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Abstract

Context. Worldwide mobile device sales will reach 821 Million units in
2012 and will rise to 1.2 Billion in 2013 [1]. Inevitably the paradigm for
access information and internet services is increasingly migrating to mobile.
Context-aware services can help to improve the user experience because they
can adapt themselves to the users’ context but, despite the improvements
in terms of hardware, the the main obstacle towards a widespread adoption
of such services is the limited battery life. A context-aware service requires
the installation of a Context-Broker Application, which generates a continu-
ous flow of data from the smartphone and a constant usage of its equipped
sensors: as a consequence the considerable increase of energy consumption
becomes a problem.
Aim. The aim of this work is to propose gLCB an Energy Efficient Context-
Aware middleware for Android OS, which is able to collect Context Infor-
mation and to send it to a remote platform in an energy-efficient way. The
gLCB application proposes a new energy-aware data collection based on user
profiles.
Methods. We define policies based on battery consumption profiles, which
are selected depending on modifications of the context information. More-
over, we have implemented an automatic consumption testing mechanism
and a statistical treatment of results to provide a reliable validation of gLCB
in terms of energy efficiency.
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Results. Experimental results show that our middleware got the best trade-
off between number of server uploads and battery lifetime with the policies
computed automatically by the device. This means that the way in which
software is written can impact the energy consumption of a mobile device
and service adaptation can be based on the actual value of the battery charge.

Keywords: Context-Awareness, Energy Awareness, Energy Aware
Software, Android, gLCB, Local Context Broker

1. Introduction

The increasing proliferation of mobile devices and the intention of defining
universal standards related to the mobile market, motivate many companies
to implement context-aware standards, with the purpose of stimulating a
rapid and wide adoption of a variety of useful applications.

A context-aware system has to be able to combine contextual information,
which is related to the bounded environment. This info, called context data,
is any information that can be used to characterize a specific entity situation
[2].In this way it is possible to describe the actual situation, by determining
some automatic behavioural variations or by notifying the user about some
specific event. This kind of system has to be constantly in execution to
gather raw data and to execute different types of operations based on context
reasoning.

Context-Aware services collect contextual information automatically. With
a wide range of possible user situations, it is important that services have a
way to adapt appropriately to best support low battery scenarios. A system
is context-aware whether it uses the context to provide relevant information
and/or services to the user, where relevancy depends on the user’s task.

Many approaches are not completely dynamic, flexible or effective when
we need to automatically match battery consumption requirements in differ-
ing contexts. A Context and Energy Aware system has to be flexible and
able to react to environment variations.

Many features of modern devices like high processor speed, more effi-
cient displays, more powerful data storage and WiFi/GPRS/UMTS network
adapters, and specific hardware to enable advanced 3D graphics, consider-
ably influence the device energy costs. Current approaches are not able to
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implement energy-aware self-adaptation because they do not consider aspects
related to context management policies.

Context can be used to find a lower energy consumption performance as
well as implementing proper adaptation policies.

An energy aware context broker has to deal with:

• Sensing: to detect as much contextual information as possible,

• Transmission: to send gathered information to a context platform (for
further processing),

• Adaptation: to manage the energy cost caused by sensing and trans-
mission phases.

The context broker should be able to collect (and to send) context data only
when really needed to avoid useless duplicated data management. It is also
fundamental to include the battery charge state in the optimization strategy
the context broker is adopting: the context broker shall be able to manage
the information granularity depending on the battery level.

It is also indispensable to respect the following fundamental principles [3]
in order to reduce the energy consumption to the lowest possible level:

• less work requires less energy,

• event programming avoids polling,

• multi-core environment programming,

• periodic timer should be avoided and

• the system should be scalable.

A context-aware application has to be able to minimize its operations in
situations where the device is running out of energy [4]. In order to cut the
device runtime operations, it is important:

• to implement an efficient algorithm or to modify an existing one to
reduce operations have to be carried out to a minimum,

• to improve the compilation process by introducing optimizations based
on target processor and
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• to prefer a compiled and optimized code instead of an interpreted one.

Nowadays, operating systems for mobile devices provide different APIs to
check the battery state (e.g. battery charge percentage, battery technology
and temperature). Software components can be notified whenever batteries
state changes.

Energy Awareness is concerned with several aspects: the quantity of en-
ergy that is used, what this energy is used for, where it comes from, the
resulting effects (e.g. environment impact, resources consumption). In addi-
tion it poses the problem of how to reduce the energy consumption and its
collateral effects.

Our previous work [5] [6] demonstrated a relationship between software
and energy consumption. Even if software does not consume energy directly,
however it has a direct influence on the energy consumption of the hardware
underneath. As a matter of fact applications and operating systems indi-
cate how the information is processed and, consequently, drive the hardware
behaviour. We think that writing energy efficient code in a mobile environ-
ment can be more appreciated by users because there is a direct effect on
their mobile batteries lifetime.

The Energy-aware middleware we are going to introduce in this paper
uses certain resources (i.e. GPS, Bluetooth) related to different operations
that have a high impact on energy consumption.

gLCB implements features, which focus on reducing the energy consump-
tion by avoiding the execution of redundant operations.

The rest of this paper is organized as follows. Section 2 describes the
main characteristics of our Context-Awareness Platform. Section 3 describes
characteristics of the architecture and the components of gLCB, section 4 de-
scribes our validation criteria, section 5 introduces results, section 6 includes
related works and finally, Section 7 includes conclusions and future work.

2. Context Awareness Platform

gLCB is responsible of retrieving context information through device
hardware sensors, and it is also responsible of delivering such data to a Con-
text Awareness Platform (CAP) [7].

The CAP allows the collection of context data from users’ devices. Con-
text data can eventually be processed by other components of the platform
and become high-level context information (e.g. GPS coordinates can be
translated into a civil address). This process is called reasoning [8].
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Figure 1 describes the functional architecture of our CAP. From the figure
we can deduce how context is transformed from raw data into high-level in-
formation and how high-level information is exposed to external applications.

Figure 1: Context Awareness Platform: from raw data to high-level information

2.1. Context Capturing Layer

In this layer, raw context data are retrieved from the available device
sensors (e.g. GPS, phone, Bluetooth, WiFi, etc) and aggregated.

The aggregated data are then asynchronously transferred to the CAP.
This layer of abstraction collects context data in a fast and economic way,
in order to integrate heterogeneous information sources and consequently
supporting various protocols and different kind of data formats.

This is the layer where gLCB acts.

2.2. Context Analysis Layer

gLCB captures the low level data representations, which may not be
meaningful to applications, and sends them to the Context Broker.
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The CAP will modify this information in high-level representations which
are easier to interpret and to use (e.g., an address is more significant that
GPS coordinates). In context aware architectures, the reasoning component
elaborates raw data and generates high-level information. The reasoning
process may require significant computational effort so it is usually a server-
side operation.

Besides reasoning, the CAP may also try to learn user behaviours: this
technique is known as learning. Learning usually involves the analysis of
a context history database and may be executed offline or online. Offline
learning is a batch process, which runs periodically (daily, weekly, etc.) and
is applied to the whole context history.

Online learning is executed at every context change and receives contin-
uous feedback.

2.3. Service Integration Layer

This layer exposes context information towards the service platforms via
API. The interfaces exposed by the CAP also allow third party applications
to provide context data. As pictured in figure 2 the actors involved in the
CAP are:

• Context source: a component, which feeds context data into the CAP.
A source typically provides raw data (e.g. a mobile phone);

• Context consumer: a component which uses context information (e.g.
an application);

• Context provider: a context source which is also capable of producing
higher level information by acting as a consumer of raw data and a
source of high level information;

• Context broker: the component which stores context data.

2.4. Context Capturing Layer

More than one context consumer and context source can access the plat-
form to request and send context data. Specifically the context data are sent
from applications executed in mobile devices. In this way, it is possible to
perform data mining and clustering operations.
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Figure 2: Context Awareness Platform: actors

Context Consumers can retrieve context through synchronous requests
to the Context Broker or asynchronously by registering to context changes.
This second scenario optimizes the allocation of resources and the network
traffic: applications do not need timers to poll the CAP, the CAP triggers
applications only whenever a meaningful context change takes place.

3. gLCB

The middleware software we developed for Android OS, is based on two
levels: the first one is associated to the local context broker, and the second
one to the sensors layer. The lower level establishes a communication channel
to the higher level by sharing an interface. Mobile context-aware applications
can rely on the local context broker to retrieve context data. To do so, the
application is requested to bind to the LCB [9] service; when the binding
is established, the application can perform context queries which will result
in the retrieval of context data from the current device (if the requested
information is available locally) or from the CAP. The local context broker
manages its sensors via a Sensor Manager (Figure 2).

The Sensor Manager is responsible of:

• discovering new sensors,

7



• the management of sensors life cycle and,

• the management of their settings.

This component also exposes an interface, which allows the local context
broker to perform one-shot requests to sensors or to subscribe to context data
variations. Every sensor is installed as a service and runs in the background
on the device.

Figure 3: LCB sensors management

3.1. Critical aspects

We needed to guarantee a starting sensors mechanism in order to provide
the independence of the components involved during the application execu-
tion. Independence is crucial as the number of developed sensors may vary
and the test phase cannot depend on a newer release of gLCB. In this way the
Android operating system is able to recognize each sensor as an independent
application. The other critical aspect concerns the way in which data are
obtained from sensors. A possible solution should be the sequential scanning
of every sensor and the consequent data publishing in the server side. This
approach introduces some critical problems mainly related to:

• High device battery consumption;

• Static data search and data publishing based on specific movement;

• Redundant context data transmission;

• A single monolithic application including every sensor.

8



3.2. Limited Search and Publishing

Context data search and publishing are the most relevant stages related
to device battery consumption. Sensors that manage data provided by the
operating system (e.g. IMEI number, ringtone volume etc.) do not reveal
critical problems related to information management because such informa-
tion are fixed. On the other hand, the scanning of new wireless networks, the
nearby Bluetooth devices or the geographic position calculation, represents
expensive operations in terms of energy consumption. These operations have
to be limited whenever unnecessary.

3.3. Asynchronous Sensors Association

We created a sensor starting mechanism that was not dependent on the
main application starting mechanism. In this way, new sensors are indepen-
dent services associated with different starting components. Each sensor is
characterized by a component called BroadcastReceiver. This component is
an independent class that intercepts a specific system message called Intent.
gLCB broadcasts an Intent whenever it is launched. Every sensor is able
to intercept such intent and to react with a “Sensor Available” intent which
notifies gLCB about its availability. In this way, it is possible to associate an
undefined number of sensors with the main application. The only restriction
is that they must be installed in advance on the device. Table 1 lists every
available sensor.

3.4. Asynchronous Context Data Publishing

Another critical issue about power consumption is the redundant pub-
lication of unchanged context data. A periodical sequential scanning of all
sensors will cause a waste of energy as every sensor is activated at each scan.

A possible solution to this problem is to implement a more efficient con-
text scanning algorithm, e.g. an event-based algorithm which activates the
sensors only in response to specific events. Table 2 lists every available sen-
sor and the events that trigger the data update on the server side. All the
sensors share two events: Sensor Start and Out-of-date Context Data. The
first event means that the sensor collects and sends context data whenever
the sensor is started. The second event means that after a certain period the
sensor must refresh the context data because it is deleted by the CAP. This
time period can be managed to increase or decrease the number of context
updates regardless of data variation. To save energy we introduced a new
parameter called mindelta. With this parameter the user can set, for each
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Table 1: Sensors Description

Sensor Description
WiFi List of WiFi networks
DeviceActivity Information about current applications

running
Location Geographical user position
DeviceStatus Terminal publishing status
Phone GSM or UMTS cell on which is

connected
Bluetooth Bluetooth neighbours
Data Connectivity device info
Call Call status

sensor, the minimum time period which must elapse between two updates.
Mindelta must be lower than the data expire time to ensure the context data
availability. Basically by managing expire time and mindelta parameters,
the user can find a good trade-off between data processing and energy effi-
ciency. In this way, the data stored on the server side is stable, updated, and
available for Context Consumers.

3.5. Different Update Policies

We created seven user profiles: VERY LOW (Table 3), LOW (Table 4),
NORMAL (Table 5), HIGH (Table 6), AUTO, and CUSTOM. Each one can
change the gLCB behaviour in terms of context data searching and publishing
by managing:

• the number of active sensors;

• the expire time parameter;

• the mindelta parameter.

The LocationSensor is more complex than the others and manages three
further parameters, which trigger a context data update:

• enables or disables the GPS module;
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Table 2: Sensors Events Description

Sensor Events triggering a data update
WiFi Sensor Start

Out-of-date Context Data
New WiFi Networks

DeviceActivity Sensor Start
Out-of-date Context Data

Location Sensor Start
Out-of-date Context Data
Movement Greater Than Threshold

DeviceStatus Sensor Start
Out-of-date Context Data
User Profile Change

Phone Sensor Start
Out-of-date context data
New Cell Connection

Bluetooth Sensor Start
Out-of-date Context Data
New Bluetooth Handsets

Data Sensor Start
Out-of-date Context Data
Connectivity change (3G or WiFi)

Call Sensor Start
Out-of-date Context Data
10 Calls (Incoming or Outgoing)

• computes the distance in meters between the actual value and the pre-
vious;

• computes the accuracy ratio between the actual value and the previous.

The AUTO profile, selects the best profile from VERY LOW, LOW, NOR-
MAL, HIGH, profiles basing upon the actual battery level (see Table 7). By
selecting the CUSTOM profile, the user can decide the updating policy for
every sensor.
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Sensor State Texp(s) Mindelta(s)
Phone ON 3600 180

Location OFF - -
WiFi OFF - -

Bluetooth OFF - -
DeviceInfo ON 3600 3600

DeviceStatus ON 3600 1200
DeviceSettings ON 3600 3600
DeviceActivity OFF - -

DataSensor ON 3600 1200

Table 3: VERY LOW user profile configuration

Sensor State Texp(s) Mindelta(s)
Phone ON 3000 180

Location ON 3000 120
D=5000m

A=10
GPS OFF

WiFi OFF - -
Bluetooth OFF - -
DeviceInfo ON 3600 3000

DeviceStatus ON 3000 180
DeviceSettings ON 3000 360
DeviceActivity OFF - -

Data ON 3600 180

Table 4: LOW user profile configuration

3.6. Application Execution

When started, gLCB loads the configurations used during the last execu-
tion. At the first start gLCB triggers the HIGH profile. For every sensor, it
is possible to identify the update state, name, the time of the latest update
attempt, and the outcome result. There are three possible outcomes:

• Update OK,

• KO.net (no publishing because of net error) and
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Sensor State Texp(s) Mindelta(s)
Phone ON 1200 120

Location ON 1200 120
D=5000m

A=2
GPS ON

WiFi ON 1200 120
Bluetooth ON 1200 300
DeviceInfo ON 3600 300

DeviceStatus ON 1200 120
DeviceSettins ON 1200 120
DeviceActivity ON 1200 120

DataSensor ON 3600 120

Table 5: NORMAL user profile configuration

Sensor State Texp(s) Mindelta(s)
Phone ON 900 30

Location ON 900 0
D=250m

A=1
GPS ON

WiFi ON 900 120
Bluetooth ON 900 120
DeviceInfo ON 3600 120

DeviceStatus ON 900 60
DeviceSettings ON 900 60
DeviceActivity ON 900 60

DataSensor ON 3600 30

Table 6: HIGH user profile configuration

• KO.cb (no publishing because of context broker error).

After that, gLCB displays the actual selected profile and if it is selected
manually or automatically, shows the number of successful publications, the
date and time in which the application has been started.
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Table 7: AUTO profile behaviour

Interval Profile selected
Re-charger connected HIGH
100% - 61% HIGH
60% - 41% NORMAL
40% - 16% LOW
15% - 5% VERY LOW
<5% LCB Switched off

Figure 4: A screenshot of gLCB log activity

In figure 4, we can identify the user has 7 tasks in execution, the ringtone
is enabled, new geographic position information was revealed, the battery
level is at 56%, DeviceInfo and PhoneSensor sensors are enabled, and Blue-
toothSensor sensor is not enabled.

When the user switches off gLCB, a special context publication will be
carried out to the server, which recognizes gLCB is switching off itself and
cancels every context data related to that device. This avoids other Context
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Figure 5: BatterySwitch

Consumers to read not valid data.

4. Validation Criteria

We chose an empirical approach to demonstrate the algorithm optimiza-
tion effectiveness and we employed two different techniques to measure our
middleware energy consumption. The first technique – “user side” – measures
the time required by each profile to run out the phone battery (Time Mea-
surements), while the second –“lab side” – aims at measuring the instant
power consumption of each different user profile (Instant Power Measure-
ments).

For both the approaches we scheduled the execution of a set of automated
tests which did not require the user participation in order to get a better
measurement precision.

The reference device is a Smartphone Samsung Galaxy (i7500) connected
to the net through Telecom Italia Mobile (TIM) 3G network.

4.1. Time Measurements

The procedure we adopted to perform the battery duration measurement
consists of the following steps:

• charge the battery until maximum battery level;

• select a specific gLCB user profile and let it start collecting data;

• record the time instants when the battery charge level changes;

• stop when the battery charge level reaches a predefined minimum value
(5%);
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Such a procedure lends itself to an easy automatic repetition of several
measurement cycles. We carried out measures for each profile and each con-
figuration automatically for thirty times in order to have statistical evidence.

In addition to the total discharge time, the above procedure, although in
a quantitative way, can show how the battery behaviour changes. From the
user perspective it is a very useful finding.

In order to conduct the above measurement procedure we built a dynamic
battery charger, which allows starting or interrupting the battery charging
through a specific command sent by a controlling PC.

We called this particular battery charger BatterySwitch and it has two
usb ports as shown in figure 5:

• One port is connected to a pc (USB PORT A),

• The other port is connected to the mobile phone to manage the charge
of the battery (USB PORT B).

BatterySwitch has a small firmware that can manage the supply of the
USB port B, which will be connected to the mobile phone.

BatterySwitch is detected as a HID-interface once plugged into a pc and
it is possible to interact with it through a simple application. For this reason
it is needed a program that will:

• Be executed on the pc,

• Analyze the USB stack,

• Detect the device,

• Send bit ‘0’ to start charging the battery,

• Send bit ‘1’ to stop charging the battery.

This simple program has a thread listening to the port number 20248. The
smartphone opens a socket to that port and it sends character ‘a’ or character
‘s’. The program will send respectively bit ‘0’ or bit ‘1’ to BatterySwitch to
start or stop charging the device battery.

It is possible to set up a group of configurations that, at the end of each
measurement, the device publishes the collected data to the server, and starts
the next measure.
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Figure 6: Circuit developed to get instant power consumption values

4.2. Instant Power Measurements

To measure the instant power consumption, we followed the procedure
below:

• select a specific gLCB user profile and let it start collecting data;

• record the power consumption;

• stop after a predefined time (1 hour) has elapsed .

The device we used to measure power consumption is presented in figure
6. A power supply behaves like an ideal voltage generator with a constant
5 V tension. An analog to digital converter (ADC) connected to the PC
reads the voltage drop across a resistor R = 1Ω. The current flowing in
the circuit can be computed by measuring the voltage drop on the resistor (
I = VADC/R). The instant power consumption value can be computed as:

P = VL · I = (VG − VADC)
VADC

R
=

VGVADC − V 2

ADC
R

The ADC sampling frequency is 49 MHz and each user profile is measured
for 1 hour. Each measurement is repeated 30 times to get statistical evidence.

To ease the collection of all these sets of measures execution, we developed
a simple scheduler on the mobile side, which runs gLCB with different user
profiles.
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5. Results

5.1. Time measurements

The complete battery discharge curves for each profile are presented in
Figure 8. We can easily appreciate the non-linearity of the behaviour, which
represents the main reason that led us to consider the total discharge time.
In the figure, the rightmost abscissa reached by each profile represents the
time required to achieve a 5% charge level: this is the time we consider as
the total discharge time.

Table 8 reports, for each user profile, the total discharge time. The dif-
ferent profiles essentially differ for the frequency of context data updates
transmitted by the gLCB to the CAP server, the second column presents the
average number of updates per hour.

The average duration of our Samsung Galaxy battery in stand-by (with-
out applications running) is 15 hours 33 minutes and 22 seconds. Since this
value is expected to decrease according to the selected user profile, table 8
also reports the discharge variation in percentage with respect to the stand-by
configuration (last column).

We can observe that as the number of publications increase, the mobile
phone battery discharge time decreases linearly. The battery discharge time
(t) is linked to the update frequency (f) by a linear relationship:

t = 13h : 28m : 14s− 39m : 33s · f

The above equation captures the observed behaviour precisely (R2 = 97%).
The offset of the equation does not correspond to the stand-by time since the
execution of gLCB, even without updates, consume power. Also the profile
labelled ”AUTO” does not match the linear relationship because it dynami-
cally adapts the update frequency to the battery charge level. Actually with
an average update frequency of 7.54 we could have expected a discharge
time of 8 hours and 30 minutes, which is shorter than the one achieved using
the AUTO heuristic. We can also notice that the LOW profile needs to be
reconfigured because its values are too close to the VERYLOW profile.

The energy consumption measures we carried out do not consider neither
battery quality and temperature, nor which resources are used by gLCB. This
is just an approximate view, but despite that we can see our expectations
have been verified: different user profiles have different energy consumption
patterns.
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Figure 7: Discharge battery curves per user profile

5.2. Instant Power Measurement

The measurement with a fixed power supply allowed us to collect instant
power figures during the operations of gLCB. Table 9 reports, for each profile,
the mean instant power measured during the test time. In addition the last
column shows the percentage of increment w.r.t. the stand-by profile.

The AUTO profile could not be measured because it adapts on the basis
of the battery charge level, but in this configuration the power is provided
by an external power supply and not by a battery.

Figure 9 contains the box plots of instant power measured, it shows the
actual distribution of power consumption in each experimental run. To test
whether the difference among the different profiles is statistically significant
also in presence of the measured variance, we performed a set of statistical
tests. We selected non-parametric tests due to the non-normal distribution
of the data, in particular we applied the Kruskal-Wallis test to detect and
overall difference among the profiles and the Mann-Whitney test for pair-wise
comparisons.

According to the Kruskal-Wallis test there is evidence of a significant dif-
ference in terms of power consumption among the profiles (p-value < 0.001).
More in detail, on a pair-wise comparison basis, we observed a significant
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Table 8: Battery Duration and Updates per User Profile

Profile Updates per hour Discharge Time
STANDBY - 15h 33min 22sec
VERYLOW 1,25 13h 8 min 8 sec
LOW 1,32 12h 7 min 35 sec
NORMAL 6,35 9h 13 min 6 sec
HIGH 8,48 7h 55 min 55 sec

AUTO 7,54 11h 41min 33sec
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Figure 8: Update frequency vs. discharge time

difference between the following pairs: Normal and Low (p < 0.001), Low
and Verylow (p = 0.003), and Verlow and Standby (p < 0.001). The magni-
tude of the difference, measured in terms of standardized effect size can be
considered large. The only non statistically significant difference is between
High and Normal.

6. Related Work

The energy issue is becoming very important in particular for mobile
handsets [10]. In the literature can be found some approaches, which aim
at reducing mobile applications power consumption based on context infor-
mation. The context information retrieval is not the main feature of these
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Table 9: Profiles average instant power consumption and variations based on User Profile

Profile Power
STANDBY 473 [mW]
VERYLOW 522 [mW]
LOW 544 [mW]
NORMAL 594 [mW]
HIGH 617 [mW]
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Figure 9: Box Plot of profiles average instant power consumption

applications but it is a side effect needed to implement the policies to save
energy.

Flinn et al [11] show that there is a relationship between OS and some
applications, which can be used to achieve some targets about battery life
of laptops. They implemented the energy-aware adaptation as a trade off
between dynamic balancing of energy conservation and quality of apps.Their
approach is goal directed: the user can specify the battery life that he/she
would like to achieve and the system adapts itself (display, processor speed,
timeouts, etc.).

Ravi et al. [12] proposed a context-aware battery management: based on
the historical data of locations in which the user recharged the battery. Their
system predicts and notifies the user about the next possibility to recharge
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the battery of the mobile phone based on his/her location.
Rahmati et al. [13] showed that an ideal selection of policies can more

than double battery’s life. These improvements may vary with the pattern
of data transfer and the availability of WiFi. The key to achieve an improve-
ment of battery life is obtained by accurately estimating the quality of the
connection without turning on the WiFi network interface. Their approach
is based on the complementarity of energy WiFi and cellular network pro-
files. Authors show that the cellular network requires less power to be always
connected, but has a high cost per megabyte. The result of this project is a
series of policies which can optimize data transfer based on the user location.
This is possible by combining information from data history.

Lin et al. [14] based their experiments on the observation for which the
accuracy of GPS position varies with the with the user’s location. Their
method automatically determines the accuracy needed mainly for mobile
search-based apps.

Farrell et al. [15] assume that the GPS position update should take place
within a specific region. They use a prediction mechanism that is based
on the device velocity to determine the areas in which to exclude the GPS
location because not necessary. Their work includes an interesting study on
energy consumption patterns of triangulation WiFi, Bluetooth and GPS.

Kang et al. [16] present SeeMon: a scalable and efficient context monitor
which works in environments with limited resources such as PDAs and cell
phones. Their approach is based on the idea of removing unnecessary compu-
tations during the environment monitoring. SeeMon looks like a middle-tier
framework of context-aware applications and a network of sensors; it exposes
a set of APIs, which can be used concurrently by other applications. SeeMon
also provides an efficient context-based system of queries with a strong se-
mantic meaning, which allows an overhead (usually created by not necessary
context) reduction. It is also introduced by authors the Essential Sensor Set
concept that represents the minimum number of sensors need in a system
to satisfy one query. Proper management of ESS allows for efficient use of
device energy resources.

Boszormenyi et al. are focused on content adaptation [17]; a typical
example of content adaptation is changing the service presentation depending
on the context data. The data properties can be modified to adapt the
service basing upon terminal capabilities, network capabilities and even user
preferences.

Prior research related to the limited battery lifetime problem is mainly
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focused on optimizing energy consumption at different levels e.g. hardware
[18] and application layer [11], including compiler-based energy optimization
[19]. Battery lifetime research has focused on analytical methods related to
physical battery characteristics [20], [21].

To sum up the approaches mentioned before, differ from our approach
mainly in aspects related to the energy consumption adaptation based on
inferred situations [22]. gLCB collects a set of real-time information, which
will be published on a context platform. The context platform provides con-
text information for other applications via a set of APIs. So we needed to
find solutions to identify the change of context as efficiently as possible. We
propose some principles to determine how mobile devices should behave con-
forming to context information that can be used to infer energy consumption
policies. gLCB recommends adaptation when context information analysis
suggests to apply changes.

7. Conclusions

The main goal of context-aware systems is to provide relevant informa-
tion, and/or services, based on current user context. In this paper we anal-
ysed the energy consumption behaviour of gLCB : a context-aware middle-
ware, which runs in background in Android OS based mobile phones, and
sends context information to a remote platform.

We described the architecture of gLCB, which is designed to adapt its
behaviour on the basis of the remaining battery information.

We analysed some principles based on Energy-Aware software to deter-
mine how mobile devices should behave according to scarce or plentiful en-
ergy, and how context information can be used to infer energy consumption
policies. These aspects are important to improve the efficiency of context-
aware systems in terms of energy consumption.

The energy consumption analysis involved two different empirical exper-
iments: in the first one we measured the average time employed to run out
the mobile device battery in each user profile, while in the second one we
measured the average instant power consumed by each user profile.

Since the behaviour of a mobile terminal in motion is not predictable
because the network signal received is not stable, we consider average values
and we repeated each experiment 30 times. In this way we normalized the
data and we got statistical evidence.

Considering the results we obtained, we provided information related to:
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• the battery average discharge-time,

• the average power consumption,

• the number of context updates per hour

of each user profile.
These results have been associated with the battery duration in standby

conditions, as reference point to compare how efficient is the proposed ap-
proach. Time measurements show that AUTO profile provides the best per-
formance between energy consumed and data uploaded.

As a first result of the time measurements we are planning to reconfigure
the LOW Profile because there are big differences, in terms of average battery
duration, average power consumption, and context updates per hour, from
VERYLOW and NORMAL profiles. Then we can see that the impact of
software in power consumption is real and a self-adaptive behaviour can help
increasing battery life of mobile device. Even if the battery discharge measure
needs a very complex system, we use these results only in a qualitative way.
We gathered the instant power consumption value to get a more detailed
view about the device energy consumption.

This deeper analysis, followed by a statistical treatment of the data col-
lected, highlights a significant difference in terms of power consumption
among the profiles. Other information such as CPU usage percentage, bat-
tery temperature, technology and voltage, could be used to evaluate how
long and how many resources the application uses. It could be possible to
improve even more the efficiency of gLCB by considering single resources
usage.

Thus software is responsible (although indirectly) of variations in power
consumption of a mobile device. These results suggest us to plan other ex-
periments, which aim at generalizing a model which predicts software power
consumption.
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