

(ii) Under the additional assumption that Q) is a C*° domain with some § > 0 the rate
of convergence in (1.40) can be estimated as follows: for every j € N there exist
constants €;,C; > 0 such that

?j — )‘j S Cj\/g for all c (O,€j). (136)

(i1i) If, for j € N, \; is an eigenvalue of problem(1.16) of multiplicity m;, N\j_1 < \; =
Ajr1 = o = Njpm;—1 < Ajim,, then there exist orthogonal mj x m; matrices U and
constants €; > 0 and C; > 0 such that, for all ¢ € (0,¢,],

mj

u;—l—l—l - Zulgk Uj+k—1 < Cj \/ga l= 17 s, My, (137)
k=1 L2(9)
m;

Ujypq — Zulak k1 <Cjve, 1=1,---,m (1.38)
k=1 HE=(Q)

with U5 () = uj(z) + ex(x/e)Vu;(z), here x is a solution of problem (1.18).

(i) The function {Us} are almost orthogonal and normalized in H. that is
‘<Ulia Ui, — (5k,l’ < Cye (1.39)

The same results hold true for problem (1.7)

We turn to the negative part of the spectrum. Here, in addition to the above as-
sumptions, we suppose that the boundary of B has regularity C** and that p is Holder
continuous, p € C*(9B). Here we only consider problem (1.7).

Theorem 1.5. Let p > 0, and let (Aij,uij) be the j-th negative eigenpair of problem
(1.7), (1.15). Then



(i) Forallj € N
1 e a_1
g()\ij — ?) — M as € — 0, (140)
where a_y is defined in (1.25), and »_; is the j-th (negative) eigenvalue of problem
(1.32).

(ii) If Q is a C*° domain for some & > 0 then for every j € N there ewist constants
€j, C; > 0 such that

1 c _q
00 =) -

6 < Cjy/e forall e € (0,¢;). (1.41)

(11r) If, for j € N, 3c_; is an eigenvalue of problem (1.32) of multiplicity m_;, »_; =
K (j41) = ... = X_(jrm,;-1), then there exist orthogonal m_; x m_; matrices U° and
constants e_; > 0 and C_; > 0 such that, for all € € (0,e_;],

us . o
—(j+l-1
‘H =D Uiy SCLVE IS Lemy, (142)
U_ri-lizzi) = L2(Q)

with v () = (||v,jHLQ(Q))_121,]-(:6)]3,1(1:/5); here p_y is the eigenfunction of prob-
lem (1.22) that corresponds to a_y and is normalized by

/ (hor(y)dy = 1.

(iv) The functions {U%;}, U, (x) = v_j(z) + ex(z/e)Vv_j(x), are almost orthogonal
and normalized in H. that is

(U4 U, = 0| < CVE. (1.43)

Remark 1.6. In contrast with problem (1.7) we cannot assure that the interval (a,l/a, 0)
belongs to the resolvent set of spectral problem (1.5). If there are eigenvalues of problem
(1.5) on this interval, then the corresponding eigenfunctions concentrate in the vicinity of
0N) that is they are of boundary layer type.

In order to write down the limit problem in the case p = 0 we introduce one more
cell problem:

—AO=0 in w,

0
8_ =p, on I, (1.44)
ov

0 is Y-periodic ,



Since p = 0, this problem is solvable, its solution is unique up to an additive constant.
Denote

== [ oo, = [ Vo) - oty > o

and consider the following operator pencil

—div(aTVu) = N*Zu in Q,
(1.45)
u=">0 on 0f).
and a spectral problem
—div(a**Vu) = vZu in Q,
(1.46)
u=20 on Of).

with a°® defined in (1.17).
Since (1.46) has a discrete spectrum 0 < v; < vy < w3 < --- < y; — 00, and all
the eigenvalues v; are positive, the spectrum of (1.45) is discrete, real and consists of two

series
,\j: v; /\j_:— vi, j=1,2... (1.47)

Here, for the corresponding eigenfunctions, we impose the following normalization condi-
tions

/ aeHVui : Vu]dx + Ew/l/il/j / U,Z‘Ujdl‘ = 5@] (148)
Q Q

Theorem 1.7. Let p = 0, and let (A5, u5), j € Z\ {0}, be the j-th eigenpair of problem
(??), (1.13). Then

(i) For allj € N
Xy, = A5, ase—0, (1.49)
where A;E are defined in (1.47).

(ii) Under the additional assumption that 2 is a C*° domain with some 6 > 0, for every
J € N there exist constants €;,C; > 0 such that

‘)\ij — )\;t| S CJ\/E for all c (0,€j>. (150>

(111) If, for j € N, v is an eigenvalue of problem(1.46) of multiplicity m;, vj_y < v; =
Vit1 = -+ = Vjym;—1 < Vjym;, then there exist orthogonal m; x m; matrices U° and
constants €; > 0 and C; > 0 such that, for all € € (0,¢,],

<Cjve, 1=1,---,mj, (1.51)
L2(Q)

m;
1> (>
UL(+i-1) — Z Uy, Ujrk—1
k=1
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m;

ui(jJrlfl) - Zulsk Ui(jﬂcfl)

k=1

<CjVE 1=1,m; (1.52)
H=(2)
with UL (z) = uj(w) + ex(z/e)Vu(x) + /\;tﬁ(x/s)uj (x), here x and 8 are solutions
of problems (1.18) and (1.44), respectively.

(i) The function {U5} are almost orthogonal and normalized in H. that is

<U]§,UIE>H€ — 5k,l < C\/E, k,j€eZ \ {0} (153)

2 Preliminary statements
We begin this section by recalling some inequalities valid in H.. In what follows we denote

w! = e(w +1), I‘=e+i), i€Z"

Poincaré- Wirtinger inequality. Under our assumptions on €). and I',, there exist a positive
constant k such that for each u € H. the following inequality holds:

/ lu — T |*do, < ks/ |Vul? dr, (2.54)
1> QE

where we denote by w.(-) the piece- Wise constant function obtained by taking the mean
value of u over each perforated cell w,

y)dy, if v € Ww; (2.55)

U ()
) WI
here |w!| stands for the Lebesgue measure of w'. The above inequality remains valid if
. is replaced with the piece-wise constant function being equal in each w! to the surface
average of u over I'’.

Trace inequality

juldo, < k(e / uf? dz + 5/ Vul?) de) (2.56)
e
Both inequalities can be easily obtained from the standard Poincaré-Wirtinger and trace
inequalities, (see [2], [14]) by means of scaling arguments.

Given g € L*(T.), consider the following boundary value problem with non-homogeneous
Neumann boundary conditions on I',

—Au, =0 in €,

Ju= —g, onTy, (2.57)
u:. =0, on 0f).

11



The corresponding weak formulation reads

u. € H,,

/ Vu€~Vvdx:/ gudo, Yv e H.,
Qa

5

(2.58)

where

H.={ve H(Q.):v=0ondQ}
is a Hilbert space equipped with the scalar product
(u,v)g. = Vu - Voudz.
Qe

Proposition 2.1. For every g € L*(T.) there exists a unique solution u. € H. to problem
(2.57). Moreover u. satisfies the following a-priori estimate

ez, < e 2lgllz2r.), (2.59)

where the constant ¢ > 0 is independent of ¢.

Proof. The existence and uniqueness of u, is a straightforward consequence of the Reisz
representation theorem for the problem

a(u,v) = F(v) Yv € H,

where

a(u,v):/ Vu-Vudz, F(v):/ gvdo,, H=H..
Qe

Moreover, replacing v = u. in the weak formulation (2.58), and using Friedrichs and trace
inequalities (1.8), (2.56),we obtain that

lall, = [ VP de= [ gudo, < lgllaolllor, <

€ FS

1/2
< ol (5 (= [ e [ varar)) <

< e Pgllea e luel .

A

Dividing by ||uc||n. we obtain the desired inequality (2.59). 0

We introduce the operator K. : H. — H. in the following way. For every u € H., we
define K. u as the unique solution to the problem

V(Ku) - Vodr = / puv do,, Yov € H,. (2.60)

Q. :
The existence and uniqueness of K.u follows directly from Proposition 2.1.
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Proposition 2.2. The operator K. : H. — H. is linear, compact and self-adjoint.

Proof. The linearity and self-adjointness of K. follows directly from its definition (see
(2.60)). In order to prove the compactness of K. notice that formula (2.60) defines a
bounded linear operator Kg that maps L*(T.) in H.. Since K. is the composition of the
trace operator H. — L*(T.) and IQ, the desired compactness follows from the compact-
ness of the mentioned trace operator (see, for instance, [§]).

O

Assume that p. # 0 is an eigenvalue of the operator K. and w. is a corresponding
eigenfunction. It means that
Keue = preue
ie.

—Au, =0 in €},

Jue __ 1
. — 7o Pelle, O L,
u:. =0, on 051,

Thus, . = t is an eigenvalue of problem (1.5). Now, we recall the spectral properties of
K..

From general spectral theory, the spectrum of the operator K. is at most countable,
it consists of two sequences (possibly finite or empty) of positive and negative eigenvalues,
and of zero. The latter implies the essential spectrum of K.. Every non-zero eigenvalue
has finite multiplicity. We denote by p5, p°; the positive and negative eigenvalues, for
every 7 € N\ {0}, with the convention that the positive eigenvalues are enumerated in
decreasing order, the negative ones in increasing order, and each eigenvalue is repeated a
number of times equal to its multiplicity. Moreover, we denote by u5, and u® ; a sequence of
corresponding H.-normalized eigenfunctions. The following variational characterizations

hold true
/ u2pa do,
5= max e (2.61)
u e He, / (Vul? do
ut0 Ja

€

u?p. do,
pf,= min T (2.62)
u € He, IVul? dx
u#0 Jo
For each 7 € N, 7 > 2 one has also
/ quE do, / u2p5, doy
p; = max L = B r%/n_n | max S, (2.63)
(uu§) e =0, / Vu|?dz T eV / |Vul? dx
i=lj=1 Jq o

13



/ u?p. do, / u?p. do,

Py = min o = max min —E— (2.64)
(w,uZ ;) 1. =0, Vul>de T Y |Vu|? dz
=11 Jq Q.

where V+ stands for the orthogonal complement of V' in H..

Remark 2.3. From (2.56) and the fact that p € L>(T"), it follows that there exists a
positive constant kg such that

1

e < ko (52 + E) for alle >0, j € N, (2.65)
J

where 5 is the j-th eigenvalue of the Laplacian with homogeneous Neumann boundary

conditions at the boundary of the perforation. More precisely, {Bj 2L 0<pr<p <.,

is the spectrum of the problem

geAvj? = fiv; in (.,
(;JVJ; = 07 on F€7 (266)
ve =0, on 051,

It is known (see, for instance, [13]) that for all j € N
B — B; as € — 0, (2.67)

with 3; eigenvalue of the corresponding homogenized problem

—div(a®Vv;) = B;w|v; in Q,
{ v; =0, on 051, (2.68)
and
B — +oo, as j — +oo. (2.69)

Proposition 2.4. If p satisfies condition (1.9), then for each € > 0 the sets
{7eN: ;>0 and {jeN:p°, <0}
have infinitely many elements.

Proof.
Step 1. We first prove that
peq <0< pi.

Letting

ps = max{p., 0} p. = min{p, 0},

14



under our assumption (1.9) on p we have

/ peps do, > 0.

€

Denote by {u,},>0 a family of functions w, € H. such that ||\/p} — unHLQ(F ) — 0, as

n — 0. Such functions wu, can be easily constructed by means of smoothing /pF on I'..
Since
/ ,oeuf7 do, — peps do,
€ FE
as 11 — 0, then for all sufficiently small n > 0 it holds

/ peus dog > 0. (2.70)
re

It remains to combine the last inequality with (2.61) in order to conclude that u5 > 0.
In a similar way, one can prove that pu®, < 0.

Step 2. Our next goal is to show that for any j € N the inequalities 2 ; < 0 and p5 >0
hold.

Assume that ui > 0,...,u5_; >0, and let ui, ..., u5_, be the corresponding normal-
ized eigenfunctions, (u$,uf)y. = 0y with i,k =1,2,...,5 — 1.

Consider a collection of sets {S£}_, with S¢ € {z € I'. : p(x) > 0}, 0,(S?) > 0,
SENSE =0, i +# k, and denote x5 the characteristic functions of these sets.

Let 3%, ... ’Xg,e be elements of H. such that ||x5 — Xf’EHL?(FE) <d,i=1,...,5. It is
clear that for sufficiently small 6 > 0 the functions Xf’a, e ,Xj’e are linearly independent.
Therefore, there is a non-trivial linear combination = = /Bf’axf’g + -+ 5}5’5){?’8 such that
(E,ui)g. =0,i=1,...,7— 1.

It is also clear that for sufficiently small 6 > 0 we have

/ =2pt do, > 0.
e

Using = as a test function in (2.63) we conclude that 5 > 0. In the same way one can
show that pf; <0.
It remains to use the induction.

Proof of Proposition 1.2. All the statements of Proposition 1.2 except for (1.14) follow
from the spectral properties of the operator K., the fact that A; = (uj)*l, and from
Proposition 2.4.

It remains to prove (1.14): we will do it for Aj, the proof for A%, being analogous. We
first show that each eigenfunction u related to A does not change sign in €.
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Assume the contrary. Then there is an eigenfunction u related to A such that ut =
max {u,0} and v~ = min {u, 0} are non-trivial functions. Clearly,

/ pe(u)2do, > 0 and / pe(u")2do, > 0.

Indeed, if [, p.(u*)?do, <0, then [;. p.(u”)*do, > 1.8ince [, [Vu™|*dr < [, |Vu|*dz,
this contradicts the variational principle (2.63). Therefore, [, p.(u*)?do, > 0. Similarly,

fr pe(u™)?do, > 0.
By (2 63) we have

|Vu™ [Pdx < )\i/ p-(u")*do, |Vut Pdx < )\i/ pe(u")?do,.

Qe Te Qe Te

Summing up these inequalities and considering the relation

/ |Vul*dr = )\i/ pe(u)do,
/ |Vut |’ dr = )\i/ p-(ut)?do,.
Qe e

Thus, u* is an eigenfunction related to A;. Then u™ is a non-negative solution of the
equation Au™ = 0 in €., and the fact that u™ is equal to zero at interior points of €,
contradicts the maximum principle.

If we assume that there are two linearly independent positive eigenfunctions u,v € H.
related to Aj, then

-1
/ (u—cv)dx =0, for ¢ = </ vdx) / udx.
QE QE QE

Therefore, u — cv is an eigenfunction that changes sign. This contradiction shows that ]
is simple. O

we conclude that

Proof of Proposition 1.3. Our goal is to show that for sufficiently small 6 > 0 the quadratic

form
/|Vu |dy+§/ ))*do,

is coercive that is

T (@) > COully, — forallue Hy(Y) (2.71)
with C'(9) > 0. The spectral problem for the operator associated with J reads
/Vp dey+5/ppwday—a/ppwday Vw € Hy(Y), (2.72)
p € HLY).
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The spectrum of this problem coincides with the spectrum of problem (1.23) shifted by
. Exploiting (2.71) by the same arguments as in the proof of Proposition 1.2 one can
deduce that the spectrum of (2.72), and thus of (1.23), is discrete and consists of two
infinite sequences of eigenvalues, one of these sequences tends to —oo, another to 4o0.

Other statements of Proposition 1.3 can be justified in the same way as in the proof
of Proposition 1.2.

To prove (2.71) we represent p as p = p + p with p > 0 defined in (1.10). For an
arbitrary function u € Hj(Y') denote @ = (0,(I")) ™" [ u(y)doy, & = u —G. Then

/ putdo, = / (pu® + (7 + i) ) dor, = / (pu® + 2w + pi®) ) dor,
r r r

> [ (pu = (] + )do,
r

with C, = 2||p||=. Using the trace and Poincare inequalities we deduce that for any

51 >0 '
—~ ~92 < _9 = 9
/FCP<|UU‘ + u°)do, < /FCp<51U + (51 + 1>u )day

< / C,6u’do, + Cy (51 + 1) / |Vuldy.
T 1 w

Combining the last two inequalities and choosing 4, in such a way that C,0; = %ﬁ we

obtain ) .
/quday > / —putdo, — C, (— + 1) / |Vul*dy.
T T 2 61 w

This yields
2 o [_ 5 1 2
Jw) > [ |Vuldy + > [ pudo, — cl(s(— + 1) Vul2dy.
w 2 r 51 w
Finally, taking 0 such that C16((1/6;) 4+ 1) < 1/2, we get

1 )
" r

3 The case p >0

The aim of this section is to prove Theorem 1.4. We begin with an auxiliary statement.
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Lemma 3.1. Let u.,u € Hy(Q), ||uc||m < ¢, u. — u strongly in L*(Q) and p > 0. Then
5/ pou?do, — po,(T) / u?dz, as e — 0. (3.73)
. Q
Moreover, for all v € H}(Q)

5/ pusv doy — poy (L) / wvdz, ase — 0. (3.74)
e Q

Proof. Let us denote by u. the piece-wise constant function that takes the value of the
average of u. in each e-cell that is

Ue(z) = A; if v €Y,

N 1
u; = —8/ udx.
‘wj’ w?

Note that, by our assumptions and Poincaré inequality, it follows that u, — u strongly
in L?(Q) as € — 0. In fact

/ lue — t.|*dr = Z/ lu, — us Pde < ce Z |Vu5| dr < ce? (3.75)

In order to prove (3.73), we write

£ / pouldo, = ¢ / paiZdo, + ¢ / pe(u — a2) do,. (3.76)

The first term can be rearranged as follows

/ peUz dax—sz/ 5%—
_52 j2en- 1/ oy) do, = o, (T) (/Q(’&E)zdx—i—o(l)>.

Hence, by (3.75), we can conclude that

5/ pti2 do, —>ﬁay(F)/u2 dx
g Q

as € — 0. The second term in (3.76) is negligible, since

Pe (ug - ﬁ?) do,

sff/ ool [t — 6] [+ ] dory <
e I.
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1/2 1/2
Se(/mm%—mﬁwg (/Vum+mﬁma |
e I

The first term on the right hand side can be estimated by means of Poicaré inequality.

We have
1/2 " 1/2
5 (/ |pe] lue — ﬁE\Zdaﬁ) <ellpll/ (5/ |Vue’2dx) < ce3/?,
I. Qe

The second term can be estimated by means of the trace inequality:

1/2
([ 1o+ P o) < (2ol [ a2do.+ 2ol 0) [ i)
<c (51/ uldx + ¢ \VuEIde) :
€ QE

Hence, combining the last two inequalities, we finally have

pe(u? — %) do,| < ce /2

Ie

and (3.73) follows.
To prove (3.74) it suffices to notice that

Ly

1
UV = §(u8 +v)? — §ug —5v%

then (3.73) applies. O

Proof of Theorem 1.4.
We begin by obtaining the following estimates

c < z—:_l)\j <¢; foralle >0, 0<c <g¢ <oo. (3.77)
Let us first justify the lower bound. Due to (2.61), (2.56) and the Poincaré inequality, one

has
1 Jr, wpe dos Jr, v do:

)\i Ml ue[g)s an |vu’2 d:L' — HpHL uep5 j‘Q ’V |2d ”pHL

with a constant k& that does not depend on e. This yields the desired lower bound.
Let us now prove the upper bound in (3.77) for j = 1. From (2.61) we derive

1 w“ Jr wPpedo, [ @?p-doy
N T T, VuPdr T, VP de
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for any ¢ € H.. In particular, if we choose ¢ € C§°(2), ¢ # 0, then

/ IVo|* dz — \w\/ V|? dz > 0,
Q. Q

where |w| denotes the Lebesgue measure of w. By Lemma 3.1 with u. = ¢, we get

5/ pep® doy, — po,(T) / )
e Q
Therefore, there exist two constants g > 0 and ¢ > 0 such that

Jr, petp? dos

8>—
= VP da

> S Ve e (0,e). (3.78)
€
This implies the estimate
€
0< A <-.
c
It remains to denote ¢; = 1/c.

In order to justify the upper bound for j > 1, we consider a set of non-zero C§°(12)

functions ¢1,. .., ¢; with disjoint supports. Since these functions are orthogonal in H.,
there is a non-trivial linear combination ¢° = 7{p1 + - - - + 75p; such that
((bE’ui)Hs == (¢€7u§71>HE = O
Then, by (2.63),
e s fre(¢€)2p€ doy
Hj = Jo IV dz

Using the fact that the functions ¢; have disjoint supports, it is easy to check that
J J
[ @ oo =Y 002 [ @pedon, [ 1o =Y 002 [ Vel s
e i=1 € QE =1 QE
By (3.78), there are ¢ > 0 and £y > 0 such that
/ pepr doy, > g/ |Vi|>dr forall e € (0,g9), i=1,...,7].
g QE

Multiplying these inequalities by (75)? and summing up the resulting relations yields

C
€
- >
M]_g

This implies the required upper bound in (3.77).
The proof of (1.40)-(1.52) relies on several technical statements.
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Proposition 3.2. Let {()\E(E), uj(g))} be a family of normalized eigenpairs of problem (1.5)
e
i)

or, equivalently, (1.6), and assume that, perhaps for a subsequence, — )\, ase—

0. Then X is an eigenvalue of the limit problem (1.16). If, in addition, uj(g) converges to
u weakly in H}(Q) for the same subsequence of €, then U # 0, and (X, W) is an eigenpair
of (1.16).

Proof. Since the family {uj(a)} is bounded in H}(Q), we may assume without loss of
generality that u5, ) — u weakly in H;(92). Then Wy — U in L?(€2), and by Lemma 3.1,

1 :/ |Vuj(5)|2d:c:)\€/ pgu?(s) do, —>Xﬁay(F)/E2daﬁ.
Qe Ie Q

Therefore, [, u*dxz > 0, and u # 0.
Our goal is to show that

/ a*™Vu - Vdr = \po,(T) / updr Vo € Hy(Q) (3.79)
Q 0

with a°® defined in (1.17). To this end, we consider the following auxiliary homogenization
problem _
Apo, (I
/ Vo, - Vdr = 2F Ty|( ) / Tpds Yo € H. (3.80)
w

€

stated in the perforated domain €).. It is well-known in homogenization theory (see, for
instance, [?]) that, as ¢ — 0, the (extended) solution v. tends weakly in HJ(f2) and
strongly in L*(Q) to a function v € HJ(2) being a unique solution of the homogenized
problem

/ a®™Vv - Vpdr = A\po, () / pdr Vo € Hy(9Q). (3.81)
Q Q

By the lower-semicontinuity of the H'-norm and the boundedness of the extension oper-
ators, we have

/ Vv — Va2 dz < lim inf/ |Vv. — Vu|*dr < cplim inf/ Vv, — Vu,|*dx.
Q e—0 Q e—0 Q.
Using in equations (1.6) and (3.80) the test functions ¢ = v. and ¢ = u., yields

/ Vv, — Vu.|*dx —/ \Vv5|2dx—i—/ |Vu|*dx — 2/ Vv, - Vu.dx =

Moo, (T
= APoy( )/ ﬂvsdx+/\5/ pou? do,+

@l
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Apo, (T
—As/ PV doy, — M/ wu.dx.

wl

Since u — W and v® — v in L*(Q), the following limit relations hold, as & — 0:

Apo, (T
L(>/ ﬂvsdx%Aﬁay(F)/ﬂvdx,
| . Q
Apo, (T -
—p‘aTy‘U / Gu.de — —Apo,(T) / w2ds.
e Q

Furthermore, by Lemma 3.1,

)\e/ peu? do, —)Xﬁay(F)/HQdm,
c Q

—As/ PV dog — —)\ﬁay(F)/EdeJ.
g Q

Combining the above inequalities, we arrive at the estimate
/ |Vv — Va|?dz < ¢olim mf/ Vv, — Vu|*dr = 0,
Q e—0 Q.

which implies that v = w. Thus, (3.79) holds true. O

The proof of the fact that any eigenpair of the limit operator is approached by the
eigenpairs of e-problems relies on the so-called Lemma on ”eigenvalues and eigenvectors”
(see [9]). For the reader’s convenience we formulate it here.

Lemma 3.3. Let A: H — H be a linear compact self-adjoint operator in a Hilbert space
H. Suppose that there are a real number p and a vector u € H, such that ||ul|y = 1 and

| Au — pul|p < a. (3.82)
Then, there is an eigenvalue u; of the operator A such that
i = pl < o (3.83)
Moreover, for any d > « there exists a vector u such that
lfu—| |y < 2ad™ U]l =1, (3.84)

and uw is a linear combination of eigenvectors of the operator A corresponding to eigen-
values of A in the closed segment [ — d, pu + dJ.
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In the sequel we refer to p and u in (3.82) as almost eigenvalue and eigenvector of A.
We proceed with other technical statements.

Lemma 3.4. Let f € L (w) and g € L*™(0w) satisfy

per

/w F(y) dy — /F 9(y) dory = 0. (3.85)

Then there exists ¢ > 0 such that

/Q€f<§> uvdm—s/FELq(g)uvdax

for all u,v € H. such that V(uv) € L*(S.). Also, for any u,v € H. it holds

/st<§> uvd:v—s/rgg<g> uv do,

If for f € L(w) and g € L*(dw) condition (3.85) is fulfilled then there is ¢ > 0 such that

< cg||[V(w) || 2. (3.86)

< cellul| m[|v]] . (3.87)

/ f <£> uv dx — 8/ g (f) wv do,| < cel|V(uv)||2(a.) (3.88)
Q. € r. ¢
for allu € Wh*(Q) and v € H..
Proof. Let ¢ € H'(w) be a solution to problem
AY=f inw,
% =g, onT, (3.89)
(0 Y -periodic.

Then ¢.(z) = ¢ (£) is eY-periodic, it belongs to H} (R™) and satisfies

Voo = (V) (2) A =e2(08) (2).

Writing down the integral identity

/ (Ay) (g) uv dx :/ f (g) uv dx,

€ £

after integration by parts one has

/s f (g) uvdxr — s/e g <§> wvdo, = —8/ (V) <§> V(uv) dx,

€
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from which (3.86) and (3.88) follow immediately.
In order to justify (3.87) we consider the functions %, and ¥, introduced in (2.55). Notice
that

el rz < lullizny,  ellEellizw,) < cllulliz.)-
Denoting f¢ = f(x/e) and ¢° = g(z/¢), and using (2.54) and Cauchy-Schwartz inequality,
we get
/ fruvdr — 5/ guvdo,| < / ffu.vdr — 5/ g°uv do,
Qe Ie Qe Ie
+ ff(u—a.)vdr — 5/ g (u —u)vdo,| < fu.vdr — 8/ g uv doy,
Qe £ Qe e

el o], < ' | rumde—c [ o,
Q. T

+ + Cellulla |[o]l m.

feu.(v —v.) de — 5/ g u:(v —v.) do,
Qe

£

< Cellull g, |v] .
here we have also used (3.85).
O
The proof of the next statement is quite similar to the proof of (3.87) and can be

found, for instance, in [5, Ch.1, Lemmal.1].

Lemma 3.5. Let h € LF(Y) be such that

/Yh(y) dy = 0. (3.90)

Then there exists ¢ > 0 such that for all u,v € H}(Q)

/ h (£> uv dx
Q g

We will also need cut-off functions in the vicinity of the exterior boundary 0f2. For
v > 0 denote Q(v) = {z € Q : dist(z,0Q) > ~}.

Lemma 3.6. Let ¢ € L2 (Y), and let h > 0 be a positive number. Then, there exists
¢ > 0 such that

< CEH“HH&(Q)H“HH&(Q)- (3.91)

x
2)vdz| <V 3.92
/(l\ﬂ(hs)¢(5>v 7| < Vel g, (3.92)
and, if T. N (2\ Q(he)) # 0,
x
w —)vdo, SC\/E Vv 2 ren - 3.93
/FEO(Q\Q(}ZE)) <5> Vol @) (3.93)

for alle >0, and all v € H}(Q).
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Proof. By the Hardy inequality (see, for instance [10]), there exists a constant ¢ > 0 such
that
HUHL2(Q\§(7)) < CVHVUHB(Q) (3.94)

for all constants v > 0 and for all v € H}(Q). Then, combining this estimate with the
Cauchy-Schwartz inequality, we get

’fQ\ﬁ(hs) (& (%) ”dx‘ <|lv (%) 2(0@nen 101l 22 (0 @he)) (3.95)
< celly (f) HL?(Q\ﬁ(he))HVU”LQ(Q)'

Denote J(he) = {j € Z" : (Y +7)N(Q\Q(he)) # 0}, and let #.J(he) be the cardinality
(the number of elements) of J(he). Clearly, #.J(he) < C(h)e'™". Thus,

d n
19 () Iy < #IB) ) < Ce

To obtain (3.92) it remains to combine this inequality with (3.95). The proof of (3.93)
relies also on the fact that for all e-cell Y;°

/ v?do, < c 5_1/ dea:—i—s/ |Vo|*dz | .
Fgﬁ}/ie Y;_a }/ie

Summing up these estimates over i € J(he) and using (3.94) yields

/ v do, < c (5_1/ vidr + 5/ |VU|2dx) :
PN\ (he) O\ (he) O\ (he)

Combining the preceding inequality with (3.94) and the fact that |\ Q(he))| < ce we
immediately obtain (3.93). O

Proposition 3.7. Let \;, j € N, be an eigenvalue of problem (1.16). Then there exist a
family {k(e)}es0, k(e) € N, such that

)\2(8)
£

—Aj, ase—0, (3.96)

where A}, is an eigenvalue of problem (1.5).

Proof. Let W€ be a family of C§°(£2) functions such that W¢(x) = 1 if the distance from z
to €2 is greater than 2¢, 0 < W° < 1, and |[VW4(z)| < 2/¢ for all z € Q.

Denote Us (z) = u)(x) + eV (z)x(z/e)Vui(x), and Us (z) = u)(z) + ex(x/e)Vul(z).
It is straightforward to check that, under our assumptions on regularity of 02, we have

|US = US|l o) < CE%/2, Uz = Ut ||y < Ce'/2.
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Let us compute the norm of U < in H.. Denoting the unit n X n matrix by I we have

VU - VU do = /Q VU + PV (3) Ve + 20X (Z) vV + 20y (2 ) Vi Pda

Qe

= |(T+ Vyx(x/e))Vu(;]de—{—O(e);

Qe

here we have used the facts that |5V_\I/E| < C, the support of VW¢ is a subset of 2e-
neighbourhood of 99, and u] is a C*(Q) function. Recalling the formula for the effective
matrix a°®, normalization condition (1.20), and using once again the C? smoothness of

u? we conclude that

rTE rTe eff 0 0
/Q VU5 - VU; dx:/ﬂa Vuj - Vu; de + O(e) = 1+ O(e). (3.97)
Similarly, one can show that
‘ /Q VU; -Vedr — /QaeHVu? Vo dr| < CVellell o) (3.98)

for any ¢ € H} (). ) )
We proceed with estimating the norm || KU — (e);) U || .. After straightforward
rearrangement we have

1 1 . 1 -
| K202 =—=0%],, = sup (KEUS—TUS,go) — sup / <V(K8U6)-V¢—JVU€-W>M

EAj peB® EAj He  peB* J

. 1 .
= sup (/ pUspdo, — — VUE-Vgodx)
re

pEBE 8)\]' Q.

with B = {p € H}(Q) : ||¢|lz. = 1}. By Lemma 3.4,

‘/ paﬁaapdax—/ U pdo,| < C|l¢]lm.
I Ie
Thus,
- 1 - . 1 -
HKEUE——U€|H < sup (/ pUspdo, — — VU€~Vg0dx) +C.
A ° pebe . eAj Ja.

It remains to use (3.98) and once again Lemma 3.4 to obtain

~ 1 - ﬁa (F)/ 1 / Cl
KeU® — —U¢||,, < = Yodr — — [ a*Vul - Vpd C+ —=
0=l < s (24 [ ot 5, flamod o) w4
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:5 0 1 eff 0 Ol Ol
< ~o, (T ‘podr — — Vu; - Ved C+—==0C+—.
_jélgs (gay( )/Qu]go x 6)\j/Qa u; - Vi :c) +C+ NG + N

This estimate combined with (3.97) and Lemma 3.3 yields

C
Uy — g}\j <C+ 715
for some k = k(e) and for all sufficiently small e. Therefore,
Ny — e < Ce¥2, (3.99)
and (3.96) follows. 0

We should also understand better the convergence of spectrum in the vicinity of
multiple eigenvalues of the limit operator.

Lemma 3.8. Let \; be an eigenvalue of (1.16) of multiplicity m, Ajog < Aj = -0 =
Ajtm—1 < Ajim. Then there are at least m families {\} .}, -, N, o} ki(e) # ku(e) if
1 # 1, such that

(e)” 1)\5 ) — A as e — 0.

Proof. For eachi € {0,1,...,m— 1} we construct U, ; = u,; +ex(z/e)¢(x) V) ; as in
the proof of Proposition 3.7. Then

1

HK5 S EN

UE

J+i

| N

C
—, +=0,...,m—1 (3.100)
\/_

In the same way as in the proof of Proposition 3.7 one can check that

(U Us ). — 0l < CVe, 0<il<m-—1. (3.101)

Denote by )\kl(s . )\iN(E) the eigenvalues that belong to the interval e(\; — g/t Aj+
e'/1) with N = N(g). According to Lemma 3.3 there are linear combinations of the

N(e)
corresponding eigenfunctions V7 = Z Bisuj, oy such that [[Us,; — Vi|lu. < Cel/*. From
(3.100) and (3.101) it follows that N( ) 2 m for all sufficiently small ¢, this yields the
desired statements. O
The opposite inequality is granted by
Lemma 3.9. Assume that there are families ky(€), ..., kn(€), k; # ky if i # 1, such that,
for a subsequence,

—)\5 ) — Ajs ase —0, 2=1,...,N.

Then the multiplicity of A\; is at least N.
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Proof. Consider the eigenpairs ()\ii(s),uii(g)) with the eigenfunctions satisfying (1.20).
Then, for a subsequence,

Up, (o) — Vi weakly in Hy(Q), i=1,...,N.

It was shown in Proposition 3.2, that v; are eigenfunctions of the homogenized problem
with eigenvalue A;, and that
0y = ll_r)% (uil(s)v uil(a))HE = )\jﬁO'y(F) (Uiv UI)LQ(Q)'

Therefore, {v;}¥, are nontrivial and orthogonal in L*(2), and thus the multiplicity of \;
is at least N. O

Now the statements (i), (1) and (iv) of Theorem 1.4 are immediate consequence of
Propositions 3.2 and 3.7, Lemmata 3.8 and 3.9 and estimate (3.99).

In order to justify the statement (44i) we consider an eigenvalue A; of (1.16) that has
multiplicity mj, m; > 1, so that \; = -+ = X\j,,, 1. Choosing d; = %min(l//\j_l —
1/X;,1/A; = 1/Xjim,), with the help of item (i) we conclude that for all sufficiently small
e an eigenvalue (X5)~! belongs to the interval e 7' ((A;)~" — d;, (A;) ™' + d;) if and only if
j <i<j+m;—1. Using (3.100) and applying Lemma 3.3 with d = ¢~'d;, we obtain
that there exist 35 such that

m]-—l

||U;+z' - Z Bflu§+l||Hs <Cye

=0

This estimate combined with (3.101) implies the desired statement (%ii). The proof can
be found in []. We omit the details. This completes the proof of Theorem 1.4.

Remark 3.10. If in the conditions of Theorem 1.4 we suppose that ) and w are just
Lipschitz continuous domains then the statements on convergence of the spectrum remain
valid, however, the estimates for the rate of convergence might fail to hold. More precisely,
in the case of Lipschitz continuous 0S) and Ow the following statement holds:

e For any j € N the limit relation (1.40) is valid.

o Let \; be an eigenvalue of (1.16) of multiplicity m; with m; > 1, that is \j = --- =
Ajtm;—1- Then there is a orthogonal matriz 8, 0 < 4,1 < m; — 1, such that

mj—l

lim [|ug,.; — ZZ; BZUHJ'HLQ(Q) =0. (3.102)
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The proof follows the same strategy as in the case of sooth domains ) and w. We leave
the details to the reader.

Remark 3.11. The convergence of eigenspaces related to multiple eigenvalues of the effec-
tive spectral problem can be expressed in terms of the so-called Mosco convergence, see [] for
its definition. Namely, if \; is an eigenvalue of (1.16) of multiplicity m; with \; = --- =
Ajim;—1, mj < 1, then span{us, .. ., u§+m],_1} Mosco-converges to span{u;, ..., Ujim;—1}.

4 The case p =0

In this section we prove Theorem 1.7. Our first goal is to show that there exists k1 > 0
such that for all sufficiently small ¢ > 0 the estimate holds

[ = K1 (4.103)

with uj defined in (2.61). To justify this estimate we substitute in (2.61) a test function
of the form u.(z) = ¢(z)(Tw +em (%)) with w € RT, ¢ € C§°(Q), ¢ # 0, and m € CF(Y)
such that

= / p(y)(y) do, > 0.

It is easy to check that

lim/ |Vu5\2dxzﬂz|w|/ ]V(p|2d:v+/902dx/ \Vr(y)|*dy > 0.
=0 Ja. Q Q Y

The surface integral can be estimated as follows

e—0
. 2— (T . 2 2 2 (%
+ lim 28/ poum (—) do, + lim ¢ / PP (—) do, =
e—0 I. £ e—0 T, 13

2 [ oo, [ V(As+ 2w [ (0P do =2 [ (02 s> 0
T Q Q

Q
here we have also used Lemma 3.1. This implies (4.103) for all sufficiently small .
Similar lower bounds can be obtained for x5 with j > 1. However, since these bounds
will follow from the asymptotics constructed later on in this section, we do not bother the
reader with their proof here.

lim [ p.u?do, = lim / P doy,
. e—0 .

An upper bound for p§ easily follows from (3.87). Indeed, since p = 0, for any u €
HJ () by (3.87) we have

/F pei? o, < cllullp o, < ¢ Vulaq,.
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In view of (2.61) this yields
15 < ko. (4.104)

Estimates (4.103) and (4.104) suggest that the asymptotic series for A3; and ug;
should be of the form
Ay =A+eh+., g =u(x) +eun(r, x/e) +

with u; (z, y) being periodic in y. Substituting these series in (1.5) and collecting power-like
terms in the resulting equation and boundary condition, we conclude that

ui(z,y) = ex(y)Vu(z) + eAg;0(y)u(z),
where x and 6 are solutions of problems (1.18) and (1.44), respectively, and
—div(aeHVu) =MZu in Q, u=0 on 0.

Remark 4.1. Notice that the first order term in X is not presented in the limit equation.
Indeed, the formal derivation yields a first order term of the form

ADu(x / 0(y)v(y) do, — / Vyé(y)dy),

this term is equal to zero.

Proof of Theorem 1.7.
The following statement can be proved in exactly the same way as Proposition 3.7
and Lemma 3.8 in the previous section. We leave its proof to the reader.

Lemma 4.2. Let \; be an eigenvalue of (1.45) of multiplicity m, m > 1, X\j_1 < \; =
+ = Ajpm—1 < Ajrm. Then there are at least m families {\} )}, ..., {X} o} such that

ki(e) # kule) if i 1, and
Ahs(e) — Ajs as € — 0.
The statements similar to those of Proposition 3.2 and Lemma 3.9 also remain valid.

Proposition 4.3. Let {(\5,, u§.
or, equivalently, (1.6), and assume that, perhaps for a subsequence, )\J () A, ase—0.

)} be a family of normalized eigenpairs of problem (1.5)

Then X is an eigenvalue of the limit problem (1.45). If, in addition, u3.y converges to
weakly in HL () for the same subsequence of ¢, then @ # 0, and (\, ) is an eigenpair of
(1.45).

Lemma 4.4. Assume that there are families ky(€), ..., kn(€), k; # ky if i # 1, such that,
for a subsequence,
Meste) — Njs ase —0, +=1,..., N.

Then the multiplicity of )\] 15 at least N.

Lemmata 4.2 and 4.4 and Proposition 4.3 imply the desired statements of Theorem
1.7. O
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5 Proof of Theorem 1.5

The goal of this section is to prove Theorem 1.5. Thus it is assumed here that p > 0.
We begin by introducing a new unknown function and a new spectral parameter in (1.7).

Namely, we set
x

o ~
us(x) =p_y <E>UE($), A= ?1 +A
with p_; and a_; defined in (1.22)—(1.26), respectively. Substituting these expressions in

(1.7) we deduce after straightforward rearrangements that in terms of v. and A problem
(1.7) reads

—div(a(z/e)Vv.) =0 in Q.,
a(z/e)Du. - v = Mp_1(z/€))p(z/e)v. on I, (5.105)
Ve =0 on GQE\I};

here we have denoted a(y) = (p_1(y))*>I. For the sake of brevity in this section we use
the notation a*(x) = a(z/¢) and p°(x) = (p_1(z/€))?p(x/c). We remind that under our
regularity assumptions, p(-) is a smooth positive function.

Since by construction (see (1.26))

/F () 0y) do, <0,

Theorem 1.4 applies to the negative part of the spectrum of problem (5.105). Although, in
contrast with (1.7), in (5.105) we do not deal with the Laplacian but with a more general
divergence form elliptic operator with periodic coefficients, the results stated in Theorem
1.4 remain valid. Namely, using exactly the same arguments as in the proof of Theorem
1.4 one can show that the statements (7)—(iv) of Theorem 1.4 hold true for the negative
part of the spectrum of problem (5.105).

In order to complete the proof of Theorem 1.5 it remains to prove that on the interval

(%, 0) there are no eigenvalues of problem (1.7).

Proposition 5.1. The interval (%, 0) belongs to the resolvent set of problem (1.7).

Proof. The proof relies on Floquet-Bloch representation of u. and follows the line of the
proof of Theorem 5 and Lemma 11 in [11].
O
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