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Abstract

In this paper we examine the computation of the potential generated by space-time
BIE representations associated with Dirichlet and Neumann problems for the 2D wave
equation. In particular, we consider the efficient evaluation of the (convolution) time
integral that appears in the potential representation. For this, we propose two simple
quadrature rules which appear more efficient than the currently used ones. Both are
of Gaussian type: the classical Gauss-Jacobi quadrature rule in the case of a Dirichlet
problem, and the classical Gauss-Radau quadrature rule in the case of a Neumann
problem. Both of them give very accurate results by using a few quadrature nodes, as
long as the potential is evaluated at a point not very close to the boundary of the PDE
problem domain. To deal with this latter case, we propose an alternative rule, which
is defined by a proper combination of a Gauss-Legendre formula with one of product
type, the latter having only 5 nodes.

The proposed quadrature formulas are compared with the second order BDF Lubich
convolution quadrature formula and with two higher order Lubich formulas of Runge-
Kutta type. An extensive numerical testing is presented. This shows that the new
proposed approach is very competitive, from both the accuracy and the efficiency
points of view.

KEY WORDS: wave equation; space-time boundary integral equations; potential eval-
uation; quadrature rules

∗This work was supported by the Ministero dell’Istruzione, dell’Università e della Ricerca of Italy, under
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1 Introduction

Many papers are devoted to the numerical solution of Dirichlet or Neumann wave
problems by means of boundary element methods (BEM). Very recently in [?] and in
[?] we have proposed a BEM to solve 2D (and also 3D) exterior problems for the scalar
non homogeneous wave equation with a Dirichlet or Neumann condition and in general
with non trivial data. For these problems, we have derived corresponding space-time
boundary integral equations (BIE), for whose solution we have proposed a BEM. This
is based on a second order Lubich convolution quadrature for the discretization of the
time integral, coupled with a space collocation or Galerkin boundary element method.
However, in our papers, as well as in those devoted to the numerical solution of space-
time BIE, the main task is the efficient and accurate numerical solution of the boundary
integral equation. The efficient computation of the original PDE solution by means of
its single or double layer representation becomes secondary or it is not at all taken into
consideration.

Therefore, in this paper we will focus our attention on the computation of the
solution of the original 2D PDE problem, by starting from the numerical approach
described in [?], [?]. We recall that the numerical evaluation of the space integral has
been already examined, being analogous to that one encounters in the case of elliptic
problems; thus, we will examine only the evaluation of the (convolution) time integral.
Since this is a trivial matter in the 3D case, we will consider only the 2D one. In
particular, for it we will propose two rules which appear to be more efficient than
the Lubich’s quadratures, which are currently the mostly used formulas. Both are of
Gaussian type: the classical Gauss-Jacobi quadrature rule in the case of a Dirichlet
problem, and the classical Gauss-Radau quadrature rule in the case of a Neumann
problem. Both of them give very accurate results by using a few quadrature nodes,
as long as the potential is evaluated at a point not too close to the boundary of the
problem domain. To deal with this latter case, we propose an alternative rule, which
is defined by a proper combination of a Gauss-Legendre formula with one of product
type.

We compare the quadrature formulas we have proposed with the second order Lu-
bich convolution quadrature formula used in the numerical solution of the BIE (which
represents the most natural choice for a numerical approach and hence the widely used
formula in the literature) and with two higher order Lubich formulas of Runge-Kutta
type.

In Section 2 we state the PDE problems we aim to solve, and recall the single
and double layer BIE representations of their solutions. In Sections 3, 4 we define the
quadrature formulas we propose for the time convolution integrals involved in the above
representations, and compared them with those derived by Lubich. Finally, in Section
5, first we solve the BIE formulations of two test problems, and then we evaluate the
associated potentials by using the formulas presented in Sections 3, 4. The numerical
testing we have performed shows that indeed our formulas are very competitive, from
both the accuracy and efficiency points of view.
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2 Potential representation of the solution of 2D

Dirichlet and Neumann wave problems

Let Ωi ⊂ R2 be an open bounded domain with a sufficiently smooth boundary Γ; define
Ωe = R2\Ω̄i. We identify Ω with Ωi, if the problem we are solving is the interior one,
or with Ωe in the case of the exterior problem.

We consider the following (interior or exterior) homogeneous problem for the clas-
sical wave equation:





∆u(x, t)− utt(x, t) = 0 in Ω× (0, T )
u(x, 0) = 0 in Ω
ut(x, 0) = 0 in Ω,

(1)

with a Dirichlet boundary condition

u(x, t) = gD(x, t), in Γ× (0, T )

or a Neumann boundary condition

∂u

∂nx
(x, t) = gN (x, t), in Γ× (0, T )

where ∂u
∂nx

denotes the normal derivative pointing outside the chosen domain Ω.
In this paper we assume that the boundary Γ of the domain Ω and the boundary

data satisfy the regularity and compatibility properties which guarantee the existence
and uniqueness of the (classical) solution of the problem in C2([0, T ], C2(Ω̄)). More-
over, for simplicity, we assume that the equation is homogeneous as well as the initial
conditions; the non homogeneous case can be treated similarly. Indeed, this latter case
differs from the homogeneous one only for (at most) the three additional “volume”
integral terms generated by the non homogeneous data. These are involved both in
the known term of the BIE and in the representation of the potential; see [?], [?]. Since
for their numerical computation some efficient formulas have already been proposed in
[?], for the Dirichlet case, and in [?] for the Neumann case, here we will only consider
the (full) homogeneous problem.

Let G(x, t) denote the wave equation fundamental solution

G(x, t) =
1
2π

H(t− ‖x‖)√
t2 − ‖x‖2

, x ∈ R2 (2)

H(·) being the well known Heaviside function. For the Dirichlet problem, in [?] (see
eq. (2.7)) we have derived the following single-layer potential representation of u

u(x, t) =
∫

Γ

∫ t

0
G(x− y, t− τ)ϕD(y, τ) dτ dΓy x ∈ Ω, (3)

where ϕD is solution of the following BIE
∫ t

0

∫

Γ
G(x− y, t− τ)ϕD(y, τ)Γydτ = gD(x, t), x ∈ Γ, (4)
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and ϕD(y, τ) := [∂nu(y, τ)] denotes the normal derivative jump of u along Γ.
Analogously, for the Neumann problem in [?] (see Proposition 2.1 and equation

(20)) we have obtained the following double-layer potential representations of u:

u(x, t) =
∫

Γ

∫ t

0

∂G

∂ny
(x− y, t− τ)ϕN (y, τ) dτ dΓy x ∈ Ω, (5)

u(x, t) =
∫

Γ

∫ t

0

∂G

∂ny
(x− y, t− τ)ϕN (y, τ) dτ dΓy − 1

2
ϕN (x, t), x ∈ Γ, (6)

where ϕN (y, τ) := [u(y, τ)] denotes the jump of u along Γ and is the solution of the
hypersingular BIE

∫ t

0

∫

Γ
=

∂2G

∂nx∂ny
(x− y, t− τ)ϕN (y, τ) dΓy dτ = gN (x, t), x ∈ Γ. (7)

Here and in the following, the symbol
∫
= means that the integral is defined in the finite

part sense (see [?]).
Let now assume that we have already solved the BIE we have associated with

Problem (??), i.e., we have determined its unknown ϕD(y, τ) or ϕN (y, τ). Since there
is an extensive literature on the numerical evaluation of the (space) integral defined on
Γ, in the next sections we will concentrate our attention to the numerical evaluation
of the time convolution integral. In particular, we will propose a new approach, which
appears more efficient than those currently used.

3 Convolution integrals in 2D Dirichlet wave

problems

In this section and the next one, we consider the following convolution integral:

I(ϕ; t) :=
∫ t

0
K(t− τ)ϕ(τ) dτ, t > 0 (8)

with the kernel K(t) first defined by

K(t) = G(r, t) =
1
2π

H(t− r)√
t2 − r2

(9)

and then by

K(t) =
∂G(r; t)

∂ny
(10)

being r = ||x−y|| the distance between x and y, and H(t) the Heaviside step function.
As described in Section ??, one deals with integral (??) with K(t) defined by (??) or
(??) when solving (2D) Dirichlet or Neumann wave problems, respectively. In partic-
ular, integrals of the above type appear in the single or double-layer representation of
the wave PDE solution (see (??), (??)) .

We first consider (??) with K(t) defined by (??) and t > r > 0, that is,

I(ϕ; t) =
1
2π

∫ t−r

0

ϕ(τ)√
(t− τ)2 − r2

. (11)
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Since in this section we will define two quadrature rules for the evaluation of this
convolution integral, that we will then compared with those proposed by Lubich in [?],
for the reader convenience we briefly describe these latter.

Let assume that we have to evaluate (??) at a given instant t = T , or in the interval
(0, T ]. In both cases, to construct Lubich rules we ought to partition this interval into
N subintervals of equal length ∆t = T/N , by means of the equidistant points tj = j∆t,
j = 0, ..., N .

Among the possible Lubich discrete convolution formulas, we will consider three of
them: one of (convergence) order 2, based on the 2-step BDF method for ODEs, and
two of order 3 and 5, respectively, based on two Radau IIA Runge-Kutta methods.

The first one takes the following form:

BDF (ϕ; tn) =
n∑

j=0

ωn−j(∆t)ϕ(tj), n = 0, . . . , N (12)

with

ωm(∆t) =
1

2πi

∫

|z|=ρ
K̂

(
γ(z)
∆t

)
z−(m+1) dz (13)

where K̂ is the Laplace transform of K and ρ is the radius of a circle in the domain
of analyticity of K̂(γ(z)/∆t). The function γ(z) = 3/2− 2z + 1/2z2 is a characteristic
polynomial associated with the chosen 2-step BDF method.

When K(t) is defined by (??), we have:

K̂(s) = K̂(r, s) =
1
2π

K0(rs), (14)

where K0 denotes the modified Bessel function of the second kind of order 0.
All the N + 1 quadrature weights {ωn} are simultaneously computed by means of

the trapezoidal rule

ωn(∆t) = ωn(∆t; r) ≈ ρ−n

L

L−1∑

l=0

K̂

(
r,

γ(ρe
l2πi
L )

∆t

)
e−

nl2πi
L , n = 0, . . . , N (15)

combined with the Fast Fourier Transform, with O(N log N) flops. In [?] Lubich has
proved that if the values of K̂ are computed with a relative accuracy bounded by ε,
then the choices L = 2N and ρN =

√
ε yield an error in (??) of size O(

√
ε).

This numerical approach is quite general, although it requires the use of complex
arithmetic. Moreover, with the above choices of L and ρ, and using the double preci-
sion arithmetic, according to Lubich’s results the coefficients ωn are computed with a
relative accuracy of order (at least) 1.0E − 07.

Remark 3.1 Concerning the quadrature error behavior, in [?] Lubich has proved that
for a function ϕ ∈ C4([0, T]) with ϕ(0) = ϕ′(0) = ϕ′′(0) = ϕ′′′(0) = 0, we have
|I(ϕ; tn) − BDF (ϕ; tn)| = O(∆2

t ), uniformly for 0 ≤ tn ≤ T. We notice however that
to obtain this rate of convergence we need to require the vanishing at the origin of the
derivatives of ϕ only up to order 2. Moreover, when this latter condition is not satisfied,
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to restore the convergence order O(∆2
t ), it is sufficient to modify the quadrature formula

(??) as follows:

BDF (ϕ; tn) = BDF (ϕ; tn) +
2∑

j=0

wjnϕ(tj), (16)

where the coefficients wjn are determined by requiring the formula to integrate exactly
all polynomials of degree (at most) 2.

To prove the above statements, we only need to write the following Taylor expansion
of ϕ(τ):

ϕ(τ) = ϕ(0) + ϕ′(0)τ +
1
2
ϕ′′(0)τ2 +

1
6
ϕ′′′(0)τ3 + ψ(τ)

and apply estimates (i) and (ii) of Theorem 3.1 in [?].

Incidentally, we remark that Lubich formulas associated with BDF methods of or-
der greater than 2 cannot be used to compute our integrals, because they are not
A-stable. In this case, some s-stage Runge-Kutta methods, satisfying appropriate sta-
bility properties, have been used. Among these, we recall, for example, the Radau IIA
methods, which have been considered in [?], [?] for the approximation of convolution
integrals within the numerical solution of parabolic equations. More recently, they have
been used in [?], [?] and [?] to solve space-time BIE formulations for wave propagation
problems.

If we identify these Runge-Kutta methods with the Butcher tableau

c Q

bT

the associated Lubich convolution quadrature takes the following form:

RKs(ϕ; tn) = ∆t

s∑

ν=1

n−1∑

j=0

wn−1−j,ν(∆t)ϕ(tj + cν∆t) (17)

Its weights wm,1, . . . , wm,s coincide with the corresponding elements of the last row of
the s× s matrix Wm defined as follows:

Wm = Wm(∆t, r) =
1

∆t2πi

∫

|z|=ρ
K̂

(
r,

∆(z)
∆t

)
z−(m+1) dz, m = 0, . . . , N − 1

where

∆(z) =
(
Q+

z

1− z
1bT

)−1

and 1 = (1, . . . , 1)T. Likely to the BDF methods, the above Cauchy integrals can be
approximated by the trapezoidal rule

Wm ≈ ρ−m

∆tL

L−1∑

l=0

K̂

(
r,

∆(ρe
l2πi
L )

∆t

)
e−

ml2πi
L , m = 0, . . . , N − 1
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and the choices L = 2N and ρ = ε1/N guarantee that the error in ∆tWm is O(
√

ε) if
the values of K̂ are computed with accuracy ε. Using the FFT, also these weights are
simultaneously computed with O(N log N) flops.

In the sequel we will consider the (order 3) 2-stage and the (order 5) 3-stage Radau
IIA, defined by the tableau:

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

and

4−√6
10

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−√6
36

16+
√

6
36

1
9

16−√6
36

16+
√

6
36

1
9

respectively.

To these two rules we can apply the convergence result proved in [?] (see Theorem
4.1). In the case of our 2D wave equation, this states that, having defined p = 2s− 1
and assuming ϕ ∈ Cp([0, T ]) with ϕ(0) = ϕ′(0) = · · · = ϕ(s)(0) = 0, there exists a
∆̄ > 0 such that for 0 < ∆t ≤ ∆̄ and t ∈ [0, T ] we have

|I(ϕ; tn)−RKs(ϕ; tn)| = O(∆α
t )

uniformly with respect to tn ∈ [0, T ], where α = min{2s− 1, s + 3/2}. Notice that for
the 3-stage (order 5) RK method we only have O(∆9/2

t ).
As for the BDF method case (see Remark ??), when the required vanishing con-

ditions at the origin are not satisfied, to restore the above rate of convergence it is
sufficient to modify the convolution quadrature by adding s additional terms, whose
coefficients are determined by requiring the new rule to be exact for all polynomials
of degree up to s − 1. Obviously, these coefficients will depend on n and r (see (??),
(??)).

We further remark that in the numerical solution of a space-time BIE formulation
of wave equation problems, in particular in the time discretization of the convolution
integral, the Lubich quadrature formula which is largely employed is that correspond-
ing to the 2-step BDF method. Only very recently the Lubich quadrature formula
associated with proper Runge Kutta methods have been considered for wave propa-
gation problems (see [?], [?], [?]). A possible drawback of these latter rules is that
they requires the computation of the unknown function at intermediate points of the
original uniform grid. However they show very good dissipation/dispersion properties.

In the computation of the potential integrals, both the BDF and the Radau IIA
methods can be used. The latter methods are preferable because they have a higher
convergence rate. We notice however that, if the BIE has been solved using the 2-step
BDF Lubich discrete convolution, to compute the associated potential by means of a
Radau IIA method one has to interpolate ϕ with respect to the time variable. This is
not the case if the BIE has been solved using the same RK method.
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Remark 3.2 To apply Lubich’s convolution quadrature, the time interval of interest
[0, T ] ought to be subdivided into N equal parts of length ∆t, with ∆t sufficiently small
to guarantee the required accuracy. This also when we are interested in computing the
integral I(ϕ; t) only for a very few values of t; for example, only at t = T . Moreover,
if r (< t) is close to t, one cannot take advantage of the property that the integrand
function in (??) vanishes in (t− r, t).

A consequence of the latter drawback is, for example, that when in (??) we replace
the time integral by the chosen n-point discrete convolution formula, we have neverthe-
less to compute n space integrals.

To speed up the potential evaluation, it is thus important to evaluate the time
integral with the required accuracy, by using a rule with a low number of nodes. To this
end, since I(ϕ; t) = 0 whenever t ≤ r, in the following, to evaluate I(ϕ; t) when t > r,
we propose two alternative approaches to the above mentioned Lubich quadratures.

The first one is simply given by the following m-point Gauss-Jacobi (GJm) rule:

I(ϕ; t) =
1
2π

∫ t−r

0

ϕ(τ)√
t + r − τ

dτ√
t− r − τ

(18)

=
1
2π

∫ 1

−1

ϕ
(

t−r
2 (ξ + 1)

)
√

t+3r
t−r − ξ

dξ√
1− ξ

≈ 1
2π

m∑

i=1

λGJ
im

ϕ
(

t−r
2 (ξGJ

im + 1)
)

√
t+3r
t−r − ξGJ

im

where λGJ
im and ξGJ

im are the weights and nodes of the GJm quadrature rule defined by
the weight function (1− ξ)−

1
2 . This is the best choice when an analytic expression of

ϕ is known and r is away from zero. Indeed, the numerical tests reported below show
that this GJm formula is more efficient than the Lubich formulas. The convergence
behavior of the Gauss-Jacobi quadratures is well-known for several classes of integrand
functions; see, for example, [?]. When an approximation of ϕ(t) is known only at
equidistant instants {tj}, to apply the above GJm rule we need to interpolate first,
by a not-a-knot cubic spline function, for example, the given known values. We recall
that when ϕ ∈ C4[0, T ], this interpolation introduces an additional error term of order
O(∆4

t ).
Unfortunately, when r ≈ 0, i.e., when x is very close to the boundary of the problem

domain, the accuracy of the Gaussian rule decreases. This is due to the behavior of
the integrand function, which becomes nearly singular as (t + 3r)/(t − r) ≈ 1 (notice
that (t + 3r)/(t − r) > 1). Actually, this phenomenon also appears whenever t >> r.
In this case a different numerical approach is required.

To deal with the latter situation we could evaluate the above integral I(ϕ; t) by
means of the m-point Gaussian rule associated with the (positive) weight function

w(ξ) =
1√

(1− ξ)( t+3r
t−r − ξ)

However to construct this rule we would need some special software; moreover,
for each value of t and of r one has to determine the corresponding set of nodes and
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weights. Thus, except for the case one has to evaluate the integral for a single value of
t/r, this approach is highly expensive.

To avoid this inefficiencies, we propose to use a new rule of composite type. To
construct it, first we split the interval of integration into two parts: (0, t − R) and
(t − R, t − r), with R : r < R < t properly chosen. Then, we apply a m-point Gauss-
Legendre (GLm) rule to the first subinterval, and a ν-point formula of product type
(Pν), with ν very small, to the second one, after having reduced also this latter integral
to the reference interval (−1, 1). For this second rule we have taken as abscissas the
Chebyshev nodes of the first kind, that is,

ξGC
iν = cos(2i− 1)

π

2ν
, i = 1, . . . , ν.

Thus, in this case, we approximate I(ϕ; t) as follows:

I(ϕ; t) =
1
2π

[∫ t−R

0
+

∫ t−r

t−R

]
ϕ(τ)√

(t− τ)2 − r2
dτ

=
1
2π




∫ 1

−1

ϕ
(

t−R
2 (ξ + 1)

)
√

( t+R−2r
t−R − ξ)( t+R+2r

t−R − ξ)
dξ +

∫ 1

−1

ϕ(R−r
2 (ξ + 1) + t−R)√

(1− ξ)
(

R+3r
R−r − ξ

) dξ




≈ 1
2π




m∑

i=1

λGL
im

ϕ
(

t−R
2 (ξGL

im + 1)
)

√
( t+R−2r

t−R − ξGL
im )( t+R+2r

t−R − ξGL
im )

(19)

+
ν∑

i=1

viνϕ

(
R− r

2
(ξGC

iν + 1) + t−R

)]
.

The integer ν is generally chosen small (in our experimental tests, for example, we
have taken ν = 5). The corresponding coefficients viν are then defined by requiring the
formula to be exact whenever ϕ is a polynomial of degree ≤ ν − 1.

More precisely, if we assume that ϕ is known only at the (equidistant) points
{tn, n = 0, ..., N} defined above, as in the case they are obtained by solving our BIE,
then we choose 0 ≤ t − R ≡ tn0−1 < tn0 < t − r < tn0+1 ≤ T if t − r > t1; otherwise,
if t − r ≤ t1 we set t − R = 0 and apply only the Pν rule. In our testing, since we
are mainly interested in evaluating the potential associated with a BIE, in (??) we
have chosen ν = 5 and xiν coinciding with the above defined Chebyshev nodes. This
choice of ν is justified by the property that the remainder term behavior of this rule,
as ∆t → 0, r > 0 being fixed, is O(∆5

t ). Indeed, this is negligible with respect to that
of the most accurate Lubich convolution quadrature RK3, which is O(∆9/2

t ).
The coefficients viν are defined by requiring the formula Pν to be exact whenever

ϕ(τ) is a polynomial of degree ≤ ν−1. Setting v := R+3r
R−r , the (weighted) moments as-

sociated with the standard interval (−1, 1), which are needed to determine the weights
viν by solving the associated 5×5 linear system, are given by the following expressions:
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µD
0ν = 2 log

√
2 +

√
1 + v√

v − 1

µD
1ν =

1
2

(
(1 + v)µD

0ν −
√

8(1 + v)
)

µD
2ν =

1
4

(
3v2 + 2v + 3

2
µD

0ν −
√

2(1 + v)(3v + 1)
)

µD
3ν =

1
24

(
15v3 + 9v2 + 9v + 15

2
µD

0ν −
√

2(1 + v)(15v2 + 4v + 13)
)

µD
4ν =

1
192

(
3(35v4 + 20v3 + 18v2 + 20v + 35)

2
µD

0ν

−
√

2(1 + v)(105v3 + 25v2 + 83v + 43)
)

(20)

The 2-norm condition number of the above linear system is ≈ 19.6.
In Table ?? we have reported, for some value of r, the absolute errors and the

corresponding estimated orders of convergence (EOC), associated with the computation
of integral (??), when ϕ(τ) = sin(2τ)2τ2 exp(−τ). The reference values are computed
using the most accurate quadrature formula for each value of r, after having taken
N = Nref = 1024; these are: GJN for r ≥ 0.01 and GLN +Pν otherwise. In this table,
as well as in all the following ones, the symbol “−−” means that the double precision
accuracy has been achieved.

In all the following tables, the total number of nodes nt, hence of function evalua-
tions, required by the above defined time integration formulas BDF , RK2, RK3, GJN ,
GLPN+ν = GLN +Pν , will be: N +1, 2N, 3N,N,N +5, respectively, where the values
of N are defined in the first column.

In Table ??, the behavior of the Lubich formulas does not depend significantly on
r; on the contrary, that of the Gaussian rules varies significantly, as r → 0. We also
notice that for r ≥ 1 the Gauss-Jacobi formula is the most accurate one; while, as r
decreases towards zero, the GLP rule become more efficient than the RK3 and GJ
approaches (see Fig. 1).

Concerning the first formula, we have to remark that, even if the coefficient matrix
Wm can be computed by the FFT algorithm with O(N log N) flops, it requires the
evaluation of a matrix function and the use of the complex arithmetic. Finally, to
achieve an accuracy greater than 1.E− 08 by means of the RKs when r = 0.01, 0.0001
and N is large, we have to increase the number of the trapezoidal quadrature nodes, for
the computation of the convolution coefficients, up to L = 4N or L = 6N . Otherwise,
as some of the following tables show, an accuracy barrier will soon appear.

We finally recall that, except for the BDF Lubich formula, in all the others formulas
the function ϕ ought to be evaluated also at abscissas which are different from those
of the chosen uniform partition of [0, T] .

In Table ?? we have reported the absolute errors given by the computation of
integral (??) with kernel (??), where ϕ(τ) = sin(2τ)2τ2 exp(−τ) is known only at κ
equidistant points of the integration interval [0, T]. Therefore, except for the BDF
rule, to apply the other quadrature formulas, for simplicity we have approximated
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ϕ(τ) by the not-a-knot spline S3(ϕ) interpolating it at those κ points. We recall that
this latter introduces an extra error term of order O(∆4

t ). This choice has introduced
the accuracy barrier shown by the results reported in the corresponding tables.

In Table ??, we have fixed r = 1 and chosen κ = 16, 32, 128. The accuracy barrier
generated by the spline interpolation appears very soon in the last three columns.

The reference values are computed by the GJN quadrature formula with N = 1024
and assuming ϕ(τ) known everywhere.

In Figure ?? we compare the performance of the approaches BDF , RK3, GJ and
GLP , when they are applied to integral (??) with kernel (??), T = 3 and ϕ(τ) =
sin(2τ)2τ2 exp(−τ). For a fair comparison, the approaches use the same number of
function evaluations. We have plotted the absolute errors obtained by taking the
number of function evaluations reported on the x-axis. The reference values are those
obtained by applying the GJ64 rule when r = 1, 0.01, and the GLP64+5 formula in the
case r = 0.0001.

Figure 1: Absolute errors for (??) with (??) and ϕ(τ) = sin(2τ)2τ2 exp(−τ).
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Finally, we have considered the case of a higher oscillating function: ϕ(τ) =
τ3e−τ sin(100τ). The performances of the chosen rules are reported in Tables ??-??.
From these, it emerges that in this case the BDF method is completely unsatisfactory,
while the Gaussian approach appears very efficient.
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Table 1: Absolute errors and EOCs for (??) with (??). ϕ(τ) = sin(2τ)2τ2 exp(−τ) and t = T = 3.
N BDF EOC RK2 EOC RK3 EOC GJN EOC GLPN+5 EOC

r = 2
4 1.19e− 02 8.99e− 03 3.79e− 03 3.53e− 06 8.67e− 08

1.1e + 0 4.0e + 0 2.6e + 1
8 1.26e− 02 4.32e− 03 2.33e− 04 3.88e− 14 6.71e− 07

4.4e− 1 2.4e + 0 4.9e + 0 1.2e + 1 7.9e + 0
16 9.28e− 03 8.37e− 04 8.00e− 06 −− 2.84e− 09

1.1e + 0 2.9e + 0 5.0e + 0 4.6e + 0
32 4.30e− 03 1.11e− 04 2.55e− 07 −− 1.15e− 10

2.0e + 0 3.0e + 0 5.0e + 0 1.3e + 1
64 1.07e− 03 1.39e− 05 7.93e− 09 −− 2.05e− 14

2.2e + 0 3.0e + 0 5.0e + 0
128 2.32e− 04 1.72e− 06 2.47e− 10 −− −−

2.1e + 0 3.0e + 0 5.0e + 0
256 5.35e− 05 2.14e− 07 7.69e− 12 −− −−

2.1e + 0 3.0e + 0 5.1e + 0
512 1.29e− 05 2.66e− 08 2.30e− 13 −− −−

r = 1
4 8.91e− 03 5.58e− 03 3.02e− 04 9.77e− 04 2.70e− 05

2.5e + 0 3.4e + 0 2.1e + 1 8.0 + 0
8 9.26e− 03 9.71e− 04 2.81e− 05 6.45e− 10 1.08e− 07

4.0e + 0 2.7e + 0 9.4e + 0 2.6e + 1 2.7e + 0
16 5.98e− 04 1.50e− 04 4.27e− 08 −− 1.70e− 08

2.5e + 0 2.1e + 0 6.9e + 0
32 2.18e− 03 2.61e− 05 9.94e− 09 −− 1.41e− 10

1.4e + 0 2.8e + 0 4.3e + 0 3.7e + 0
64 8.41e− 04 3.85e− 06 5.03e− 10 −− 1.08e− 11

1.8e + 1 2.9e + 0 4.8e + 0 7.7e + 0
128 2.36e− 04 5.21e− 07 1.82e− 11 −− 7.03e− 14

1.9e + 1 3.0e + 0 2.4e + 0
256 6.17e− 05 6.75e− 08 3.48e− 12 −− −−

2.0e + 1 3.0e + 0
512 1.57e− 05 8.59e− 09 7.71e− 12 −− −−

r = 0.01
4 1.77e− 02 2.56e− 02 1.07e− 03 9.44e− 03 6.53e− 04

2.1e + 0 2.7e + 0 3.0e + 0 3.6e + 0 3.5e + 0
8 4.25e− 03 4.07e− 03 1.33e− 04 8.01e− 04 5.86e− 05

2.4e− 1 2.9e + 0 3.1e + 0 4.1e + 0 6.6e + 0
16 3.60e− 03 5.44e− 04 1.52e− 05 4.75e− 05 6.16e− 07

1.5e− 1 2.9e + 0 4.0e + 0 8.0e + 0 7.1e + 0
32 1.29e− 03 7.41e− 05 9.49e− 07 1.89e− 07 4.40e− 09

1.8e + 0 2.9e + 0 5.0e + 0 1.6e + 1 7.2e + 0
64 3.63e− 04 1.0e− 05 3.01e− 08 3.93e− 12 3.02e− 11

1.9e + 0 2.9e + 0 5.3e + 0 1.3e + 1 7.0e + 0
128 9.47e− 05 1.32e− 06 7.53e− 10 6.66e− 16 2.29e− 13

2.0e + 0 3.0e + 0 5.0e + 0 7.1e + 0
256 2.41e− 05 1.68e− 07 2.37e− 11 −− 1.64e− 15

2.0e + 0 3.0e + 0
512 6.06e− 06 2.10e− 08 2.68e− 10 −− −−

r = 0.001
4 1.75e− 02 2.56e− 02 1.07e− 03 6.99e− 04 2.57e− 03

2.0e + 0 2.6e + 0 2.9e + 0 3.1e + 0
8 4.30e− 03 4.11e− 03 1.42e− 04 8.33e− 03 2.98e− 04

2.6e− 1 2.9e + 0 3.1e + 0 1.4e + 0 5.9e + 0
16 3.60e− 03 5.54e− 04 1.70e− 05 3.22e− 03 4.92e− 06

1.5e + 0 2.9e + 0 3.7e + 0 2.7e + 0 6.3e + 0
32 1.29e− 03 7.68e− 05 1.30e− 06 5.04e− 04 6.18e− 08

1.8e + 0 2.8e + 0 3.9e + 0 5.2e + 0 6.4e + 0
64 3.62e− 04 1.07e− 05 8.76e− 08 1.37e− 05 7.15e− 10

1.9e + 0 2.9e + 0 4.0e + 0 1.0e + 1 6.5e + 0
128 9.44e− 05 1.47e− 06 5.36e− 09 1.32e− 08 7.67e− 12

2.0e + 0 2.9e + 0 4.0e + 0 2.0e + 1 6.7e + 0
256 2.40e− 05 2.00e− 07 3.40e− 10 1.47e− 14 7.49e− 14

2.0e + 0 2.9e + 0 6.6e− 1 5.1e + 0 5.3e + 0
512 6.05e− 06 2.64e− 08 2.15e− 10 −− 1.92e− 15
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Table 2: Absolute errors for (??) with (??). ϕ(τ) = S3(sin(2τ)2τ2 exp(−τ)), r = 1, t = T = 3.
N BDF RK2 RK3 GJN GLPN+5

κ = 16
4 8.91e− 03 5.58e− 03 3.10e− 04 9.76e− 04 6.08e− 05
8 9.26e− 03 9.76e− 04 2.38e− 05 1.55e− 05 1.55e− 06

16 5.98e− 04 1.55e− 04 7.69e− 06 8.91e− 06 8.80e− 06
32 2.17e− 03 3.34e− 05 7.09e− 06 7.02e− 06 7.21e− 06
64 8.33e− 04 1.08e− 05 7.13e− 06 7.07e− 06 7.22e− 06

128 2.29e− 04 7.71e− 06 7.06e− 06 7.07e− 06 7.21e− 06
256 5.65e− 05 7.15e− 06 7.07e− 06 7.07e− 06 7.21e− 06
512 8.96e− 06 7.08e− 06 7.07e− 06 7.07e− 06 7.21e− 06

κ = 32
4 8.91e− 03 5.58e− 03 3.02e− 04 9.76e− 04 5.54e− 04
8 9.26e− 03 9.71e− 04 2.66e− 05 1.37e− 06 2.82e− 06

16 5.98e− 04 1.52e− 04 6.81e− 07 6.94e− 07 1.24e− 06
32 2.18e− 03 2.69e− 05 7.86e− 07 6.58e− 07 4.45e− 07
64 8.40e− 04 4.63e− 06 7.45e− 07 7.24e− 07 7.06e− 07

128 2.36e− 04 1.28e− 06 7.15e− 07 7.16e− 07 7.15e− 07
256 6.10e− 05 7.89e− 07 7.15e− 07 7.15e− 07 7.15e− 07
512 1.49e− 05 7.25e− 07 7.15e− 07 7.15e− 07 7.15e− 07

κ = 128
4 8.91e− 03 5.58e− 03 3.02e− 04 9.77e− 04 2.61e− 03
8 9.26e− 03 9.71e− 04 2.81e− 05 2.60e− 09 2.09e− 04

16 5.98e− 04 1.50e− 04 4.24e− 08 2.45e− 09 2.69e− 06
32 2.18e− 03 2.61e− 05 1.41e− 08 3.29e− 09 3.46e− 09
64 8.41e− 04 3.86e− 06 3.04e− 09 2.64e− 09 3.32e− 09

128 2.36e− 04 5.23e− 07 2.37e− 09 2.46e− 09 1.48e− 09
256 6.17e− 05 6.99e− 08 2.34e− 09 2.32e− 09 2.32e− 09
512 1.57e− 05 1.09e− 08 2.33e− 09 2.32e− 09 2.33e− 09

Table 3: Absolute errors for (??) with (??). ϕ(τ) = τ3 exp(−τ) sin(100τ), r = 0.1
N BDF RK2 RK3 GJN GLPN+5

4 5.04e− 02 4.49e− 02 7.20e− 04 9.53e− 03 3.42e− 02
8 3.82e− 02 4.57e− 02 2.94e− 02 8.30e− 03 3.58e− 02

16 3.80e− 02 3.24e− 02 2.41e− 02 6.85e− 02 1.97e− 02
32 3.84e− 02 4.06e− 02 1.85e− 02 3.11e− 02 3.72e− 03
64 9.10e− 04 3.37e− 03 1.57e− 03 5.16e− 03 1.22e− 03

128 2.53e− 03 2.15e− 03 1.96e− 03 3.91e− 03 2.99e− 03
256 1.13e− 03 1.41e− 03 1.40e− 04 4.27e− 04 3.78e− 04
512 1.13e− 03 2.40e− 04 1.33e− 05 8.13e− 15 1.03e− 07

1024 9.21e− 04 2.44e− 05 5.27e− 08 −− 8.70e− 09
2048 8.95e− 04 7.02e− 06 7.81e− 09 −− 1.08e− 10
4096 4.61e− 04 1.25e− 06 1.35e− 09 −− 2.84e− 13
8192 1.32e− 04 1.82e− 07 8.20e− 09 −− 7.09e− 15

Table 4: Numerical values of (??) with (??). ϕ(τ) = τ3 exp(−τ) sin(100τ), r = 0.1
N BDF RK3 GJN

4 −4.9258391756840318e− 02 1.8526314626703317e− 03 1.0662933997184008e− 02
8 −3.7099190421807995e− 02 −2.8243170024519964e− 02 −7.1704612941749304e− 03

16 −3.6904459553958657e− 02 2.5251039912798992e− 02 6.9661962227335325e− 02
32 −3.7221518426081811e− 02 −1.7359999509674866e− 02 3.2194085256150778e− 02
64 2.2343306941026951e− 04 −4.3226789790465228e− 04 6.2922252904591743e− 03

128 −1.3954519384163627e− 03 −8.2490343517672917e− 04 −2.7777376284759334e− 03
256 −4.5438541903695603e− 08 1.2734074801274515e− 03 1.5600513773026828e− 03
512 1.4883659860869328e− 07 1.1464515972069253e− 03 1.1331073596789311e− 03

1024 2.1170594429162012e− 04 1.1331600781978295e− 03 1.1331073596808022e− 03
2048 2.0283184016331932e− 03 1.1330995502252515e− 03 1.1331073596784051e− 03
4096 1.5942520855116926e− 03 1.1331060104438717e− 03 1.1331073596798104e− 03
8192 1.2650028711678699e− 03 1.1330991614223684e− 03 1.1331073596817470e− 03
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Table 5: Absolute errors for (??) with (??). ϕ(τ) = τ3 exp(−τ) sin(100τ), r = 8
N BDF RK2 RK3 GJN GLPN+5

4 4.29e− 02 1.27e− 02 4.25e− 02 3.23e− 02 3.97e− 02
8 4.21e− 02 5.75e− 03 4.09e− 02 2.13e− 02 3.97e− 02

16 4.17e− 02 4.04e− 02 4.99e− 02 5.41e− 03 1.27e− 02
32 4.17e− 02 1.39e− 02 6.40e− 04 1.15e− 02 1.30e− 02
64 7.35e− 03 7.35e− 03 7.72e− 03 6.53e− 09 1.19e− 02

128 7.35e− 03 7.37e− 03 6.34e− 03 −− 6.48e− 04
256 7.35e− 03 7.35e− 03 7.34e− 03 −− 4.20e− 06
512 7.35e− 03 7.35e− 03 7.06e− 03 −− 4.48e− 07

1024 7.35e− 03 7.35e− 03 6.83e− 04 −− 9.70e− 08
2048 7.35e− 03 5.37e− 03 2.27e− 05 −− 2.77e− 07
4096 7.66e− 03 1.11e− 03 7.10e− 07 −− 3.55e− 07
8192 9.71e− 03 1.48e− 04 2.21e− 08 −− 1.98e− 07

Table 6: Numerical values of (??) with (??). ϕ(τ) = τ3 exp(−τ) sin(100τ), r = 8
N BDF RK3 GJN

4 −5.0207682444498476e− 02 −4.9884484824954570e− 02 −3.9625903758146203e− 02
8 −4.9463238785970254e− 02 −4.8281683452237115e− 02 1.3962432086426143e− 02

16 −4.9059329012229022e− 02 4.2504560009072268e− 02 −1.9400898916913959e− 03
32 −4.9005449083994755e− 02 −7.9908648153352805e− 03 −1.8816738489447649e− 02
64 1.2700021556968921e− 08 3.7277474883842891e− 04 −7.3510492267599634e− 03

128 9.1185596740039898e− 08 −1.0124958276289228e− 03 −7.3510557577548315e− 03
256 1.8603700469894938e− 10 −1.2636054586908445e− 05 −7.3510557577547968e− 03
512 −4.5012234879075047e− 11 −2.9151456150994140e− 04 −7.3510557577545765e− 03

1024 −4.5887367998180114e− 11 −6.6679554174551821e− 03 −7.3510557577547170e− 03
2048 −4.6591937642576309e− 11 −7.3283152131975796e− 03 −7.3510557577544057e− 03
4096 3.0903969312288476e− 04 −7.3503456761484310e− 03 −7.3510557577549365e− 03
8192 2.3568928453271288e− 03 −7.3510336523228527e− 03 −7.3510557577543450e− 03
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4 Convolution integrals in 2D Neumann wave

problems

In this section we consider (??) with K(t) given by (??). In this case the Lubich
quadrature formula associated with the BDF or Radau IIA methods can be defined
in a similar way; the only difference with respect to the Dirichlet case is the Laplace
transform K̂, which now is given by

K̂(r, s) = − 1
2π

sK1(rs)
∂r

∂ny
, (21)

where K1 denotes the modified Bessel function of the second kind of order 1.
For the BDF rule, assuming ϕ ∈ C5([0, T ]), with ϕ(0) = · · · = ϕ′′′(0) = 0, from [?]

we obtain the following pointwise bound:

|I(ϕ; tn)−BDF (ϕ; tn)| = O(∆2
t )

uniformly for 0 ≤ tn ≤ T.
For the two s-stage Runge-Kutta methods, we apply Theorem 5.1 in [?]. Thus,

assuming ϕ ∈ Cs+2([0, T ]), with ϕ(0) = ϕ′(0) = · · · = ϕ(s+1)(0) = 0, there exists a
∆̄ > 0 such that for 0 < ∆t ≤ ∆̄ and tn ∈ [0, T ] we have

(
∆t

N∑

n=0

|I(ϕ; tn)−RKs(ϕ; tn)|2
)1/2

= O(∆s+1/2
t )

Notice that for our two RK2, RK3 rules the above bound becomes O(∆5/2
t ) and O(∆7/2

t ),
respectively. These two bounds are of lower order if compared with those we have in
the Dirichlet case.

To apply our Gaussian formula, we need to use the following more explicit repre-
sentation of I(ϕ; t), which is more suitable for its evaluation.

Proposition 4.1 Let r = ||x − y|| > 0, r < t, be given, and assume ϕ ∈ C1[0, t].
Then we we have:

I(ϕ; t) =
r

2π

∂r

∂ny

∫ t−r

0
=

ϕ(τ)
[(t− τ)2 − r2]3/2

dτ. (22)

Proof. Recalling the relationship (see [?] Lemma 2.4)

∂G

∂ny
(‖x− y‖, t) = − 1

2π

[
∂

∂t

H(t− r)√
t2 − r2

+
(t− r)H(t− r)

(t2 − r2)3/2

]
∂r

∂ny
,

for the corresponding integral (??) we obtain the following representation:

I(ϕ; t) = − 1
2π

∂r

∂ny

[
∂

∂t

∫ t−r

0

ϕ(τ)√
(t− τ)2 − r2

dτ +
∫ t−r

0

(t− τ − r)ϕ(τ)
((t− τ)2 − r2)3/2

dτ

]
.

Then, we take ε > 0 sufficiently small, and rewrite this expression as follows:

I(ϕ; t) = − 1
2π

∂r

∂ny
lim
ε→0

[
∂

∂t

∫ t−r−ε

0

ϕ(τ)√
(t− τ)2 − r2

dτ +
∫ t−r−ε

0

(t− τ − r)ϕ(τ)
((t− τ)2 − r2)3/2

dτ

]
.
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By computing explicitly the derivative of the first integral, and subsequently the limit
value, as ε → 0, of the square bracket parenthesis, we obtain:

I(ϕ; t) =
r

2π

∂r

∂ny

[∫ t−r

0

ϕ(τ)− ϕ(t− r)
((t− τ)2 − r2)3/2

dτ − t

r2

ϕ(t− r)√
t2 − r2

]
.

Finally, recalling the definition of finite part integral (see [?]), we obtain representation
(??).2

Proceeding further, for the integral I(ϕ; t) defined in (??) we obtain

I(ϕ; t) =
r

2π

∂r

∂ny

∫ t−r

0
=

1√
t− r − τ

ϕ(τ)

(t+r−τ)
3
2

t− r − τ
dτ

=
2r

π(t− r)2
∂r

∂ny

∫ 1

−1
=

1√
1− ξ

ϕ
(

(t−r)
2

(ξ+1)
)

[(t+3r)/(t−r)−ξ]
3
2

1− ξ
dξ (23)

We recall that in the above finite part integrals the change of variable is allowed,
even if the hypersingularity is at an endpoint, because the order of the singularity is
not an integer (see [?], p.13). When r ≥ 1, to compute this finite part integral we use
the Radau type Gaussian rule described in [?], that here takes the form:

∫ 1

−1
=

1√
1− ξ

Φ(ξ)
1− ξ

dξ ≈ a0Φ(1) +
m∑

i=1

λGJ
im

1− ξGJ
im

Φ(ξGJ
im )

where

a0 = −
√

2−
m∑

i=1

λGJ
im

1− ξGJ
im

< 0.

For the convergence behavior of this rule see [?].
When 0 < r < 1, proceeding as in the Dirichlet case, we propose the following

numerical approach:

I(ϕ; t) =
r

2π

∂r

∂ny

[∫ t−R

0
+

∫ t−r

t−R
=

]
ϕ(τ)

[(t− τ)2 − r2]
3
2

dτ

=
2r

π

∂r

∂ny


 1

(t−R)2

∫ 1

−1

ϕ
(

(t−R)
2 (ξ + 1)

)

[
( t+R−2r

t−R − ξ)( t+R+2r
t−R − ξ)

] 3
2

dξ

+
1

(R− r)2

(∫ 1

−1

ϕ(R−r
2 (ξ + 1) + t−R)− ϕ(t−R)

1− ξ

1
√

1− ξ(R+3r
R−r − ξ)

3
2

dξ

+ϕ(t−R)
∫ 1

−1
=

1
[
(1− ξ)(R+3r

R−r − ξ)
] 3

2

dξ







Then, by applying the Gauss-Legendre rule to the first integral, and the correspond-
ing product type rule, based on the Chebyshev nodes, to the second one, we obtain
the following composite integration rule:
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I(ϕ; t) ≈ 2r

π

∂r

∂ny


 1

(t−R)2

m∑

i=1

λGL
im

ϕ
(

t−R
2 (ξGL

im + 1)
)

[
( t+R−2r

t−R − ξGL
im )( t+R+2r

t−R − ξGL
im )

] 3
2

dξ

+
1

(R− r)2

(
ν∑

i=1

ṽiν
ϕ(R−r

2 (ξGC
iν + 1) + t−R)
1− ξGC

iν

+ ṽ0νϕ(t−R)

)]

with

ṽ0ν = − R

4r2

(R− r)
3
2

(R + r)
1
2

−
ν∑

i=1

ṽiν
1

1− ξGC
iν

.

As in the Dirichlet case, the corresponding coefficients ṽiν are defined by requiring
the formula to be exact for all polynomials of degree ≤ ν − 1. To this end, setting
v := R+3r

R−r , for ν = 5 the required moments are given by the following expressions:

µN
0ν =

√
8(1 + v)
v2 − 1

µN
1ν = vµN

0ν − µD
0ν

µN
2ν =

3v2 − 1
2

µN
0ν −

3v + 1
2

µD
0ν

µN
3ν =

15v3 + v2 − 7v − 1
8

µN
0ν −

15v2 + 6v + 3
8

µD
0ν

µN
4ν =

105v4 + 10v3 − 44v2 − 10v − 13
48

µN
0ν −

35v3 + 15v2 + 9v + 5
16

µD
0ν

(24)

where µD
0,ν is defined in (??).

In Table ?? we have reported, for some values of r, the relative errors and the
corresponding EOC associated with the computation of integral (??) with kernel (??),
where ϕ(τ) = τ5 exp(−τ), t = T = 10. For each value of r, the reference values are
computed by using the most accurate quadrature formula, after having set N = 1024;
this is: the GJN rule when r ≥ 1, and the GLPN+5 one otherwise. As in the Dirichlet
case, for the BDF and RK methods an accuracy barrier appears; this is due to the
error generated by the trapezoidal rule we have used to compute their coefficients.
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Table 7: Relative errors and EOCs for (??) with (??). ϕ(τ) = τ5 exp(−τ) and t = T = 10.
N BDF EOC RK2 EOC RK3 EOC GJN EOC GLPN+5 EOC

r = 5
4 3.34e− 01 3.55e− 03 2.90e− 02 2.09e− 05 1.43e− 05

2.5e + 0 5.4e + 0 1.8e + 1 4.2e + 0
8 5.76e− 02 2.42e− 02 6.81e− 04 8.32e− 11 7.92e− 07

3.0e + 0 5.1e + 0 8.5e + 0 7.5e + 0
16 1.14e− 01 2.93e− 03 2.00e− 05 2.33e− 13 4.48e− 09

1.2e + 0 3.0e + 0 4.9e + 0 7.7e + 0
32 5.10e− 02 3.60e− 04 6.64e− 07 2.27e− 13 2.12e− 11

2.2e + 0 3.0e + 0 5.0e + 0 3.6e + 0
64 1.10e− 02 4.43e− 05 2.13e− 08 2.42e− 13 1.76e− 12

2.1e + 0 3.0e + 0 5.0e + 0 2.7e + 0
128 2.66e− 03 5.48e− 06 6.75e− 10 2.86e− 13 2.72e− 13

2.0e + 0 3.0e + 0 5.0e + 0
256 6.56e− 04 6.81e− 07 2.13e− 11 2.64e− 13 1.50e− 13

2.0e + 0 3.0e + 0 1.9e + 0
512 1.63e− 04 8.48e− 08 5.77e− 12 2.04e− 13 7.19e− 14

r = 1
4 3.67e− 01 5.07e− 02 5.79e− 03 8.71e− 04 3.02e− 07

2.5e + 0 3.7e + 0 9.5e + 0 9.7e + 0
8 6.59e− 02 3.96e− 03 7.88e− 06 1.03e− 06 3.27e− 06

1.6e + 0 3.0e + 0 1.9e + 0 2.0e + 1 8.7e + 0
16 2.23e− 02 4.83e− 04 2.10e− 06 1.16e− 12 7.86e− 09

2.1e + 0 3.0e + 0 4.4e + 0 1.0e + 1
32 5.21e− 03 5.86e− 05 9.66e− 08 5.43e− 13 7.43e− 12

2.0e + 0 3.0e + 0 4.9e + 0 4.3e + 0
64 1.27e− 03 7.15e− 06 3.33e− 09 5.41e− 13 3.88e− 13

2.0e + 0 3.0e + 0 2.0e + 0
128 3.13e− 04 8.79e− 07 8.07e− 10 5.99e− 13 5.16e− 13

2.0e + 0 3.0e + 0
256 7.78e− 05 1.09e− 07 3.13e− 09 4.82e− 13 3.74e− 13

2.0e + 0 3.1e + 0
512 1.94e− 05 1.26e− 08 3.84e− 09 3.93e− 13 2.91e− 13

r = 0.01
4 1.50e− 04 3.28e− 05 9.65e− 06 7.03e− 01 1.75e− 06

2.3e + 0 6.1e + 0 3.4e + 0 6.3e− 1 5.6e + 0
8 3.17e− 05 4.88e− 07 9.21e− 07 4.55e− 01 3.61e− 08

2.6e + 0 2.3e + 0 1.6e + 0 5.1e + 0
16 5.20e− 06 1.76e− 06 1.89e− 07 1.51e− 01 1.09e− 09

2.3e + 0 1.1e + 0 2.4e + 0 3.7e + 0 5.6e + 0
32 1.09e− 06 8.54e− 07 3.69e− 08 1.13e− 02 2.28e− 11

2.1e + 0 1.4e + 0 2.5e + 0 7.9e + 0 6.2e + 0
64 2.47e− 07 3.24e− 07 6.75e− 09 4.79e− 05 1.23e− 12

2.1e + 0 1.7e + 0 2.3e + 0 1.6e + 1 3.1e + 0
128 5.89e− 08 1.03e− 07 1.42e− 09 6.84e− 10 9.00e− 13

2.1e + 0 2.0e + 0 1.7e + 0 9.0e + 0
256 1.42e− 08 2.64e− 08 4.39e− 10 4.29e− 13 8.97e− 13

2.0e + 0 2.4e + 0
512 3.56e− 09 5.05e− 09 4.50e− 10 1.26e− 12 8.96e− 13

r = 0.0001
4 3.58e− 08 7.93e− 09 1.61e− 09 9.70e− 01 2.26e− 08

2.7e + 0 5.1e + 0 4.0e + 0 4.2e− 2 5.3e + 0
8 5.37e− 09 2.29e− 10 1.04e− 10 9.42e− 01 5.65e− 10

2.6e + 0 8.9e− 2 4.7e + 0
16 9.00e− 10 2.08e− 10 7.11e− 11 8.86e− 01 2.23e− 11

2.9e + 0 1.9e− 1 5.0e + 0
32 1.24e− 10 2.98e− 10 6.45e− 11 7.75e− 01 6.95e− 13

7.2e− 1 4.6e− 1 5.1e + 0
64 7.56e− 11 1.82e− 10 6.87e− 11 5.64e− 01 2.08e− 14

1.5e + 0 1.3e + 0 1.2e + 0 5.0e + 0
128 2.65e− 11 7.20e− 11 1.33e− 10 2.50e− 01 −−

2.9e + 1
256 4.79e− 11 1.68e− 10 2.34e− 11 3.40e− 02 −−

1.9e + 0 6.2e + 0
512 1.30e− 11 8.92e− 11 1.04e− 10 4.52e− 04 −−
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In Table ?? we have reported the relative errors given by the computation of in-
tegral (??) with kernel (??), assuming that ϕ(τ) = τ5 exp(−τ) is known only at κ
equidistant points of the integration interval [0, T]. Therefore, as in Table ??, to apply
our quadrature formulas we have approximated ϕ(τ) by the not-a-knot spline S3(ϕ) of
order 3, interpolating it at κ abscissas. In Table ??, we have fixed r = 1 and chosen
κ = 16, 32, 128.

The reference values are computed by the GJN quadrature formula, with N = 1024
and assuming ϕ(τ) known everywhere.

Table 8: Relative errors for (??) with (??). ϕ(τ) = S3(τ5 exp(−τ)), r = 1, t = T = 10.
N BDF RK2 RK3 GJN GLPN+5

κ = 16
4 3.67e− 01 5.07e− 02 5.67e− 03 7.36e− 03 2.76e− 04
8 6.59e− 02 3.88e− 03 6.78e− 05 1.95e− 04 2.57e− 04

16 2.23e− 02 4.87e− 04 1.68e− 04 1.13e− 05 2.52e− 04
32 5.21e− 03 8.67e− 05 2.48e− 04 8.47e− 06 2.55e− 04
64 1.19e− 03 2.23e− 04 2.57e− 04 1.17e− 05 2.55e− 04

128 1.80e− 04 2.53e− 04 2.55e− 04 3.59e− 05 2.55e− 04
256 1.58e− 04 2.55e− 04 2.55e− 04 7.82e− 05 2.55e− 04
512 2.38e− 04 2.55e− 04 2.55e− 04 1.31e− 04 2.55e− 04

κ = 32
4 3.67e− 01 5.07e− 02 5.79e− 03 7.36e− 03 3.72e− 06
8 6.59e− 02 3.96e− 03 1.01e− 05 1.91e− 04 2.00e− 06

16 2.23e− 02 4.82e− 04 1.46e− 06 2.04e− 06 3.87e− 06
32 5.21e− 03 5.83e− 05 1.69e− 07 6.83e− 07 4.20e− 06
64 1.27e− 03 7.22e− 06 1.68e− 06 1.14e− 06 4.06e− 06

128 3.13e− 04 1.70e− 06 4.02e− 06 2.49e− 06 4.07e− 06
256 7.68e− 05 3.67e− 06 4.10e− 06 4.16e− 06 4.07e− 06
512 1.85e− 05 4.08e− 06 4.07e− 06 5.73e− 06 4.07e− 06

κ = 128
4 3.67e− 01 5.07e− 02 5.79e− 03 7.36e− 03 3.14e− 07
8 6.59e− 02 3.96e− 03 7.88e− 06 1.90e− 04 3.26e− 06

16 2.23e− 02 4.83e− 04 2.10e− 06 1.83e− 06 3.39e− 08
32 5.21e− 03 5.86e− 05 9.34e− 08 3.97e− 08 3.37e− 08
64 1.27e− 03 7.14e− 06 1.04e− 09 3.61e− 09 2.12e− 08

128 3.13e− 04 8.77e− 07 1.28e− 09 8.80e− 09 2.50e− 08
256 7.78e− 05 1.07e− 07 5.59e− 10 1.18e− 08 2.54e− 08
512 1.94e− 05 1.16e− 08 1.47e− 08 1.70e− 08 2.54e− 08

As for the Dirichlet kernel, in Figure ?? we fairly compare the performance of the
approaches BDF , RK3, GJ and GLP for the evaluation of the integral (??) with kernel
(??), T = 10 and ϕ(τ) = τ5 exp(−τ). We have plotted the relative errors obtained by
the number of function evaluations reported on x-axis. The reference values are those
obtained using the approaches GJ for r = 1, 0.01 and GLP when r = 0.0001.

Figure 2: Relative errors of (??) with (??) and ϕ(τ) = τ5 exp(−τ).
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5 BEMs for wave problems and evaluation of

the potential

In this section we apply the quadrature rules, we have examined in the previous sec-
tions, to compute the potentials defined by (??) and (??). In particular, to compare
the performance of the approaches BDF , RK3, GJ and GLP , we evaluate the po-
tential given by (??) with kernel (??), when the density function ϕD(x, τ) has been
obtained by solving the boundary integral equation (??) with gD(x, t) = t4 exp(−2t).
The boundary Γ coincides with that of the unit disc, parameterized by (cos(θ), sin(θ)),
θ ∈ [−π, π).

To obtain an approximant of ϕD(x, τ), we have applied the collocation BEM de-
scribed in [?], after subdividing the above parametrization interval into M = 32 equal
subintervals, and considering the associated (space) continuous piecewise linear func-
tion. This is represented as a linear combination of the standard finite element La-
grangian basis {Nk(θ), k = 1, . . . ,M} of local degree 1, whose coefficients depend on
τ .

Since in this case the density function is constant with respect to the space variable,
this value of M causes an error which is negligible with respect to that due to the time
integration. The matrix entries of the final linear system have been computed by
applying the 32-point Gauss-Legendre rule to each boundary element.

To evaluate the space integral defined on the parametrization interval of the bound-
ary Γ, for simplicity we have integrated each shape function Nk by applying a m-point
Gauss-Legendre formula to each element of its support, with a computational cost of
2m function evaluations. The total cost due to the integration of our (space) approxi-
mant is thus ns = 2mM .

As we have remarked in the previous sections, the approach GLP outperforms
GJ , only when r is sufficiently small. Therefore, in the next numerical testing, since
r = ||x − y|| varies when y moves on Γ, the GLP approach has to be reinterpreted
as follows: we use the GLP rule only when r < 0.1, and the GJ one otherwise. This
value of r has been chosen (both in the Dirichlet and Neumann case) after performing
some experimental testing.

In Table ?? we have reported the (estimated) L2-norm absolute errors we have
obtained at each chosen instant tn of the time interval [0, T ]. As reference solution we
have chosen the approximant obtained by taking M = 32, N = 1024; this is plotted in
Figure ??.

Table 9: Dirichlet wave problem. L2−norm absolute errors for ϕD. T = 3
N T/4 T/2 3T/4 T
16 3.73E − 02 1.46E − 02 1.80E − 01 3.03E − 01
32 1.31E − 02 8.06E − 04 1.07E − 01 1.38E − 01
64 3.58E − 03 4.71E − 06 5.34E − 02 2.29E − 02

128 9.17E − 04 2.76E − 05 1.84E − 02 5.43E − 03
256 2.21E − 04 1.08E − 05 2.93E − 03 1.25E − 03
512 4.46E − 05 2.60E − 06 5.99E − 04 2.47E − 04

Remark 5.1 In the following testing, to compute the potential, for simplicity we have
taken as density function ϕD the numerical solution obtained by taking M = 32 and
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Figure 3: Dirichlet wave problem. Density function ϕD.

N = 1024. Since its relative accuracy at t = T/4, T/2, 3T/4, T should be of order
1.1E − 5, 6.5E − 7, 1.5E − 4, 6.1E − 5, respectively, in the next tables only the first 4-5
figures should be significant. Nevertheless, the RK3 and GJN rules will converge, very
fast the second one, to some values, whose figures beyond the above ones in general
do not have any meaning. To show this phenomenon, we have preferred to report the
potential values we have obtained, rather than their errors.

Furthermore, to apply the latter two quadratures, we have interpolated the above
(discrete) reference solution by the not-a-knot cubic spline defined by the subset of 128
equidistant time instants. This choice guarantees an interpolation relative accuracy less
than 10−6, which is sufficient for the applications we will consider next.

Table 10: Dirichlet wave problem. Numerical values of (??). x = (2, 0), T = 3, ns = 128.
N BDF RK3 GJN

T/4
4 1.18833168138717e− 02 −4.42966837794846e− 04 0.00000000000000e + 00
8 2.57002678946833e− 03 3.13800269640450e− 05

16 3.66084839310169e− 04 2.05742878950548e− 06
32 3.09059206744296e− 05 −1.28683051234476e− 08
64 1.15160917485056e− 06 −1.57582457279020e− 11

128 1.08735083693501e− 08 −9.37427701556057e− 16
256 8.74634440323318e− 12 2.52891342902737e− 16
512 3.11627226807381e− 16 2.53625595617632e− 16

1024 2.43307376211427e− 16 2.28497020769812e− 16
T/2

4 5.62631579984236e− 02 1.82142277256695e− 02 1.63792831658736e− 02
8 3.53209481760269e− 02 1.64244716166179e− 02 1.63792573065788e− 02

16 2.36258297329252e− 02 1.63799702749361e− 02 1.63792626260307e− 02
32 1.83572261632710e− 02 1.63786687268855e− 02 1.63792623000755e− 02
64 1.66882918352872e− 02 1.63792756887661e− 02 1.63792623845715e− 02

128 1.64340271244956e− 02 1.63792642276929e− 02 1.63792624029582e− 02
256 1.63902630024813e− 02 1.63792653066198e− 02 1.63792624027901e− 02
512 1.63821523686572e− 02 1.63792625394531e− 02 1.63792624028210e− 02

1024 1.63799128074817e− 02 1.63792623886099e− 02 1.63792624028213e− 02
3T/4

4 1.21120234362169e− 01 1.44279384749307e− 01 1.44749763922269e− 01
8 1.28782398658362e− 01 1.44758074687492e− 01 1.44740727691830e− 01

16 1.36934829462159e− 01 1.44740617394548e− 01 1.44740731416758e− 01
32 1.42822014943537e− 01 1.44740105348607e− 01 1.44740728076369e− 01
64 1.44286632956065e− 01 1.44740766182184e− 01 1.44740728338813e− 01

128 1.44629710418047e− 01 1.44740753317944e− 01 1.44740728169859e− 01
256 1.44712524449859e− 01 1.44740730994197e− 01 1.44740728167727e− 01
512 1.44733622306847e− 01 1.44740728158353e− 01 1.44740728167831e− 01

1024 1.44739149888294e− 01 1.44740728169527e− 01 1.44740728167833e− 01
T

4 1.59763485035794e− 01 2.18037144506171e− 01 2.16375950478717e− 01
8 1.99922429181080e− 01 2.16222691683145e− 01 2.16185495038349e− 01

16 2.15451803595472e− 01 2.16177931826062e− 01 2.16185314257246e− 01
32 2.16745516181832e− 01 2.16182942182543e− 01 2.16185318955480e− 01
64 2.16520512530719e− 01 2.16184930061895e− 01 2.16185318947306e− 01

128 2.16314345978590e− 01 2.16185261456589e− 01 2.16185319157254e− 01
256 2.16226711335958e− 01 2.16185311897528e− 01 2.16185319067697e− 01
512 2.16197395699578e− 01 2.16185317371127e− 01 2.16185319072228e− 01

1024 2.16188648587549e− 01 2.16185318605181e− 01 2.16185319072399e− 01
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In Tables ?? - ?? we have reported the numerical values of the potential (??) at
x = (2, 0), (1.01, 0) and (1.0001, 0), respectively, obtained at the intermediate instants
tn = T/4, T/2, 3T/4 and at tN = T = 3. In this table, and in the following ones, ns

denotes the total number of nodes required by the quadrature rules we have used to
compute the space integral. The chosen number of ns is probably higher than that
really needed; but for simplicity, we have applied the same Gaussian rule to each space
element.

About the latter point, we remark that a point x can be very close at most to very
few boundary elements. For example, for a convex domain, at most to two of them.
Therefore, only the integration over these elements requires to use a Gauss-Legendre
formula with a higher number of nodes. For the other elements, much fewer nodes are
needed to achieve the same accuracy.

Table 11: Dirichlet wave problem. Numerical values of (??). x = (1.01, 0), T = 3, ns = 512.
N BDF RK3 GJN GLPN+5

T/4
4 1.18340562288500e− 01 6.84533592236506e− 02 6.75745160310835e− 02 6.79497148627066e− 02
8 8.39331275818846e− 02 6.79771041632198e− 02 6.79403938828129e− 02 6.79503719834775e− 02

16 7.22746870410588e− 02 6.79546119469360e− 02 6.79537409626076e− 02 6.79537732573932e− 02
32 6.89952034706979e− 02 6.79537709082315e− 02 6.79537784953879e− 02 6.79537781017959e− 02
64 6.81972306614378e− 02 6.79537789488834e− 02 6.79537784839093e− 02 6.79537785600856e− 02

128 6.80118453763416e− 02 6.79537783692746e− 02 6.79537785014120e− 02 6.79537785025887e− 02
256 6.79679244287207e− 02 6.79537775049628e− 02 6.79537784996178e− 02 6.79537784996308e− 02
512 6.79572755451240e− 02 6.79537781471645e− 02 6.79537784996438e− 02 6.79537784996450e− 02

1024 6.79546562761094e− 02 6.79537784316790e− 02 6.79537784996431e− 02 6.79537784996431e− 02
T/2

4 2.45021178961290e− 01 2.49048137205597e− 01 2.48561359028582e− 01 2.49262321448355e− 01
8 2.46257542732829e− 01 2.49294249696800e− 01 2.49190219956435e− 01 2.49245614767995e− 01

16 2.47717192578355e− 01 2.49246097970846e− 01 2.49244492018470e− 01 2.49245191691185e− 01
32 2.48735649345189e− 01 2.49245190826094e− 01 2.49245185466403e− 01 2.49245185698566e− 01
64 2.49104975783849e− 01 2.49245186498248e− 01 2.49245186070236e− 01 2.49245186094148e− 01

128 2.49209424545216e− 01 2.49245185072466e− 01 2.49245185988381e− 01 2.49245185987069e− 01
256 2.49236238303980e− 01 2.49245185019407e− 01 2.49245185989947e− 01 2.49245185989934e− 01
512 2.49242962766508e− 01 2.49245185594579e− 01 2.49245185989244e− 01 2.49245185989245e− 01

1024 2.49244642345259e− 01 2.49245185983706e− 01 2.49245185989228e− 01 2.49245185989228e− 01
3T/4

4 2.09192590150734e− 01 2.88559375812882e− 01 2.86470351662232e− 01 2.84470235829572e− 01
8 2.61742287239026e− 01 2.84561834808123e− 01 2.84381021125066e− 01 2.84173229686853e− 01

16 2.78996566030938e− 01 2.84186596795743e− 01 2.84177578259405e− 01 2.84174392610424e− 01
32 2.82966505070642e− 01 2.84173422554609e− 01 2.84173668344773e− 01 2.84173667879746e− 01
64 2.83717135503490e− 01 2.84173652650941e− 01 2.84173655138096e− 01 2.84173656799667e− 01

128 2.83935419174377e− 01 2.84173654349835e− 01 2.84173656457059e− 01 2.84173656346848e− 01
256 2.84088228553954e− 01 2.84173656599063e− 01 2.84173656404341e− 01 2.84173656395791e− 01
512 2.84152077556819e− 01 2.84173656445069e− 01 2.84173656399093e− 01 2.84173656399759e− 01

1024 2.84168164249791e− 01 2.84173656399354e− 01 2.84173656399586e− 01 2.84173656399598e− 01
T

4 1.48067399761436e− 01 2.01380160573841e− 01 2.06555065645013e− 01 2.04696756299882e− 01
8 1.69201123862936e− 01 2.01424097596908e− 01 2.01383994471550e− 01 2.01417024899041e− 01

16 1.89182951834863e− 01 2.01434445475681e− 01 2.01430509072387e− 01 2.01432028989638e− 01
32 2.00039725942662e− 01 2.01433354671908e− 01 2.01433014603763e− 01 2.01433107116383e− 01
64 2.01554153026134e− 01 2.01433200057443e− 01 2.01433199228379e− 01 2.01433203249936e− 01

128 2.01487049534764e− 01 2.01433199422968e− 01 2.01433198063678e− 01 2.01433197668107e− 01
256 2.01449352882435e− 01 2.01433199255094e− 01 2.01433199238878e− 01 2.01433199242600e− 01
512 2.01437555708266e− 01 2.01433199373647e− 01 2.01433199279934e− 01 2.01433199274538e− 01

1024 2.01434333421078e− 01 2.01433199308600e− 01 2.01433199269347e− 01 2.01433199269511e− 01

Finally, in Table ?? we have reported the number of seconds required by the listed
approaches to compute the potential at tN = T , using the same values of nt and ns of
Table ??.

We recall that the maximum relative accuracy we obtain when we solve the space-
time BIE is 4-5 digits. Thus, when we compute the associated potential it does not
make sense to require a higher accuracy. From Table ?? we notice that this accuracy is
achieved by the BDF method when we take N = 1024, by the RK3 rule with N = 32,
and by the GJN rule for N = 4, 8. Thus in this case the last approach is about 22 times
faster than the BDF rule, and about 100 times faster than the RK3 rule. This ratios
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Table 12: Dirichlet wave problem. Numerical values of (??). x = (1.0001, 0), T = 3, ns = 1280.
N BDF RK3 GJN GLPN+5

T/4
4 1.21225771294076e− 01 7.10679954748972e− 02 6.93312388870119e− 02 7.05593751957595e− 02
8 8.66252655419394e− 02 7.05896473607653e− 02 7.02737171017611e− 02 7.05601411369528e− 02

16 7.49085521170552e− 02 7.05666548267117e− 02 7.05189517454947e− 02 7.05657482140206e− 02
32 7.16126619909731e− 02 7.05657563450486e− 02 7.05635635149598e− 02 7.05657574774015e− 02
64 7.08105325839569e− 02 7.05657587122216e− 02 7.05657509023407e− 02 7.05657576259265e− 02

128 7.06241468010138e− 02 7.05657575937760e− 02 7.05657576018889e− 02 7.05657576089552e− 02
256 7.05799831000380e− 02 7.05657575936911e− 02 7.05657576024445e− 02 7.05657576025926e− 02
512 7.05692745407019e− 02 7.05657575914667e− 02 7.05657576024402e− 02 7.05657576024264e− 02

1024 7.05666402909867e− 02 7.05657575808773e− 02 7.05657576024401e− 02 7.05657576024402e− 02
T/2

4 2.47778638804660e− 01 2.51804248859010e− 01 2.50572571706995e− 01 2.52043556170846e− 01
8 2.49075094535462e− 01 2.52063702040176e− 01 2.51628066033966e− 01 2.52016313658419e− 01

16 2.50514850723671e− 01 2.52016471329877e− 01 2.51934707124594e− 01 2.52015546413738e− 01
32 2.51514223620446e− 01 2.52015540894367e− 01 2.52007419597373e− 01 2.52015535540877e− 01
64 2.51877251299786e− 01 2.52015536939503e− 01 2.52015412285153e− 01 2.52015535608276e− 01

128 2.51980251571864e− 01 2.52015535581528e− 01 2.52015535540988e− 01 2.52015535579294e− 01
256 2.52006710590354e− 01 2.52015535574818e− 01 2.52015535579133e− 01 2.52015535579242e− 01
512 2.52013344324304e− 01 2.52015535574769e− 01 2.52015535578994e− 01 2.52015535578991e− 01

1024 2.52015000780787e− 01 2.52015535587110e− 01 2.52015535578994e− 01 2.52015535578994e− 01
3T/4

4 2.08426980039922e− 01 2.89039649000014e− 01 2.88150458440077e− 01 2.85001655149622e− 01
8 2.61534084998639e− 01 2.85079327537979e− 01 2.85499002871046e− 01 2.84710326407848e− 01

16 2.79131083900853e− 01 2.84724752200223e− 01 2.84884948866574e− 01 2.84718289349363e− 01
32 2.83290365518751e− 01 2.84716879306908e− 01 2.84739727950543e− 01 2.84717009649342e− 01
64 2.84152459833272e− 01 2.84716995457180e− 01 2.84717698141250e− 01 2.84716998517297e− 01

128 2.84439512809547e− 01 2.84716997633633e− 01 2.84716998713031e− 01 2.84716997637774e− 01
256 2.84624172253983e− 01 2.84716997657224e− 01 2.84716997705518e− 01 2.84716997703896e− 01
512 2.84693588160572e− 01 2.84716997683170e− 01 2.84716997706870e− 01 2.84716997706722e− 01

1024 2.84711068612504e− 01 2.84716997706780e− 01 2.84716997706947e− 01 2.84716997706941e− 01
T

4 1.47582486759578e− 01 2.00843614849573e− 01 2.06357888299412e− 01 2.04097350208474e− 01
8 1.68857459069513e− 01 2.00775585860146e− 01 2.00982469615980e− 01 2.00767526402444e− 01

16 1.88962328539564e− 01 2.00787431411152e− 01 2.00865109125368e− 01 2.00784810765300e− 01
32 1.99635766219673e− 01 2.00786239306330e− 01 2.00799714794961e− 01 2.00785975561733e− 01
64 2.00952441658070e− 01 2.00786079432614e− 01 2.00786725312432e− 01 2.00786079025809e− 01

128 2.00851031913936e− 01 2.00786078697589e− 01 2.00786080631752e− 01 2.00786078695438e− 01
256 2.00804945400590e− 01 2.00786078828592e− 01 2.00786078700909e− 01 2.00786078699835e− 01
512 2.00791106439779e− 01 2.00786078754494e− 01 2.00786078729716e− 01 2.00786078731219e− 01

1024 2.00787379423050e− 01 2.00786078757343e− 01 2.00786078727731e− 01 2.00786078727711e− 01

remain the same when we compute the potential at several space points x, for the
same time instant t. In this case we have taken advantage of the MATLAB vectorial
operation features.

For the last two rules, the CPU time includes the cubic spline interpolation, but
not the a priori determination of the spline coefficients.

We ought however to remark that the BDF and RK rules simultaneously give,
even if we are not interested in, and with a little overhead, an approximation of the
potential at all the interior points of the chosen partition of the time interval [0, T ].
Therefore, the computational cost for the potential evaluation at each one of these
abscissas is very close to that needed to evaluate it at the final instant T . This is not
the case of our approach, which requires the application of our rules at each chosen
instant. Thus, when one needs to compute the potential at all the abscissas of the time
interval partition, with no more than 4 significant digits, the BDF method in general
appears superior.

Remark 5.2 From the results reported in Tables ??-?? it emerges that the GJ ap-
proach is by far the most efficient one, when one has to evaluate the potential at a
few time instants t, or at instants which do not coincide with the abscissas of the time
interval partition defined by the BDF or RK methods. To compute the potential with
4-5 significant digits, which is the maximum accuracy we have achieved by applying
our collocation boundary element method, the three rules BDF, RK3 and GJN require
1024, 32 and 4-8 (time) abscissas, respectively.
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Table 13: CPU time required by (??) in Table ??, t = T .
N BDF RK3 GJN
4 3.66e− 02 1.87e− 01 2.61e− 02
8 2.03e− 02 3.38e− 01 1.35e− 02

16 2.29e− 02 6.63e− 01 1.84e− 02
32 2.89e− 02 1.32e + 00 2.81e− 02
64 3.98e− 02 2.63e + 00 4.74e− 02

128 5.94e− 02 5.27e + 00 8.66e− 02
256 9.72e− 02 1.05e + 01 1.70e− 01
512 1.67e− 01 2.11e + 01 3.41e− 01

1024 3.01e− 01 4.22e + 01 7.21e− 01

The overall CPU time confirms the superiority of the GJ approach when one has
to compute the potential for a few time instants, or when one requires a high accuracy.
We recall that for the BDF and RK rules we have taken full advantage of the FFT
algorithm, to minimize the computational cost.

The same testing we have performed above for the Dirichlet case, have been repeated
for the corresponding Neumann problem with the data gN (x, t) = t4 exp(−t). The
corresponding tables and figures are reported below.

Table 14: Neumann wave problem. L2−norm absolute errors for ϕN . T = 3
N T/4 T/2 3T/4 T
16 2.82E − 02 1.29E − 01 3.10E − 01 4.70E − 01
32 8.31E − 03 3.44E − 02 8.48E − 02 1.15E − 01
64 2.28E − 03 8.89E − 03 2.25E − 02 2.84E − 02

128 5.91E − 04 2.24E − 03 5.75E − 03 6.99E − 03
256 1.44E − 04 5.38E − 04 1.38E − 03 1.66E − 03
512 2.92E − 05 1.08E − 04 2.78E − 04 3.32E − 04

Figure 4: Neumann wave problem. Density function ϕN .
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Table 15: Neumann wave problem. Numerical values of (??). x = (2, 0), T = 3, ns = 128.
N BDF RK3 GJN

T/4
4 1.82524171757543e− 03 2.51146256384322e− 05 0.00000000000000e + 00
8 3.57933714235021e− 04 8.81934012850308e− 06

16 3.70443555200476e− 05 2.79694804815003e− 08
32 2.01950528694472e− 06 3.08655176383750e− 10
64 4.56197773548274e− 08 5.68467370754284e− 13

128 2.50493949812220e− 10 1.87332516284753e− 16
256 1.14055005962149e− 13 2.13830911511849e− 18
512 7.90962778662871e− 19 3.37358607396418e− 18

1024 1.79350863456579e− 19 −3.83084783973906e− 18
T/2

4 3.64912145972709e− 02 2.76343624673378e− 03 2.81374986904464e− 03
8 1.73626312314471e− 02 2.81548970433493e− 03 2.81374511598731e− 03

16 8.27449535700557e− 03 2.81375538104931e− 03 2.81374583970067e− 03
32 4.65892365478012e− 03 2.81374800036567e− 03 2.81374600104602e− 03
64 3.35227851914943e− 03 2.81374887913900e− 03 2.81374598784438e− 03

128 2.95458430438014e− 03 2.81374885825422e− 03 2.81374599198724e− 03
256 2.84963264678060e− 03 2.81374865518362e− 03 2.81374599174361e− 03
512 2.82279450334010e− 03 2.81374682932586e− 03 2.81374599174228e− 03

1024 2.81602090992270e− 03 2.81374589065857e− 03 2.81374599174345e− 03
3T/4

4 2.15868973889516e− 01 1.40381842748111e− 01 1.40346087400202e− 01
8 1.71851135682669e− 01 1.40354912993451e− 01 1.40346163568479e− 01

16 1.49019468417731e− 01 1.40346445893027e− 01 1.40346164143731e− 01
32 1.42201214950169e− 01 1.40346174558372e− 01 1.40346163976448e− 01
64 1.40762396414990e− 01 1.40346164062650e− 01 1.40346163980728e− 01

128 1.40444028531596e− 01 1.40346163689835e− 01 1.40346163983584e− 01
256 1.40369838509592e− 01 1.40346163720306e− 01 1.40346163984222e− 01
512 1.40351989115818e− 01 1.40346163897040e− 01 1.40346163984221e− 01

1024 1.40347607223095e− 01 1.40346163978963e− 01 1.40346163984241e− 01
T

4 7.19408956089235e− 01 7.58185822981593e− 01 7.57573297379296e− 01
8 7.25898773387120e− 01 7.57619364041917e− 01 7.57577177662955e− 01

16 7.43481150589564e− 01 7.57579886006520e− 01 7.57577178513247e− 01
32 7.53291756804713e− 01 7.57577324010335e− 01 7.57577178682857e− 01
64 7.56410654707519e− 01 7.57577189452832e− 01 7.57577178652365e− 01

128 7.57273581425075e− 01 7.57577181064931e− 01 7.57577178657306e− 01
256 7.57499777703799e− 01 7.57577179576298e− 01 7.57577178659336e− 01
512 7.57557640758120e− 01 7.57577178586678e− 01 7.57577178659384e− 01

1024 7.57572271346404e− 01 7.57577178590766e− 01 7.57577178659526e− 01
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Table 16: Neumann wave problem. Numerical values of (??). x = (1.01, 0), T = 3, ns = 2048.
N BDF RK5 GJN GLPN+5

T/4
4 1.81765605119403e− 02 2.26146923202208e− 02 1.99791236987627e− 02 2.24835061670171e− 02
8 2.12761253111361e− 02 2.24977562807619e− 02 2.22980968128789e− 02 2.24835713850215e− 02

16 2.21022216361343e− 02 2.24848893840553e− 02 2.24825721741689e− 02 2.24835313910462e− 02
32 2.23613275449855e− 02 2.24836503860784e− 02 2.24835314022480e− 02 2.24835313213386e− 02
64 2.24475845846437e− 02 2.24835390789837e− 02 2.24835314320454e− 02 2.24835314808325e− 02

128 2.24736981441444e− 02 2.24835317506027e− 02 2.24835314322031e− 02 2.24835314343194e− 02
256 2.24809554993220e− 02 2.24835313907102e− 02 2.24835314321801e− 02 2.24835314322528e− 02
512 2.24828724242493e− 02 2.24835314018172e− 02 2.24835314321777e− 02 2.24835314321786e− 02

1024 2.24833652401958e− 02 2.24835314004189e− 02 2.24835314321847e− 02 2.24835314321747e− 02
T/2

4 3.14970608180231e− 01 3.77924510980014e− 01 2.83192135403240e− 01 3.77875438518316e− 01
8 3.57085299557244e− 01 3.77871383797506e− 01 3.62034470985597e− 01 3.77885285018836e− 01

16 3.71684346202619e− 01 3.77884562018459e− 01 3.77500118404123e− 01 3.77885345167591e− 01
32 3.76160976031825e− 01 3.77885268643795e− 01 3.77885115843469e− 01 3.77885345318519e− 01
64 3.77426625556584e− 01 3.77885339988010e− 01 3.77885345242249e− 01 3.77885345208583e− 01

128 3.77766688396442e− 01 3.77885345012961e− 01 3.77885345242186e− 01 3.77885345240730e− 01
256 3.77855146077644e− 01 3.77885345268310e− 01 3.77885345242138e− 01 3.77885345242104e− 01
512 3.77877725251999e− 01 3.77885345260569e− 01 3.77885345242119e− 01 3.77885345242207e− 01

1024 3.77883430486508e− 01 3.77885345261650e− 01 3.77885345242261e− 01 3.77885345242336e− 01
3T/4

4 1.25772235359496e + 00 1.48496331616485e + 00 9.08527207627862e− 01 1.48476741183126e + 00
8 1.40299706702341e + 00 1.48484683088883e + 00 1.34537791270693e + 00 1.48482543662104e + 00

16 1.45870471534046e + 00 1.48482669800773e + 00 1.47803064967290e + 00 1.48482697833289e + 00
32 1.47714990113442e + 00 1.48482701729421e + 00 1.48481124706051e + 00 1.48482697583293e + 00
64 1.48269810941539e + 00 1.48482697761121e + 00 1.48482697578443e + 00 1.48482697589398e + 00

128 1.48426514002039e + 00 1.48482697485057e + 00 1.48482697587123e + 00 1.48482697587233e + 00
256 1.48468442684712e + 00 1.48482697470479e + 00 1.48482697587121e + 00 1.48482697587127e + 00
512 1.48479117838046e + 00 1.48482697533146e + 00 1.48482697587103e + 00 1.48482697587131e + 00

1024 1.48481800439398e + 00 1.48482697586756e + 00 1.48482697587166e + 00 1.48482697587131e + 00
T

4 2.87074247407031e + 00 3.24645090557322e + 00 1.41356483448959e + 00 3.24698838038621e + 00
8 3.12673350486256e + 00 3.24691985568484e + 00 2.69403421034421e + 00 3.24693237873894e + 00

16 3.21654754427175e + 00 3.24694508263825e + 00 3.20587869979588e + 00 3.24694706268537e + 00
32 3.24062071098484e + 00 3.24694692646341e + 00 3.24673342720724e + 00 3.24694706822997e + 00
64 3.24553294751116e + 00 3.24694706651371e + 00 3.24694706260230e + 00 3.24694706856163e + 00

128 3.24660849318175e + 00 3.24694706847472e + 00 3.24694706857901e + 00 3.24694706857743e + 00
256 3.24686412844816e + 00 3.24694706852180e + 00 3.24694706857848e + 00 3.24694706857781e + 00
512 3.24692654890202e + 00 3.24694706854749e + 00 3.24694706857754e + 00 3.24694706857680e + 00

1024 3.24694197715456e + 00 3.24694706857369e + 00 3.24694706857974e + 00 3.24694706857441e + 00

Table 17: CPU time required for (??) in Table ??, t = T .
N BDF RK3 GJN
4 4.06e− 02 1.87e− 01 3.70e− 02
8 1.96e− 02 3.30e− 01 1.80e− 02

16 2.27e− 02 6.47e− 01 2.30e− 02
32 2.94e− 02 1.29e + 00 3.34e− 02
64 4.10e− 02 2.57e + 00 5.39e− 02

128 6.23e− 02 5.14e + 00 9.50e− 02
256 1.03e− 01 1.03e + 01 1.82e− 01
512 1.80e− 01 2.06e + 01 3.63e− 01

1024 3.27e− 01 4.12e + 01 7.57e− 01

All the numerical computation has been performed on a PC with two Intel Xeonr

E5420 (2GHz) processors. We remark, however, that we have not considered the special
features of our PC. To perform our numerical testing we have written standard (i.e.,
sequential) Matlabr codes.
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