POLITECNICO DI TORINO
Repository ISTITUZIONALE

Filtering Network Traffic Based on Protocol Encapsulation Rules

Original

Filtering Network Traffic Based on Protocol Encapsulation Rules / Cerrato, lvano; Leogrande, Marco; Risso, FULVIO
GIOVANNI OTTAVIO. - STAMPA. - (2013), pp. 1058-1063. (Intervento presentato al convegno International Conference
on Computing, Networking and Communications (ICNC 2013) tenutosi a San Diego (USA) nel January 28-31, 2013)
[10.1109/ICCNC.2013.6504238].

Availability:
This version is available at: 11583/2503367 since:

Publisher:
IEEE

Published
DOI:10.1109/ICCNC.2013.6504238

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024

Filtering Network Traffic Based on Protocol
Encapsulation Rules

Ivano Cerrato
Politecnico di Torino
Corso Duca degli Abruzzi 24,
Torino, Italy
Email: ivano.cerrato @polito.it

Abstract—Packet filtering is a technology at the foundation
of many traffic analysis tasks. While languages and tools for
packet filtering have been available for many years, none of
them supports filters operating on the encapsulation relationships
found in each packet. This represents a problem as the number
of possible encapsulations used to transport traffic is steadily
increasing and we cannot define exactly which packets have to
be captured.

This paper presents our early work on an algorithm that
models protocol filtering patterns (including encapsulation con-
straints) as Finite State Automata and supports the composition
of multiple expressions within the same filter. The resulting,
optimized filter is then translated into executable code. The
above filtering algorithms are available in the NetBee open source
library, which provides some basic tools for handling network
packets (e.g., a tcpdump-like program) and APIs to build more
advanced tools.

I. INTRODUCTION

In the recent years we have observed a reduction in the
number of layer-7 protocols in use. In fact, while in the past
each application defined its own protocol, nowadays most
of the traffic is conveyed through the web. As a conse-
quence, HTTP has become the de-facto protocol for many
different applications. Surprisingly, the opposite phenomenon
was observed at the bottom of the protocol stack. While
protocol encapsulations were definitely simple in the past (IP
in Ethernet was by far the most common encapsulation), new
necessities, arising in particular from network virtualization,
are transforming the lower layers of the protocol stack into
a mess. Figure 1 presents one of the possible examples of
the complexity growing over the years, which translates e.g.
into frames that need several more fields to transport a simple
IP packet, compared to what it was defined in the original
Ethernet DIX specification in the early *80s.

Particularly, when operating at the upper layers (e.g., filter-
ing based on TCP ports) it is important to be able to capture
all the traffic we are interested in, independently from the
actual encapsulations used at lower layers, be it plain Ethernet,
VLAN in WiFi, MPLS, IPv6 in IPv4, GRE-tunneled, or
anything else. While this looks simple in principle (essentially,
we need to support more encapsulations when generating the
actual filtering executable), it may not be easy to modify a
filtering tool to handle more complex protocol encapsulations.

Marco Leogrande
Politecnico di Torino
Corso Duca degli Abruzzi 24,
Torino, Italy
Email: marco.leogrande @polito.it

Fulvio Risso
Politecnico di Torino
Corso Duca degli Abruzzi 24,
Torino, Italy
Email: fulvio.risso@polito.it

Payload

Ethertype

C-Tag
TPID=0x8100

Payload

C-Src address
C-Dst address
Flags, VNI
C-Tag
TPID=0x8100 | | UOP (VXLAN)

CTag Outer IP Src
TPID=0x8100 C-Src address Address

Outer IP Dst
Address

Payload

Ethertype

Ethertype

Payload

C-Dst address
Flags, Ingress
/ Egress

C-Src address
Ethertype C-Dst address

C-Tag |-SID, Flags Nicknames Ethertype
Ethertype TPID=0x8100 TPID=0x88e7 TPID=TRILL 0x0800

C-Tag S-Tag B-Tag B-Tag B-Tag
TPID=0x8100 TPID=0x88a8 TPID=0x88a8 TPID=0x8100 TPID=0x8100

B-Src address

Payload

Payload

Ethertype

Src address B-Src address B-Src address

B-Dst address B-Dst address B-Dst address
802.1ad 802.1ah TRILL VXLAN

(QinQ) (MACInMAC) 2011 2012
2005 2008

Src address Src address

Dst address Dst address

802.3 802.1Q
Around 1980 1998

Dst address

Slide adapted from Gary Berger, 2012

Fig. 1. Growing complexity in protocol encapsulations.

The NetPDL language [1] aims at solving this problem,
by enabling the creation of tools in which protocol formats
and encapsulations are no longer hardwired into the filtering
program, but are in a separate XML file. Additional encapsu-
lations can be added by simply editing the XML file, without
any modification to the tool itself. This solution allows users to
define high-level packet filtering rules (e.g., tcp.sport ==
80), while the NetPDL-based tool will take care of selecting
the desired traffic, whatever is the encapsulation that is being
used. However, the capability to follow any possible encapsu-
lation may result into slower processing (as the filtering code
is forced to check for any possible encapsulation path) and
this additional cost may not always be acceptable. A possible
solution to this issue is provided by the NetPFL language [2],
which allows to define packet filtering rules including which
encapsulation paths have to be followed (e.g., ip in vlan
in ethernet), without modifying the NetPDL protocol
definitions.

While the NetPFL language is very flexible, so far only
a partial implementation is available [2], which does not
support the explicit filtering on protocol chains; consequently
the possible optimizations were not taken into consideration
at all. This paper extends the initial work by presenting an

algorithm that can generate efficient filtering code based on
NetPFL header chains, that can select traffic based on one or
more encapsulation rules specified at run-time. The NetPFL
filtering expression is transformed into a formalism based on
Finite State Automata (FSA), where states and transitions are
derived by the NetPDL database in use. The FSA algebra
offers the possibility to compose multiple filters, with a result
that can be translated into a deterministic FSA (DFA) that
guarantees the fastest matching path for that filter. Finally,
that DFA is translated into the executable code that actually
analyzes the network packets.

This paper is structured as follows. Section II presents the
main concepts of the NetPFL language. The DFA building
algorithm is presented in Section III, while an overview of
the implementations is given in Section IV. A preliminary
evaluation of the algorithm is shown in Section V, while
Section VI concludes the paper.

II. THE NETPFL LANGUAGE

The Network Packet Filtering Language (NetPFL) [2] is
a declarative high-level language that can be used to define
packet filtering rules. The NetPFL syntax does not define
the list of protocols and fields supported; instead, they are
dynamically bound to those defined in an external data set
that, in our implementation, is based on the NetPDL language.

NetPFL is more complex than other existing packet filtering
languages, as it allows to specify not only the conditions that a
packet must satisfy in order to be accepted, but also the actions
to be executed when a packet is accepted and the stream the
packet belongs to, in order to support multiple filters at the
same time. The filtering syntax is very similar to the one used
by classical packet filters and it supports multiple conditions
to be joined with the and and or logical operators. Moreover,
a condition can be negated through the not operator.

In addition to the constructs mentioned above, which are
fairly common across different filtering languages, NetPFL
supports other primitives that operate on protocol encapsula-
tions. Among those, there is the header chains feature, which
is the focus of this paper.

A header chain defines a filtering condition based on
protocol encapsulation rules that have to be satisfied when
capturing the traffic. Its core elements are the keywords in and
notin, which require respectively that, within a packet: (i) the
left-hand element is directly encapsulated into the right-hand
one, and that (ii) the left-hand element is encapsulated in any
protocol other than the right-hand one. For instance, tcp in
ip! accepts a packet defined as WiFi-IP-TCP, while rejects
WiFi-IP-IPv6-TCP; ip notin wvlan matches a packet such
as Ethernet-IP, while discards Ethernet-VLAN-IP. An element
of the header chain could be a header set, which specifies
a set of protocols that can be (or must not be, in case of
the not in keyword) in a given position of the encapsulation
stack. For instance, previous examples make use of a single

ISince IPv4 traffic is nowadays much more common than IPv6, in this
paper we use the ip token to refer to IPv4.

protocol, which can be seen as a header set with cardinality
equal to one. A header set is expressed by a comma-separated
list of protocol identifiers, enclosed in curly braces; e.g.,
ip in {vlan, 1llc} selects all the packets having IP
directly encapsulated in VLAN or LLC. The any placeholder
can be used to define a single encapsulation in which any
protocol is valid. For instance, the header chain tcp in any
in wifi accepts packets such as WiFi-IP-TCP and WiFi-
IPv6-TCP, while WiFi-IPv6-IP-TCP is rejected because any
matches a single protocol only. The last components of a
header chain are the repeat operators, i.e. ‘+’, ‘«’ and ‘?’,
which mean respectively (i) one or more, (ii) zero or more
and (iii) zero or one consecutive occurrences of one or more
protocols. E.g., tcp in ip+ in ppp accepts any packet
having TCP encapsulated in a sequence of one or more IP
headers, finally encapsulated in PPP. Instead, tcp in any+
in ppp allows, between TCP and PPP, any protocol to be
repeated any number of times, such as in the packet PPP-IP-
IPv6-1P-TCP.

It is worth noting that a header chain specifies a sequence of
protocols that could be everywhere in the packet, and therefore
could be preceded and followed by any protocol repeated
an unspecified number of times. For instance, ipv6 in ip
does not mandate the use of a specific encapsulation at the
link layer, hence all the supported ones are allowed (e.g., plain
Ethernet, Ethernet with VLANS, etc.). An exception is given
by the sequences having, in the right-most position, the starting
protocol of the database in use; e.g. ip in ethernet in
startproto? matches the packets having IP encapsulated
in Ethernet, which in turn is not encapsulated in any other
protocol.

III. BUILDING THE ENCAPSULATION DFA

This section presents the algorithm used to create the
encapsulation DFA, i.e., a deterministic FSA that describes
the traffic to be filtered according to a NetPFL header chain
and the encapsulations defined in a NetPDL database. Those
encapsulations can be represented with a Protocol Encapsula-
tion Graph (PEG), a direct, potentially cyclic graph modeling
the encapsulation relationships among protocols. Each node of
the PEG corresponds to a different protocol, while the edge
from X to Y means that, within a packet, the protocol Y could
be directly encapsulated into X. In this section we refer to the
PEG shown in Figure 2, excluding dashed lines and protocols.

Although the PEG looks similar to an automaton, the
encapsulation DFA cannot be simply obtained by removing
edges from the PEG itself. An example is provided by the filter
tcp in ip in ip in ipv6, which requires exactly two
IP headers between IPv6 and TCP, which cannot be modeled
by a naive transformation of the PEG in Figure 2 into an
automaton. As a consequence, a more complex algorithm for
the creation of the encapsulation DFA that models arbitrary
header chains is needed.

2In NetPDL, startproto is a dummy protocol that identifies the begin-
ning of the packet; all link-layer protocols defined in the NetPDL database
are encapsulated directly into it.

~ - ~

Fig. 2. Protocol Encapsulation Graph.
no repOp
Fig. 3. Building blocks of the FSA.

A. Translating the NetPFL string to a DFA

The first step of the algorithm aims at creating a determinis-
tic FSA (DFA) which is derived from (i) the NetPFL filtering
string and (ii) the encapsulation rules defined in the given
NetPDL database.

To perform the translation into a FSA, the NetPFL filtering
string is split in a target protocol followed by an arbitrary
number of tokens (potentially zero), where target is the
left-most protocol of the header chain. Instead, a token is
defined as:

(in|notin) pSet [repOp]

where pSet can be a header set or the any placeholder,
and repOp determines how many instances of that pSet
can be present (at most one, from zero to N, from one to
N). Obviously, if the repOp is not specified, the pSet must
appear exactly once. The above mentioned elements of the
NetPFL string are converted, from right to left, one at a
time, into automaton basic building blocks, depending on their
repeat operator. The translation rules are depicted in Figure 3
and derive from the standard mapping rules defined from the
FSA theory [3]. Furthermore, since the header chain allows
the sequence of protocols to be everywhere into the packet,
optionally preceded and followed by any protocol repeated
an arbitrary number of times, the resulting automaton begins
and ends with an “eatall” state, equivalent to the .= element
of the regular expressions®. Then, the last “eatall” state of
the automaton is replaced with an equivalent self loop, firing
with any symbol of the alphabet, over the last state of the
automaton. All states are then connected in order and the right-
most one represents the accepting state of the automaton.
Further down in the algorithm we will need to remember
which protocol originated each state: for this reason, each state
is associated with the protocols specified by the token (or

3Filters having startproto in the right-most position are an exception
to this rule, since by definition this fictitious protocol represents the beginning
of the packet. In those cases, the leading “eatall” state is omitted.

[eatall] in ethernet inipvé in |p [eatall]

[1Pv6] TCP
%] M

Startproto
Ethernet
1P
1Pv6
TCP
ubP
HTTP
DNS

‘ Ethernet ‘ ‘ IPV6 ‘

Fig. 4. FSA representing a header chain.

target) from which it derives®. If a state has an incoming e
transition, the state itself is also associated with the protocols
related to the origin state of the transition itself. We perform
this operation because, when the control of the automaton
reaches the origin state, the e transition causes the control
to spontaneously reach the target state; hence, when parsing
the packet, any protocol reached in the origin state will be
reached also in the target one.

As an example, the FSA of Figure 4 represents the au-
tomaton built from the header chain tcp in ip* in ipvé
in ethernet. As highlighted with the double circle, the
rightmost state represents the accepting state. Figure 4 shows
also the element of the NetPFL string from which each state of
the FSA derives (at the top), and the protocols associated with
each state (in the grey boxes at the bottom). The IPv6 entry
in the box related to state Q3 is enclosed in square brackets
to emphasize that this association is a consequence of the €
transition.

So far, FSA transitions are not associated with any symbol,
except for the e transitions that derive directly from the
building blocks of Figure 3 and the self loop on the last state.
In order to label properly each transition, we must define the
alphabet of the FSA, which consists in the set of protocol
encapsulation rules that derive from the PEG created from
the NetPDL database in use. Each symbol of the alphabet is
named after the two protocols involved in that encapsulation
rule, the (abbreviated) name of the originating protocol first,
the target last. For instance, the transition from Ethernet to
IPv6 originates the symbol eth-ipv6, which is received by
the FSA if IPv6 is directly encapsulated into Ethernet.

In our FSA building algorithm, a transition is labeled with
all the symbols having the name satisfying the following
constraints: (i) the first part, representing the origin protocol,
is equal to one of the protocols associated with the source
state of the transition itself; (ii) the second part, i.e. the target
protocol, is equal to one of the protocols specified by the
NetPFL token/target from which the destination state
derives, hence excluding the associations derived from the
possible presence of an € transition.

Figure 5 shows the result of the previous labeling rules when
applied on the transition of the FSA in Figure 4. In this case,
the * symbol is a compact form to indicate that the transition

“In case the pSet is preceded by the notin keyword, the state is
associated to all the protocols in the PEG, excluding those listed explicitly in
the token.

* {ip-ip,ipv6-ip},

0 {start-ethji/;\ {eth-ipvé} /;\ €

Startproto l Ethernet l l IPV6 l [IPVv6] TCP
Ethernet IP

IP

IPV6

TCP

uDP

HTTP

DNS

Fig. 5. FSA with labeled transitions.

*-{start-eth,ip-ip,ipv6-ip,ip-tcp,ipv6-tcp} Input alphabet

start-eth
eth-ipv6
eth-ip
ipv6-ip
ipv6-tcp
ipv6-udp
ip-ipv6
ip-ip
ip-tcp
ip-udp
tep-http
tcp-dns
udp-dns

{ip-ip,ipv6-ip}

{start-eth} {ip-tcp,

{ip-ip,ipv6-ip}

{eth-ipv6}
{start-eth}

*-{start-eth, {ip-tcp,ipv6-tcp}

eth-ipv6}

*-{start-eth,ip-ip,ipv6-ip,ip-tcp,ipv6-tcp}

Fig. 6. DFA representing a header chain.

fires for every symbol of the alphabet.

Since the FSA created so far may be non-deterministic, it
must be converted into a deterministic form using the well-
known algorithms defined in the literature [3]. Figure 6 comes
from the determinization of the automaton of Figure 5; the
notation ‘x — {...}’ indicates each symbol of the alphabet
except those in the curly braces.

B. Assigning a single protocol to each state

While the DFA obtained so far looks nice from a theoretical
point of view, it still cannot be used to generate the executable
code that implements the given NetPFL filter.

In order to carry out this final lowering step, we need
to associate each state of the DFA with a single protocol,
so that reaching a certain state of the DFA corresponds to
reaching a specific protocol within the packet under analysis.
Unfortunately, automata obtained by our building process may
not satisfy this condition. For instance, the original FSA in
Figure 5 shows states associated with multiple protocols (e.g.,
states Qg and (J3); the situation may become even worse in
the next steps, as states originally associated with a single
protocol can lose this property in the determinization process,
when states are manipulated (e.g., joined or split) by FSA
algorithms.

We designed an algorithm to label, whenever possible, each
state with the corresponding protocols.

First, each state is inspected and, if all of its incoming
transitions share the second part of their name (i.e., the target
protocol of the encapsulation rule), then that state is labeled
with that protocol. Two exceptions are (i) the initial state of
the automaton, which corresponds to a single protocol (i.e.,
Startproto), only if it does not have any incoming transitions’
and (ii) the accepting state, whose self loop is not considered.

5Note that, since a symbol leading to Startproto does not exist, an incoming
transition would associate the initial state with multiple protocols.

Fig. 7.

DFA after the protocol assignment.

Second, unnecessary symbols are pruned from transitions,
as we know (from the PEG) that, while control is a given
state, the FSA can receive only symbols whose origin protocol
is the one associated with the state. Symbol pruning is done
by inspecting the outgoing transitions of each state: if that
transition is associated with a symbol whose first part does not
match the protocol associated with the state itself, that symbol
is removed from the transition. Obviously, we remove all the
transitions that remain without symbols and all the states that
are disconnected from the rest of the FSA. These operations
are repeated until there are no more changes in the DFA; the
final result of this step in our example is shown in Figure 7.

Unfortunately, when the previous algorithm terminates,
some states may still not be associated with a single protocol.
The solution consists in transforming the obtained DFA into
an equivalent form in order to reach our objective. Each
unlabeled state is split into multiple states, one for each
protocol identified by the target protocol of its incoming
transitions®. For example, the dashed state in the left of
Figure 8 originates two states, one associated with IP and the
other with IPv6, as shown in the right part of the figure. A
transition originating in an expanded state is replaced with
new transitions, based on the origin protocols of the symbols
labeling the transition itself. Each of those new transitions
starts in the new state representing the source protocol of its
symbols, and ends in the same state of the original transition.
For example, the transition exiting from the dashed state in
the left of Figure 8 originates two transitions: one labeled with
ip-ipv6 and exiting from the new state representing IP, the
other firing with ipvé-tcp and coming from the new state
associated with IPv6. Similarly, each transition ending in an
expanded state is managed according with the target protocols
of its symbols. In our example, the transition leading to the
dashed state is replaced with two transitions, the former firing
with eth-1ip and terminated on the new state representing IP,
and the latter labeled with eth—-ipv6 and entering into the
new state associated with IPv6. Figure 8 shows also how the
self loop on an expanded state, for each one of its symbols,
originates a new transition starting and ending in the proper
new states.

After the expansion some states could be useless, because
their transitions originate circular paths that do no longer
bring the control to an accepting state. We identify those
“traps” with a reverse post-order visit of the DFA, starting
from the accepting state; states that cannot be visited are
removed. Figure 9 shows the encapsulation DFA recognizing

The initial state is also associated with startproto.

{ipv6-ip,ip-ip} {ip-ipv6}

{eth-ip,eth-ipv6} 72X\ {ip-ipv6, ipv6-tcp}
OE===emmmOm() |
®
{eth-ipv6}
Fig. 8.

Expansion of a state and the related transitions.

{ipv6-tcp}

{eth-ipv6}

S,) tstart-eth}/ g
start @

Fig. 9.

Final DFA implementing the NetPFL filter of our example.

packets that match the filter tcp in ip* in ipv6 in
ethernet.

Finally, the enpcasulation DFA is transformed into a piece
of executable code that implements the filter, which is then
used to analyze network packets.

It is worth remembering that a filter could have more header
chains, composed through the Boolean operators and and
or. In this case, our algorithm is executed for each header
chain, and the resulting DFA are combined using traditional
algorithms defined in literature.

IV. IMPLEMENTATION

The proposed algorithm was implemented in the NetBee
library [4]. This library includes a t cpdump-compatible tool
named nbeedump for packet filtering, which exploits the
NetVM [5] virtual machine for executing the packet filtering
code. The overall system architecture is shown in Figure
10: nbeedump receives as input both the NetPDL database
(containing the format of the supported protocols and the en-
capsulation rules) and the NetPFL filtering expression. These
information are taken by a compiler that, after the application
of several optimization algorithms, emits the final filtering
code under the form of NetIL instructions (i.e., the NetVM
assembly language). The NetIL can be interpreted by the
NetVM itself, or transformed into native code for a bunch of
target architectures. Within the above compiler, the algorithm
presented in this paper is implemented in the DFA builder
module, which takes the PEG (dynamically extracted by the
NetPDL database) and the NetPFL filter, and builds the DFA
representing the packet filter. Subsequently, the DFA lowering
module generates the corresponding NetIL code. Input sym-
bols of the FSA are generated by the protocol scanner; even
if it is a logically separated module, its operations are in fact
performed by the same assembly program implementing the
DFA. This means that, when generating the NetIL code for
a state, we link together both the code that implements the
automaton and the one that handles the encapsulations.

NetPFL
filtering
expression

NetPDL

protocol
database

¥4 High level compiler
Protocol Scanner |

T
/[DFA builder]

b DFA lowering

Fig. 10. Overview of the building blocks to generate filtering code.

NetPFL Filter
1 tcp in ip
2 tcp in ip in ethernet
3 tcp in ip in ethernet in startproto
4 tcp in any+ in ethernet
5 http notin {tcp,udp}
6 tcp
TABLE I

NETPFL FILTERS USED IN THE TESTS.

V. EXPERIMENTAL RESULTS

The algorithm presented in this paper has been validated
with two types of tests: the former evaluates the time required
to create the FSA and generate the machine depended code
that recognizes packets matching the filter, while the latter
addresses the performance of the generated code at run-time.
Tests have been performed on a workstation with 4 GiB of
memory, CPU Intel E§8400 @ 3.00 GHz and OS Ubuntu 10.04,
kernel 2.6.32-38-generic, 64 bits. All tests were executed with
the nbeedump tool, which used the NetPFL filters shown in
Table I and the NetPDL protocol database shown in Figure 2
(including dashed lines and protocols’).

It is worth noting that, at the best of the authors’ knowledge,
no other filtering languages exist that allow users to specify
filters based on protocols encapsulations. For instance, neither
libpcap [6], which represents the foundation of many
packet filtering tools (e.g., tcpdump, Wireshark), nor the
display filters [7] implemented in Wireshark (which replace
the basic filtering capabilities of 1ibpcap when packets have
to be shown on screen) support filtering based on protocol
encapsulation rules. As a consequence, we cannot compare the
performance of our implementation with other competitors.
However, we took care of obtaining our results by using
a framework that has already been proved to be at least
equivalent to the state of the art in this field [8].

A. Compilation time

This test evaluates the filter compilation time, i.e. the
time required for generating the actual x64 assembly code

7 Actually, the original NetPDL database available on the nbee.org web site
accounts for more than one hundred protocols; we used a reduced database
for the sake of clarity.

1000

'E‘ 949,6 978,2

o 100 70,4 68,2

E

=

& 10 O Automaton
o | Total

S

< 1

#1 #2 #3 #4 #5 #6
#filter

Fig. 11. Performance of the code generator.

implementing a specific NetPFL filter. This process includes
an initial step represented by our algorithm followed by a
very complex compilation and optimization process (part of
the NetVM framework) before the final code emission. Our
test measures the time spent by our algorithm with respect to
the total code generation time. Each filter has been compiled
thousand times and averaged, obtaining the numbers depicted
in Figure 11. Results show that the time required for creating
the encapsulation DFA is negligible compared to the total
generation time, for all the considered filters. Furthermore,
the time needed to build the FSA increases when the number
of protocols that could match the initial eatall state in the
FSA representing the filter is reduced. The reason is that our
algorithm expands the initial state in most of the protocols
defined in the database in use, and then prunes the unnec-
essary ones. As a consequence, NetPFL filters that explicitly
mention startproto generate very compact filtering DFA
and represent the fastest generation case for our algorithm.

B. Filtering time

This test aims at evaluating the quality of the resulting
filtering code (i.e. the x64 assembly program) executed on a
set of real packets. The filtering code measures only the time
needed to check if a packet satisfies the filter, without taking
into account additional overhead such as reading packets
from disk (or from the NIC) and more. Each filter has been
repeated one thousand times on each test packet and the
results have been averaged. Since a filter execution lasts a
few nanoseconds, measurement has been performed with the
RDTSC instruction available in the Intel x64 instruction set.

Figure 12 shows the number of CPU ticks needed for the
filters of Table I applied to a first, simple packet, and a second
with a tunnel involving the IP protocol; precise encapsulations
are written on the figure itself. As evident, the cost of an
accepting filter (shown with the (a) on top of the bar in
Figure 12) decreases when the filter is more specific, i.e. leaves
less freedom to the protocols that may appear in a certain
position of the packet. Furthermore, accepting filters will
require more time to analyze the complex packet because the
encapsulation sequence of interest is matched later within the
packet itself. Finally, filter #5 is so fast because it represents
a condition that, according with the PEG in use, does not
match any of our packets, which are then discarded almost
immediately after a few checks.

(a) (a)

140

% 120 129 119

2 100 Ofilter #6

¥ g @EEEEN M OO0 g fier#1

.5 60 49 45 M filter #4

® 40 i

g 202018 9 | filter #2

2 28 B Ofilter #3
R W filter #5

ethernet-ip-tcp-http ethernet-ip-gre-ppp-ip-tcp-http

Packet

Fig. 12. Performance of the generated filters.

VI. CONCLUSIONS

This paper presents an algorithm that enables the creation
of efficient packet filters operating on protocol encapsulations.
Our algorithm enables the creation of more specific filters
based on the header chains defined in the NetPFL filtering
string. This capability is important for many network tools
based on packet filtering capabilities that will be deployed in
the near future, as it would be needed to support multiple
encapsulations; it will also enable the efficient filtering of the
traffic we want, given the growing amount of packets that use
very complex encapsulations.

Although we cannot compare our performance with other
systems (as we are not aware of other software supporting
filtering on protocol encapsulations), our preliminary results
seem to confirm that the generated filters can be extremely
efficient, suggesting that our NetBee library could be used as
a foundation for more sophisticated packet capturing tools that
require fast and flexible traffic filtering.

Future works include the extension of our algorithm to
support other features defined in the NetPFL language, such
as the capability to specify rules based on a specific instance
of a protocol. The filter tcp in ip%2, which matches when
the ip—tcp encapsulation refers to the second instance of the
IP protocol, represents a possible example.

REFERENCES

[1] F Risso and M. Baldi, “Netpdl: an extensible xml-based language for
packet header description,” Comput. Netw., vol. 50, no. 5, pp. 688-706,
Apr. 2006.

[2] L. Ciminiera, M. Leogrande, J. Liu, F. Risso, and O. Morandi, “A tunnel-
aware language for network packet filtering,” in Proceedings of the Global
Communications Conference (Globecom 2010), Miami, Florida, USA.
IEEE, Dec 2010, pp. 1-6.

[3] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to automata
theory, languages, and computation (2. ed). Addison-Wesley, 2003.

[4] F. R. et al., “The netbee library,” Nov 2007, version 0.2. [Online].
Available: http://www.nbee.org

[5] O. Morandi, F. Risso, P. Rolando, S. Valenti, and P. Veglia, “Creating
portable and efficient packet processing applications,” Design Automation
for Embedded Systems, vol. 15, no. 1, pp. 51-85, Mar. 2011.

[6] S. McCanne and V. Jacobson, “The bsd packet filter: a new architecture
for user-level packet capture,” in Proceedings of the USENIX Winter 1993
Conference, 1993, pp. 2-2.

[7]1 G. C. et al., “Wireshark display filters,” Oct 2008. [Online]. Available:
http://wiki.wireshark.org/DisplayFilters

[8] O. Morandi, F. Risso, M. Baldi, and A. Baldini, “Enabling flexible
packet filtering through dynamic code generation,” in Proceedings of
IEEE International Conference on Communications (ICC 2008), Beijing,
China, May 2008, pp. 5849-5856.

