
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

NBTI Mitigation by Dynamic Partial Reconfiguration / DI CARLO, Stefano; Galfano, Salvatore; Gambardella, Giulio;
Indaco, Marco; Prinetto, Paolo Ernesto; Rolfo, Daniele; Trotta, Pascal. - STAMPA. - (2012), pp. 93-96. (Intervento
presentato al convegno IEEE 13th Biennal Baltic Electronics Conference (BEC) tenutosi a Tallin, EE nel 03-05 Oct.,
2012) [10.1109/BEC.2012.6376823].

Original

NBTI Mitigation by Dynamic Partial Reconfiguration

Publisher:

Published
DOI:10.1109/BEC.2012.6376823

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2503788 since:

IEEE

NBTI mitigation by Dynamic Par-
tial Reconfiguration

Authors: Di Carlo, S.; Galfano, S. ; Gambardella, G. ; Indaco, M. ; Prinetto, P. ; Rolfo, D. ; Trotta, P.

Published in the Proceedings of the IEEE 13th Biennial Baltic Electronics Conference

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6376823

DOI: 10.1109/BEC.2012.6376823

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6376823
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6376823
http://dx.doi.org/10.1109/BEC.2012.6376823
http://dx.doi.org/10.1109/BEC.2012.6376823

NBTI Mitigation by Dynamic Partial Reconfiguration1

Stefano Di Carlo, Salvatore Galfano, Giulio Gambardella, Marco Indaco, Paolo Prinetto, Daniele
Rolfo, Pascal Trotta

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy
Email: {name.familyname}@polito.it

ABSTRACT: FPGAs achieve smaller geometries and their
reliability is becoming a severe issue. Non-functional prop-
erties, as Negative Bias Temperature Instability, affect the
device functionality. In this work a novel methodology to
address this issue is described, exploiting FPGAs flexibility.
Dynamic Partial Reconfiguration is used to minimize aging
impact on FPGAs’ configuration memory.

1 Introduction
Field Programmable Gate Arrays (FPGAs) are integrated
circuits made up of a cluster of programmable functional
blocks surrounded by programmable inteconnections and
I/Os that can be configured to perform user described logic
functions. The flexibility enhanced by FPGAs comes at a
cost in terms of performance, in comparison with Appli-
cation Specific Integrated Circuit (ASIC). For this reason,
Extensible Processing Platforms (EPP) have been devel-
oped, combining high performance ASIC processors with
programmable logic [10][4]. These platforms are suitable
for embedded systems, thanks to their reduced cost, opti-
mized size, low power consumption, and flexibility.
In this context, Dynamic Partial Reconfiguration (DPR) is
a widely used approach [6][1] to reduce power consump-
tion while keeping a high level of flexibility. DPR allows
the user to dynamically change the function implemented
by a portion of an FPGA. Furthermore, this feature can be
used to increase the reliability of the system [5][7].
With the shrinking of technology dimension, also in FP-
GAs devices, Non-Functional Properties (NFPs) are be-
coming a major issue in devices’ dependability. In sub-
65 nm technologies, aging effects due to Negative Bias
Temperature Instability (NBTI) have become the primary
degradation mechanism [8].
This paper proposes an innovative solution to mitigate the
NBTI effect in modern programmable systems, exploiting
their DPR feature. The rest of the paper is organized as
follows. Section 2 gives a background of the work. The
proposed methodology for aging mitigation is discussed

1This projects is partially funded by Ansaldo STS SpA and FinMec-
canica SpA, within framework of the ”Iniziativa Software” (II ediz)

in Section 3. A case of study is then presented in Sec-
tion 4, while in Section 5 some experimental results will be
shown. Finally, Section 6 concludes the paper.

2 Background
2.1 FPGA internal architecture
FPGAs are programmable devices, configured from the
user to perform a desired function. To provide such a flexi-
bility, different programmable blocks are present in the de-
vice [9]:

• Input-Output Blocks (IOBs) – programmable inter-
faces for external connections;

• Configurable Logic Blocks (CLBs) – used to imple-
ment Look-Up-Table (LUT) based logic functions;

• General Routing Matrix (GRM) – matrix of pro-
grammable interconnections among the blocks;

• Block RAMs (BRAMs) – dual-port fully synchronous
RAM organized in columns.

The programmable logic is configured by storing proper
information in a configuration memory, which controls the
FPGA’s behaviour. Many configuration technologies ex-
ists, but the prevalent nowadays is the SRAM-based. In this
technology, the configuration information is stored in an
external non-volatile memory; the device is programmed
at power-up, by writing the SRAM configuration mem-
ory inside the device with the non-volatile memory content.

2.2 NBTI: Causes and Effects
NBTI occurs when a pMOS transistor, working at high
temperature, is negatively biased, i.e., a logic ‘0’ is ap-
plied to the gate of the pMOS, resulting in a gate-source
voltage (Vgs) equal to the supply voltage (−VDD). NBTI
manifests itself as an increase of the transistor’s threshold
voltage (Vth) in time, and it strictly depends on the proba-
bility of having a ‘0’ at the gate inputs.
Such a Vth degradation induces a progressive reduction of
the current capability of the pMOS transistor, resulting in

93

2012 13th Biennial Baltic Electronics Conference (BEC2012)
 Tallinn, Estonia, October 3-5, 2012

978-1-4673-2774-9/12/$31.00 ©2012 IEEE

a substantial slowdown of CMOS gates (i.e., in a reduction
of the maximum circuit’s clock working frequency, fCK).
For a pMOS transistor, there are two phases of NBTI, de-
pending on its bias condition:

• stress: when Vgs = −VDD, positive interface traps
are accumulated;

• recovery: when Vgs = 0, holes are not present in the
channel and no new interface traps are generated.

Considering SRAM memories, the NBTI induces a degra-
dation of the robustness of the cells (i.e., their capability to
safety store a bit). A good metric to qualify the effect of
NBTI in a memory cell is the Signal Noise Margin (SNM),
i.e., the minimum DC noise voltage necessary to change
the stored value [2]. The smaller the SNM is, the lower
the reliability of the cell becomes. Unfortunately, the Vth

shift induced by NBTI causes an SNM degradation, which
in turn reflects itself on the stability of the cell. Because
of the symmetric layout of the cell, the Vth shift is maxi-
mum if the stored value’s zero-probability is near to 0 or
1. Clearly, the best case happens when the stored value is
‘0’ for the 50% of the time, which means that both pMOS
transistors age in the same way (see Section 5).

2.3 Dynamic Partial Reconfiguration
In modern SRAM-based FPGAs, the intrinsic flexibility
has been expanded, including DPR. This technique makes
possible to program at run-time a reconfigurable area, with-
out interrupting the activities performed by the remaining
parts of the programmable device. DPR is performed by
downloading partial bitstreams inside the FPGA through
a configuration port (e.g., Internal Configuration Access
Port ICAP). The configuration memory’s content is then
changed with the new information stored in the partial bit-
stream.

3 Proposed Methodology
The proposed method is a Design for Dependability (DfD)
technique aimed at extending the FPGA device life by re-
ducing the effects of the NBTI on the SRAM configuration
memory.

It takes advantage of the unused hardware resources by
allocating functions to be implemented uniformly into all
available resources. To be applied, the proposed method
needs unused resources. Clearly, the effective usable por-
tion of the FPGA is reduced to only a half of the available
resources, while the resources allocated to a single func-
tion (e.g., assigned to the implementation of an IP-core)
are doubled, time-multiplexing their usage.

Resources are then periodically switched between two
statuses: “work” and “rest”. In work status they are nor-
mally operated (i.e., they implement the function specified
at design time); in the rest status they are, and need to be,
unused. Nevertheless, not using resources is not enough
to prevent them from suffering the NBTI effects: for this
reason, in the rest status, the unused resources are properly
configured to lower the effects of the aging phenomenon.

In particular, the rest status is designed to minimize the
impact of the NBTI on the SRAM configuration memory.
As stated in Subsection 2.2, to minimize the NBTI effect
in SRAM cell, each bit of the memory has to store com-
plementary values for equal times. Therefore, in the rest
status, the whole SRAM content should be the complemen-
tary of the one stored in the work state. Furthermore, the
time spent in rest and in work statuses must be the same.
The changing of the SRAM content implies that a DPR is
performed.

To ensure the correctness of the methodology, the fol-
lowing three Design for Dependability rules should be ful-
filled.
3.1 DfD#1: Static connection avoidance
Usually, Place and Route (PAR) tools, generate some
(long) static connection crossing different portions of the
FPGA. These static connections are controlled by some of
the configuration memory bits.
The proposed methodology requires to flip the whole mem-
ory content. However, these static connections may be un-
intentionally broken if all the configuration memory bits
are flipped.
To avoid such threats:

• the whole FPGA is partitioned into several partitions,
one for each sub-function instance (counting also all
their replica);

• setting proper options, while synthesizing the design,
statical connections are forbidden to cross such parti-
tion boundaries [3].

3.2 DfD#2: Using different interfaces
Since the whole configuration memory content must be
flipped, all partitions of the FPGA have to change. There-
fore, the programmable logic cannot contain static por-
tions.

If all the instances of a module use the same commu-
nication ports (i.e., the same hardware), some configurable
logic will be statically configured (so fixed values inside
the corresponding memory bits), conflicting with the above
statement.

To solve this issue, each instance of a module should use
its own ports toward the external world. There are then dif-
ferent chances on how the external world should interface
with the FPGA:

• the external user system (i.e., the system the FPGA is
interfaced with) should provide the double of the min-
imum required number of ports and connect to each
instance of a module in a FPGA with dedicated ports
(Fig. 1(a));

• exploit an external bus (not laying in the configurable
area) to connect the corresponding module ports and
possibly, the ports of all the modules (Fig. 1(b)).

The former requires doubling the pins, so the related
costs may be too high. Also, it would imply that the ex-
ternal system should make data flow alternating through

94

(a) Dedicated interface

(b) Bus interface

Figure 1: Possible connection schemes

two sets of I/O interfaces (e.g., IN-OUT and IN’-OUT’ of
Fig. 1(a)). In the latter, instead, the external system has
only one set of I/O interfaces, so pin-associated costs and
input/output management complexity are reduced.

3.3 DfD#3: Smart external controller
A controller is of course needed to manage the DPR. The
controller cannot be implemented in the programmable
logic, because it would imply static configuration of the
FPGA. Clearly, in order to assure this, the DPR controller
must be implemented outside the FPGA device, so that it
will not use programmable logic.

The controller has to decide when to reconfigure each
module. To guarantee the correct behaviour of the overall
system, the controller can just reconfigure modules when
they are idle. Therefore, the controller needs to interface
itself with the external user system to catch when the mod-
ule to be reconfigured is unused. When this happens, it
will have to reconfigure (through DPR) the module’s in-
stance, which was previously in rest status, to work status,
and vice-versa (switching the instance from work status to
rest status).

4 Case study
The proposed method has been implemented and applied to
an existing application in order to assess its correct work.
The considered case study is the use of a Zynq™-7000 [10]
EPP by Xilinx to implement an embedded system having
two IP-core modules.

The Zynq™-7000’s architecture perfectly applies to the
conceived method. As a matter of fact, as shown in Fig. 2,
it includes a Dual Arm Cortex™-A9 MPCore proces-
sor, equipped with its own memory controllers, I/O logic,
AMBA switches and some programmable logic. More in
detail, the programmable logic is a Kintex™-7 (or Artix™-
7) FPGA. According to Subsection 3.2, AMBA is used to

Figure 2: Zynq™Architecture

deal with communication between the FPGA and the exter-
nal system.

The function of the controller, described in Subsec-
tion 3.3, was here executed by the on-chip processor in
time-sharing with the main program execution. To effi-
ciently implement the controller functions, internal facil-
ities like timer counter and DMA controller were used.
Moreover, problems related to the controller to external
system communication are solved easily because they are
physically the same entity.

Hereafter an example of the operation of the system will
be shown. Let us assume that the first IP-core has two in-
stances, named IP1 and IP1’, and the same is for the sec-
ond, that has IP2 and IP2’ instances. Each instance is con-
tained in a dedicated partition, in order to assure that no
static connection lays in different modules’ partitions, as
explained in Subsection 3.1. Let us consider that the system
is initially configured in the state (IPx, IPx’)= (work, rest)
for each IP-core, as shown in Fig. 3(a). Please note that the
greyed portions of the FPGA represent modules in rest sta-
tus: they are configured with bitstreams (BS1′ and BS2′),
i.e., the content of the SRAM configuration memory, which
are respectively obtained by bit-wise inverting that ones
which are used in work status (BS1′ and BS2′).

After a certain time, the timer counter expires and trig-
gers an exception. This makes the CPU act as the controller
of the DPR: IP1’ and IP2’ are reconfigured with the work
state bitstreams (BS1′ and BS2′), while IP1 and IP2 are
reconfigured with the inverted bitstreams, BS1 and BS2,
leading the FPGA in the state (rest, work) (Fig. 3(b)): then
new data now flow to and from these reconfigured mod-
ules. After a time delay, similar to the first one, every-
thing repeats in the opposite way: the system goes again to
(work, rest) state. Everything is periodically repeated over
time so that each module’s instance stays in the two states
for equal times. This leads the configuration memory’s bits

95

(a) State: (work, rest) (b) State: (rest, work)

Figure 3: Graphic representation of IP-core states within
the FPGA

to have a stored value equal to ‘0’ for 50% of the time,
which minimizes the degradation due to NBTI.

Please note that the two IP-cores not necessarily switch
at the same time (as shown in the Fig. 3). The switching fre-
quency of each module was chosen to be compatible with
the foreseen idle times of the cores.

5 Experimental results
To quantify the benefits of the proposed solution, the

variation over time of the SNM in SRAM cells has to be
considered. Further, a low SNM value negatively influ-
ences the dependability. Since the measure cannot be per-
formed over time easily, a study using cell library models
has been done. STMicroelectronics’ 45 nm standard cells
library was used because the 28 nm standard cells library,
that is used in Xilinx 7 family [9], is not available: this does
not invalidate the benefits lead by the proposed method as
with 28 nm only the magnitude and speed of degradation
over time changes. The reported data are evaluated at a
temperature T = 25°C, VDD = 1.1V and channel width
WpMOS = 0.21µm.

Figure 4: Signal Noise Margin degradation in function of
time (measured in years) and static probability (probability
to have ‘1’ in a SRAM cell)

Fig. 4 clearly shows that the SNM of the cell decreases
(worsens) during the years, but, with a static probability of
0.5, which is achieved using the proposed methodology, the
decrease is considerably less than with any other probabil-
ity.

6 Conclusions
In this work a DfD methodology to mitigate the NBTI

effect in SRAM based FPGA is presented. Exploiting the
DPR is possible to achieve the 50% probability of having
‘0’ in the configuration memory bits. The proposed ap-
proach comprises three different DfD rules to assure that
all the SRAM configuration memory’s bits age the same.
Thanks to this solution, the configuration memory of the
device will have the minimum effect of aging during the
device lifetime.

Acknowledgment
The authors would like to express their sincere thanks

to the whole design team of Ansaldo STS SpA for their
helpful hints and guidelines.

References
[1] N. Abel, S. Manz, F. Grull, and U. Kebschull. Increas-

ing design changeability using dynamic partial reconfigu-
ration. Nuclear Science, IEEE Transactions on, 57(2):602–
609, April 2010.

[2] A. Calimera, E. Macii, and M. Poncino. Analysis of nbti-
induced snm degradation in power-gated sram cells. In Cir-
cuits and Systems (ISCAS), Proceedings of 2010 IEEE In-
ternational Symposium on, pages 785–788, June 2010.

[3] S. Di Carlo, G. Gambardella, M. Indaco, P. Prinetto,
D. Rolfo, and P. Trotta. Dependable dynamic partial re-
configuration with minimal area & time overheads on xil-
inx fpgas. In Submitted to Test Symposium 2012. ATS 2012.
IEEE Asian, 2012.

[4] Intel Corporation. Intel Atom Processor E6x5C Series-
Based Platform for Embedded Computing, 2010.

[5] F. Lahrach, A. Doumar, and E. Chatelet. Fault tolerance
of sram-based fpga via configuration frames. In Design
and Diagnostics of Electronic Circuits Systems (DDECS),
2011 IEEE 14th International Symposium on, pages 139–
142, April 2011.

[6] W. Lie and W. Feng-yan. Dynamic partial reconfiguration
in fpgas. In Intelligent Information Technology Applica-
tion, 2009. IITA 2009. Third International Symposium on,
volume 2, pages 445–448, November 2009.

[7] M. Straka, J. Kastil, and Z. Kotasek. Fault tolerant structure
for sram-based fpga via partial dynamic reconfiguration. In
Digital System Design: Architectures, Methods and Tools
(DSD), 2010 13th Euromicro Conference on, pages 365–
372, September 2010.

[8] W. Wang, S. Yang, S. Bhardwaj, S. Vrudhula, F. Liu, and
Y. Cao. The impact of nbti effect on combinational circuit:
Modeling, simulation, and analysis. Very Large Scale Inte-
gration (VLSI) Systems, IEEE Transactions on, 18(2):173–
183, February 2010.

[9] Xilinx Corporation. 7 Series FPGAs Overview, March
2012.

[10] Xilinx Corporation. Zynq-7000 Extensible Processing Plat-
form Overview, March 2012.

96

