
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Efficient Multistriding of Large Non-deterministic Finite State Automata for Deep Packet Inspection / Avalle, MATTEO
CARLO; Risso, FULVIO GIOVANNI OTTAVIO; Sisto, Riccardo. - STAMPA. - (2012), pp. 1079-1084. (Intervento
presentato al convegno IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2012) tenutosi a
Ottawa, Canada nel June 10-15, 2012) [10.1109/ICC.2012.6364235].

Original

Efficient Multistriding of Large Non-deterministic Finite State Automata for Deep Packet Inspection

Publisher:

Published
DOI:10.1109/ICC.2012.6364235

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2503368 since: 2023-09-09T06:03:16Z

IEEE

Efficient Multistriding of Large Non-deterministic
Finite State Automata for Deep Packet Inspection

Matteo Avalle, Fulvio Risso, Riccardo Sisto
Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino, Italia

Email: {matteo.avalle, fulvio.risso, riccardo.sisto}@polito.it

Abstract—Multistride automata speed up input matching be-
cause each multistriding transformation halves the size of the
input string, leading to a potential 2x speedup. However, up to
now little effort has been spent in optimizing the building process
of multistride automata, with the result that current algorithms
cannot be applied to real-life, large automata such as the ones
used in commercial IDSs, because the time and the memory space
needed to create the new automaton quickly becomes unfeasible.
In this paper, new algorithms for efficient building of multistride
NFAs for packet inspection are presented, explaining how these
new techniques can outperform the previous algorithms in terms
of required time and memory usage.

I. INTRODUCTION

Deep packet inspection is still at the foundation of many
security tools, such as Intrusion Detection Systems (IDS),
firewalls, spam filters and more. While string matching was
the most common technique used in the past, the complexity
of nowadays attacks requires the deployment of sophisticated
tools based on regular expressions (regex).

One of the most memory-efficient ways to represent a
regular expression (or a set of regular expressions) is based on
Nondeterministic Finite-state Automata (NFA). An NFA can
be seen as an oriented graph in which nodes represent states
and arcs represent transitions, labeled with the input symbols
(bytes). A simple example of this type of representation can be
found in Figure 1; more details about NFA will be presented
in Section II-A.

Since run-time throughput and memory consumption repre-
sent the key factors that characterize a deep packet inspection
system, much effort has been dedicated to new optimization
techniques that increase processing throughput and/or reduce
memory consumption, thus enabling the matching of complex
regular expression patterns. One of those techniques is mul-
tistriding, which creates a new NFA in which each transition
consumes multiple bytes instead of just one, as shown in the
example in Figure 1. This modification can potentially achieve
an impressive performance boost, as it linearly reduces the
number of steps (and memory accesses) required to process
each input string. In practice, the length of the input string
reduces to 1/n, where n is the number of bytes grouped
together. On the other side, it can increase the size of the
NFA, as the space of symbols becomes much larger (256n,
where n is the number of bytes grouped together), potentially
triggering a quick growth in the number of transitions.

This problem can be mitigated through an alphabet com-
pression pass, which bases on the observation that many

0

ab(cd)*e

Regular
expression:

Automaton

1 2 1

3 5

4
a b e

c
d

c

e

0 1 2 1

3 5

4
*a

bc

e*

ab
de de e*

2-Stride
automaton

bc

dc cd

Fig. 1. A simple regular expression shown in its textual form, in NFA form
and in 2-strided NFA form.

symbols are equivalent as they are always used together in
every transition of the NFA. In case some symbols (e.g., the
numbers from ‘00’ to ‘99’) are equivalent, they can be
replaced by a single one (e.g., ‘x’), reducing the cardinality
of the symbol set and hence the complexity of transitions in the
NFA. Although this technique requires that the input strings
are translated into the new language (e.g., all the instances of
the characters ‘00-99’ in the input packet must be replaced
by the symbol ‘x’), the impact on the run-time throughput is
usually negligible on modern processors as the access to the
input strings happens sequentially. This technique is discussed
in more detail in Section II.

Unfortunately, the algorithms available in the literature for
creating multistride automata are hardly suitable for real-
world, complex patterns. Even if those algorithms can run “off
line” and hence do not impact on the performance at run-time
when network traffic is being filtered, we cannot accept that
the computation takes several months on modern CPUs, or
that a machine with 12GB of RAM is not sufficient, which
sometimes happens when using the tools presented in [3].

This paper addresses the problem of building large mul-
tistride NFAs efficiently, by proposing new algorithms and
mixing them in a better building process, paying particular
attention to computational complexity and memory consump-
tion. For instance, to the best of the authors’ knowledge, this
paper studies for the first time the impact of the well-known
technique of NFA minimization in the building process of mul-
tistride automata, in combination with improved multistriding
and alphabet compression algorithms.

This paper is structured as follows: Section II recalls the
basis of the NFA theory and of the underlying techniques;

Section III describes the state of the art algorithms, then
Section IV enters into the details of the three new algorithms
by explaining how they represent an improvement over the
existing approaches both in computational complexity terms
and in memory usage terms. Section V describes performance
evaluation results while finally, in Section VI, some conclu-
sions are drawn and the planned future works are presented.

II. BACKGROUND

A. The NFA model

An NFA is a 5-tuple consisting of: (i) a finite set of states;
(ii) a finite set of input symbols that represent the input
alphabet (bytes in our case); (iii) a finite set of transitions,
which are triples made of a current state, a non-empty set of
input symbols (also called label) and a next state; (iv) a set
of initial states and (v) a set of accepting states. An NFA will
accept the packet b1...bn if there is a path from an initial state
to an accepting state, where the transitions on the path contain
the symbols b1...bn in their label.

Due to the nature of NFAs, multiple states can be reached
at the same time by using the same string b1...bn: this feature
distinguishes this family of automata from the Deterministic
Finite-state Automata (DFA), in which only a single state path
is possible for any input string.

B. Multistriding

The multistriding technique is based on building an equiv-
alent NFA in which each transition consumes n input bytes
instead of one (n is said the multistride level). The resulting
NFA usually has the same states as the original NFA, while the
number of transitions (due to the explosion of the cardinality
of the input symbols) tends to grow exponentially. This growth
is one of the biggest problems of the multistriding technique.

Most multistriding algorithms operate by iteratively merging
pairs of input symbols; each iteration halves the input string
length, and potentially squares the number of possible input
symbols.

The multistriding algorithm presented in [2] (which rep-
resents the current state of the art) iterates through all the
states of the NFA and searches, for each state, the states
reached when following the pair of transitions associated to
each combination of two symbols of the alphabet. For each
such pair of transitions, a new transition is added to the new
NFA. The computational complexity of the algorithm can be
expressed as

Tm ∝ NsS
2

where Tm represents the time required to perform multistrid-
ing, Ns is the total number of states in the NFA while S is
the number of symbols of the original NFA. When applying
this algorithm iteratively, the set of symbols may square at
each iteration, posing serious questions on the scalability of
this technique with respect to S.

C. Alphabet compression

To reduce the problem of the exponential increase of the
alphabet size with increasing multistride levels, [1] proposes
a technique called “alphabet compression”. This technique
replaces the squared alphabet with a new, simpler one, in
which the symbols that always appear together in the same
transitions are “grouped” into an unique, equivalent symbol.

Groups are generated by sequentially analyzing all the tran-
sitions of an NFA, and must be numbered with unambiguous
indexes. Then, a dictionary must be written to specify how
to convert the old, 2562-wide alphabet to the new one, which
includes the minimum number of distinct symbols required to
handle the NFA. Finally, the NFA transitions must be rewritten
by using the new alphabet.

The new NFA will undoubtedly have better characteristics
than the original one: the overall number of symbols will
be reduced and, as a side effect, every transition will be
labeled with a smaller number of symbols (e.g., the equivalent
symbol A instead of the set of symbols {aa, ab, ac}), with
consequent memory advantages. However, this modification
requires the introduction of a new pre-processing step for the
packet processor, which will need to translate the input data
to the new alphabet before being fed to the NFA.

The most critical part in terms of performance, for what
concerns alphabet compression, is the generation of the dictio-
nary that maps symbols onto equivalence classes. Every other
operation, defined in the rest of the paper as generic “post-
processing” code, can be performed so quickly that its impact
in terms of performance can be considered negligible.

The most efficient lossless alphabet compression algorithm
published in literature is described in [1]. Initially, the en-
tire (S × S) alphabet is grouped into a single class. Then
the algorithm iterates through every transition and, at each
iteration, it manipulates the equivalence classes so that the
symbol set in the transition label corresponds exactly to a
set of classes. This operation is performed just by splitting
equivalence classes into smaller ones: this ensures that all the
classes have disjoint sets of symbols and that, after each split,
the equivalence relation between the previous transition labels
and sets of classes remains valid.

In order to efficiently perform this operation, this algorithm
exploits an helper array whose size is equal to the alphabet
size. By using this technique it is possible to perform alphabet
compression with the following computational complexity:

Tc ∝ S′N ′
sN

′
fo

where Tc is the time required for alphabet compression, S′

and N ′
s are the number of symbols and states of the input

(already multistrided) NFA, while N
′
fo is the average number

of transitions exiting from each state (i.e., the average fan-out
of the NFA). As alphabet compression is performed after a
multistriding iteration, S′ is usually equal to S2, N ′

s normally
coincides with Ns while N

′
fo is slightly larger than Nfo.

D. State minimization

The NFA state minimization problem, i.e. the search for
an equivalent NFA with the minimum number of states, can
be solved by the “subset construction” technique [7] which
is based on applying a set of equivalence rules. A first rule
states that two states sharing exactly the same set of outgoing
transitions can be considered equivalent, where transitions are
considered equal if they fire upon the same symbol and land
in the same state. A second rule is the dual of this one: two
states that have exactly the same set of ingoing transitions can
be merged together; in this case two transitions are considered
equal if they are associated to the same symbol and originate
from the same state.

Applying these rules for reducing the size of the NFA means
finding a pair of equivalent states and then joining them into a
single state that groups together all the ingoing and outgoing
transition sets of the two original states.

The application of these rules alone is not enough to
transform the automaton into its minimal form. Further rules
are needed for this purpose. However the two rules explained
here are enough for the objectives of this paper.

III. RELATED WORK

State of the art algorithms for multistriding and associated
alphabet compression are proposed in [2] and [1]: these two
algorithms (discussed in Section II) have scalability problems.
For what concerns multistriding, the main problem is due to
the S2 component in the computational complexity formula.
For what concerns instead alphabet compression, memory
occupancy explodes mainly because of the necessity of a huge
support array.

An alternative set of algorithms was developed in [3]. The
main difference against the ones presented in [2], [1] is the
lack of the helper array, which reduces memory requirements
to a minimum. Even if [3] presents results for up to 16x
multistrided NFAs for large real-world rulesets, unfortunately
a bug has later been discovered in the implementation of these
algorithms. After fixing this bug, the running time of the
program became so large that it was practically impossible
to go beyond the 2x multistride NFA for the Snort and L7
rulesets presented in [3].

An alternative method to perform alphabet compression is
presented in [5]; however, the computational complexity of
the described technique is worse than the already presented
algorithms, hence it has not been taken into consideration in
this paper. Another approach can be found in [6], which pro-
poses a slightly different version of multistride called variable-
stride. This represents one among the many papers that exploit
particular features available only in special-purpose devices
such as FPGAs: for example, the usage of do-not-care bits
in look-up tables and similar features cannot be implemented
for a general purpose device without having huge performance
losses, and for this reason these have not been considered in
this paper.

For what concerns automata minimization, many different
papers can be found in literature: for example, [7], [4], [2]

apply this technique to automata for packet inspection. How-
ever, all these papers just consider performing minimization
on the “original” automaton, while the effects of minimization
applied after each multistride step has not yet been studied.
This has instead become one of the aims of our work, i.e. to
find out a new algorithm for multistriding that, by combining
multistriding, alphabet compression, and minimization in a
proper way, reaches the performance needed for computing
multistride NFAs for large rule sets in reasonable time.

IV. THE NEW ALGORITHM

A. Multistriding

As the main factor that limits the performance of the
multistriding algorithm is the S2 component in the time
complexity, our algorithm iterates through all the states of
the NFA and it follows all the reachable pairs of transitions
in order to combine them together in a single, compound
transition. This is a great improvement as iterating on every
possible combination of symbols results in a much slower
algorithm, as transitions are usually one order of magnitude
less.

Unfortunately, transitions may fire upon ranges of symbols
(e.g., the pair of symbols [a∗]), which requires us to perform
the cartesian product of the corresponding symbol sets in
order to determine the exact symbols used by that transition.
This means replacing the S2 component of the asymptotic
computational complexity formula with N

2

foS
2, that may be

a problem in the worst case but it is usually much more
efficient in the normal case. Additionally, iterating on tran-
sitions offers the possibility to replace symbols with ranges
(e.g., {aa−az} instead of {aa, ab, ..., az}), which enables the
usage of a compressed memory representation for contiguous
series of symbols and speeds up operations. This exploits
a common characteristics of regular expression patterns that
tend to express ranges very frequently, hence providing huge
advantages in real operating conditions. Moreover, combining
together symbol sets is simple, as it consists of writing every
possible combination of “compressed” ranges.

When this feature is introduced, the time complexity of the
algorithm for multistriding becomes:

Tm ∝ NsN
2

foR
2

where R is the average number of “ranges” per transition.
In the worst case, this value equals half of the alphabet size
(this occurs, for example, if every transition is labeled with all
the odd symbols of the alphabet). Usually, however, R is far
lower: in our experience even complex rule sets have values
for R

2
that hardly exceed few hundreds, while at the same

time S2 reaches peaks in the order of hundred of thousands
for the same 2x multistride NFA. This phenomenon is not just
due to statistical reasons (even if, in any case, the probability
to have just odd symbols in a transition is very low), but it is
also caused by a particular feature of the alphabet compression
algorithm, which pays particular attention to the symbol num-
bering phase in order to maximize the number of contiguous

symbols in a transition (more details in Section IV-B). In fact,
from our observations, N

2

foR
2

grows at a slower rate than
S2 in all the analyzed rule sets. For this reason, although the
result based on asymptotic complexity looks cumbersome, we
expect that our algorithm outperforms the existing state-of-the-
art. At the same time, memory occupancy should not increase
significantly.

B. Alphabet compression

State of the art alphabet compression algorithms [2] are
very efficient in terms of computing time. In fact, they are
most memory intensive, as they exploit a big support array
that stores, for each symbol of the alphabet, its equivalence
class. The algorithm needs only to scan every transition of the
automaton and to update this array according to a set of rules
that guarantee the correctness of the equivalence classes. This
technique is very efficient but, unfortunately, at high levels
of multistriding this huge support array may reach prohibitive
sizes. Moreover, the algorithm proposed in [2] requires the
storage of four different values for each symbol, thus further
increasing the memory occupancy.

As the computational complexity is not the main limitation
here, our alphabet compression algorithm focuses on memory
consumption and it requires to store a single value per each
symbol, namely the equivalence class number. This is pos-
sible as the new algorithm creates an unchecked number of
equivalence classes, i.e. it does not perform any consistency
check on the support array. Even with this simplification, the
generated equivalence classes are exactly the same as the ones
generated by the original algorithm. The only downside is that
a “class renumbering” step is now required, as it is necessary
to remove all the generated empty classes.

However, the class renumbering procedure can be easily im-
plemented through very limited changes in the post-processing
code, without impacting on the algorithm complexity: for this
reason, it is possible to state that this additional procedure does
not have any impact to the overall performance. Moreover,
this operation is also very useful because a clever class
renumbering can also help the multistriding algorithm to run
even faster, as by maximizing the amount of contiguous class
indexes for each transition it is possible to keep the value of
R low.

The new algorithm, shown in Figure 2, consists in a main
iteration over all transitions (line 3). Then, for every element
of the symbol set (line 5), it updates the corresponding area in
the support vector (line 10) by assigning it to a new class. The
only performed check (lines 6 to 9) is needed to ensure that all
the elements of a symbol set initially belonging to the same
equivalence class are mapped to the same new equivalence
class.

In addition to the reduced memory usage, this algorithm
avoids to fully scan the support array at each iteration, as it
only needs to update the cells corresponding to each transition
symbol set. This fact greatly helps to improve performance
in many different conditions, as transitions labeled with few
symbols can be processed several order of degrees more

Require: transitions
1: map = {0}
2: classcount = 1
3: for all t ∈ transitions do
4: buffer = {0, 0}
5: for all s ∈ symbols(t) do
6: if buffer[map[s]] == 0 then
7: newclass = classcount++
8: buffer.insert(map[s], newclass)
9: end if

10: map[s] = buffer[map[s]]
11: end for
12: end for

Fig. 2. Alphabet compression algorithm.

quickly than transitions labeled with the entire alphabet. In
order to be as general as possible, these situations have
not been taken in consideration during the analysis of the
asympthotic complexity of the algorithm, but in many real
cases it is possible to appreciate serious performance improve-
ments thanks to this fact.

The overall complexity of the algorithm is given by

Tc ∝ S′N ′
sN

′
fo

It is possible to note how the post-processing overhead is so
low that it is not even visible in the computational complexity
formula.

C. Automaton compression

Due to the complexity of the minimization algorithm, pre-
vious works used it only on the initial automaton, avoiding
any pass on multistride automata. However, as we feel that
minimization could be extremely effective also on multistride
automata, our idea was to perform a lightweight minimization,
but at each multistriding step. More precisely, we propose to
perform a state reduction step based on the two equivalence
rules presented in Section II-D, which is not too complex,
but can significantly reduce the number of states. In fact, we
observed that often there are large portions of the NFA that can
be further compressed after each multistriding step using only
those simple equivalence rules. The reduction algorithm, even
if simple, has proven to be particularly efficient in spotting
and optimizing equivalent states that are close to the terminal
states of the NFA, which occur frequently.

The new algorithm basically performs three operations. (i)
it merges the terminal states in order to guarantee that after
each optimization the automaton has a single terminal state
for each regular expression; this is necessary as sometimes
the multistride algorithm tends to duplicate or merge together
accepting states. (ii) once the terminal states are fixed, the
automaton is scanned from the initial states to the accepting
ones in order to find states with an equivalent set of incoming
transitions (second minimization rule). Finally (iii) the same
routine is performed backward, from the accepting states to
the initial ones in order to compare outgoing transitions. If
some states have been merged, a new iteration of the steps

(ii) and (iii) is performed, in order to discover if the previous
merge created some new possible equivalent states.

The algorithm performs its task very quickly, as it just needs
to navigate the NFA. The time complexity is

Tam ∝ NsN
4

foK

where K represents the number of needed iterations. This is
usually a very low value, as in our datasets it is between two
to ten. The N

4

fo factor can be considered not problematic as
it is usually a small value, even for very complex datasets.

V. PERFORMANCE COMPARISONS

In order to analyze the capabilities of the proposed algo-
rithm combination several tests have been performed. We used
a blade server with an Intel i7-960 processor (quad core + HT)
and 12GB of RAM (triple channel). We used only one core
of the processor as all the tools are currently single-threaded.

In order to check also the correctness of the results, a
“validator” has been developed: this tool generates a set of
packets shaped in order to trigger a precise pattern of regular
expressions, and then it compares the expected pattern to the
results obtained by the multistride NFA.

Our results have been compared to the algorithm presented
in [3], after fixing the bug mentioned in Section III. As
said, this implementation looks very similar to the algorithm
described in [2], [1], whose implementation instead is not
publicly available; the most notable difference consists in the
absence of the support array.

A. The comparison data

Four different regular expression sets have been used for
the experiments.

The first ruleset has been chosen in order to enable com-
parisons with the results reported in previous papers, as it
was already used in [3], [1]. This ruleset includes 534 regular
expressions extracted from the rulesets of Snort, a well-known
commercial IDS. This is referred to as Snort534.

The second ruleset was selected to have a simple test
case and it includes only the first 50 regular expressions of
Snort534; for this reason it has been named “Snort50”.

The third ruleset is a superset of Snort534, built by selecting
all the rules having a syntax compatible to the NFA generator1,
hence resulting in 1514 regular expressions.

The last ruleset completely differs from the previous ones as
it is composed of all the protocol signatures extracted from the
L7 traffic classifier2. This particolar ruleset is composed of just
115 regular expressions, but each one is very complex; in terms
of overall complexity, it can be considered an intermediate
point between the Snort534 and Snort1514 rulesets.

In order to properly perform the conversion between regular
expression sets and NFA, a slightly modified version of the
NFA generator software provided by Michela Becchi [2],

1Some rules of Snort use non standard syntax features that the NFA
converter cannot handle.

2Available at http://l7-filter.sf.net/.

Snort50 Snort534 Snort1514 L7 Stride
of states (Ns) 1,023 9,538 47,168 3,402 1x
of transitions (Nt) 1,072 10,401 52,515 11,342 1x
avg fanout (Nfo) 1.1 1.16 1.16 3.55 1x
of symbols (S) 255 255 255 255 1x
of states (Ns) 1,023 9,449 38,918 2,939 2x
of transitions (Nt) 1,227 12,088 60,348 37,936 2x
avg fanout (Nfo) 1.26 1.35 1.61 13.37 2x
of symbols (S) 1,029 4,784 14,517 13,582 2x
of states (Ns) 1,023 9,349 4x
of transitions (Nt) 1,729 17,252 4x
avg fanout (Nfo) 1.77 1.93 4x
of symbols (S) 8,594 398,159 4x
of states (Ns) 1,023 8x
of transitions (Nt) 3,575 8x
avg fanout (Nfo) 3.62 8x
of symbols (S) 91,546 8x

TABLE I
QUANTITATIVE ANALYSIS OF THE AUTOMATA AT DIFFERENT

MULTISTRIDE LEVELS.

Snort50 308,48 0,76 46 17
Snort534 2956,73 8,05 85 18
Snort1514 51226 586 313 24
L7 35365 1055 146 20

old new naive version new algorithm

Snort50 Snort534 Snort1514 L7
0,1 s

1 s

10 s

100 s

1000 s

10000 s

100000 s
Time required to build 2-strided NFAs

Snort50 Snort534 Snort1514 L7
1 MB

10 MB

100 MB

1000 MB
Memory occupancy

naive version

new algorithm

Fig. 3. Performance comparison between the old toolset used in [3] and
the new algorithms in term of timing and memory occupation required to
compute the 2-strided version of four different rulesets (this comprises all the
three operations: multistride, alphabet compression and NFA minimization)

available online, has been used. An important property of
this tool is the capability to generate automata that have the
minimum number of states as possible, which represents an
excellent starting point for our experiments.

B. Results

The performance of the new algorithms, used all together
one after the other, compared to the one of the algorithm used
in [3], has been tested by applying successive multistriding
steps on the selected rulesets, thus first computing the 2x
multistride NFA, then the 4x and so on. The experiment
was stopped, for each ruleset, when the time needed for
one multistriding step exceeded 24 hours. This value has
been chosen as a reasonable upper bound for considering
optimization times feasible.

The results of this test on the new algorithm chain are
reported in Table I, where the main characteristics of each
multistride NFA are presented. Where no results are given,
the 24-hours limit has been exceeded. As it is possible to
observe, the 4x multistride level was reached for the Snort534
ruleset, while for the smaller Snort50 ruleset even the 8x level
was reached. For instance, the algorithm used in [3] was able
to reach 2x multistride for all the considered rulesets, but it
exceeded the 24-hours limits for all the datasets when trying
to compute the 4x level.

Unfortunately, even with the new algorithm the 4x multi-
stride level could not be reached for the two biggest automata.

1x 565 564,6190643 ###
2x 1.335 1402,001381 ###
4x 2.655 ###

Naive version New algorithm Throughput (bps)

1x 2x 4x

0 Mb/s

500 Mb/s

1.000 Mb/s

1.500 Mb/s

2.000 Mb/s

2.500 Mb/s

3.000 Mb/s

NFA throughput (Snort50 ruleset, iNFAnt processor)

Naive version

New algorithm

Fig. 4. Benchmark test performed to measure processing throughput changes
by using the new algorithms with respect to the vanilla implementations.
Tests have been performed by using the iNFAnt packet processor at different
multistride levels.

However, overcoming the 2x limit for medium-sized automata
like Snort50 and Snort534 can still be considered a great result,
considering that the results reported in [2] demonstrated the
capability of 4x multistride only for a simple ruleset made up
of 20 regular expressions.

In our experiments we measured and compared to [3] also
the time and memory occupancy required to perform a mul-
tistride optimization. Figure 3 shows these results for the 2x
multistride computation step, for which both implementations
terminate within the 24-hours limit. It is possible to notice
how the new algorithm chain outperforms the previous one,
especially in terms of computation time.

Since the new algorithm chain produces multistride NFAs
that in general are different from the ones produced by the
previous algorithms, one may ask how these NFAs behave
compared to the ones generated by the previous algorithms in
terms of achieved throughput. Indeed, the expectation is that
the runtime throughput is at least not adversely affected by
using the new algorithm chain. In order to test this aspect,
some comparisons have been performed by using the GPU-
accelerated regex processor presented in [3]. Measures show
that, as expected, the processing throughput nearly doubles
after each optimization step. Moreover, NFAs obtained by
using the new tool chain are never worse and up to 5% faster
than the others, as it can be seen in Figure 4. For this reason, it
is possible to state that the new algorithms produce multistride
NFAs in a more efficient way, without introducing runtime
performance penalties but even giving a small throughput
enhancement.

VI. CONCLUSION

This paper has proposed an improved algorithm chain for
computing multistrided NFAs, where new, more memory-
aware, versions of the algorithms originally developed in [2]
have been introduced, and a lightweight state minimization
step is applied after each multistriding step.

Using previous algorithms, only the NFAs of very small
rulesets could be handled. As an example, the best results
presented in literature ([2]) report the computation of 4x
multistride NFAs only for rulesets composed of up to 20
regular expressions extracted from the Snort ruleset, and
the computation of 2x multistride NFAs only for rulesets
composed of 90 such expressions. Slightly larger NFAs could

be handled by a naive variation of the algorithms presented in
[2] but at the cost of computation times of hours.

Using the proposed algorithm chain, 4x multistride NFAs
can now be computed on quite larger rulesets, composed of
more than 500 complex regular expressions taken from the
Snort ruleset, in reasonable time and with affordable memory
consumption. The computation time for 2x multistride NFAs
has been greatly reduced compared to the time taken by the
above mentioned naive variation of the algorithm presented in
[2]. In this way, higher multistride levels are becoming feasible
for more complex rulesets at reasonable time and memory
costs. Even for rulesets close to the ones used in commercial
network applications, at least 2x multistriding is now practical.

The factors that still limit further optimization steps mainly
regard the exponential growth of the number of possible
symbols. Alphabet compression is a very good technique to
counter this problem, but it is not enough to completely
eliminate it. Performing a slight form of NFA minimization
after every multistriding iteration proved to further reduce
this problem but not to the extent of going beyond the 2x
multistride level for the most complex rulesets. As a future
work, it could be interesting to deepen the studies in this field
in order to understand which are the best results achievable
by using other minimization algorithms or other algorithm
mixings.

REFERENCES

[1] M. Becchi and P. Crowley. An improved algorithm to accelerate regular
expression evaluation. In Proceedings of the 2007 ACM/IEEE Symposium
on Architectures for Networking and Communications Systems (ANCS),
Orlando, FL, December 2007. ACM.

[2] M. Becchi and P. Crowley. Efficient regular expression evaluation: theory
to practice. In ANCS ’08: Proceedings of the 4th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, pages 50–
59, New York, NY, USA, 2008. ACM.

[3] N. Cascarano, P. Rolando, F. Risso, and R. Sisto. infant: Nfa pattern
matching on gpgpu devices. SIGCOMM Comput. Commun. Rev., 40:20–
26, 2010.

[4] T. Kameda and P. Weiner. On the state minimization of nondeterministic
finite automata. Computers, IEEE Transactions on, C-19(7):617 – 627,
july 1970.

[5] X. Liu, X. Liu, and N. Sun. Fast and compact regular expression matching
using character substitution (to appear). In Proceedings of ACM/IEE Sym-
posium on Architectures for Networking and Communications Systems,
Brooklyn, NY, USA, Oct. 2011.

[6] C. Meiners, J. Patel, E. Norige, E.Torng, and A. Liu. Fast regular
expression matching using small tcams for network intrusion detection
and prevention systems. In USENIX Security’10 Proceedings of the 19th
USENIX conference on Security, Berkeley, CA, USA, 2010.

[7] M. O. Rabin and D. Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3(2):114 –125, april 1959.

