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1. Introduction 

High precision industrial machines suffer the presence of vibrations mostly due to two noise 
sources: ground vibration and direct force disturbances. They can generate several problems 
at different levels and of different natures, causing performance losses on sensitive systems 
(Crede, 1951), (Rivin, 1979). 

In the last years the growing processing quality level and the need to increase throughput 
resulted in a continuing demand for higher accuracy. Therefore active isolation and 
vibration damping systems became mandatory to satisfy these requests (Pneumont, 2002), 
(Hyde, 1997).  

In general, machine supports are designed for high stiffness to obtain a robust machine 
alignment with respect to its surroundings. However, when significant ground vibration 
levels occur, the support stiffness is commonly sacrificed to reduce vibration transmission to 
the payload stage. Efforts to go towards these issues are recorded in several applications 
and the solutions are different for any particular situation, depending on the nature of 
vibration sources, the amount of disturbances and the machine environment.  

Several actuation technologies are used to face this kind of problem: shape memory alloys, 
electromagnetic, piezoelectric, magnetostrictive and magneto-rheological fluids actuators 
(Thayer, 1998). Among them, electromagnetic actuators revealed themselves as effective and 
performing. Methods for vibration suppression can be classified in a rough approach in 
three families: passive, active and semi-active actuators. Completely passive solutions have 
almost reached their maximum potential which is still not sufficient to satisfy stringent 
requirements. On the opposite, the exponential growth in electronics and actuators fields 
made the use of active and semi-active isolation more feasible. In particular, active control 
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architectures allow to perform an effective isolation at low frequencies, which is a common 
requirement for very demanding applications like micrometer motion control, defect 
inspections, critical dimensions measurement and overlay metrology. 

In general, active control arrangements are provided with sensors, actuators and controllers 
(Watters, 1988). Each of them can be classified depending on their technology and physical 
working principle. The choice of sensors and actuators is strictly related to the type of 
application and requirements and has also influence on the selection of the control strategies 
to be employed. Depending on the type of controller, the system model can be used only to 
support the control design or can play itself a fundamental role on the control action (model 
based strategies) (Beadle et al, 2002), (Sullivan, 1997). Typically the main control approaches 
are feedback, classical or model based, and feed-forward technique, mostly with adaptive 
reference filtering (Anderson, 1996). 

This chapter focuses on the evaluation of an active isolation and vibration damping device 
mounted in the working cell of a micro-mechanical laser center, which is based on active 
electromagnetic actuators. Two different models and three control strategies are developed 
and illustrated. 

To clarify the goal of this study it is important to point out that: a) the vibration damping is 
defined as the reduction of the response amplitude of the system within a limited bandwidth 
near the natural frequencies of the system; b) vibration isolation is defined as the attenuation 
of the response of the system after its corner frequency to cut-off all the disturbances after that 
frequency, while allowing all the signals below it to pass with no alterations. 

The machine object of study is composed by two main parts: a frame support and a payload 
stage where the laser cutting operation is performed. The system performance in terms of 
accuracy and precision is reduced by the presence of two main vibration sources: the 
ground and the stage itself. The active device should meet two goals: the payload vibrations 
damping and the reduction of the transmissibility of ground disturbances. 

In this work, after a review of the major actuators families usually employed to damp and 
isolate high precision machines,  the phases followed to design, implement and validate the 
proposed device are illustrated with a particular emphasis on the mechatronics aspects of 
the project.  

A detailed analysis of the plant components is reported along with an exhaustive 
explanation of the design criteria followed for the choice of supports, actuation and sensing 
subsystems. The actuation block consists in four electromagnetic Lorentz type actuators 
(two per axis).  

The absolute velocities of the frame support and of the stage are measured by means of eight 
geophone sensors to determine the amount of disturbances (Huan, 1985), (Riedesel, 1990). The 
considerations leading to the choice of this sensing system are reported along with the 
description of the related signal conditioning stage. The design of the supports between the 
ground and the frame and of the connections between the frame and the stage is also explained. 
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Furthermore, all the subsystems described in the first part of the chapter are modeled along 
with their interactions. The Lagrange equations approach is used to represent the system 
behavior and in particular the links between the mechanical and electrical subsystems are 
illustrated. 

Two models are developed: a) four degrees of freedom model and b) six degrees of freedom 
model. Both of them include the plant, the sensing, the control and the actuation blocks. 
Time and frequency domain computations are carried out from the models to evaluate 
vibration levels and displacements and to identify which control parameters need to be 
carefully designed to satisfy the requirements.  

The last section exposes in detail the proposed control strategies along with the modeling 
approach validation. Three different control strategies are developed:  

a. Feedback control: the control law consists in a couple of decentralized actions exerted 
along X  and Y -axis allowing to minimize the ground vibrations transmission and 
damp the payload vibrations. Specifically, a Lead-Lag control strategy, performed with 
a digital platform based on DSP and FPGA, is used to compensate the high-pass band 
dynamic of the geophone sensors and to damp the vibrations (Kuo, 1996), (Elliott, 2001). 
The payload isolation is achieved by feeding the control block with the difference of 
frame and stage velocities and giving the proper current command to the actuators. The 
four degrees of freedom model is used to design this control law. In the section 
describing the control strategy the comparisons between simulation and experimental 
tests is presented, which illustrates the validity of the model and the effectiveness of the 
proposed approach. In particular, the performance of the vibration damping has been 
evaluated by using the frequency responses between the actuators force and the 
payload velocities, whereas the performance of the active isolation is evaluated by 
simulating numerically the disturbances coming from the ground and evaluating their 
transmission through all the system till the payload in closed loop configuration. 

b. Feedforward control: this action is focused on the rejection of the direct disturbance coming 
from the payload. The command is not generated on-line as in classical feedforward 
applications, but it is computed in advance from the data obtained from a direct 
disturbance from the payload to the machine. That is, here the compensation is computed 
numerically in the case of known disturbances profiles. The design of this strategy is based 
on the four degrees of freedom model, as in the case of the feedback control technique. 

c. Modal control: the approach allows the controller to focus on the rotational and 
translationalal modes of the machine. Results show that the performance of this strategy 
are comparable to those of the standard feedback control (a), though significant advantages 
exist in the design procedure where the control effects can be evaluated directly on the 
motion modes. This technique makes use of the six degrees of freedom model. 

2. Actuators technology for damping and active isolation: An overview 

Undesired noise and vibrations are since ever a major problem in many human activities 
and domains. Airplanes, space trusses and satellites, cars, machine tools and large bridges, 
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all can be disturbed in their normal functions by vibrations and noise. Actuators play a 
critical role in the active control of vibration and different technologies must be considered 
in order to obtain compact and efficient smart structures. 

Selection and use of these technologies is greatly influenced by the user's technical 
knowledge, the project's budget, available energy sources, and performance tradeoffs. For 
example, pneumatic actuators don't deliver high force output, but are well suited when a 
cost-effective, easy start-up solution is required. Hydraulic actuators generate a lot of noise 
and can leak nasty fluid, but are ideal for high force applications that require precise control. 
Electromechanical actuators have high energy requirements and are more difficult to install 
and maintain, but are preferred for complex, multi-axis, motion control applications. 

Pneumatics: pneumatic actuation is the conversion of compressed air into, typically, linear 
force. Typical applications involve extreme temperature and magnetic systems because 
pneumatic actuators don't have the magnetic field issues of electric motors. Position 
feedback with proximity sensors is used in modern control-loop systems, bringing 
pneumatics beyond simple bang-bang applications. 

Pressure losses and the compressibility of air make pneumatics less efficient than other 
actuator technologies. In addition compressor and delivery system limitations dictate that 
pneumatic systems operate at lower pressures, providing lower forces and lower bandwidths 
than other systems. Pneumatic cylinders typically operate with compressed air at 100 psi or 
less, in contrast with hydraulic cylinders, which operate on pressurized hydraulic fluids at 
over 500 psi. Speed, force and bandwidth are directly connected with these characteristics. 

Hydraulics: hydraulic actuators are suitable for rugged applications that require high force 
output. However, hydraulic systems generate noise and, without proper maintenance, they 
can leak. More equipment is needed as well: hydraulic systems require a fluid reservoir, 
motors and pumps, release valves, and equipment to reduce noise and heat levels. 
Moreover external sensors are needed to determine piston velocity, acceleration and 
position in a closed-loop system. Hydraulic systems can deliver much tighter control than 
pneumatic systems and higher force density than any other actuator technologies. 
Bandwidth is better than pneumatic actuators but still under hundreds of Hertz. 

Electromechanical: electromechanical actuators can be based on rotatory motors (using ball 
screw, roller screw or belt drive), linear motors or moving coils. This type of actuator have 
high dynamic performance, with accelerations greater than 20 g and velocities of 10 m/sec 
and eventually higher. Sub-micron resolution and repeatability are commonplace. Because 
the actuator is directly coupled to the load, there are fewer components with the chance of 
failure, which adds long term value. 

Piezoelectric: piezomotors and piezoactuators rely on the electromechanical response of  
crystals. Electrical excitation causes the crystals to slightly change shape and distort, 
therefore generating large forces and small displacements. Exciting the crystals at a high 
frequency generates smooth, precise motion, making piezoelectric actuators suitable for 
applications with very fine positioning and high bandwidth requirements. 



 
Feedforward and Modal Control for a Multi Degree of Freedom High Precision Machine 517 

Actuator 
Technology 

Advantages Drawbacks 

Pneumatic Strong, light, simple, fast. 
Precise position control impossible 
except at full stops. 

Hydraulic Very high forces possible. 

Can leak. Requires position feedback 
for repeatability. External hydraulic 
pump required. Some designs good 
in compression only. 

Electro-
mechanical 
rotary motor 

Cheap. Repeatable. Operation can 
be automated. Self-contained. 
Identical behaviour extending or 
retracting. DC or stepping motors. 
Position feedback possible. 

Many moving parts prone to wear. 

Electro-
mechanical 
Linear motor 

Simple design. Minimum of 
moving parts. High speeds 
possible. Self-contained. Identical 
behaviour in extending or 
retracting. 

Low force. 

Moving coil 

Force, position and speed are 
controllable and repeatable. 
Capable of high speeds and 
precise positioning. Linear, rotary, 
and linear + rotary actions 
possible. 

Requires position feedback to be 
repeatable. 

Piezoelectric Very small motions possible. 

Requires position feedback to be 
repeatable. Short travel. Low speed. 
High voltages required. Expensive. 
Good in compression only, not in 
tension. 

Table 1. Actuators technology comparison 

3. System architecture 

In this section of the chapter a full description of machine subsystems is provided. The 
mechanical, electrical, electronic, and control parts are identified and fully described 
separately in the first part. Furthermore, since the project can be assumed as a classical 
mechatronics application, the different blocks are analyzed with their interactions in order 
to provide an overall view of the system.  
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Figure 1. a) Picture of the machine. b) Sketch of the system. 1: Frame; 2: Stage; 3: Actuators; 4: Frame–
Stage Springs; 5: Air springs; 6: Frame sensors; 7: Stage sensors. 

Figure 1.a shows a picture of the laser cutting machine while in the sketch of Figure 1.b all 
the components of the system are highlighted. The stage (2) consists in a granitic base that 
can move freely within the work volume and is surrounded by four electromechanical 
actuators (3) acting between the frame (1) and the stage. The machine is partially isolated 
from the ground by means of four air springs (5). Four mechanical springs (rods) (4) are 
placed between the frame and the stage. The vibrations due to the machine process and 
coming from the ground are measured on the stage and on the frame by means of eight 
velocity inertial sensors (6, 7). A schematic representation of the actuators, sensors, and 
springs position is reported in Figure 2, where cGF and kGF represent the damping and the 
stiffness, respectively introduced by the supports, whereas cFS and kFS are the damping and 
the stiffness, respectively of the springs acting as connections between frame and stage. 
Actuators and sensors positions can be considered collocated, in order to minimize the 
couplings between the axes actions by keeping the proper alternation between resonances 
and anti-resonances in the system dynamics. The main machine parameters and 
specifications are listed in Table 2.  
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Figure 2. XY  plane view of the system. Stage-Frame spring ( SFk , SFc ), electromagnetic actuator 

(ACT), velocity sensor (Sens.), Ground-Frame spring ( GFk , GFc ). 

 

Stage mass 1450 kg 
Frame mass 300 kg 
Maximum displacement of the stage 2.5 mm 
Inertia of the stage along X -axis in YZ -plane 200 kg m2 
Inertia of the frame along X -axis in YZ -plane 100 kg m2 

Table 2. Main parameters and specifications of the machine. 

The design phases have been performed considering the mechatronics nature of the system 
and the interactions between the machine subsystems, illustrated in Figure 3. Regarding 
overall controller architecture, a classical feedback behavior is performed: eight velocities 
are acquired by the sensors measurements and elaborate with conditioning and filtering 
stages in order to feed the actuators with the proper commands by means of power 
electronics action. The filtering stage consists in the implementation of a Lead-Lag control 
strategy designed to fulfill the machine requirements in terms of: a) active isolation from the 
disturbances coming from the ground and b) damping of the vibrations generated by the 
machine processes. Feedforward action is also included which allows to reject the direct 
disturbances coming from the payload. These feedback and feedforward control actions are 
completely independent one from the other. 
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Figure 3. Block diagram of the system. 

3.1. Actuators subsystem 

The actuation on the system is realized by means of four electromagnetic Lorentz type 
actuators placed as illustrated in Figure 1 and Figure 2.   

The picture and the section view of the actuator architecture are reported in Figure 4, being 
A and B permanent magnets, while C indicates the coil.  

 
Figure 4. a) Picture of the Lorentz actuator. b) Section view (A and B: permanent magnets, C: coil). 

The force ACTF  generated by each actuator is: 

 ACTF BNli=  (1) 

where B  is the magnetic field, N  is the number of turns of the coil, i  is the current flowing 
in the coil, l  is the coil length. The direction of the resulting force is illustrated in Figure 5. 
The amount of required force for each actuator is equal to 200 N while the main parameters 
of the designed actuator are reported in Table 3.  
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The reverse configuration shown in Figure 8 is realized using a coil fixed to the housing 
while the moving mass is the permanent magnet. Since the mass of the magnet is heavier than 
that of the coil, this configuration leads to a lower natural frequency, but the moving part is 
larger and heavier. 

 
Figure 7. Geophone active configuration scheme. a) Coil and springs installation. b) Cross section. 

 
Figure 8. Geophone reverse configuration  scheme. 

Two different geophones of the Input-Output Inc. sensors have been tested: an active sensor 
model LF24 (configuration in Figure 7) and a passive sensor model SM6 (configuration in 
Figure 8). The LF-24 Low Frequency Geophone is characterized by the following 
parameters: natural frequency at 1Hz, distortion measurement frequency at 12Hz and 
sensitivity equal to 15V/(m/s).  

The sensor chosen is the passive model SM6 because it allows to have an extreme low noise, 
though the output needs to be amplified by an active conditioning stage. 

The sensor response transfer between the velocity of the housing and the induced voltage in 
the coil, can be written in the well known second order form: 

 
2

2 22 n n

GsTFG
s s�� �

= �
+ +

 (5) 
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3.4. Electronics subsystem 

In this section the subsystems related to sensor acquisition and conditioning, power 
electronics and control implementation (Sensor Conditioning, Power Electronics, 
Feedforward Control, and Feedback Control in Figure 3) are illustrated. 

The electronics system architecture is shown in Figure 10. The main characteristic of this 
architecture is the serial communication input/output line that provides high noise 
immunity, which can be useful when signals must travel through a noisy environment, such 
as with remote sensors. 

 
Figure 10. Electronics subsystem. 

The digital carrier is used like a buffer to provide the proper current level for the serial 
communication. Here, multiples system buses manage data exchange between the main 
serial communication core (FPGA) and the communication boards placed on the plant.  

The communication boards are provided with one digital-to-analog converter (DAC) and 
two analog-to-digital converters (ADC). The DAC is a 16-bit, high-speed, low-noise voltage-
output DAC with 30-MHz serial interface that is capable of generating output signal 
frequencies up to 1 MHz. The ADC is a single channel 12-bit analog-to-digital converter 
with a high-speed serial interface and sample rate range of 50 ksps to 200 ksps. 

Control Unit 

The control modules are supported by a DSP/FPGA–based digital control unit. Hence the 
overall control implementation can be divided between the two digital devices in order to 
fulfill different requirements: control strategy realization on DSP and serial communication 
implementation on FPGA. 
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The overall control strategy is characterized with a nested and decentralized control 
structure, where only the outer loop is implemented on DSP while the inner current loop is 
realized on the power module directly. In particular, the outer loop computes the right 
reference for the inner one starting from required error compensation. The same strategy is 
applied for each axis. 

Sensors Conditioning 

The Sensors Conditioning Module provides the output signal from geophone by means of 
an instrumentation amplifier circuits. The component is configured for dual-channel 
operation, in order to connect two geophones together. Figure 11, shows the circuit layout 
for dual-channel. R1A and R1B are the gain setting resistors. 

With the ADC input in the range [0-3] V and assuming the maximum magnitude of noise in 
geophone measurement nearly equal to 1000 m/s, the setting resistors are selected to achieve 
a gain of 100. 

 
Figure 11. Instrumentation amplifier circuits AD8224. R1A and R1B are the gain setting resistors. 

Power Electronics 

The Power Electronics Module is based on a trans-conductance amplifier instead of a 
switching amplifier in order to avoid noise due to the switching frequency. This kind of 
amplifier operates as a voltage-to-current converter whit a differential input voltage (voltage 
controlled current source configuration). 

The electronics layout that is divided in three main stages: a) the trans-conductance 
amplifier, b) the current amplifier and c) the feedback resistor. 

The power module uses the voltages reference ( )inV  from the control unit to generate the 

proper current ( )LI  to the load (electromagnetic actuator assumed as a RL load). The first 
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stage performs the current control by means of an operational amplifier that is unity-gain 
stable with a bandwidth of 1.8MHz and it is internally protected against over-temperature 
conditions and current overloads. The second stage is a classical current amplifier with 
bipolar transistors in Darlington configuration to increase the current gain. The last stage 
provides the feedback signal to ensure the desired current in the load. The power supply is 
in the range of ±30V. 

4. Modeling  

Two different models have been developed to permit the design of the three proposed 
control strategies: 

1. Four degrees of freedom model used for the design of: a) a feedback controller  with a 
Lead Lag approach, b) Feedforward control strategy. 

2. Six degrees of freedom model used for the design of c) Modal controller. 

4.1. Four degrees of freedom model 

The system has been modeled by using four degrees of freedom describing the dynamics in 
YZ plane. Four flexural steel springs have been used to link the stage to the frame, four air 
springs are placed at the bottom of the frame, two actuators are working in series between 
the stage, and the frame and two geophones are used to measure the velocities of stage and 
frame respectively. As the axial stiffness of the flexural springs is very high, it can be 
assumed that there is no relative displacement between stage and frame along the vertical 
direction, which means that the relative displacement along the z axis between stage and 
frame are the same. Both stage and frame are assumed as moving about the frame mass 
center with the same rotating speed. The model reference frames are defined in Figure 2 (XY 
-plane view) and in Figure 13 (YZ -plane view).  

 
Figure 12. YZ plane 4 dof kinematic relationships scheme. 
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indicating the stage displacements xS along X-axis, yS along Y-axis, the rotation �S about the 
axis passing through the mass center and oriented along the Z-axis, the frame 
displacements xF along X-axis, yF along Y-axis, and the rotation �F about the axis passing 
through the mass center oriented along the Z-axis. Stage and frame degrees of freedom, 
inputs, and geometric properties are illustrated in Figure 15 and 16. 

Resorting to the Lagrange formulation as reported in (12), the q vector of the generalized 
coordinates is: 

 ( )T
S S S F F Fq x y x y� �=  (25) 

and the F the vector of  the generalized forces is 

  ( )T
X X Y YF F F F F+ � + �=                  (26) 

it is possible to obtain the corresponding mass matrix M, stiffness matrix K and damping 
matrix C (not reported due to its excessive size). 

 
 
 
 

 
 
 
 

Figure 15. XY Plane 6 dof model scheme: stage degrees of freedom and inputs. 
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Figure 17. Root loci of open loop (a) and closed loop (b) configurations (Circles: zeros; Crosses: poles). 
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Poles and zeros of the system are reported in Table 4. 
 

 Poles [rad/s] Zeros [rad/s] 
G

eo
ph

on
e -28.2743 -

-28.2743 - 

Fe
ed

ba
ck

 
C

on
tr

ol
le

r -1 -75

-4 -12 

O
pe

n 
Lo

op
 

Pl
an

t 

-6.4136 + 79.8805i -5.8786 + 80.8581i 
-6.4136 - 79.8805i -5.8786 - 80.8581i 
-3.7383 + 46.4898i -2.0791 + 37.9468i 
-3.7383 - 46.4898i -2.0791 - 37.9468i 
-0.2371 + 10.9133i -1.9325 + 33.6912i 
-0.2371 - 10.9133i -1.9325 - 33.6912i 
-1.9557 + 33.7951i 0
-1.9557 - 33.7951i 0

-28.2743 0
-28.2743 -

C
lo

se
  L

oo
p 

Pl
an

t 

-6.3137 + 79.8109i -5.8786 + 80.8581i 
-6.3137 - 79.8109i -5.8786 - 80.8581i 
-5.3540 + 46.2140i -2.0791 + 37.9468i 
-5.3540 - 46.2140i -2.0791 - 37.9468i 
-1.9649 + 33.7933i -1.9325 + 33.6912i 
-1.9649 - 33.7933i -1.9325 - 33.6912i 

-27.7026 + 12.6862i -1
-27.7026 - 12.6862i -4
-1.8090 + 9.2149i 0
-1.8090 - 9.2149i 0

-4.7413 0
-0.9885 -

Table 4. Poles and zeros of the system 

Since the system along YZ ( XZ ) presents one actuation point and a couple of sensors 
(frame and stage velocities), a solution with a SISO control strategy is not feasible. A 
simplest solution to this problem considers the difference between the measured velocities 
as the feedback signal, so the system can be assumed as SISO and the control design 
becomes simpler. 
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Figure 19. Impulse time response, force from the actuator and velocity measured on the stage. Open-
loop (a), Closed-loop (b), Force exerted by the actuators. Solid line: experimental results. Dashed line: 
numerical results.  

A further demonstration of the correctness of the damping action is the velocity time 
response reported in Figure 19. In this case the system is excited with an impulse from the 
actuator and the velocity is measured on the stage. Numerical and experimental responses 
are superimposed to provide a further validation of the model (the position time response is 
not reported since the machine is not provided with displacement sensors and hence this 
validation could not be possible to performed). Figure 19.a shows open loop response,  
Figure 19.b shows closed loop response while in Figure 19.c the force exerted by the 
actuators is reported.   

The excitation coming from the laser-axis action on the stage is controlled in an effective 
way as shown in Figure 20 where the numerical transfer function between a force impulse 
on the stage and the related measured velocity is reported.   





 
Feedforward and Modal Control for a Multi Degree of Freedom High Precision Machine 541 

Figure 21 illustrates that the closed loop system is capable to reject the disturbances coming 
from the ground in an effective way. 

5.2. Feedforward control 

Although the feedback control explained in Section 5.1 is strongly effective for external 
disturbances coming from the ground, it could not be sufficient to make the machine 
completely isolated from the direct disturbance generated by the movement of the 
payload. It is indeed possible that in the case of high precision requests, feedback control 
approaches such as PID, Lead-Lag or LQR are not able to satisfy by themselves severe 
specifications. Hence different schemes, operating selectively on the stage direct 
disturbances, are required. 

In this section an off-line feedforward scheme allowing to isolate the machine from the 
action of payload direct disturbance in operating condition is proposed. The scheme is not 
classical, i.e. the command is not generated on-line but it is computed in advance on the 
basis of the data response to the direct disturbance and the transfer function between the 
control command and the controlled output. As illustrated in Figure 3, the action of 
feedforward control is superimposed to the one of the Lead-Lag feedback control and acts 
exclusively on the disturbance acting from the payload. 

The technique is based on the complete knowledge of the fixed pattern followed by the 
payload of the machine during operations. Since also the operation timing is known, it is 
possible to compute in advance a feedforward command, so as to be able to suppress the 
effects of the direct disturbance that are generated by the payload movements, and that 
cannot be measured. These commands are stored in the electronic control unit and are 
summed to the feedback control action at the appropriate time. 

The model used to design the control law is the four degrees of freedom model exposed in 
Section 4.1. Being the XZ-plane and YZ-plane symmetric, just the latter is considered in the 
design phases. 

The controlled output is the velocity measured on the stage ( )sv s and it can be considered as 

the sum of two contributions: the effect of the direct disturbance on the output ( )Dsv s and 

the effect of the feedforward action on the output ( )FFsv s . Then the total response is: 

 ( ) ( ) ( ) ( ) ( ) ( )s Ds FFs Ds FFv s v s v s v s h s u s= + = +  (35) 

where ( )h s is the transfer function between the control command ( )FFu s to the controlled 

output  ( )FFv s . 

The control signal is: 

 1( ) ( ) ( )FF Dsu s h s v s�= �  (36) 
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Since the operation pattern and timing are known (Figure 23 (a)), the transfer function ( )h s

can be obtained by using an FFT analyzer, the command signal ( )FFu s (Figure 23 (b)) can be 

computed offline, stored in the control unit and applied to the system at the proper time 
when the payload is moving. 

It is worthy to notice that the inversion of ( )h s  leads to a non-causal function with a 

numbers of zeros equal or higher than the number of poles. This issue is overcome by 
adding the required number of poles at a frequency sufficiently high (more than 100 Hz), in 
order to make the feedforward filter proper and fit to be used in the control scheme. 

Bode diagram of h(s) is reported in Figure 22 (feedback control is on, vibrations coming  
from the ground are damped).  

Figure 23 (c) shows that the proposed technique is effective and allows to isolate the 
machine from the direct disturbance generated by the payload operations. The excitation 
signal reproduces a standard laser cut periodic profile. 

The coupling of this action with the feedback control system permits to obtain a full 
vibration damping and active isolation from external disturbance coming from the ground 
and direct disturbance coming from the stage.  

 
 
 
 

 
 
 

 
 

Figure 22. Control command to controlled output stage velocity transfer function (h(s)) Bode diagram. 
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Figure 23. a) Feedforward control: disturbance profile; b) Control signal. Solid line: feedforward off, 
dashed line: feedforward on; c) Controlled output: stage velocity. Solid line: feedforward off, dashed 
line: feedforward on. 

5.3. Modal control 

The third and last control technique proposed in this chapter is a modal approach to 
perform a feedback control scheme. This strategy is similar in performance to the Lead–Lag 
strategy illustrated in Section 5.1, but it simplifies the control design procedure once it gives 
a direct feeling on actuators action on machine modes. 

The method is based on the scheme reported in Figure 24. The goal of the technique is to 
decouple the rotational and translational motion modes of the machine to direct the action  
of the controller selectively on the dynamic of interest.  

 
Figure 24. Modal control overall scheme. 
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The eight geophones measurements on stage and frame are elaborated to obtain four 
velocity differences: 

 

DX SensSX SensFX

DX SensSX SensFX

DY SensSY SensFY

DY SensSY SensFY

V V V
V V V
V V V
V V V

+ + +

� � �

+ + +

� � �

= �
= �
= �
= �

 (37) 

These values are then summed and subtracted in order to obtain the motion mode 
uncoupling. 

Rotational mode: 

 RX DX DX

RY DY DY

V V V

V V V
+ �

+ �

= +

= +
 (38) 

Translational mode 

 TX DX DX

TY DY DY

V V V

V V V
+ �

+ �

= �

= �
 (39) 

The control dynamic is the same of Lead-Lag approach, the difference consisting in the error 
fed to the controller. The poles of the system in open and closed loop are reported in Table 4. 

 
Figure 25. Modal control. a) Control command to stage-frame velocities difference transfer function. b) 
Control command to translational dynamics transfer function. c) Control command to rotational 
dynamics transfer function. Solid line: open loop. Dashed line: closed loop. 
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Figure 25 shows the motion modes uncoupling and system behaviour in open and closed loop. 
Figure 25.a illustrates control command to stage-frame velocities difference transfer function 
where translational and rotational modes are coupled.  Figure 25.b and Figure 25.c report the 
translational ( ,TX TYV ) and rotational ( ,RX RYV ) dynamics respectively. It is worthy to notice 

that the influence of rotational dynamics is dominant, being its response amplitude higher 
than translational one. Due to this consideration it can be easily explained the low action of the 
feedback control on the translational dynamics (b)) is compared to the rotational one (c)). 

6. Conclusions 

In this chapter the design of three different control techniques for vibration damping and 
active isolation for high precision laser cutting machines has been illustrated. After an 
overview on the main actuation technologies in this field the work explains the advantages 
of electromechanical actuators and focuses on the mechatronics approach of the machine 
subsystem design. For controller implementation, two different models (four and six 
degrees of freedom) have been developed. The considered controllers are: 

a. Feedback control with a Lead-Lag approach; 
b. Off-line Feedforward scheme; 
c. Modal control. 

Experimental and simulation results used to check the effectiveness of the modeling 
approach and of the three proposed control techniques. 
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