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Abstract. The Multi-Handler Knapsack Problem under Uncertainty (MHKPu) is a new 

stochastic knapsack problem where, given a set of items, characterized by volume and 

random profit, and a set of potential handlers, we want to find a subset of items which 

maximizes the expected total profit. The item profit is given by the sum of a deterministic 

profit plus a stochastic profit due to the random handling costs of the handlers. On the 

contrary of other stochastic problems in the literature, the probability distribution of the 

stochastic profit is unknown. By using the asymptotic theory of extreme values, a 

deterministic approximation for the stochastic problem is derived. The accuracy of such a 

deterministic approximation is tested against the two-stage with fixed recourse formulation 

of the problem. Very promising results are obtained on a large set of instances in 

negligible computing time. 
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1 Introduction

The increasing competition due to both globalization of production processes and
the movement of large quantities of freight between continents and countries cre-
ates the need for new tools for strategic and tactical decisions, that are able to
deal with the stochastic nature of the processes involved. While this leads to new
location and transportation problems (Tadei et al., 2009, 2012), only a few studies
deal with the stochastic study of packing problems (Perboli et al., 2012). This is
mainly due to the peculiarities of the literature related to packing. In fact, even if
packing problems play a central role in transportation and logistics, the problems
presented in the literature are mainly related to operational issues (Crainic et al.,
2012; Martello and Toth, 1979). Moreover, the parameter uncertainty affecting
the final solutions such as the profit associated to item delivery or the cost of con-
tainer renting is usually more evident in the planning phases rather than in the
operational ones.

In this paper we introduce a new stochastic variant of the knapsack problem,
the Multi-Handler Knapsack Problem under Uncertainty (MHKPu). Given a set of
items, characterized by volume and random profit, and a set of potential logistics
handlers, the problem consists in finding a subset of items which maximizes the
expected total profit. The profit is given by the sum of a deterministic profit and
a stochastic profit oscillation, with unknown probability distribution, due to the
random handling costs of the handlers.

A large number of real-life situations can be satisfactorily modeled as a MHKPu,
e.g. in financial and resource allocation. The general idea is to think of the ca-
pacity of the knapsack as the available amount of a resource (i.e. budget) and the
items as activities to which this resource can be allocated (i.e. shares). Moreover,
these items present profits which are random variables. The MHKPu may also
appear as a subproblem of larger optimization problems.

A specific application of the MHKPu can be found in the automotive sector
(Tadei et al., 2002). There the delivery of cars from manufacturers to dealers
is not managed by the manufacturers themselves, but is delegated to specialized
companies. These companies manage both the finishing operations on the cars
(e.g. removal of the protective wax, installation of specific accessories, etc.) and
the logistics operations linked to delivery to the dealers. In order to have a more
flexible structure, the fleet of auto-carriers used to deliver the cars is only partially
owned by each company, while a substantial part of the deliveries is sub-contracted
to micro-companies with highly variable random costs. Moreover, the auto-carriers
have different capacities due to the presence of specific technical features. From the
point of view of the cars that must be delivered, the net profit for the company is
affected by different factors, including delays in the finishing operations, additional
costs due to violations of the negotiated deadlines or additional transportation
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costs.
Another example of real-world applications of the MHKPu comes from trans-

continental naval shipping operations, where freight transportation from eastern
ports to Europe and North America is managed by specialized companies. The
competition between the transportation companies, as well as the possibility of
managing the port cranes by different operators, force the companies to consider
both the profit given by the shipped items and the additional costs due to the
logistics operations.

In general, the MHKPu arises in logistics and production scheduling applica-
tions, where a single item can be managed by several handlers (third-party logistics
providers or sub-contractors), whose costs affect the net profit of the item itself.
The large number of possible handler cost scenarios and the difficulty to mea-
sure the associated handler costs suggest the representation of these net profits as
stochastic variables with unknown probability distribution.

This paper introduces the formulation of the stochastic problem. From this
formulation a deterministic approximation is derived. In particular, under a mild
hypothesis on the unknown probability distribution, the deterministic approxima-
tion becomes a knapsack problem where the total expected profit of the loaded
items is proportional to the logarithm of the total accessibility of those items to
the set of handlers. Moreover, at optimality, the percentage of an item handled by
any handler is given by a multinomial Logit model.

The paper is organized as follows. The literature review is introduced in Sec-
tion 2. In Section 3 the model of the MHKPu is given. Section 4 is devoted to
presenting the deterministic approximation of the MHKPu, while in Section 5 its
two-stage program with fixed recourse is given. Finally, in Section 6 the determin-
istic approximation and the two-stage program with fixed recourse are tested and
compared on a set of newly introduced instances. The conclusion of our work is
reported in Section 7.

2 Literature review

While different variants of the stochastic knapsack problem are present in the
literature, the MHKPu is absent. For this reason, we will consider some relevant
literature on similar problems, highlighting the main differences with the problem
faced in this paper.

A first group of studies consider deterministic profits and random volumes, with
the goal of maximizing the total expected value of selected items, while ensuring
that the probability to satisfy the knapsack capacity is limited by some upper
bounds. Usually, heavy assumptions on the distribution of the random volumes
are considered (e.g. (Kleinberg et al., 2000), (Goel and Indyk, 1999) where item
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volumes have a Bernoulli distribution, and (Merzifonluoglu et al., 2012), (Cohn
and Barnhart, 1998) where the distribution is a Normal one). These assumptions
on the distributions heavily limit the possibility to extend the results to other
variants of the problem.

A second group of studies deals with random profits and the goal to assign
a set of items to the knapsack in order to maximize the probability of achieving
some target total value. They are usually more related to financial and economic
issues than to the impact of the operations on the final revenue (Lisser and Lopez,
2010; Henig, 1990; Steinberg and Parks, 1979). Unfortunately, these problems
differ from MHKPu because they consider the random profit associated only to
the item, while in MHKPu the randomness is given by the interaction between the
item and the handler managing the loading/unloading operations.

Finally, from a methodological point of view, the study most similar to the
present paper is (Perboli et al., 2012), where the authors consider the stochastic
version of the Generalized Bin Packing Problem, a recently introduced packing
problem where, given a set of bins characterized by volume and cost and a set of
items characterized by volume and profit (which also depends on bins), a subset
of items is selected for loading into a subset of bins which maximizes the total net
profit, while satisfying the volume and bin availability constraints (Baldi et al.,
2012). Similarly to MHKPu, the item profits are random variables and the prob-
ability distribution of these random variables is assumed to be unknown.

3 The MHKPu

In the MHKPu the item profits are random variables. In fact, they are composed
by a deterministic profit plus a random term, which represents the profit oscillation
due to the handling costs occurred by the different handlers for preparing items
for loading. In practice, such profit oscillations randomly depend on the handling
scenarios adopted by the handlers for preparing items for loading and are actually
very difficult to be measured. This implies that the probability distribution of
these random terms must be assumed as unknown.

Let it be

� L: set of handling scenarios for loading items into the knapsack

� pi: non-negative deterministic profit of item i

� pij: non-negative deterministic profit of item i when loaded by handler j

� θ̃jl: random profit oscillation of any item when it is loaded by handler j
under scenario l ∈ L
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� p̃ij(θ̃
jl) = pij + θ̃jl: random profit of item i when loaded by handler j under

scenario l

� yi: boolean variable equal to 1 if item i is loaded, 0 otherwise

� xij: percentage of item i handled by handler j

� wi: volume of item i

� W : knapsack capacity.

The MHKPu is formulated as follows

max
{y,x}

∑
i∈I

piyi + E{θ̃jl}

[∑
i∈I

∑
j∈J

∑
l∈L

p̃ij(θ̃
jl)xij

]
(1)

subject to ∑
i∈I

wiyi ≤ W (2)∑
j∈J

xij = yi i ∈ I (3)

yi ∈ {0, 1} i ∈ I (4)

xij ≥ 0 i ∈ I, j ∈ J (5)

The objective function (1) expresses the maximization of the profit of the items
loaded into the knapsack plus the expected value of the handling profit; constraint
(2) ensures that the capacity of the knapsack is not exceeded; constraints (3) guar-
antee that any item is completely processed by some handlers only if it is loaded.
Finally, (4)-(5) are the integrality and non-negativity constraints, respectively.

Let us assume that θ̃jl are independent and identically distributed (i.i.d.) ran-
dom variables with a common and unknown probability distribution

F (x) = Pr{θ̃jl ≤ x} (6)

Let us define with θ̃j the maximum of the random profit oscillations θ̃jl for
handler j among the alternative scenarios l ∈ L

θ̃j = max
l∈L

θ̃jl j ∈ J (7)

Because F(x) is unknown, θ̃j is still of course a random variable with unknown
probability distribution given by
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Bj(x) = Pr
{
θ̃j ≤ x

}
j ∈ J (8)

As, for any handler j, θ̃j ≤ x ⇐⇒ θ̃jl ≤ x, l ∈ L and θ̃jl are independent,
using (6) one gets

Bj(x) =
∏
l∈L

Pr
{
θ̃jl ≤ x

}
=
∏
l∈L

F (x) = [F (x)]|L| j ∈ J (9)

We assume that the knapsack loading is efficiency-based so that, for any item i
and any handler j, among the alternative scenarios l ∈ L the one which maximizes
the random profit p̃ij(θ̃

jl) will be selected.

Then, the random profit of item i when it is loaded by handler j becomes

p̃ij(θ̃
j) = max

l∈L
p̃ij(θ̃

jl) = pij + max
l∈L

θ̃jl = pij + θ̃j i ∈ I, j ∈ J (10)

The maximum profit oscillation θ̃j can be either positive or negative, but, in
practice, its absolute value does not overcome the profit pij, so that p̃ij(θ̃

j) is
always non negative.

The expected maximum total profit of the loaded items (i.e. items i such that
yi = 1) is obtained by solving the following problem

E{θ̃}

[
max
{x}

∑
i∈I

∑
j∈J

p̃ij(θ̃
j)xij

]
(11)∑

j∈J

xij = 1 i ∈ I (12)

xij ≥ 0 i ∈ I, j ∈ J (13)

The objective function (11) maximizes the expected total profit for the loaded
items. Constraints (12) guarantee that each loaded item is completely processed
by some handlers, while (13) are the non-negativity constraints.

For each item i, let us consider the handler j = i∗ (for the sake of simplicity,
we assume it is unique), which gives the maximum random profit for loading the
item.

The maximum random profit for loading item i then becomes

p̃i(θ̃
i∗) = max

j∈J
p̃ij(θ̃

j) i ∈ I (14)
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and the optimal variables {xij} are

xij =

{
1, if j = i∗

0, otherwise
(15)

which satisfy (12) and (13).
Using (14), (15), and the linearity of the expected value operator E, the objec-

tive function (11) becomes

E{θ̃∗}

[∑
i∈I

p̃i(θ̃
i∗)

]
=
∑
i∈I

E{θ̃∗}
[
p̃i(θ̃

i∗)
]

=
∑
i∈I

p̂i (16)

where

p̂i = E{θ̃∗}
[
p̃i(θ̃

i∗)
]

i ∈ I (17)

The MHKPu (1)-(5) then becomes

max
{y}

∑
i∈I

(pi + p̂i)yi (18)∑
i∈I

wiyi ≤ W (19)

yi ∈ {0, 1} i ∈ I (20)

However, the calculation of p̂i in (18) requires to know the probability distri-
bution of the maximum random profit for loading item i, i.e. p̃i(θ̃

i∗) in (17), which
will be derived in the next section.

4 The deterministic approximation of the MHKPu

By (10) and (14), let

Gi(x) = Pr
{
p̃i(θ̃

i∗) ≤ x
}

= Pr

{
max
j∈J

[
pij + θ̃j

]
≤ x

}
i ∈ I (21)

be the probability distribution of the maximum random profit for loading item i.

As, for any item i, maxj∈J

[
pij + θ̃j

]
≤ x ⇐⇒

[
pij + θ̃j

]
≤ x, j ∈ J , and

the random variables θ̃j are independent (because θ̃jl are independent), due to (8)
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and (9), Gi{x} in (21) becomes a function of the total number |L| of handling
scenarios for loading as follows

Gi(x, |L|) = Pr

{
max
j∈J

[
pij + θ̃j

]
≤ x

}
=
∏
j∈J

Pr
{[
pij + θ̃j

]
≤ x

}
=
∏
j∈J

Pr
{
θ̃j ≤ x− pij

}
=
∏
j∈J

Bj (x− pij)

=
∏
j∈J

[F (x− pij)]|L| i ∈ I (22)

First, let us consider the following aspect: the optimal solution of problem
(11)-(13) does not change if any arbitrary constant is added or subtracted to the
random variables θ̃j.

Let us choose this constant as the root a of the equation

1− F (a) = 1/|L| (23)

Let us assume that |L| is large enough to use the asymptotic approximation
lim|L|→+∞Gi(x, |L|) as a good approximation of Gi(x), i.e.

Gi(x) = lim
|L|→+∞

Gi(x, |L|)) i ∈ I (24)

The calculation of the limit in (24) would require to know the probability
distribution F (.) in (6), which is still unknown. From (Perboli et al., 2012), we
know that under a mild assumption on the shape of the unknown probability
distribution F (.) (i.e. it is asymptotically exponential in its right tail), the limit in
(24) tends towards the following Gumbel Gumbel (1958) probability distribution

Gi(x) = lim
|L|→+∞

Gi(x, |L|)) = exp
(
−Aie−βx

)
i ∈ I (25)

where β > 0 is a parameter to be calibrated and

Ai =
∑
j∈J

eβpij i ∈ I (26)

is the accessibility, in the sense of Hansen (Hansen, 1959), of item i to the set of
handlers.

Using the probability distribution Gi(x) given by (25), after some manipula-
tions, p̂i in (17) becomes

p̂i =

∫ +∞

−∞
xdGi(x) =

∫ +∞

−∞
x exp

(
−Aie−βx

)
Aie

−βxβdx = 1/β(lnAi + γ) i ∈ I

(27)
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where γ ' 0.5772 is the Euler constant.
By (27), the MHKPu (18)-(20) becomes

max{y}
∑
i∈I

piyi +
1

β

∑
i∈I

yi lnAi +
γ

β

∑
i∈I

yi =

= max{y}
∑
i∈I

piyi +
1

β
ln
∏
i∈I

Ayii +
γ

β

∑
i∈I

yi =

= max{y}
∑
i∈I

piyi +
1

β
ln Φ +

γ

β

∑
i∈I

yi (28)

subject to (19)-(20), where Φ =
∏

i∈I A
yi
i is the total accessibility of the loaded

items to the set of handlers.
It is interesting to observe that the total expected profit of the loaded items is

proportional to the logarithm of the total accessibility of those items to the set of
handlers.

The following theorem holds

Theorem 1. At optimality, the percentage of each item i handled by handler j,
xij, is given by

xij =
eβpij∑
j′∈J e

βpij′
, i ∈ I, j ∈ J (29)

Proof. At optimality, the probability that item i is handled by handler j is equal
to the probability that handler j is that one of maximum profit. Then, from the
Total Probability Theorem (DeGroot and Schervish, 2002), one obtains

xij =

∫ +∞

−∞

∏
v 6=j

exp
[
−e−β(x−piv)

]
d
[
exp

(
−e−β(x−pij)

)]
=

= eβpij
∫ +∞

−∞
βe−βxexp(−Aie−βx)dx =

= eβpij
∫ +∞

0

e−Aitdt =
eβpij

Ai
=

=
eβpij∑
j′∈J e

βpij′
i ∈ I, j ∈ J (30)

where t = e−βx. �
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It is trivial to check for xij the satisfaction of constraints (12) and (13).

(29) represents a multinomial Logit model, which is widely used in choice theory
(Domencich and McFadden, 1975). In our case, it describes how the optimal
handling of item i is split among different handlers j, due to the stochastic handling
profit of item i.

5 The MHKPu as a two-stage program with fixed

recourse

Approximating the profit stochasticity by discretizing the probability distributions
and generating a set of scenarios S ⊆ L, the MHKPu (1)-(5) may be interpreted
as a two-stage program with fixed recourse.

Let be the variables

� yi : first stage decision variable equals to 1 if item i is loaded, 0 otherwise

� xij : first stage decision variable which represents the percentage of item i
handled by handler j

� y+li : second stage decision variable equals to 1 if item i is loaded under
scenario l, 0 otherwise

� y−li : second stage decision variable equals to 1 if item i is unloaded under
scenario l, 0 otherwise

� x+lij : second stage decision variable which represents the percentage of loaded
item i handled by handler j under scenario l

� x−lij : second stage decision variable which represents the percentage of un-
loaded item i handled by handler j under scenario l.

Moreover, we define by
π+l
ij = pi + pij + θ̃jl (31)

and
π−lij = −π+l

ij − π′ij (32)

the stochastic profits related to loading and unloading operations in the second
stage, respectively, where −π′ij represents an extra cost to be paid for unloading
item i by handler j in the second stage.

Finally, given the probability ρl of scenario l, the two-stage program with fixed
recourse, named 2S-MHKPu, is formulated as follows
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max
{y,x}

∑
i∈I

piyi +
∑
i∈I

∑
j∈J

pijxij +
∑
l∈S

ρl

[∑
i∈I

∑
j∈J

π+l
ij x

+l
ij +

∑
i∈I

∑
j∈J

π−lij x
−l
ij

]
(33)∑

i∈I

wiyi ≤ W (34)∑
j∈J

xij = yi i ∈ I (35)∑
i∈I

wiyi +
∑
i∈I

∑
l∈S

wiy
+l
i −

∑
i∈I

∑
l∈S

wiy
−l
i ≤ W (36)∑

j∈J

x+lij = y+li i ∈ I, l ∈ S (37)∑
j∈J

x−lij = y−li i ∈ I, l ∈ S (38)

y+li ≤ 1− yi i ∈ I, l ∈ S (39)

y−li ≤ yi i ∈ I, l ∈ S (40)

x+lij = x+l
′

ij i ∈ I, j ∈ J, l, l′ ∈ S (41)

x−lij = x−l
′

ij i ∈ I, j ∈ J, l, l′ ∈ S (42)

yi ∈ {0, 1} i ∈ I (43)

y+li ∈ {0, 1} i ∈ I, l ∈ S (44)

y−li ∈ {0, 1} i ∈ I, l ∈ S (45)

xij ≥ 0 i ∈ I, j ∈ J (46)

x+lij ≥ 0 i ∈ I, j ∈ J, l ∈ S (47)

x−lij ≥ 0 i ∈ I, j ∈ J, l ∈ S (48)

The objective function (33) expresses the maximization of the total profit, given
by the sum of the first stage profit plus the expected profit of the items handled in
the second stage. Note that constraints (34) and (35) are the first stage constraints,
while constraints (36)-(42) are the second stage ones. In particular, constraints
(34) and (36) ensure that the capacity of the knapsack is not exceeded in first and
second stages, respectively. Constraints (35) guarantee that any item is completely
processed by some handlers only if it is loaded. Constraints (37) and (38) guarantee
that if an item is loaded or unloaded in the second stage it is completely processed
by some handlers. Constraints (39) establish that no item can be handled for
loading in the second stage if it has already been loaded in the first stage. Similarly,
constraints (40) establish that no item can be handled for unloading in the second
stage if it has not been loaded in the first stage. Constraints (41) and (42) are the
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non-anticipativity constraints. Finally, constraints (43)-(45) and (46)-(48) are the
integrality and the non-negativity constraints, respectively.

6 Computational results

In this section, we present and analyze the results of the computational experi-
ments. The first goal is to assess the behavior of the 2S-MHKPu, the two-stage
program with fixed recourse for the MHKPu proposed. The second is to evaluate
the effectiveness of the deterministic approximation of the MHKPu we derived.
Moreover, we want to calculate and evaluate the handling costs obtained by using
our approximated results as first-stage decisions of the 2S-MHKPu.

The two-stage program with fixed recourse was implemented with CPLEX 12.3.
Experiments were performed on a Intel i7 2 Ghz workstation with 6 GB of RAM.

Section 6.1 introduces the instance set. The calibration of the deterministic
approximation of the MHKPu is described in Section 6.2, whilst the comparison
between the two-stage and approximated solutions is given in Section 6.3. Finally,
we study the impact of the approximated results on the two-stage program with
fixed recourse in Section 6.4.

6.1 Instance set

No real-life instances are present in the literature for this stochastic version of the
knapsack problem. We then generated instances, partially based on those available
for the deterministic knapsack problem (Pisinger, 2005).

Instances were created with the goal of providing the means to explore the
impact of both the correlation between volume and profit of the items and the
different probability distributions of the profit oscillations. Thus, the instances
are characterized by various correlation strengths, as well as different probability
distributions. Ten instances were randomly generated for each combination of the
parameters. The parameters were also chosen to reflect realistic cases of supply
chain applications:

� Number of items in the interval [100, 1000].

� Number of handlers in the interval [3, 5].

� Item volume uniformly distributed in the interval [1, R], where R = 1000.

� Deterministic item profits generated according to the following three rules:

UC: the deterministic item profits are uncorrelated to item volumes. They
are uniformly generated in the interval [1, R].
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WC: the deterministic item profits are weakly correlated with the item vol-
umes. The profit is defined as wi+R/10, where wi is the item volume,
as in (Pisinger, 2005).

SC: in order to introduce the concept of priority between items, the profit
is defined as αwi, where α is uniformly drawn from the interval [1, 5].

� Profit oscillation. Given the average value of the deterministic profit p̄, let
PK = Kp̄ be the maximum profit oscillation, where K belongs to the set
{0.1, 0.3, 0.5}. The item profit oscillations were generated in the interval [0,
PK ] using the Uniform and Gumbel distributions. Both distributions had
mean equals to PK/2.

� Capacity of the knapsack was computed according to h
H+1

∑
i∈I wi, where

H is the number of instances for a set of parameters and h ∈ [1, H] is the
identification of an instance in that subset. This approach covers a large
number of cases, diversifying the correlation between the parameters and
the maximum capacity of the knapsack.

Having solved the instances 10 times each and computed the standard deviation
and the mean of the optima over the runs, we derived that the appropriate number
of scenarios is 50. For each instance, this value ensures a maximum ratio between
the standard deviation and the mean for the optima which is less than 1%.

6.2 Calibration of the β parameter

The deterministic approximation of the MHKPu given by (28) requires an appro-
priate value of the positive parameter β. This parameter describes the propensity
of the model to choose among the set of the handlers characterized by different
handling profits.

β is obtained by calibration as follows. Let us consider the standard Gumbel
distribution G(x) = exp (e−x). If an approximation error of 2� is accepted, then
G(x) = 1 ⇔ x = 6.08 and G(x) = 0 ⇔ x = −1.76. Let us consider the range
[m,M ] ([0, PK ] in our case) where the stochastic profit oscillations are drawn from.
The following equations hold

β(m− ζ) = −1.76 (49)

β(M − ζ) = 6.08 (50)

where ζ is the mode of the Gumbel distribution G(x) = exp
(
e−β(x−ζ)

)
. From (49)

and (50) one gets the corresponding value of the parameter β
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β =
7.84

M −m
=

7.84

PK
=

7.84

Kp̄
(51)

More sophisticated methods to calibrate β can be found in (Galambos et al.,
1994).

6.3 Comparison of two-stage program and deterministic
approximation results

The two-stage program solutions showed a common trend: the 2S-MHKPu reserves
half of the total knapsack capacity in the second stage. For this reason, no items
are unloaded in 99% of the instances. This approach is quite far from the usual
supply chain approach, in which the recourse operations are made at a later time
and the percentage deviation from the optimal solution can easily overcome 10%.

Here we summarize the results for all instances and different combinations
of the parameters. The performance, in terms of optimality gap, is defined by
the relative percentage error of the approximated solution when compared to the
optimum. Moreover, we estimate the solution likelihood as the percentage of items
loaded by the approximated solution which are also present in the optimal solution.

Note that the comparison results do not consider the number of handlers, which
does not seem to affect the average performance of the deterministic approxima-
tion.

Table 1 reports the percentage optimality gap and the solution likelihood of the
deterministic approximation for all combinations of the parameters, while varying
the probability distribution (either Gumbel or Uniform). The first column displays
the number of items, while Columns 2-3 and 5-6 report the mean and variance of
the optimality gap, and Columns 4 and 7 show the mean percentage solution
likelihood. The best mean values are obtained for the Gumbel distribution, that
is very close to the optimum (0.12% for larger instances) and characterized by a
negligible variance. Moreover, increasing the number of items gives better results
for the deterministic approximation. Similarly, in terms of likelihood, this method
guarantees results close to the optimum for both distributions.

Table 1: Optimality gap and solution likelihood of the deterministic approximation

IT GUMBEL UNIFORM
mean var likelihood mean var likelihood

100 0.25 0.05 97.12 1.33 0.74 96.26
1000 0.12 0.01 98.54 1.33 0.52 97.31
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Table 2 reports the percentage optimality gap and the solution likelihood per-
formance of the deterministic approximation while varying the correlation between
profits and volumes of items (Column 2) and the probability distribution (Columns
3-8). The results indicate that the weakly correlated instances (WC) yield the
worst gaps, as well as the worst solution likelihood, with an average optimality
gap of about 0.27% and 1.54% for the Gumbel and the Uniform distributions,
respectively. For uncorrelated instances (UC) and the Gumbel distribution, some
solutions of the deterministic approximation exactly match the two-stage program
solutions.

Table 2: Optimality gap and solution likelihood for the profit correlation rules

IT PROFIT GUMBEL UNIFORM
mean var likelihood mean var likelihood

100 UC 0.23 0.05 98.78 1.20 0.57 98.21
WC 0.27 0.06 95.28 1.54 0.93 95.19
SC 0.25 0.05 97.31 1.26 0.68 95.19

1000 UC 0.10 0.01 99.31 1.14 0.38 98.92
WC 0.15 0.02 98.06 1.56 0.55 96.40
SC 0.11 0.01 98.23 1.29 0.55 96.62

The analysis of the impact of the maximum profit oscillations on the results
accuracy is proposed in Table 3, considering different probability distributions
(Columns 3-8). Recalling the definition of the maximum profit oscillation PK =
Kp̄, column 2 represents the percentage K of the mean profit p̄ of the instances.
The gap and the solution likelihood are clearly inversely proportional to the range
of the oscillations. Indeed, the best mean values are obtained for K = 0.1.

Table 3: Optimality gap and solution likelihood for the maximum profit oscillations

IT K GUMBEL UNIFORM
mean var likelihood mean var likelihood

100 0.1 0.09 0.01 97.56 0.53 0.04 96.67
0.3 0.30 0.06 97.02 1.33 0.27 96.54
0.5 0.36 0.06 96.80 2.13 0.64 95.58

1000 0.1 0.04 0.00 98.81 0.55 0.04 97.88
0.3 0.12 0.01 98.56 1.39 0.13 97.29
0.5 0.30 0.01 98.23 2.09 0.26 96.76

In conclusion, the results are very promising. The procedure performs very well
for all types of instances and distributions and guarantees a high accuracy. The
best performance is obtained if the random profits have a Gumbel distribution,
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that is usually the case for real market oscillations. Moreover, the variance of
the results is tight and in some cases close to zero. With respect to the solution
likelihood, the mean values are all greater than 95% and increase according to the
number of items.

As we expected, the mean optimality gap slightly increases for instances with
Uniform distributed profit oscillations, but results are stable for each combination
of the parameters and improve with respect to the number of items. Further-
more, it is interesting to note that the hardest subset of instances are the weakly
correlated ones. In fact, this kind of instance is characterized by a peculiar profit-
volume correlation and the difficulty increases with the data range R, as shown in
(Pisinger, 2005).

From a computational point of view, the average CPU-times to solve to opti-
mality the 2S-MHKPu and to compute the deterministic approximation are about
120 seconds and less than one second, respectively.

6.4 Usage of the approximated model as a decision tool

In the last part of this computational analysis, we analyze the losses, in terms of
optimality gap, obtained by plugging the solution of the deterministic approxima-
tion of the MHKPu into the first-stage decision of the 2S-MHKPu. In this way
we can measure the accuracy of the approximated model when used not only as
a method to calculate the optimum, but also as a decision tool to actually choose
the items to be loaded. This means that the only degrees of freedom to maximize
the objective function are the item-to-handler assignments and the handling oper-
ations in the second stage. Indeed, the effect of this strategy is the increase of the
unloading operations, which does not exceed 6% of total operations, however.

Next, we present the comparison results organized as in Section 6.3. Tables 4,
5, and 6 summarize the average gap for all combinations of the parameters, for
the profit correlations and for the maximum profit oscillations, respectively.

Table 4: Optimality gap with fixed first stage decision

IT GUMBEL UNIFORM
mean var mean var

100 1.18 0.44 1.99 1.40
1000 1.22 0.48 1.99 1.15

As expected, the best performance is obtained by instances with the Gumbel
distribution (Table 4). With respect to the profit correlations, the observed gap
of WC instances is worse than other rules (Table 5). Finally, the gap increases
according to the maximum range of the random profits (Table 6).
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Table 5: Optimality gap with fixed first stage decision for the profit correlation
rules

IT PROFIT GUMBEL UNIFORM
mean var mean var

100 UC 1.05 0.31 1.77 1.06
WC 1.36 0.59 2.31 1.74
SC 1.12 0.38 1.88 1.28

1000 UC 1.01 0.28 1.75 0.88
WC 1.49 0.64 2.32 1.25
SC 1.15 0.42 1.91 1.18

Table 6: Optimality gap with fixed first stage decision for the maximum profit
oscillations

IT K GUMBEL UNIFORM
mean var mean var

100 10 0.47 0.03 0.81 0.09
30 1.24 0.10 2.01 0.48
50 1.82 0.26 3.13 0.93

1000 10 0.47 0.02 0.82 0.08
30 1.26 0.10 2.08 0.29
50 1.92 0.26 3.07 0.53

7 Conclusions

In this paper we have addressed the Multi-Handler Knapsack Problem under Un-
certainty, which consists in finding a subset of items which maximizes the expected
total profit, given by the sum of deterministic profits plus stochastic profit oscil-
lations. One of the main features of this problem is that the profit oscillations are
random variables with unknown probability distribution.

From a theoretical perspective, the paper shows that, under a mild assumption,
the probability distribution of the maximum random profit for loading any item
becomes a Gumbel distribution. Moreover, the total expected profit of the loaded
items is proportional to the logarithm of the total accessibility of those items to
the set of handlers and, at optimality, any item is handled by the set of handlers
according to a multinomial Logit model.

The deterministic approximation of the stochastic model obtained provides
very promising results on a large set of instances in negligible computing time.

In conclusion, the performance of the methodology proposed is particularly
good when the probability distribution of the random profits of the stochastic
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model is a Gumbel distribution, even if good results are also provided by the
Uniform distribution. This feature makes our deterministic approximation a good
predictive tool for considering stochastic handling costs in supply chain problems.
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