Turbulence Mixing and the study of Clouds

D.Tordella, M.Iovieno, S.Scarsoglio, F.De Santi, S.Di Savino

in collaboration with

Z.Warhaft (Cornell Univ.), J.Riley (U.Washington), R.Kerr (U.Warwick)

Venturefest 2012, Oxford
William Turner, “Study of Clouds”, about 1830
(Tate Gallery, London)
Motivation: Cloud entrainment

Isolated cumulus: Entrainment throughout the cloud depth: from above, sides and at the base.
Effects of gravity vary

Stratocumulus: Entrainment mainly from the top
All turbulence measurements in a stratocumulus are consistent with laboratory experiments (data from Siebert et al., 2009)
Field Data
Small Cumulous

Settling parameter vs. Stokes number

Upward diagonals: dissipation rate [m²/s³]
Downward diagonals: droplet diameters [µm]

N.B: these are averaged values

\[Sv = \frac{\nu_t}{\nu_\eta} = \frac{St}{Fr}, \quad St \approx d^2 \varepsilon^{1/2} \quad \text{and} \quad Sv \approx \frac{d^2}{\varepsilon^{1/4}} \]
Laboratory experiments

Settling particle velocity enhancement/reduction in turbulence with gravity

Alesida et al, JFM 468 (2002)
Davila - Hunt, JFM 440 (2001)
Murray JGR 75 (1970)
Nielsen, J.Sed.Petr. 35 (1993)
Tooby et al, JGR 82 (1977)
Wang - Maxey JFM 256 (1993)
...

Acceleration of inertial particles: Bodenschatz, Xu, Mordant, Ayyalasomayajula, Qureshi, ...

Clustering: Shaw, collins, Bec, Vassilicos, Hunt
Particle diameter effect

Red : g+
Blue : g₀
Black : g⁻

Squares: TT interface,
Circles: TN interface

Inset: particle size distribution

No gravity ⇒ small & large particles transported the same way
Real clouds: sharp interfaces and shear

Shear is important!

from Shaw, ARFM 35 (2003)
What can simulations tell

http://www.polito.it/philofluid

Entrainment
Entrainment - Interface

PHILOFLUID
Entrainment

Energy/velocity field:
John Constable, “Study of Clouds”, about 1820
(University of Oxford, Ashmolean museum)
Conclusions

- gravity is very important in droplet distribution
- mixing is affected by large scales
- we are beginning to understand the mechanics of entrainment, but need to know more about:
 - evaporation
 - shear
 - convection
- rain making must understand droplet distribution and how it changes with time
- global warming ⇔ droplet size distribution (absorption/reflection of light)

Interdisciplinary holistic approach is necessary!