
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Visual Model-Driven Design, Verification and Implementation of Security Protocols / BETTASSA COPET, Piergiuseppe;
Pironti, Alfredo; Pozza, Davide; Sisto, Riccardo; Vivoli, Pietro. - STAMPA. - (2012), pp. 62-65. (Intervento presentato al
convegno 14th IEEE Int. High-Assurance Systems Engineering Symposium (HASE 2012) tenutosi a Omaha, Nebraska
nel October 25-27, 2012) [10.1109/HASE.2012.23].

Original

Visual Model-Driven Design, Verification and Implementation of Security Protocols

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/HASE.2012.23

Terms of use:

Publisher copyright

©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2504208 since: 2023-09-11T05:27:26Z

IEEE

Post print (i.e. final draft post-refereeing) version of an article published on Proceedings of the 2012 IEEE International
Symposium on High-Assurance Systems (HASE 2012), pp. 62-65. Beyond the journal formatting, please note that there
could be minor changes from this document to the final published version. The final published version is accessible from here:
http://dx.doi.org/10.1109/HASE.2012.23
(c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users,
including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for
resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
This document has been made accessible through PORTO, the Open Access Repository of Politecnico di Torino (http:
//porto.polito.it), in compliance with the Publisher’s copyright policy as reported in the SHERPA-ROMEO website:
http://www.sherpa.ac.uk/romeo/pub/38/

Visual Model-Driven Design, Verification and Implementation of
Security Protocols

P. Bettassa Copet∗, A. P ironti∗∗, D. Pozza†, R. Sisto∗, and P. V ivoli‡

∗ Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy

∗∗ Prosecco, INRIA, France

† Primeur, Italy

‡ Spike Reply, Italy

Keywords Security protocols; Model-driven development; Formal methods; Visual models

Abstract A novel visual model-driven approach to security protocol design, verification, and implementation
is presented in this paper. User-friendly graphical models are combined with rigorous formal methods to enable
protocol verification and sound automatic code generation. Domain-specific abstractions keep the graphical
models simple, yet powerful enough to represent complex, realistic protocols such as SSH. The main contribution
is to bring together aspects that were only partially available or not available at all in previous proposals.

1

http://dx.doi.org/10.1109/HASE.2012.23
http://porto.polito.it
http://porto.polito.it
http://www.sherpa.ac.uk/romeo/pub/38/

1 Introduction

Security protocols are communication protocols that aim at establishing secure communication between two or
more parties (called principals), even in the presence of an attacker, by orchestrating the use of cryptography
and message exchanges. Secure communication means, for example, that exchanged data remains confidential
to third parties, or that tampered data can be reliably identified by the honest principals.

Despite the apparent simplicity of security protocols, the task of designing and implementing them correctly
is inherently difficult, as witnessed by some widely deployed protocols which were found to be flawed several
times, many years after their release (e.g. [1]). On one hand, this difficulty can be alleviated by adopting a model-
driven development (MDD) approach [2], which may reduce development time and improve code correctness
through automatic generation of substantial parts of implementation from visual (or textual) models. On the
other hand, formal verification can systematically rule out subtle logical flaws, provided the security protocol
models are expressed formally.

The proposed approach integrates intuitive visual modeling with formal analysis and sound generation of
interoperable code for the whole class of security protocols. MDD is leveraged to hide the complexity of a full
implementation during the design phase, so that the developer only needs focus on a simplified abstract model.
During this phase, formal verification is used in order to get assurance about logical correctness. Later on the
details needed to get an implementation can be added and code generation can take place. This approach is
implemented as an Eclipse plugin, named Spi2JavaGUI1.

The remainder of the paper is organized as follows. Section 2 introduces some background about spi calculus
and Spi2Java, the formal methods and tools that Spi2JavaGUI exploits. Section 3 describes the Spi2JavaGUI
framework by means of a running example. Section 4 discusses related work and Section 5 concludes.

2 Background: Formalism and Tools

The formal language underlying the proposed approach is the domain-specific spi calculus [3] language. A model
of a security protocol in spi calculus is composed of a system of parallel processes. Each protocol principal is
modeled by a process, exchanging messages with other processes via insecure communication channels. A Dolev-
Yao [4] attacker has access to the insecure channels and can eavesdrop, forge, alter or drop messages. Typically,
a principal is described as a sequential program that performs a sequence of input/output operations, checks
on received data, and cryptographic operations.

In this work, the ProVerif tool [5] is leveraged to formally prove the security properties of a protocol model.
ProVerif is a fully automatic verification engine which accepts (an extension of) spi calculus as its input modeling
language.

Semi-automatic code generation from an abstract model expressed in spi calculus can be done using the
Spi2Java [6], [7] framework in two steps. As a first step the abstract model is refined, by adding low level details
(e.g. which cryptographic algorithm must be used for a hash operation, or how to transform a message into
its network binary representation). These details are written in a separate document, called the refinement
document, so as to keep the spi calculus model as simple (and readable) as possible. As a second step the
consistency between the refinement document and the spi calculus model is checked and the automated code
generator of Spi2Java is invoked to generate the implementation code from the spi calculus model and the
refinement document.

3 Spi2JavaGUI

The Spi2JavaGUI approach is an enhancement of the Spi2Java approach, that reuses the core of Spi2Java, while
allowing the user to avoid the complexity of writing models directly in the domain-specific spi calculus. Also,
Spi2JavaGUI aims at making refinement and the whole development process simpler and less error prone.

Figure 1 shows the workflow of the framework. Both the spi calculus model and the refinement document are
edited jointly in visual form, while code generation is accomplished by re-using parts of the Spi2Java framework,
which offers a sound code generation technique [8]. The integrated development environment (IDE) guides the
user through the different steps of model verification, refinement and implementation generation.

1Available at http://spi2java.polito.it/gui/updates

2

http://spi2java.polito.it/gui/updates

Spi2Java frameworkSpi2JavaGUI framework

Graphical

modeling with

Spi2JavaGUI

Validation and

graphical

parsing

Spi calculus

formal model

Spi calculus

parsing

Symbol

table(s)

Spi2Java

refinement

Spi2Java code

generator

Protocol Java

code

generates generates

Refinement

document

generates

generates

Updates graphical model

if refiner performs changes

Spi2Proverif

translation

Run analysis and

report results

ProVerif script

editor

ProVerif

script

Figure 1: Workflow of Spi2JavaGUI and Spi2Java.

3.1 The Model

According to the Model-View-Controller paradigm, Spi2JavaGUI holds both an underlying model of the protocol
being developed and a graphical view of this model.

The Spi2JavaGUI protocol model has the same structure and semantics as a corresponding spi calculus
model, but is presented with a different syntax and has some extensions. Some of the extensions provide
the refinement information necessary for code generation, while other extensions provide visual information,
necessary to visualize model elements.

Graphic and refinement information is coupled strongly with model elements, by incorporating it inside each
model element.

Given the strict correspondence between a Spi2JavaGUI model and its associated spi calculus specification,
the former can be translated into the latter automatically, and it can be assumed that the spi calculus specifi-
cation resulting from the translation of a given Spi2JavaGUI model actually provides the formal semantics of
the Spi2JavaGUI model.

3.2 Visual Syntax

The visual syntax is based on a single block-oriented and data-flow-oriented view of the protocol, where principals
and message flows are represented according to the common and intuitive representation of message sequence
charts (MSC). Figure 2 shows the diagram of a simple authenticated Remote Procedure Call (RPC) protocol.

The client and server roles are represented by the left hand side and right hand side main blocks of the
picture, respectively. The client (A) sends a request message to the server (B) which responds with a response
message. The structure of the two messages can be represented as follows.

1. A → B : S,Na,H(KAB , REQ,Na, S)

2. B → A : f(S), H(KAB , RES,Na, S, f(S))

The request message is composed of a string S, which identifies the remote procedure to call and its parameters,
a cryptographic nonce (i.e. a fresh random number) Na, and a keyed hash (or HMAC), calculated as the
cryptographic hash of the concatenation of a shared key KAB , a tag (constant string) REQ, the nonce Na and
the string S. The response message is composed of f(S), which represents the output of the remote procedure
call, and a HMAC calculated with the shared key KAB , the RES tag, the nonce Na, and the request and

3

Figure 2: The Spi2JavaGUI main view with a simple RPC protocol model.

response strings. For simplicity, in this example f(S) is defined as the cryptographic hash of S, but in general
this can be an arbitrary function.

The way each message is built from elementary components before being sent and the way it is processed
after having been received are specified using operation blocks inside each protocol role. Special blocks in the
upper area of each role block represent input parameters and protocol constants.

Refinement information of each block can be set in a property sheet, available on block selection.
Abstraction is supported through the possibility to have nested blocks and to hide non-relevant aspects

when one is focusing on a specific aspect of the protocol. For example, blocks that imply a binary decision
are rendered by having separate areas for the True and False branches, as shown in the example of Figure 2.
However, each branch can be collapsed by the user when attention has to be focused on the other branch.

Connections between blocks of the model establish dependency relations, because the output value(s) of
an operation depend on the block(s) that are connected to its input port(s). The order of operations implied
by these dependencies can be automatically computed so as to convert the data-flow representation that is
displayed, into the control-flow one of the underlying model. In this way, the model always includes, for each
process, a fully ordered set of operations, which can be directly translated into spi calculus syntax.

Visual modeling and abstraction techniques are implemented in a prototype editor which is part of the
Spi2JavaGUI framework.

3.3 Formal Analysis and Code Generation

Validation of the modeled protocol aimed at detecting modeling errors is accomplished both by performing
in-editing checks and by evaluating OCL-like rules that enforce the internal consistency of the model. For
example, a block missing an input connection is reported as a modeling error to the user.

Once the protocol is modeled, and the validation phase passed, the user can run the ProVerif [5] tool to
perform formal analysis. The interaction with ProVerif is managed internally by Spi2JavaGUI, which automati-
cally translates the model into a formal spi calculus specification in the ProVerif input syntax. Note that formal
verification does not require that implementation details have been specified with their final values, because
formal verification just uses the abstract model and disregards implementation details.

The last development phase is the generation of concrete implementation code in the Java language. To
that end, Spi2JavaGUI abstracts the interaction with the Spi2Java libraries and, thanks to the refinement
information that is now embedded in the graphical model (via the property sheets), the code is generated by a

4

single automatic step.
Using the Spi2Java code generation engine to obtain the final code brings an added value, i.e. the formally

proved soundness of the code generation process. More precisely, as shown in [8], the generated code is guar-
anteed to fulfill security properties such as secrecy and authentication under a Dolev-Yao [4] attacker, provided
that the same properties hold on the abstract formal model from which the code has been generated. Since
security properties are formally verified on the abstract model before generating code, high confidence on the
generated code is finally obtained.

Spi2JavaGUI has been successfully applied to real security protocols. As an example, it has been used to
develop an interoperable implementation of SSH.

4 Related Work

GSPML [9] is a custom visual modeling formalism to represent high-level protocol specifications in a concise
manner, aiding in both understanding and verification. The event-based and trace-oriented style in which
protocols are modeled makes GSPML amenable to formal verification; however GPSML abstracts internal
computation performed within protocol agents, which is essential for code generation. Hence, the framework
provides no mechanism to generate a protocol implementation.

SPEAR II [10] allows visual modeling of security protocols integrated with the GNY formal analysis tool,
which is based on a variant of the BAN modal logic [11]. The model is based on MSC-like diagrams, and only the
main sequence of messages exchanged in a normal run of the protocol is represented. Thus, while this is enough
for a BAN-logic analysis, this is less suitable for a rigorous transition from model to protocol implementation.

UMLsec [12] extends UML enabling visual modeling (based on annotated sequence charts) and formal
verification of security protocols. The main differences, with respect to the approach proposed here, is that
messages are represented only textually, and implementation details cannot be added in the visual model. This
makes UMLsec amenable to formal verification, but not to code generation. Extending UMLsec to support
automatic code generation would technically be possible. However, this would require the addition of new
views, with the inherent problem of keeping them synchronized.

Smith et al. [13] exploit the standard ports and protocols features of UML 2.0 to define executable security
protocol models, from which executable code can be generated. However, no formal semantics is provided for
the visual model, so formal verification cannot be supported.

5 Conclusion

A novel domain-specific approach for visual MDD of security protocols has been presented. This approach
combines visual editing, which is more intuitive than existing textual formal languages, with a rigorous formal
approach to model verification and code generation.

The soundness of the Spi2Java framework is leveraged by Spi2JavaGUI to generate code with high confidence
of correctness.

Compared to existing textual models, the proposed visual model provides an effective way of hiding the
model complexity. Low-level aspects that are not relevant during protocol design can be collapsed away, and
drilled-down later when specifying protocol implementation details. Similarly, specific execution scenarios can
be highlighted (e.g. the typical protocol run), despite the model encompassing all scenarios at once (including
handling of all error conditions).

Spi2JavaGUI visual models substantially differ from previous visual proposals. While UML-based approaches
use many views and diagrams, Spi2JavaGUI provides a single comprehensive view, tailored to the specific needs
of security protocol modeling. Furthermore, with respect to other approaches providing linkage with formal
models that are oriented to experts in formal methods and security, Spi2JavaGUI uses data-flow-oriented models
that are similar to other models well-known by software developers.

The proposed Spi2JavaGUI formalism fulfills the main key characteristics for a model-driven approach, as
proposed by Selic [2]. Abstraction is enforced by view collapsing and hierarchical models. Understandability
is achieved by visualizing the protocol data path of each protocol session in MSC-like style. In addition, the
Spi2JavaGUI approach clearly fulfills accuracy, i.e. true-to-life representation and predictiveness, i.e. possibility
to predict interesting but non-obvious properties, because of its ability to discover attacks on the modeled
protocol. Even if not verified experimentally yet, it is believable that the Spi2JavaGUI approach also fulfills
inexpensiveness, i.e. the fact that models are significantly cheaper to construct and analyze than the modeled
system, because Spi2JavaGUI models are relatively simple and let the user focus on the protocol logic alone,
before being involved in other implementation details.

5

References

[1] M. Ray, “Authentication gap in TLS renegotiation,” http://extendedsubset.com/Renegotiating TLS.pdf, 2009.

[2] B. Selic, “The Pragmatics of Model-Driven Development,” IEEE Softw., vol. 20, pp. 19–25, September 2003.

[3] M. Abadi and A. D. Gordon, “A calculus for cryptographic protocols: the spi calculus,” in 4th ACM conference on
Computer and communications security, 1997, pp. 36–47.

[4] D. Dolev and A. C.-C. Yao, “On the security of public key protocols,” IEEE Transactions on Information Theory,
vol. 29, no. 2, pp. 198–207, 1983.

[5] B. Blanchet, “An Efficient Cryptographic Protocol Verifier Based on Prolog Rules,” in 14th IEEE workshop on
Computer Security Foundations, 2001, pp. 82–.

[6] D. Pozza, R. Sisto, and L. Durante, “Spi2Java: automatic cryptographic protocol Java code generation from spi
calculus,” in Advanced Information Networking and Applications, 2004. 18th International Conference on, vol. 1,
2004, pp. 400 – 405 Vol.1.

[7] A. Pironti, D. Pozza, and R. Sisto, “Formally-based semi-automatic implementation of an open security protocol,”
Journal of Systems and Software, vol. 85, p. 835–849, 2012.

[8] A. Pironti and R. Sisto, “Provably correct Java implementations of Spi Calculus security protocols specifications,”
Computers & Security, vol. 29, p. 302–314, 2010.

[9] J. McDermott, “Visual security protocol modeling,” in Workshop on New security paradigms, 2005, pp. 97–109.

[10] E. Saul and A. Hutchison, “Using GYPSIE, GYNGER and Visual GNY to Analyze Cryptographic Protocols in
Spear II,” in Advances in Information Security Management & Small Systems Security, 2001, vol. 72, pp. 73–85.

[11] M. Burrows, M. Abadi, and R. Needham, “A logic of authentication,” ACM Trans. Comput. Syst., vol. 8, no. 1,
pp. 18–36, Feb. 1990.

[12] J. Jürjens, “Developing high-assurance secure systems with UML: a smartcard-based purchase protocol,” in 8th
IEEE international conference on High assurance systems engineering, 2004, pp. 231–240.

[13] S. Smith, A. Beaulieu, and W. Phillips, “Modeling and verifying security protocols using UML 2,” in Systems
Conference (SysCon), 2011 IEEE International, April 2011, pp. 72 –79.

6

	Introduction
	Background: Formalism and Tools
	Spi2JavaGUI
	The Model
	Visual Syntax
	Formal Analysis and Code Generation

	Related Work
	Conclusion

