Sustainability and environmental care in the anastylosis and restoration project of the first order of the Severian marble scaenaefrons of the theater of Hierapolis of Phrygia

Original

Availability:
This version is available at: 11583/2503831 since:

Publisher:
Valmar - Moda Ofset

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

(Article begins on next page)
PROCEEDINGS

5th International Congress

on

“Science and Technology for the Safeguard of Cultural Heritage in the Mediterranean Basin”

VOL. II
DIAGNOSTICS AND RESTORATION (1st Part)

CULTURAL HERITAGE
ISTANBUL 2011

Istanbul, Turkey
22 – 25 November 2011
PROCEEDINGS

VOL. I - RESOURCES OF THE TERRITORY
VOL. II - DIAGNOSTICS AND RESTORATION (1st Part)
VOL. III - DIAGNOSTICS AND RESTORATION (2nd Part)
VOL. IV - BIOLOGICAL DIVERSITY - MUSEUM PROJECTS & BENEFITS

INDEX VOL. II

Organization .. IV
Congress Data .. VI
Articles .. 1
Titles index ... 379
Keywords index ... 387
Authors index .. 391
ORGANIZATION

HONORARY COMMITTEE

Ertugrul Gunay
Ministry of Tourism & Culture, Turkey

Giancarlo Galan
Ministry of Culture, Italy

Michela Brambilla
Ministry of Tourism, Italy

- Huseyin Avni Mustu
 Governor of Istanbul, Turkey
- Kadir Topbas
 Mayor of Istanbul Metropolitan Municipality, Turkey
- Yunus Soylet
 Rector of the Istanbul University, Turkey
- Nur Akin
 ICOMOS, Turkey
- Maria Maoutone,
 Dept. Cultural Heritage

- Sesto Viticoli,
 Dept. Molecular Design (National Research Council, CNR), Italy
- Franco Salvadori
 Italian Geographic Society, Italy
- Cevat Erder
 ICCROM, Former director

SCIENTIFIC COMMITTEE

Hala Afifi, Cairo University, Egypt
Zeynep Anunbay, Istanbul Technical Univ. Turkey
Engin Ak郁闷re, Istanbul University, Turkey
Monica Alvarez, CSIC, ICG, Madrid, Spain
Elif Özlem Aydin, Gebze University, Turkey
Meric Bakiller, Mimar Sinan University, Turkey
Claire Angèle Baluc, DSL Heritage, Malta
Can Binan, Yildiz Technical University, Turkey
Demet Binan, Yildiz Technical Univ. Turkey
Hasan Boke, Izmir Institute of Technology, Turkey
Antonio Gómez Bolea, Barcelona Univ. Spain
Ezio Burri, L'Aquila University, Italy
Emine Caner, Middle East Technical Univ. Turkey
Giuliana Caneva, Rome "TRE" University, Italy
Bernardino Chiara, Turin Polytechnic, Italy
Philippe Colomban, CNRS, LADIR Thiais, France
Alfredo Coppa, Rome University, Italy
Francesco D'Andria, Leece University, Italy
Frank Ehlers, NATO, Undersea Research Centre, Germany
Fethiye Erbay, Istanbul University, Turkey
Mutlu Erbay, Bosporus University, Turkey
Ahmet Ersen, Istanbul Technical Univ. Turkey
Nevra Ertürk, Yildiz Technical Univ. Turkey
Angelo Ferrari, CNR, IMC Rome, Italy
Piero Frediani, CNR, Florence, Italy
Paolo Galluzzi, Florence University, Italy
Salvatore Garaffo, CNR, ITABC Rome, Italy
David Gregory, National Museum of Denmark, Copenhagen, Denmark
Angelo Guarino, AIC, Italy
Sevil Gulcar, Istanbul University, Turkey
Ahmet Güleç, Istanbul University, Turkey
Meral Halifeoğlu, Dicle University, Turkey

Mohamed Abdel Harith, Cairo University, Egypt
Murat Hatipoglu, Dokuz Eylul Univ. Turkey
Basak Ipekoglu, Izmir Institute of Technology, Turkey
Jery Jasiensko, Wroclaw Technical University, Poland
Andreas Kappos, Aristotle University of Thessaloniki, Greece
Sedat Karagoz, Mimar Sinan University, Turkey
Roman Kozlowski, Polish Academy of Sciences, Poland
Donna Kurtz, Beazley Archive, Oxford, UK
Alpaslan Hamdi Kuzucuoglu, Istanbul University, Turkey
Johanna Leissner, Fraunhofer Institute, Germany
Milica Ljajevic Grbic, Belgrade Univ. Serbia
Roberto Macchiarelli, Poitiers University, France
Laura Moltered, CNR, Dept. Cultural Heritage, Italy
Antonia Moropoulou, Athens Technical University, Greece
Stale Navrud, Norwegian University of Life Sciences (UMB), Norway
Michele Pipan, Triest University, Italy
Anastasia Pournou, Athens University, Greece
Thomas Risan, The Norwegian Institute for Cultural Heritage Research, Norway
José Ignacio Rojas-Sola, Jaén University, Spain
Jon Rodica – Mariana, ICECHIM, Bucharest, Romania
Manuela Romagnoli, Tuscia University (VT), Italy
Julio Romero Neguera, Granada University, Spain
Luigia Sabbatini, Bari University, Italy
Cristina Sabbioni, CNR, IFAC Bologna, Italy
Renzo Salimbeni, CNR, IFAC Florence, Italy
Nil Sari, Istanbul University, Turkey
Apostolos Sarris, Foundation for Research & Technology, Crete, Greece
Magda Sibley, Manchester School of Architecture, UK
Claudia Sorlini, Milan University, Italy
Johan Tidblad, Swerea Kibab, Sweden
Sarp Tuncoku, Izmir Institute of Technology, Turkey
Claudio Tuniz, Triest University, Italy

Alessandro Vigato, CNR, ICIS Padova, Italy
Moushir Zahid, Cairo University, Egypt
Nilufar Baturayoglu Yoney, Istanbul Technical University, Turkey

ORGANIZING COMMITTEE

Ali Osman Avsar, Culture & Tourism Ministry, Turkey
M. Simsek Deniz, Istanbul Metropolitan Municipality, Turkey
Antonella De Micco, CNR, Rome, Italy
Dionira Di Ciano, CNR, Dept. Medicine, Rome, Italy
Fethiye Erbay, Istanbul University, Turkey
Angelo Ferrari, CNR, IMC Rome, Italy
Angelo Guarino, AIC, Italy
Ahmet Güleç, Istanbul University, Turkey
Saadet Guner, KUMID, Turkey
Hasan Riza Guven, Istanbul University, Turkey
Safak Sahin Karamehmetoglu, Istanbul University, Turkey
Alpaslan Hamdi Kuzucuoglu, Istanbul University, Turkey
Manuela Manfredi, AIC, Rome, Italy
Gianni Pingue, AIC, Rome, Italy
Elvira Possagno, AIC, Rome, Italy
Deniz M. Simsek, Istanbul Metropolitan Municipality, Turkey
Ozcan Feyzullah, Deputy Governor of Istanbul, Turkey
Enza Sirugo, CNR, IMC Rome, Italy
Ali Omar Taha, CIERA, Cairo, Egypt
Stefano Tardioli, CNR, IMC Rome, Italy
Congress Data

750 Registered Delegates
1,042 Abstracts Authors
410 Presentations
368 Oral presentations
42 Poster presentations
50 Registered Delegates Countries

Albania, Algeria, Belgium, Bulgaria, China, Colombia, Congo, Croatia, Czech Republic, Cyprus, Denmark, Egypt, Finland, France, Georgia, Germany, Ghana, Greece, India, Iran, Iraq, Israel, Italy, Jordan, Kingdom of Saudi Arabia, Macedonia, Malta, Mongolia, Morocco, Nepal, Netherlands, Norway, Palestine, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Syria, Tanzania, Tunisia, Turkey, Uganda, UK, Unite Arab Emirates, USA.

Participants Profile

By Region

- Europe 87%
- North Africa 6%
- Asia 7%

By Institution

- Universities 65%
- Scientific Institutions 26%
- Other Sources 9%

Delegates from Europe

Delegates from Turkey
SUSTAINABILITY AND ENVIRONMENTAL CARE IN THE ANASTYLOSIS AND RESTORATION PROJECT OF THE FIRST ORDER OF THE SEVERIAN MARBLE SCAENAEFRONIS OF THE THEATER OF HIERAPOLIS OF PHRYGIA

Mighetto Paolo

1Italian Archaeological Mission at Hierapolis of Phrygia, Italy-Turkey, acmarch@yahoo.com

Keywords: Conservation-sustainability-static improving

ABSTRACT

Times are now ready to provide the necessary focus on the environment in which we live and even the world of restoration and conservation can now finally play its part to preserve the world in which we live for future generations promoting a sustainable conservation that can transmit the cultural heritage without inimicable sacrifices for the environment.

INTRODUCTION

Attention to the environment has become an unavoidable and inescapable requirement; in the construction, that is an urgent need according that the buildings and the built environment is using half of the material extracted from the earth’s crust and produce each year more than 450 million tons of construction and demolition waste, more than a quarter of all the waste products in the world.

Sustainability and environmental compliance are almost universally shared and in the new building the application of these concepts is largely encoded by protocols and certifications such as LEED or Klimahaus. Unfortunately, in restoration and conservation this is still in its early and too many times, hindering the practice and old habits, we use solutions that are not environmental friendly and, moreover, extremely expensive if you consider, in addition to the capital cost of materials, environmental and social expenses related to production, use and disposal of these same materials no longer consistent with our development.

To encourage the use of natural products rather than synthetically originated is therefore today a necessity; not only regarding a more sustainable exploitation of natural resources, but also and above all, to limit the production of synthetic materials, responsible for the increasing emissions in atmosphere and in the environment of harmful products. We should not forget that the disposal and the dispersion of those products, even considering that –despite the long time of a potential reversibility of the intervention- sooner or later we will have to replace protections, reinstatement, reinforces, and having put the problem of their own, very difficult and expensive disposal in nature. Even all these may be good reasons to increase testing and use of natural products in all proceedings related to the conservation of cultural heritage, but, if still not enough, consider that the natural products are the most compatible with the ancient materials - because they are the same materials- and less subject to alteration or degradation phenomena that, over time, may even involve the same original material contradicting the root instances that were the basis of conservative operations. Unfortunately, with regard to ancient materials, the rejection is never as fast as the human body and some times the damages can reveal after years or even decades, however, after a long time, and maybe after the induced degradation has been developed and has progressed from the inside, hidden and invisible, like a cancer.

The primary intent of a restoration should be those of conservation but, certainly, not apart from the effects they may cause on the surrounding environment; whether producing the materials that can save an architectural work from decay contributes to increase the production of greenhouse gases -the primarily responsible for pollution which is one of the most active in the deterioration of the same ancient works-, then the result of the operation leads into an irrational spiral.
In such way, this could be good in a short-term, but looking further it will reveal completely bad for the same heritage and for its preservation.

Too often in the past, solutions apparently suitable to the needs of protection, after decades, are proved to be even harmful as not in accordance with the same original materials, as well as the environment.

Tons of concrete were used in the twentieth century to consolidate the remains of the past; let’s just think at the restoration of the Acropolis in Athens made by Balanos, just as a well known example- and even if the “concrete” was used with wisdom to avoid the problem of salts -for instance, in the hypostyle hall of the theater of Hierapolis, with precast blocks for reinstatement of the transverse arches- remains the problem, in future, necessary, replacement of cement additions, where and how to dispose of these materials, however, in a yard “little technological” as is a restoration yard.

Having said this, let me now explain the project for the theater of Hierapolis through the objectives, policies and technical choices that led the accomplishment.

The working plan for the anastylosis of the first order of Severian scanaeaeon of the theater of Hierapolis was completed in January 2009 after which, on the basis of the preliminary design drawn up by the Italian Archaeological Mission, the Turkish government decided to finance the works in summer 2008, with a budget of one million euros (2,440,400 Turkish lira). After a further review by the Italian Mission, the project was sent to the Turkish Ministerial Committee for Cultural Heritage on May 27, 2009 and was approved by the 12 of June of the same year. At The making of the various phases of the project has worked a wide team of architects, engineers and historians led by the writer (engineer Franco Galvagno, architects Filippo Masino and Giorgio Sobrè, archaeologist Caterina Polito, architects Alessandra Aires and Marco Minari for the environmental and safety aspects related to construction site).

The theater of Hierapolis appears today as the result of an ongoing historical process that led to the current condition of the ancient theater - already with different and complex phases of construction and restoration that are still under investigation - to a collapsed building for the storage of grain, poor houses and stables subsequent to the earthquake of the seventh century AD, that left in ruins and occasionally inhabited by nomadic peoples (a particularly long period, at least from the eleventh to twentieth century), submitted to archaeological excavation and restoration (activities of the Italian Mission has focused on the theater since 1957), and then again to cultural heritage under protection and visited every year by nearly two million tourists from all over the world.

The theater is a monumental complex that can only be considered in its complete history, its stages of transformation more or less significant in the various functions it has assumed, in the progressive and uninterrupted layering of events that led to its present appearance. After the excavation and restoration works done by the Mission, the theater is now turning into a veritable museum of itself and its history, in the words of Professor Francesco D’Andria, Director of the Italian Archaeological Mission, "the theater of Hierapolis is now a theatre-museum that presents itself to visitors as a great book on open air architecture".

For the old building it is now evolving a phase of increasing transformation into a museum that began with the archaeological discovery and now requires – according to tourism needs to rule and stream within the limits of sustainability and compatibility against the property to be protected- further restoration and reconstruction, which shall remain on the path of those already implemented in the last forty years.

This is a true “super-project” that, through the emptying of the cavea and orchestra caused by the collapse (during the Fifties and Eighties), the anastylosis of the hypocoscenum (1982-85 and 2004-07), the restoration of the transverse arches of the stage (1978-82), the replacement of the back wall until the level of the first cornice (1992-94), the restoration of the imacueva with the replacement of staircases access (1995-99 and 2003), the reassembly of the stage (2005-07) and, of course, the continuation of the excavations, today reaches the goal of the anastylosis of the first order of the Severian marble scanaeaeon as the engine for consequent conversion of the stage building as a museum, in the full meaning of (the verb) to restore: restore architectural significance to the degraded manufactured building.

The excavations that freed the orchestra and imacueva from the collapsed material (and deposit) accumulated over the centuries of neglect, resulted in the identification and cataloging the thousands of pieces that made up the marble decoration of the scene (about 400 original blocks) but now further crushed, make the first order. The process of knowledge, has now reached very advanced stages, then allowed to achieve a very fine mapping of each part and their mutual relations, the basis of the reconstruction hypothesis.

The reorganization of the imacueva and their cataloging then made it possible to reorganize the space behind the theater and to complete on the ground reassembly of the frizees and cornices of the order (as well as one of the gables and the sequence of columns and capitals) to allow easy reading, to assess their condition and achieve the insights required for the anastylosis project and building.

The extraordinary wealth of elements that composing the Severian marble fronscena -four thousand pieces that made up the three overlaid orders of the scene and parascen, partly originated from the previous Flavians decoration - is now deposited, as mentioned, in the large yard behind the theater, between this, the Insula 104 and the Sanctuary of Apollo; the work done since 2004 by the architects of the Italian Mission Filippo Masino and Giorgio Sobrè, with the assistance of Hasım Yıldız, now allow us to analyze all elements of the first order preserved for more than 95% of the approximately 400 original blocks and, particularly, to read the signs of construction and workmanship, to deepen the intrinsic and extrinsic relations, to assess the state of deterioration, to speculate a conservation plan according to the current strategies for managing the site of Hierapolis-Pamukkale, a World Heritage Site since 1988 (No. 485 of the UNESCO list).

The original disordered cumulus of blocks in the outer area of the theater determined, however, over the decades, the arise of widespread deterioration and degradation also respect of the surfaces that were originally hidden or protected by overhangs above. In addition to the deterioration due to the exposure of the materials, to the restoration ancient building as well as by subsequent collapses, were added to those due to the prolonged burial phases of abandonment of the building and then those related to their rediscovery -the signs of digging and signs of their carrying outside and finally the recent exposure to an environment certainly not positive to preservation. The site of Hierapolis-Pamukkale is in fact interested in strong temperature range in the diurnal-nocturnal cycle (also 30-40°) and the seasonal cycle (from the scorching summer sun to winter frost), as well as a strong wind with strong gusts of wind filled with sand in suspension.

The massive number of tourists, that until 2007 and for more than twenty years has led every day hundreds of buses, just a few hundred meters from the theater, has contributed to the pollution by exhausted gases to form black crusts on some blocks that are more exposed and less washed out. Differential degradation due to the different textures and consistencies of the original material resulted in loss of material located at the veins of marble, some blocks have also suffered with time, due to the incongruous position, a significant deformation with variations in shape and form. In localized cases the passage of ancient calcareous water has caused the arising of deposit and in some cases wedge thickens in the meanders of the carved surface.

One of the most important problems of those related to degradation of the elements of fronscena is doubtless represented by the loss of integrity of the column shafts. In almost all cases, the shaft appears broken into two or more pieces as a result of the collapse in the orchestra. The analysis of parts has allowed to reassemble the piece and the plans identifying the corresponding faces of fracturing, almost always inclined but relatively regular. Unfortunately, that's why the restoration of the parts of the shafts will need reinforced stitching to ensure that the assembly with the onset of excessive shear strain, possibly caused by an earthquake, won't effect further degradation or partial collapses.
Owing to previous matters, and in view of the very high percentage of the original recognized and classified pieces (about 97% of the first order), the choice of operating anastylosis of the first order, and thus the critical restoration of the dismembered parts (Venice Charter, Art. 15), is justified both by preserving and protecting the same marble elements of the architectural apparatus and those relating to recreate the unit interpretation of districa membra of the theater. If we consider, the subsequent consolidation of the wall behind the stage- already integrated in the Seventies: a single row of dry laid travertine blocks, more then six meters high, in need of structural aid in the event of an earthquake-, the possibility of increasing the knowledge on Severian and Flavian construction site - as well as scene architecture and its history-, the opportunity of a further reorganization of the area behind the theater and the opening of new fronts of excavation and research in areas already occupied by the marble blocks, you can really agree with the drafters of the Charter of Athens in defining well opus in place the original elements found (Charter of Athens, ch. IV).

Evaluation of the alternative hypotheses to anastylosis led to exclude the preservation of pieces on the ground in the back yard, because this solution would require the formation of a large fenced perimeter - with significant interferences with the foundations of the uprights in the archaeological ground- and, above all, a system of coverage they need, assuming an area of approximately 3,000 square meters of extension subject to snowfall in winter and strong summer winds, would have involved the preparation of a problematic intervention - though resolvable- from the landscape point of view, neither allowing the investigation of the urban plan around the theater nor recovering the public availability of the stage.

Anastylosis planning and works related to it follow, anyway, the principles laid down by the Restoration Charters to Athens in 1931, the Venice of 1964, and that of Krakow in 2000-, and they must also make reference to all phases of the project and construction.

- Anastylosis as recomposition of the original elements now dismembered (Athens Charter, ch. IV, Venice Charter, Art. 15);
- Using new materials always recognizable (Athens Charter, ditto);
- Wise use of all resources of modern technology (Athens Charter, ch. V) and all the most modern methods of structure and conservation, whose efficiency has been demonstrated by scientific data, and guaranteed by experience and adapted to the real needs of conservation (Venice Charter, Art. 10; Krakow Charter, ch. 10);
- Opportunities to restore the monument of the elements of sculpture and decoration which had been separated as a result of digging (paraphrase of the Venice Charter, Art. 8);
- Respect for original material and authentic documents (Venice Charter, Art. 9); any integration, recognized as essential for aesthetic and technical reasons, must bear a contemporary mark (ibid.) and achieved in a language that conforms with contemporary architecture (Krakow Charter, ch. 4);
- Replacements of missing parts must integrate harmoniously with the whole, but at the same time must be distinguishable from the original so that restoration does not falsify the artistic or historic evidence (Venice Charter, Art. 12 and Art. 15);
- The intervention should ensure compatibility with the materials, structures and existing architectural values (Krakow Charter, ch. 10);

RESULTS
The principle we've followed in making the consolidation project is based on the concept of "improvement" as the execution of one or more works on each structural elements of the building with the aim of achieving a higher degree of security without changing the overall behavior (Italian technical standards); essentially, with the objective of preserving the integrity of the historical artifact material aiming to consolidate the uniformity of the masses.

When using reinforced stitching for the rough elements of the order, the drilling is minimized to achieve adequate levels of security, preserving the authenticity structural; filling the spaces with compatible material, the mechanical properties consistent with the existing structure, improves the distribution of loads whilst improving the mechanical strength of the appliance and decorative walls. This will prevent the strain nuclear due to the presence of heterogeneous masses that may be responsible for spoilage phenomena such as cracking, condensation, crumbling structure, with the inevitable incentive of the degradation.

On the other hand, the need to tie together the elements of the order that were originally laid dry with only the interposition of leaded sealed hinges it can be seen against a structure that since the dawn of its history has been subject to localized or generalized instability and crashes, also due to the impressive seismic activity of the iberopolis area. While the anastylosis is generally considered the best method to preserve the ancient material, then this must guarantee the right balance between conservation and safety, which is also the result of a thorough consideration of the "time-testing" on the old structures, leading to an intervention that arises from the consideration of the minimum useful intervention, as well as recommended by the drafters of Section III of the Final Document of the International Conference on Conservation Kraków 2000 (Article IV).

Choosing the Glass Fiber Reinforced Polyester (GFRP Glass Fiber Reinforced Polymer) as the material of the reinforcing ties -used only in the form of spiral bars as a substitute for more traditional stainless steel bars- is motivated by the strength of the material in presence of high temperature, and for its excellent anti-corrosive qualities, as well as an excellent cost-performance ratio. The use of such material in the form of spiral bars also helps ensure a tight fit to the natural anchoring mortars. The reference bar is made of alkali resistant glass fiber and polyester resin, with increased bond made coated quartz sand. The sustainability characteristics that suggested this choice are the following:

- High chemical resistance with no exposure to corrosion even in harsh environments;
- High strength and, particularly, high tensile strength;
- Fully compatibility with traditional building materials;
- High temperature resistance that ensures dimensional stability even in the case of temperature fluctuations particularly high;
- High dielectric properties (stability of the structure even in the presence of high electrical stress) and non-magnetic (no formation of Faraday cages);
- No harmful emissions;
- Low environmental impact and disposal of surplus or waste materials in accordance with standard practices for municipal solid waste.

The same choice of using ties between the opposite walls of fronscena and retroscena, but with a fully contemporary language and materials -this means metal arches that reconstitute the interior volume of the scena building- concern the attention to the original geometry -product of the history of the building- to the specific mechanical history of the building that allow us to understand and evaluate the reliability and effectiveness of the technical solutions. It should be emphasized that the new consolidation facilities and related stairs will ensure the chance for a maintenance over time in the structure and to those parts of the building that are now inaccessible.

For anastylosis collateral metal structures (scaffold binding between the walls of scenae building and stairs of service) the choice of material has ended up to COR-TEN steel. This type of steel is now widespread and firmly established in almost all countries, not least for its aesthetic features but also for its two main distinguishing features:
To restore the continuity of the structural parts and the broken marble elements, the consolidation injections of hydraulic lime can provide 28-day compressive strength of 9 N/mm² and a resistance to bending, always after 28 days of ripening, of 3 N/mm², with a secant elasticity modulus approximately of 9,000 N/mm². There are even high-strength structural grout, available that are always composed of natural hydraulic lime NHL 5 and selected aggregates, which may very well replace the shrinkage compensated cement mortar in fixing reinforcement of metal structures of the stage, ensuring strength classes M15 with a compressive strength at the end of maturity greater than 18 N/mm².

CONCLUSIONS

Using only structural grout of natural hydraulic lime for bedding and consolidation represents a significant breakthrough in the international outline of conservation and a steady choice in terms of environmental compatibility and sustainability. We applied the principles of environmental sustainability in the field of restoration in a complex project involving one of the most important monuments of Turkey. In conclusion, times are now ready to provide the necessary focus on the environment in which we live and even the world of restoration and conservation can now finally play its part to preserve the world in which we live for future generations promoting a sustainable conservation that can transmit the cultural heritage without intolerable sacrifices for the environment.

ACKNOWLEDGEMENTS

I would like to thank prof. Francesco D’Andria, Director of the Italian Archaeological Mission at Hierapolis of Phrygia, for giving me the opportunity, since 2004, to work on the restoration of the theater. Teamwork and the high specialization distinguish the work of the Italian Mission; with over 50 years of work at the site of Hierapolis-Pamukkale the Italian Mission is now one of the main centers of archaeological research, conservation and preservation in Turkey. Credits of the project: Missione Archeologica Italiana a Hierapolis di Frigia, prof. Francesco D’Andria (client) Arch. Paolo Mighetto (project and coordination), eng. Franco Galvagno (structure), arch. Filippo Masino arch. Giorgio Sobra (historical analysis and reconstruction of the scenae frons), dr. Caterina Polito (archaeologist), arch. Alessandra Aires (landscape setting), arch. Marco Minari (safety analysis), arch. Andrea Silano (project collaborator), arch. Salvatore Bartolotta (structure collaborator), arch. Massimiliano Limoncelli arch. Silvia Freccero (rendering).
REFERENCES

FIGURES

Fig. 1 - The theatre of Hierapolis in 1957, at the beginning of the works of Italian Mission (MAIER Archives)

Fig. 2 - The theatre of Hierapolis in 2007, after the restoration of the stage and the hypocaustium. Behind the theatre, the square of the reconstructions (Paolo Miglietto)
Fig. 3 – The scaenae building of the theatre with the sets of transverse arches (Paolo Mighetto)

Fig. 4 – The first order of the scaenaefrons (Filippo Messino, Giorgio Sobrèl)

Fig. 5 – Plan of the stage after the interventions (Paolo Mighetto)

Fig. 6 – Transversal section on the scaenae building before and after the interventions (Paolo Mighetto)

Fig. 7 – Inner-outer scaenae building walls connection system (Paolo Mighetto, Franco Galvagno)