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Abstract 
 
Nearly two decades have passed since the publication of the first study reporting the 

discovery of microRNAs (miRNAs). The key role of miRNAs in post-transcriptional gene 

regulation led to the performance of an increasing number of studies focusing on origins, 

mechanisms of action and functionality of miRNAs. In order to associate each miRNA to a 

specific functionality it is essential to unveil the rules that govern miRNA action. Despite the 

fact that there has been significant improvement exposing structural characteristics of the 

miRNA-mRNA interaction, the entire physical mechanism is not yet fully understood. In this 

respect, the development of computational algorithms for miRNA target prediction becomes 

increasingly important. This manuscript summarizes the research done on miRNA target 

prediction. It describes the experimental data currently available and used in the field and 

presents three lines of computational approaches for target prediction. Finally, the authors put 

forward a number of considerations regarding current challenges and future directions. 
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Introduction 

MicroRNAs (miRNAs) are short endogenous non-coding RNAs (ncRNAs), central actors in 

post-transcriptional regulation [1]. miRNAs bind the protein complex called RNA-induced 

silencing complex (RISC) and guide the complex toward specific sites, in particular mRNAs 

known as genes targets. By pairing specific sites in the mRNAs known as miRNA 

recognition elements (mRE), miRNAs direct post-transcriptional regulation, resulting in 

mRNA degradation or inhibition of protein translation.  

However, the rules governing the mechanism of miRNA target regulation are not yet fully 

understood, making computational approaches for miRNA target prediction all the more 

important.  In order to unveil miRNA functionality, it is critical to identify candidate targets. 

In fact, several computational approaches have been developed and experimental protocols 

have been proposed in order to improve the understanding of the mechanism.  

Even though the first attempts to characterize miRNAs occurred almost twenty years ago 

[2], miRNAs were only reported as a significant class of small endogenous ncRNAs at the 

beginning of the last decade [1,3,4]. In fact, these molecules were named as miRNAs just one 

decade ago and since then research on miRNAs has been a focus of interest for numerous 

scientists worldwide, due to their powerful role in gene regulation.  

As a result, research on miRNAs has flourished in the last decade. Figure 1 shows three 

indicators of the research status: the number of mature miRNA sequences stored in miRBase 

[5], the number of publications reported in PubMed regarding miRNAs and the number of 

publications in PubMed with specific reference to miRNA targets. This figure not only 

evidences the timeline of this field, but also indicates the growing number of studies 

regarding miRNAs and their gene targets. It is worth noting that, according to this figure, 

research on gene targets of miRNAs has mainly developed after the year 2003. 

Several reviews on miRNAs and their targets have been published focusing on the 

examination of biological principles [6,7], experimental techniques and computational 

prediction algorithms [8-10]. Recently, various review papers have highlighted the expansion 

of experimental data validating miRNA-mRNA interactions [8,9,11-14]. However, the 

review of miRNA target prediction algorithms is limited to the first computational algorithms 

which were developed based on ab initio strategies [7,8,10,15].  

This paper attempts to present updated information, not only regarding experimental 

techniques, but also prediction algorithms. We summarize the current status on miRNA target 

prediction, pointing out the most important considerations that should be taken into account. 



  

It is noteworthy that these considerations are addressed, not only to users of prediction tools, 

but also to developers. We first introduce the experimental techniques used to obtain miRNA-

mRNA interactions and then present the most relevant identified characteristics of the 

structural interaction. Furthermore, we introduce three lines of computational algorithms for 

target prediction, i.e., ab initio, machine learning and hybrid, and provide examples for each 

line. Finally, current challenges and future directions are discussed. 

Experimental data 

There is no “golden rule” regarding the technique to identify or validate miRNA-target 

interactions. In fact, several techniques have been used to obtain experimental data that 

supports miRNA-target interactions [11]. Experimental data is critical, not only to distinguish 

a specific interaction, but also to study features that characterize miRNA-mRNA interactions 

and to validate the accuracy of the computational approaches proposed. It is therefore 

fundamental to briefly introduce the experimental data currently available regarding miRNA-

mRNA interactions. In order to understand the advantages and limitations of the data derived 

with each experimental technique, comments for each technique are presented in order.  

Experimental techniques can be classified in two classes, depending on the type of 

supporting information provided: direct or indirect. In addition, the experimental data can 

also be categorized, depending on the resultant size of dataset: individual studies or high 

throughput. 

The individual studies can provide direct support to validate the identified candidates. 

Frequently, reporter genes (such as luciferase and GFP) attached to the genes of interest were 

used, and the expression of reporter gene was measured before and after the introduction of 

miRNA to the cell [16]. Such procedure can provide direct support but fails to identify the 

specific mRE (particularly useful to understand the structural characteristics of the 

interaction). Thus in order to obtain the specific mRE, reporter genes can be attached to both 

the original and mutated sequences of the gene of interest. Gene expression in both samples is 

then measured before and after miRNA transfection [16,17]. In this way, it is possible to 

identify the specific site of interaction.  

Moreover, the resultant experimental data size using reporter gene assays is small. 

Therefore a different experimental validation strategy was proposed and used in several 

studies [18]. In particular, expression was measured for a large number of genes through 

manipulating miRNA expression, either overexpression by transfection or knockdown. In the 

former case, a decrease in expression of target mRNAs and proteins is expected (down 



  

regulation) with increased expression of miRNAs [18], while in the latter case, an increase in 

expression of target mRNAs and proteins is expected (upregulation) with the miRNA 

expression silenced in cells [19]. Other than that, under different biological conditions, 

miRNA expression varies and consequently the expression of target mRNAs and proteins 

varies as well [20]. 

Experimental techniques like microarray and PCR are commonly used to measure gene 

expression [18]. However, since miRNA regulates not only mRNA expression but also 

protein levels, in doing so, targets by inhibition of mRNA translation into protein are left out. 

There are a few studies that used also immunoblotting to measure protein expression [19]. 

Furthermore, high-throughput proteomics techniques have been proposed and are used to 

identify both types of targets. In particular, strategies like stable isotope labelling by/with 

amino acids in cell culture (SILAC) [21] and pulsed SILAC (pulsed SILAC) [22] are able to 

provide a high throughput dataset by using mass spectrometry (MS). Ribosome profiling is 

another approach for identification of both types of targets. Ribosome profiling, which is 

based on deep sequencing of ribosome-protected mRNA fragments [23], is a sensitive 

method to quantify and detect the mRNAs at the ribosome.  

Nevertheless, expression-based validation strategies are indirect because the set of 

mRNAs/proteins with an associated microRNA induced change of expression, contains both 

direct targets (structural interaction) and indirect targets (the expression of the indirect target 

is caused by a direct target but not by the microRNA). In addition, further considerations 

should be taken into account depending on how the miRNA expression is manipulated. In 

particular, in the over-expression experiments there might be targets that, despite being 

affected by miRNA over-expression, do not show a high degree of down-regulation due to 

factors such as the saturation of the microRNA ribonucleo protein complex (miRNP) [24]. 

Lately, immunoprecipitation of proteins from the RISC complex has been used to identify 

the mRNAs where the miRNAs bind [25]. In addition, combination of crosslinking-

inmunoprecipitation and high throughput sequencing has been used to isolate the mRNAs 

where miRNAs and protein complex bind and to obtain sequences containing the specific site 

of interaction [26-27]. In particular, approaches like high-throughput sequencing of RNA 

isolated by crosslinking immunoprecipitation (HITS-CLIP) [26] and photoactivatable-

ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) [27] have been 

used to isolate, quantify, and sequence portions of mRNAs that contain the sites of miRNA-

mRNA interaction. Although the sites of interaction are determined, these approaches can’t 

identify the specific miRNA-mRNA association experimentally, which instead is estimated 



  

by using features commonly found in experimental samples such as the seed complementary 

sequence. 

Each of the aforementioned techniques provides an important source of information for 

miRNAs and genes target interaction. In particular, data with strong direct structural support 

is fundamental because physical interactions occur. The authors strongly advise to use data 

provided by direct methods to validate or train computational tools that perform the 

prediction based on structural characteristics. 

However, indirect methods are also an important source of information. The experimental 

data provided contains functional targets (both direct and indirect) where the functional 

regulation (up or down-regulation) was induced. Evaluating the accuracy of the prediction 

tool (prediction of physical interaction) based on expression data does not indicate robust 

result since the dataset does not distinguish between indirect and direct targets. Nevertheless, 

a computational prediction tool can be used to distinguish direct and indirect targets in 

expression data sets. 

Special attention should be given to the experimental data selection since indirect and 

direct methods perform under different assumptions. As a matter of fact, distinct target 

determinants between expression-based and CLIP-based data were observed in a recent study 

[28]. Thus, the nature of the experiment characteristics should be taken into account, in 

particular when the data is used to train a computational target prediction method or for 

validation purposes. 

 

Databases with experimental data 

The growing interest in the field has been accompanied by the continuous evolution of 

experimental techniques and an associated expansion of the experimental data obtained. In 

order to provide a common benchmark for different studies, several databases have been 

developed to deposit and share experimental data. In this section, the most popular databases 

that deposit experimental data regarding validated miRNA-mRNA interactions are presented.   

The first version of Tarbase [29] was introduced in 2005 and the five previous versions of 

this database lacked several annotations. For example, no clear indication for records 

containing predicted sites (not experimentally derived) was given.  However, the most recent 

version, Tarbase v6 [30] released in 2011, shows a number of significant improvements. In 

particular, several databases, such as miRecords [31], have been integrated into Tarbase v6. 

In addition, more details are provided regarding each interaction and it is now possible to 



  

select data based on the experimental technique used, regulation type (up regulation, down 

regulation and unknown) and type of interaction (positive and negative). Figure 2A shows 

the proportions of experimental techniques used to obtain the data deposited in Tarbase v6. It 

is worth noting that Tarbase collects data provided by both individual studies and high-

throughput studies. The largest dataset was obtained using high-throughput methods like 

microarrays, which alone provide an indirect type of validation as aforementioned. 

miRecords [31] was released in 2008 and each record in this database was manually 

curated. To date, three versions of miRecords have been developed with the latest release 

dating back to 2010. This database contains a significant amount of miRNA-mRNA 

interactions, most of the interactions deposited in this database have been derived from 

individual studies. In fact, as shown in Figure 2B, the largest proportion of deposited 

experimental data is obtained using reporter gene assays and most of the data included in this 

database has a direct type of validation. Despite the fact that the latest version was released in 

2010, this database is still an important resource of interactions with strong experimental 

support. 

Two additional databases, miRtarbase [32] and starBase [33], have been recently 

published. miRtarbase collects miRNA-mRNA interactions and classifies miRNA-target 

interactions (MTIs) into four classes including functional, functional weak (indirect 

experimental support), non-functional and non-functional weak, depending on the power of 

the experimental technique used and the type of interaction (positive or negative). 

Classification of MTIs is particularly useful to select experimental data according to the 

associated support.  

Finally, starBase [33] collects data provided by high-throughput CLIP-seq, such as HITS-

CLIP [26] and PAR-CLIP [27]. This type of data consists of sites of interaction for the 

mRNA-miRNA-Argonaute complex on a transcriptome-wide scale. Although the database 

initially contained data from 21 CLIP-seq experiments, the number of studies using CLIP-seq 

experiments is likely to grow in the next few years, considering its potentiality. Specifically, 

91,124 interactions for the human are currently deposited in starBase. 

Features of miRNA-mRNA interactions 

The identification of common characteristics for targets and specific sites with strong 

experimental support is fundamental in order to unveil the rules that govern miRNA-mRNA 

interactions. Therefore, common characteristics found in experimental data have been 

extracted. 



  

In particular, characteristics associated with the duplex miRNA-site interactions are still 

being explored [34]. Among the duplex features, great importance has been conferred to a 

region in the miRNA sequence named seed [35]. A strong complementarity to the seed region 

was found in a significant number of experimentally-derived sites. The seed is located in the 

5' section of the miRNA and different types of seeds sites were identified based on the length 

and complementarity (7mer-A1, 7mer-m8 and 8mer). Considering the importance of the seed 

region of interaction between miRNA and mRNA is commonly classified as the seed region 

and out-seed region. The out-seed region also plays an important role in the duplex 

interaction, either to reinforce the affinity (supplementary pairing) or to compensate for 

incomplete seed pairing (complementary pairing) [36]. In addition, within the out-seed region 

there was a preferential pairing from the 13th to the 16th nucleotide in the miRNA sequence 

[37]. Furthermore, additional characteristics regarding the duplex have been commonly found 

in sites of interaction [39-40]. In particular, the duplex minimum free energy associated with 

the interaction stability represents a determinant characteristic [39]. Frequently the 

conservation of the mRNA site is also an important discriminant [40].  

     Recently, a characteristic from the duplex was extracted from a CLIP-seq data set and 

investigated in a few miRNAs, such as the miR124. The feature consists of the presence of a 

G bulge in the 6th nucleotide of the miRNA that acts as a pivot [34]. Nevertheless, further 

examinations on additional datasets are needed to assess this consideration. 

     Not only the characteristics of the duplex delineate the interaction, characteristics 

associated with the environment that encloses the site in the mRNA are also significant 

indicators. Since the mRNA has a complex structure itself, the surrounding conditions 

favour/disfavour the accessibility of the miRNA to the mRE and therefore influence the 

interaction. A number of characteristics indicate the accessibility, such as: (1) AU content in 

the upstream and downstream neighbourhood and (2) AU motifs in the entire mRNA (such as 

AUUUA pentamer). The first characteristic promotes the miRNA access to the site [38,41], 

while the presence of motif signatures for RNA-binding-proteins may attenuate or enhance 

the regulation executed by the miRNA [42]. The presence of a GC motif downstream of the 

site was also extracted from sites derived experimentally [43]. In addition, features that 

reflect the amount of energy that must be spent in order to introduce changes from the 

original mRNA structure to the resulting structure after the interaction appear as important 

determinants [39]. In particular, the feature called ΔΔG reflects the difference in free energy 

between the duplex and the neighbourhood of the site initial structure [44,45]. The specific 

position of the site is also an important consideration. Even though the majority of the sites 



  

have been found in the untranslated regions (UTR) of mRNAs, some mREs have also been 

found in the coding region [26]. However, the regulation appears to be more effective when 

the site of interaction is in the UTR [26]. In particular, sites in the UTR are most likely 

accessible if are located near the start codon or the stop codon [37].  The majority of mRE 

located in the UTR are found in long UTRs [46]; therefore the UTR length would seem to be 

another element that should be considered. 

     Nevertheless, none of these aforementioned characteristics are present in all the sites that 

have been derived experimentally [28]. One of the most commonly found characteristics is 

the seed, but there is a subset of sites that do not contain the seed complementarity. In fact, in 

the dataset derived in [26] around 27% of the identified sites did not possess seed 

complementary to the expressed miRNAs; such sites may bind to other miRNAs or follow 

different rules. 

     In the section Experimental Data, differences between the experimental strategies used to 

obtain data for miRNA-mRNA interactions were presented. Different considerations should 

be taken for datasets obtained from expression-based experiments and for those obtained 

using CLIP-seq protocols. Recently, a study [25] compared the characteristics of the 

interactions derived with these high-throughput strategies and noted some discrepancies. In 

particular, accessibility features are strongly present in data obtained with CLIP-seq 

techniques while duplex-related features, specifically the seed, are strong determinants for 

expression-based experiments. Even though there is a great overlap between the data 

provided by both experimental techniques, the discrepancies can be attributed to increased 

miRNA concentrations (overexpression) typical of expression-based experiments. 

Computational algorithms 

Computational algorithms for miRNA target prediction have been essential in order to 

identify the candidate targets and therefore the targets. Since 2003, almost one decade of 

development of computational miRNA target prediction algorithms has passed. Current 

prediction algorithms based on structural characteristics (such as the ones presented in the 

Features of miRNA-mRNA interactions section) can be grouped into three lines: ab initio, 

machine learning and hybrid approaches. 

The first algorithms proposed are in the ab initio line. These algorithms perform the 

prediction based on the structural features extracted from data with experimental support [47-

55]. They are based on computational models that do not use the experimental data directly. 

Machine learning (ML) approaches, on the other hand, use computational algorithms that rely 



  

directly on experimental data to train a classifier [57-68]. In this way, the classifier is able to 

identify a candidate target site based on similarity to the experimental training set. Machine 

learning algorithms started to appear when the number of interactions with experimental 

support increased significantly.   

Each line has an associated pitfall. For ab initio algorithms it is the high number of false 

positives [26] and for machine learning approaches it is the reduced number of negative 

interactions with experimental support (negative interactions are often not published and not 

recorded in databases). The set of predictions generated by ab initio algorithms contains a 

notable number of false positives. In order to overcome this problem, ab initio algorithms use 

several restrictions to retain candidates that have a high probability of being targets and filter 

out false positives. However with filtering, several true positives may also be discarded.  

Machine learning approaches identify the probable candidates (positives) from the 

unlikely candidates based on the experimental data that represents positive and negative 

interactions. However, negative experimentally-identified interactions are usually discarded 

and therefore the currently available negative set (negative interactions with experimental 

support) is quite poor compared to the positive set. 

The drawbacks of ab initio and machine learning algorithms, have led to the development 

of hybrid algorithms with characteristics from both lines incorporated. These hybrid 

algorithms integrate merits from each line in order to meet the current challenges of 

prediction algorithms.   

The most popular ab initio, machine learning and hybrid algorithms are briefly discussed 

below.  In addition, a summarizing table of the algorithms with several considerations can be 

found in the supplementary material (Table S1). 

Ab initio algorithms 

• miRanda [47,48] uses a weighted dynamic programming algorithm to obtain the 

candidate sequences. This algorithm uses a score to rank the predictions that consists of a 

weighted sum based on matches, mismatches and G:U wobbles. Initially, miRanda [47] used 

features such as seed complementarity and duplex free energy; the most recent version also 

takes into account a conservation measure based on the PhastCons conservation score. The 

algorithm and the set of target predictions are available online (http://www.microrna.org ).  

• TargetScan [35,37,49]: this algorithm requires the seed complementary at least for 6 

nt and considers the different seed types that have been defined, with a certain hierarchy 

(6mer offset <6mer<7mer-A1<7mer-m8<8mer) [36]. Moreover, TargetScan ranks the sites 



  

using a context score based on seed complementarity, conservation and AU content in the site 

vicinity. In the recent release of the latest version of TargetScan[50], a number of additional 

determinants have been integrated while retaining the previous considerations. In particular, a 

multiple linear regression trained on 74 filtered datasets was used to integrate determinants 

such as seed-pairing stability (SPS) and target-site abundance (TA). TargetScan is available 

online (http://www.targetscan.org/ ). 

• Pictar [51]: this algorithm has strict requirements regarding the seed and also takes 

into account the overall duplex stability based on the minimum free energy. Once the sites are 

aligned, the targets are ranked based on a score derived using a hidden Markov model that 

considers the site conservation. Predictions obtained with Pictar are available online 

(http://pictar.mdc-berlin.de/ ). 

• RNA22 [52] is a pattern-based discovery strategy to identify the candidate targets. 

First, a Markov chain is used for pattern discovery, but only the most statistically significant 

patterns are retained to identify target islands (areas where many statistically significant 

patterns map). Consequently, the target islands are paired with miRNAs. The target islands 

that represent candidate binding sites for miRNAs are selected based on user-imposed 

parameters (minimum number of base pairs, maximum number of unpaired bases and 

maximum allowed free energy). RNA22 is available online 

(http://cbcsrv.watson.ibm.com/rna22.html). 

• RNAHybrid [53] is an algorithm that finds the minimum free energy not only for 

short sequences (miRNA-mRE) as most of the previously-reported algorithms, but also for 

the entire miRNA-mRNA. The user can impose several restrictions, such as the number of 

unpaired bases and free energy allowed, to reduce the set of resulting predictions. 

RNAHybrid is available online (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/ ) . 

• PITA [44] is a proposal that considers not only the specific duplex interaction 

information, but also takes into account the accessibility to the site in the mRNA. 

Accessibility is considered as the difference between the minimum free energy of the entire 

complex and the energy that originally had a short region of the mRNA near the site, ΔΔ G. 

The user can impose different restrictions to reduce the resultant set of candidates (minimum 

seed size, G:U bobbles and unpaired bases). PITA is available online 

(http://genie.weizmann.ac.il/pubs/mir07/ ). 

• EIMMO [54] is an algorithm that scores the sites based on the conservation score and 

uses a Bayesian method. It infers the phylogenetic distribution for the functional sites. To 



  

characterize miRNA function, associations between the predicted targets and biochemical 

pathways (KEGG) are searched. EIMMO is available online 

(http://www.mirz.unibas.ch/ElMMo2/). 

• DIANA [55]: this algorithm measures the goodness of an interaction based on its 

specific characteristics. Each gene is weighted taking into consideration conserved as well as 

non-conserved sites. Moreover, a signal to noise ratio (SNR) is obtained for each interaction 

to estimate the number of false positives. DIANA is available online 

(http://diana.cslab.ece.ntua.gr/microT/) . 

An interesting performance comparison of the nine most popular ab initio algorithms was 

carried out [8] on the dataset obtained in [22]. The results evidence the usage of strict 

restrictions by these algorithms to reduce the number of false positives. In particular, 

algorithms such as PicTar, TargetScan and Diana, have significantly-compromised sensitivity 

(~10%) in order to achieve a remarkable precision (~50%). However, the test used an 

expression-based dataset in which a set of miRNAs was overexpressed. As previously 

mentioned, when evaluating the performance on an indirect dataset, further considerations, 

such as the presence of indirect targets in both the positive and negative sets, and the effects 

caused by the overexpression like the miRNP saturation, must be taken into account. 

It is also important to highlight a test performed in [56] using four ab initio algorithms 

(PITA, TargetScan, PicTar and miRanda) on CLIP-seq datasets obtained from Starbase. The 

intention of the test was to present the coverage obtained by these algorithms on CLIP-seq 

data. miRanda demonstrated the best sensitivity overall (66%), while TargetScan and PicTar 

were characterized by the lowest sensitivities (20%). This result validates (1) differences in 

the target determinants provided by expression-based and CLIP-based data and (2) strict 

restrictions imposed by ab initio algorithms like PicTar and TargetScan. 

 

Machine learning and hybrid algorithms 

Machine learning approaches appeared later than ab initio approaches. Nevertheless, the 

importance of these methods has grown since the data with experimental support started to 

grow significantly. Representatives from this line are briefly described as follows. Since 

machine learning algorithms strongly rely on experimental data, we also specify the size of 

the respective training dataset. 

• TargetBoost [57] consists of a boosting algorithm that assigns weights to sequence 

patterns of 30 nucleotides. The negative dataset used for training consists of 300 randomly-



  

generated sequences, and the positive data set consists of 36 interactions with experimental 

support. The set of predictions obtained with the algorithm for the C. elegans can be found 

online, but the algorithm itself is not currently available.  

• miTarget [58] is an algorithm that uses a support vector machine (SVM) with an 

radial basis function (RBF) as kernel, to predict the candidate targets. It is based on structural, 

thermodynamic and positional features. The negative set used for training consists of 83 

interactions with experimental support plus 163 negative interactions inferred from 

experimental data. The positive dataset consists of 152 interactions with experimental support. 

miTarget is available online (http://cbit.snu.ac.kr/~miTarget/introduction.html). 

• Ensemble Algorithm [59], a post-processing step for miRanda, consists of 10 SVM 

(polynomial kernels). The prediction is based on features from the miRNA-mRE interactions, 

and features from the mRNA targets. The negative and positive datasets used for training 

consist of 16 and 48 experimentally-verified interactions, respectively.  

• NBmiRTar [60] consists of a post-processing step to miRanda. First a filter based on 

the folding energy is applied, followed by a filter based on the score obtained by miRanda 

and score obtained by a Naïve Bayes classifier. The prediction is based on structural features 

from the miRNA-mRE duplex features and observed sequence features. The negative dataset 

was composed of 38 negative interactions with experimental support and 133,316 generated 

target sites for artificial miRNA sequences, while the positive dataset consists of 225 

interactions with experimental support. 

• miRTarget2 [61] uses an SVM classifier to obtain set of predictions. The features 

used include characteristics from the miRNA-mRE duplex and from the mRNA. The positive 

and negative datasets for training consists of 1,017 negative interactions and 454 positive 

interactions with experimental support, respectively. The predicted interactions are available 

online (http://mirdb.org). 

• miRTif [62] starts from the combination of the sets predicted by miRanda, PicTar and 

Targetscan.  It then uses an SVM classifier (RBF kernel) based on features from the miRNA-

mRE interaction. The positive and negative datasets contain 195 and 21 interactions with 

experimental support, respectively. In addition, the negative dataset contains 17 interactions 

inferred from experimental data. miRTif is available online (http://mirtif.bii.a-star.edu.sg/ ). 

• TargetMiner [63] first selects a set of sites based on the seed complementarity. It then 

uses an SVM classifier (RBF kernel) based on mRNA and miRNA-mRE duplex features. The 

positive dataset is composed of 476 positive interactions and the negative data set contains 59 



  

experimental interactions plus 289 inferred negative interactions. TargetMiner is available 

online (http://www.isical.ac.in/~bioinfo_miu/targetminer20.html ). 

• mTar [64] first selects 3 classes of sites (5' seed only, 5' dominant and 3' canonical). It 

then uses an artificial neural network to classify targets and non-targets based on features 

from the miRNA-mRNA interaction. The dataset used for training contains 340 positive 

miRNA-mRNA interactions and 400 negative ones. mTar is available online 

(http://www.rgcb.res.in/downloads/Mtar.rar). 

• TargetSpy [65] generates candidate zones, which are merged and a ranking of the 

zones is performed. This algorithm uses an automatic feature selection based on 

compositional, structural and base pairing features. The positive and negative dataset contains 

3872 positive and 4540 negative instances, respectively, derived using the HITS-CLIP [9] 

protocol. TargetSpy is available online (http://www.targetspy.org/). 

• mirSVR, an algorithm proposed by the developers of miRanda, is a hybrid approach 

that uses miRanda followed by a support vector regression (SVR). In practice, miRanda is 

used to obtain set of predictions, which are then ranked using a machine learning approach 

called mirSVR [66]. mirSVR is trained based on expression changes caused by miRNA 

overexpression, to obtain a score for each prediction that represents an empirical probability 

of down regulation. Sets of predictions provided by this algorithm are available online 

(http://www.microrna.org).  

• miRror [67] is a tool based on the notion of miRNA combinatorial mode of action. 

The algorithm combines several ab initio predictors into a unified platform by incorporating a 

statistical measure. miRror is available online 

(http://www.proto.cs.huji.ac.il/mirror/search.php). 

• miREE [68] is a hybrid algorithm composed of two parts. The first part uses a genetic 

algorithm to generate a set of sequences that represent an optimal diverse population for 

binding sites. These binding sites are then mapped to mRNAs and classified as targets and 

non-targets using SVM (RBF Kernel), a machine learning technique. The positive and 

negative datasets contain 324 and 351 interactions, respectively. This algorithm is available 

online (http://didattica-online.polito.it/eda/miREE/ ). 

The negative dataset is one of the principal limitations for machine learning approaches, 

since negative interactions are not commonly published. Several strategies have been used to 

overcome this drawback. In particular, the negative dataset has been expanded by using 1) 

random sequences, 2) predictions for artificial miRNA sequences and 3) sequences of genes 



  

that were not regulated by the miRNAs, from which the negative interaction sites were not 

extracted. For the first two solutions, the generated interactions do not have experimental 

support. Therefore, the third alternative is strongly recommended due to the presence of 

experimental support.  

A recent comparison of the performance for five machine learning and hybrid algorithms 

was carried out in [68]. The comparison test was performed on a direct dataset in which each 

record had strong experimental support and was obtained from public databases. This 

comparison evidences that most of the algorithms are characterized by an unbalanced 

performance (sensitivity and specificity). In particular, the machine learning prediction 

algorithms were designed to reduce the number of false positives (principal limitation of ab 

initio proposals), which has significant impact on the sensitivity and the overall accuracy. 

 

Further considerations 

There has been a significant advance on development of microRNA target prediction 

algorithms. However, there is still room for further improvement. In particular, it is worth to 

integrate data derived using the lately-developed protocols (CLIP-seq), which show 

remarkable potential. A few approaches [65,68] used CLIP-seq datasets to train machine 

learning algorithms and for validation purposes. Nevertheless, the nature of the data (high-

throughput and direct validation) will most likely lead to unveil additional rules and take 

prediction algorithms to a different stage.  

Moreover, expression-based data is also an important source of information. In fact, the 

use of expression-based data together with computational prediction algorithms shows 

significant potential, if with the right assumptions. When integrating expression data with 

prediction tools, it is important to associate different rules with the mechanisms of regulation 

[50] (mRNA abundance and mRNA stability) and distinguish between direct and indirect 

targets. In addition, by using expression-based data, it is possible to correlate the structural 

interaction with the degree of regulation exerted by the miRNA-mRNA interactions [66].  

Furthermore, the interest in miRNA target prediction tools is not limited only to obtaining 

a set of candidate targets. Day by day, it is becoming more important to understand the 

miRNA functionality (functional correlation between the multiple targets both direct and 

indirect). In order to unveil the miRNA functionality, it is important to integrate set of 

predicted candidates with a different source of information and the degree of miRNA-exerted 

regulation in expression-based experiments is a feasible alternative. Moreover, information 



  

available in databases that contain pathways with experimental support and Gene Ontology is 

helpful. 

Another important direction in the field is to understand the joint action mechanisms 

involved in transcriptional and post-transcriptional regulation, cooperative action of 

transcription factors and miRNAs, and also the collective action of miRNAs and RNA-

binding proteins. 

Finally, exploring the interactions of miRNAs not only with coding RNA but also with 

the entire transcriptome might be helpful in order to understand not only the miRNA 

functionality but also the role of other RNAs such as long ncRNAs. 

 

Conclusion 

Significant progress has been made in computational algorithms for miRNA target prediction 

during the last decade. In particular, this evolution has been influenced by the development of 

experimental protocols that expanded the datasets available with experimental support. Albeit 

the ab initio algorithms were first proposed, with the expansion of experimental data, the use 

of machine learning and hybrid proposals is very promising.  

Candidate target genes for prediction algorithms built under structural assumptions should 

be validated with experimental data with strong structural support (direct validation). The use 

of expression data to validate the prediction results for algorithms based on structural 

assumptions is susceptible to misunderstandings. 
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Figure legends 

Figure 1  MicroRNA research timeline 

Shown in the graph is the number of microRNA mature sequences deposited in miRbase 

(white), PubMed-reported publications on microRNAs (gray) and microRNA targets (black), 

respectively. 

 

Figure 2  Experimental techniques used to obtain data deposited in public databases 

Experimental techniques used to derive human microRNA-mRNA interactions in Tarbase 

v6–2011 (A), miRecords v3–2010 (B) and miRtarbase (C), respectively, were shown as pie 

chart. D. Distribution of miRNA-target interaction (MTI) types found in miRtarbase. 
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Table S1  Summary for microRNA-target prediction algorithms 
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Table S1  Summary for microRNA-target prediction algorithms 

Approach Algorithm name Considerations Website Reference 

Ab initio miRanda FEATURES: It strongly considers features like seed complementarity 

and duplex minimum free energy.  

The most recent version uses a conservation measure (PhastCons). 

http://www.microrna.org [47] 

[48] 

 TargetScan FEATURES: It strongly considers seed complementarity, noting a 

hierarchy. It ranks the predictions using a context score (seed 

complementarity, conservation and AU content).   

In the recent release, seed-pairing stability and target-site abundance 

were integrated. 

http://www.targetscan.org/ [35] 

[37] 

[49] 

[50] 

 PicTar FEATURES: It has strict requirements regarding seed complementarity, 

duplex minimum free energy and conservation.  

NOTE: Predictions are available but the algorithm is not available 

http://pictar.mdc-berlin.de/ [51] 

 RNA22 FEATURES: It identifies the most statistically-significant patterns in 

order to recognize the candidate binding sites.  

NOTE: The user can add restrictions (minimum number of base pairs, 

maximum number of unpaired bases and maximum allowed free 

energy) 

http://cbcsrv.watson.ibm.com/rna22.html [52] 

 RNAHybrid FEATURES: This algorithm finds the minimum free energy for the 

entire microRNA-mRNA duplex.   

NOTE: The user can add restrictions such as the number unpaired bases 

and minimum free energy allowed. 

http://bibiserv.techfak.uni-bielefeld.de/rnah

ybrid/ 

[53] 

 PITA FEATURES: This is the first algorithm that takes into account 
accessibility to the site in the mRNA (ΔΔ G).  

NOTE: The user can impose different restrictions (minimum seed size, 

http://genie.weizmann.ac.il/pubs/mir07/ [44] 

Table S1



  

G:U bobbles and unpaired bases) 

 EIMMO FEATURES: It uses a conservation score derived from a phylogenetic 

distribution for the functional sites. 

http://www.mirz.unibas.ch/ElMMo2/ [54] 

 DIANA FEATURES: This algorithm correlates structural score (sum of site 

scores considering duplex minimum free energy and conservation) with 

protein fold change. 

http://diana.cslab.ece.ntua.gr/microT/ [55] 

Machine learning TargetBoost This is the first machine learning algorithm ever developed for 

microRNA target prediction. 

ALGORITHM: Consists of a boosting algorithm that assigns weights to 

sequence patterns.  

NEGATIVE SET: Randomly generated sequences. 

NOTE: Problems with site availability. Predictions are available but the 

algorithm is not available 

http://www.interagon.com/demo/ [57] 

 miTarget ALGORITHM: Consists of an SVM Classifier (RBF kernel).  

FEATURES: It uses structural characteristics of mREs.  

NEGATIVE SET: Uses inferred data from mRNAs where the 

interaction site was deleted and as result no repression was observed. 

http://cbit.snu.ac.kr/~miTarget/introduction

.html 

[58] 

 Ensemble Algorithm ALGORITHM: Consists of the ensemble of 10 SVM (polynomial 

kernels).  

FEATURES: Characteristics from the microRNA-mRE interaction and 

features from the mRNA target.   

NEGATIVE SET: Uses only 16 samples with experimental support.  

NOTE: Problems with site availability. 

http://www.biosino.org/~kanghu/mRTP/m

RTP.html 

[59] 

 NbmiRTar ALGORITHM: It consists of naïve Bayes classifier to filter predictions. 

FEATURES: It uses structural characteristics of mREs.  

http://wotan.wistar.upenn.edu/NBmiRTar/ [60] 



  

NEGATIVE SET:  Uses generated sites for artificial microRNA 

sequences.  

NOTE: Problems with site availability. 

 miRTarget2 ALGORITHM: Consists of an SVM classifier.  

FEATURES: Characteristics from the mRE and from the mRNA.  

NEGATIVE SET: Uses 1017 negative interactions with experimental 

support. 

Predictions available at: http://mirdb.org [61] 

 miRTif ALGORITHM: It consists of an SVM classifier (RBF kernel).  

FEATURES: It uses features from the microRNA-mRE interaction.  

NEGATIVE SET: Contains 17 inferred interactions from experimental 

data. 

http://mirtif.bii.a-star.edu.sg/ [62] 

 miRror FEATURES: This algorithm is based on the notion of microRNA 

combinatorial mode of action.   

This algorithm uses expression-based experimental data. 

http://www.proto.cs.huji.ac.il/mirror/search

.php 

[67] 

Hybrid TargetMiner ALGORITHM: The first part selects the target sites based on the seed 

complementarity. The second part uses an SVM classifier (RBF kernel).  

FEATURES: Characteristics from the mRNA and from the 

microRNA-mRE duplex.  

NEGATIVE SET:  Consists of 59 experimental samples plus 289 

inferred negatives from expression-based experimental data. 

http://www.isical.ac.in/~bioinfo_miu/target

miner20.html 

[63] 

 mTar ALGORITHM: The first part selects 3 classes of sites (5' seed only, 5' 

dominant and 3' canonical). The second part, uses an artificial neural 

network to classify.  

FEATURES: This algorithm uses features from the microRNA-mRE 
interaction.  

NEGATIVE SET: Contains 400 samples with experimental support 

http://www.rgcb.res.in/downloads/Mtar.rar [64] 



  

 TargetSpy ALGORITHM: This algorithm uses generated candidate zones. It uses 

a multiboost classifier.  

FEATURES:  Compositional, structural and base-pairing features.  

NEGATIVE SET:  Consists of 4540 sites derived using CLIP-seq 

protocols. 

http://www.targetspy.org/ [65] 

 mirSVR ALGORITHM: The first part uses miRanda (same developers). The 

second part uses an SVR trained on expression-based experimental 

data.  

NOTE: Predictions are available but the site is not available. 

http://www.microrna.org [66] 

 miREE ALGORITHM: The first part uses a genetic algorithm to generate 

optimal candidate sites. The second part uses an SVM (RBF Kernel).  

FEATURES: Characteristics from the mRNA:mRE interaction and 

accessibility features.  

NEGATIVE SET: Contains 46 negative records and 305 inferred 

negatives from data with experimental support. 

http://didattica-online.polito.it/eda/miREE/ [68] 

Note: Only algorithms that developed both parts (ab initio part and machine learning part) were considered as hybrid approaches. 

 


