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1. Introduction 

In the last years there has been a growing interest in intelligent, autonomous devices for 
household applications. In the near future this technology will be part of our society; 
sensing and actuating will be integrated in the environment of our houses by means of 
energy scavengers and wireless microsystems. These systems will be capable of monitoring 
the environment, communicating with people and among each other, actuating and 
supplying themselves independently. This concept is now possible thanks to the low power 
consumption of electronic devices and accurate design of energy scavengers to harvest 
energy from the surrounding environment. 

In principle, an autonomous device comprises three main subsystems: an energy scavenger, 
an energy storage unit and an operational stage. The energy scavenger is capable of 
harvesting small amounts of energy from the surroundings and converting it into electrical 
energy. This energy can be stored in a small unit like a small battery or capacitor, thus being 
available as a power supply. The operational stage can perform a variety of tasks depending 
on the application.  

Inside its application range, this kind of systems presents several advantages with respect to 
devices that exploit external energy supplies. They can be simpler to employ and install, as 
no external connections are needed; they are environmentally friendly and might be 
economically advantageous in the long term. Furthermore, their autonomous nature permits 
the use in locations where the local energy grid is not present and allows them to be 
‘hidden’ in the environment, being independent from interaction with humans. 

The idea is to make autonomous and more energy efficient processes in some very specific 
areas, particularly in the management of household heating/cooling systems, and in the 
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environmental monitoring. The basic concept is to convert a fraction of the energy that 
would be normally dissipated by the process into electrical energy. These "secondary"  
energy sources are then used as primary sources in micro generators whose electrical 
current will be used to power the devices distributed along the process. The physical 
phenomena involved in this energy conversion can be essentially: the piezoelectric, 
photovoltaic and thermoelectric effects and phenomena related to fluid dynamics. 
Significant examples of energy harvesting are evident in particular in the following scientific 
fields: the construction of electric generators coupled to microturbines (Chunyan et al., 2010), 
(Bansal et al, 2009), (Yan et al., 2011), (Zainuddin, H et al., 2009); the Stirling thermodynamic 
cycle (Valdes, 2004), the Seebeck effect in thermoelectric generators (Lineykin et al., 2007), (Lu 
et al., 2010) and an Helmholtz resonator based generator (Kim et al. 2009). 

Within this context the objective of this work is to present a trade-off analysis between 
different types of hydraulic machines, electric generators and energy storage units to reach a 
good compromise in the design of harvesting devices to be integrated in fluid distribution 
systems. 

2. System description 

The present section describes the system configuration of the energy harvester (or 
scavenger) used to supply a thermostatic motorized valve of a heating system for residential 
applications. 

The Scavenger of Fig. 1 is composed by three main subsystems: 

� hydraulic machine 
� electric generator 
� energy storage unit  

 
Figure 1. Hydraulic Energy Harvester system scheme 
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A cross flow turbine transforms the hydraulic power of the water flow into mechanical 
power used to drive a small electric generator. The device includes an energy storage unit to 
match the relatively constant power production profile of the generator unit with the more 
discontinuous one that characterizes the load. Additionally, since the generator and the 
valve are in series, the energy storage ensures the possibility to open the valve from the 
closed state (no flow). The energy is then stored during the peaks of production and then 
reuse it in a second time when prompted by the operational unit, the valve in our case. To 
this end the power management system is made to operate at its Maximum Power Point 
(MPPT) through closed loop control of recovered current from the scavenger unit.  

2.1. Specifications and design choices 

The collection of specifications starts from the hydraulic data available for the system from 
which we want to extract the energy. The typical flow rate of household heating system 
pipelines is between 1.3 and 4 l/min. The geometrical size of the device must be compliant 
with the available space at the interface between the heating element of  conditioning 
systems and the pipeline. Other specifications are related to electrical power and voltage 
that must be generated. A campaign of experimental tests performed on motorized 
thermostatic valves shows that the average power is  about 100mW with peaks that can 
reach 1 W for a short time during valve actuation. The minimum nominal voltage must be 
compatible to the voltage generated by a couple of AA-type batteries currently used to 
power the electronic thermostatic valves actuation units. Table 1 lists the above-mentioned 
specifications. 
 

Parameter Symbol Value Unit 
water nominal flow rate Q 2 l/min 
radial size r <60 mm 
axial size l <90 mm 
min nominal voltage generated  Vn >3 V 
nominal power generated Pn 100 mW 

Table 1. System specification 

In addition to specification some key choices are taken to proceed with the design, they are 
summarised in Tab. 2. One aspect which strongly influences the design of the system is the 
size of the inlet nozzle of the hydraulic machine. This choice is driven by the need to avoid 
chocking of the nozzle because of the large amount of dirt particles that characterize the 
fluid of heating systems. The design choice is to have a nozzle diameter d larger than 4 mm, 
as shown in the cross-section view of Fig. 17. Moreover a relatively large inlet nozzle 
diameter reduces the hydraulic losses due to the introduction of the scavenger into the 
heating system. The advantage is of reducing the need of increasing the size of the main 
pump that produces the hydraulic flow in the system. Another design choice about the 
realization of the turbine concerns the speed rotation of the runner. Here, a rated nominal 
speed of 1000 rpm has been chosen for the device. This rotation speed should be compatible 
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with the precision that can be reached with standard production process of some details of 
the generator unit as impeller and bushings. A limited angular speed also ensures an 
adequate degree of durability and strength. This speed value is precautionary as regards the 
possibility of creating vibrations, that may occur at higher speeds and lead to the failure of 
the rotating parts. 
 

Parameter Symbol Value Unit 
inlet nozzle diameter d >4 mm 
generator rated speed n 1000 rpm 

Table 2. Design choices 

3. Trade off and design 

This phase is carried on by splitting the system in its three subsystems. Following the 
transformations of energy that take place in the device the hydraulic machine is met first, 
then the electric machine and finally the energy storage unit, without neglecting their 
mutual interactions.  

3.1. Hydraulic machine 

We start from the conversion of the kinetic energy of the water into mechanical rotational 
energy of the hydraulic machine runner. Different typologies of machine are considered for 
the hydraulic machine: water turbines for mini and micro power plant and a gear pump. 
The water turbines for micro-hydropower generation can be classified into two main 
categories: impulse turbines and reaction turbines as described in (Inversin 1994) and listed 
in Fig. 2. In impulse turbines there is no expansion of the flow within the moving blades of 
the runner and, as such, the pressure remains constant while passing over the blades. In 
reaction turbines the stream expands as it flows over the blades, therefore producing a drop 
in pressure which gives a reaction and hence motion to the rotor. 

 
Figure 2. Classification of turbines for micro-hydropower generation 
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Figure 3. Banki turbine runner: a) 3D model. b) geometrical parameters. 

 
parameter  symbol value unit 
inlet nozzle diameter  d 4 mm 
runner diameter  A 24 mm 
center of blade curvature diameter  B 17.7 mm 
blade root diameter  C 15.8 mm 
blade curvature radius  D 7.8 mm 
runner breadth   L 5 mm 
number of blades  N 18 - 

Table 5. Cross flow or Banki turbine construction parameters. 

3.2. Electric generator 

In order to convert the rotational mechanical energy from the turbine shaft into electrical 
energy which can be used to power the wireless spot and operate the valves of the system, a 
miniaturized electrical generator has been designed especially for this application. Two 
different configurations of generators have been investigated in order to obtain a clear 
perspective on the advantages and drawbacks of each one. The first configuration is based 
on a multiphase permanent magnet generator layout. The second is a single phase 
permanent magnet generator having claw pole structure. Fig. 4 shows the two different 
configurations describing the main components of the electrical machines, namely, rotating 
permanent magnet (1), generator’s coil (2), and stator yoke (3).  

Both cases consider permanent magnet excitation on the rotor. It is known that for reduced 
size applications such as the present one, it is better to use permanent magnet excitation 
instead of electrically excited magnetic systems. The electrical excitation is disadvantageous 
in these cases owing to unfavourable scaling of the currents (Arnold 2007). 
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Figure 4. Configurations of electrical machines studied during the trade-off analysis. a) Two phase 
generator; b) Claw pole generator. 

A trade-off analysis is performed using virtual prototyping tools. The difficulties related to 
the mechanical layouts were studied using CAD models while the electrical and magnetic 
properties were analyzed using analytical and finite element (FE) models. 

 
 Configuration 1 Configuration 2 
 Multiphase Claw pole 
Rotor complexity  *** *** 
Stator complexity  * ** 
Overall volume  * ** 
Number of pole pairs * *** 
Winding complexity  ** *** 
Detent torque  * ** 
*** good, ** average, * bad   

Table 6. Comparison between multiphase and claw pole layouts. 

From these models it is possible to obtain a relatively accurate perspective of the critical 
aspects related to the feasibility of each configuration of the generator. From the application 
point of view, the most important characteristics are compared in Tab. 6. Analyzing the 
table, it is easy to conclude that the claw pole configuration is more suitable for this 
application. Its layout makes it possible to obtain a simple and compact structure, and, since 
the output voltage must be rectified to supply the batteries, there is no advantage in having 
a multiphase winding, such as configuration 1. Furthermore, the single phase winding 
enables having a larger number of magnetic pole pairs, thus resulting in an increase of the 
frequency of the induced electromotive force (EMF), which is beneficial from the electronic 
point of view. Another aspect that cannot be neglected is the amplitude of the detent torque 
generated by the interaction between rotor’s permanent magnets and stator’s yoke (Lossec 
et al. 2010). A larger number of pole pairs tends to reduce the amplitude of the detent torque 
for the same rotor radius since the slot opening is reduced (Hendershot et al 1994). 
Moreover, the geometry of the teeth in the claw pole configuration can be adjusted in order 
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to further reduce the cogging torque. On the other hand, the multiphase configuration 
creates problems in this aspect due to the difficulty in realizing yoke and windings having 
such small dimensions. 

3.2.1. Finite element modeling 

The prediction of the generator’s performance is developed by means of FE simulations. The 
simulations are performed using a stationary formulation without electric currents for one 
single pole pair of the electrical machine. Non-linear magnetic properties were considered in 
the iron parts of the structure. Fig. 5 shows the model used in the finite element modeling, 
evidencing the use of cyclic symmetry boundary conditions to improve the modeling 
quality with reduced computational cost. The analyses are conducted in order to calculate 
the flux linking the coil for different values of rotor angles. This information is then used to 
evaluate the induced voltage with respect to the rotor’s spin speed. To this end, the problem 
is set to allow the rotor mesh to move with respect to the stator mesh, thus enabling the 
calculation of the magnetic quantities for different values of angular position between the 
two. Notice that the air surrounding the rotor and stator of the electrical machine is 
modeled, but is not shown in the illustration. Fig. 6 shows the results obtained from the FE 
model evidencing the path of flux lines inside the stator’s yoke (Fig. 6b). Moreover, it can be 
noticed that the flux densities inside the iron are relatively low (Fig. 6a) resulting in very 
little or no saturation. 

 
Figure 5. Settings of the FE model for the magnetic simulations. 

The parameters characterizing the system described in the FE simulations are summarized 
in Tab. 7, and the flux linkage wave calculated with the FE model is illustrated in Fig. 7. 
Observing the graph it can be noticed that the flux linking the coil realizes one complete 
period every 45 mechanical degrees, evidencing the existence of eight magnetic pole pairs. 
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Figure 7. Flux linking the generator’s windings for different values of rotor angle. 

3.3. Energy storage unit 

In order to properly manage the energy coming out from the generator, it is necessary to 
consider that the maximum amount of power is generated when the impedance of the load 
is nearly equal to the impedance of the generator. Due to this limitation it is important to 
design a control system shown in Fig.8 that can monitor, manage and store the energy in 
order to increase the efficiency of the whole system. For this reason the energy converter can 
be divided into several subsystem: 

� rectifier 
� DC/DC regulator 
� storage system 
� control system 

The main idea was to develop each single subsystem in order to have more degree of 
freedom for each subsystem: active rectifiers to reduce energy losses and perform a Power 
Factor Corrector (PFC) regulation, independent DC/DC regulator with different Maximum 
Power Point Tracker (MPPT) according to the instantaneous situation, charge controller to 
ensure a good storage reduce as much as possible the memory effects in the battery, and a 
unique controller to manage properly all the interaction and the functions of these systems.  

Due to the limited time for testing and to simplify the construction of the first prototype, an 
integrated solution shown in Fig. 9 is preferable to reduce cost and to obtain a suitable 
industrial solution. For these reason some solution from Linear Technologies (LT) turned 
out to be useful because they include into a single chip the DC/DC regulator, the charge 
controller and the main control system, therefore reducing cost and implementation time. 
Only few additional components have been selected and added to the integrated chip to 
obtain the final requested solution. 
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Figure 8. Architecture component interaction and interconnection. 

 
Figure 9. Block diagram of the integrated solution with LT components 

The electric generator produces a sine wave with an electric frequency proportional to the 
mechanical velocity of the hydraulic turbine n expressed in rpm with the following relation: 

 
60e
nf p=  (8) 

where p is the number of the pole pairs as reported in Tab. 7. 

The easiest way to convert this sinusoidal voltage into continuous voltage is using a rectifier 
bridge; the ideal solution is based on active rectifier to obtain a voltage drop as lower as 
possible, but for this application, during the first tests, the results were not so different using 
a traditional passive rectifier instead. For this reason the first prototype was developed 
using a simple single phase rectifier composed by four Schottky diodes to reduce as much as 
possible the power losses. Using BAT54 diodes the voltage drop is about 250÷400 mV, equal 
to 500÷800 mV for each stage of conversion according to the current flow. A 10uF capacitor 
is enough to keep constant the voltage with a low output ripple (<1% of the maximum peak 
voltage). 
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The second stage is the regulator used to increase or reduce the input voltage to provide an 
output voltage around 3÷3.3 V to properly supply any kind of microprocessor or actuator. 
Using a buck-boost converter it is easy to satisfy this requirement but, due to the lower 
amount of energy generated by the turbine, it is necessary to implement also the MPPT 
algorithm. The Maximum Power Point Tracker is an algorithm normally used in 
photovoltaic cells; its role is to constantly check the input voltage and current to know 
exactly how much power is available and to limit the current absorption from the generator 
so as to keep always the condition of maximum production (see Fig. 10). To perform this 
operation it is necessary to use two different feedbacks: the first is used to check the output 
voltage to keep it constant with a low ripple; the second one checks the input current, 
limiting its absorption by varying the duty cycle of the DC/DC converter. In this way even if 
a very heavy load, alike a completely discharged battery, is connected, the converter can 
make the generator work in the most efficient condition. This algorithm needs to be 
included into the general control system alike an independent microprocessor or an 
integrated chip. The use of a microprocessor allows to modify these conversion algorithms 
without hardware changes, but only varying the internal control parameters. 

 
Figure 10. Current adjustment from MPPT to achieve maximum efficiency 

In this system, the recovered energy can be used directly by the loads or can be partially 
stored for future use. The storage system can be divided in two main components based on 
different technologies: 

� electrostatic storage ( super capacitors): most suitable when the load requires small 
quantity of energy in short interval (less than 5÷15 minutes) and the generator can 
provide always the average energy required. The auto-discharge factor is higher than in 
the chemical solution but in the short period is a value than can be neglected. 

� chemical storage ( NiMH o LiIon batteries): most suitable if the generator has an 
intermittent production or the load requires medium/high quantity of energy with long 
pause interval also when the generator is switched off. The auto-discharge factor is low 
but the storage efficiency is lower than in the electrostatic storage, causing efficiency 
reduction during charge and discharge.  
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If the load is composed by a combination of continuous small absorptions with occasional 
high requests of energy, it can be useful to combine the above storage technologies in order 
to reduce energy losses.  

The first prototype was not developed using an independent control system and energy 
converter, but using an integrated solution were all the three elements are included into one 
single chip. Two different boards were developed using two chips from Linear 
Technologies. The first solution used the LTC3108, a buck-boost converter without  MPPT 
algorithm but capable of converting input voltages lower than 200mV. This solution was 
adopted due to the extremely low power coming out from the generator in the first 
prototype developed. Increasing the generator production, it was possible to move to the 
LTC3105 regulator, that is capable of converting input voltages higher than 500mV till to 5V, 
including an internal MPPT control in order to adapt the load absorption according to the 
generator production. 

 
Figure 11. DC/DC converter: LTC3108 controller (1), output voltage selectors (2), input terminal, 
switching inductance and filters (3), regulated output 2.3V÷5V (4), 5.25V storage battery or capacitor (5) 

In the test board two different topologies were tested. The first one used an output voltage 
set to 2.2÷2.3V connected to a 1F 2.3V super-capacitor (see Fig. 11). This solution was 
adopted to supply a very light load like a microcontroller (PIC16F886) that run a simple 
code to only switch on and off one led. The second solution used an output voltage of 4V to 
supply directly the load and to recharge the 3.6V 220mA battery; specifically, when the 
converter was on, the remaining current that was not used by the load was employed to 
recharge the battery, whereas when the input generator was off, the OUT pin was 
disconnected from the converter so that all the energy required was provided by the battery. 
A custom external controller is necessary  to ensure battery protection from deep discharges 
(< 3V) during switch-off period to prevent irreversible damage to the cells.  

4. Experimental validation 

The system described in the previous sections was implemented and experimental tests 
were carried out to verify the correspondence between the design model and the real 
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system. The experimental tests were first addressed to investigate the performance of each 
subsystem and in the second instance of the whole system. For this purpose several test rigs 
have been built in order to characterize the single components and the interactions between 
them. Experimental tests verified the nominal design expectations and have been used also 
to perform sensitivity analysis on different parameters of some components. 

4.1. Dry test rig 

To characterize the electric generator, a “dry” test rig was developed as shown in Fig. 12. It 
is constituted of a DC electric motor (2), which is used to drive the generator’s rotor, and the 
generator’s stator (1). A DC power supply is used to energize the drive motor and to put the 
generator rotor into rotation at different rotational speeds. The values of induced EMF 
measured during the tests are compared to the FE model in Fig. 13.  

 
Figure 12. Dry Test Rig realization 

Different configurations of the generator have been implemented and investigated with 
several values of the air gap t: 0.5 mm for the nominal configuration as reported in Tab. 7, 
1 mm for the preliminary supply of claw poles generators tested in the dry test rig, and 
1.25 mm for claw poles generators compliant with the wet test rig. The experimental 
values represent the RMS value of the voltage measured between the two ends of the 
stator coil, whereas the FE model results were obtained by using Eq. 6 and Eq. 7 with the 
data corresponding to the above mentioned configuration. The obtained experimental 
results show good correlations with the numerical values resulting from the model 
simulation. 

In Fig. 14 the generated power is plotted as function of the rotating speed of the generator 
for the different air gaps. It is clear that the rated generated power is significantly less than 
the 100 mW required. This is due to the fact that it was not possible to find a ferrite with a 
value of the permanent magnet induction equal to 0.42T but only 0.27T, with a consequent 
loss in performance. It must also be emphasized the drastic lack of performance in terms of 
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power generated by the increasing of the air gap from the nominal value of 0.5 mm up to the 
value of the wet test rig equal to 1.25 mm. 

 
Figure 13. Induced emf for different values of the air gap : t=0.5mm (dashed line) vs exp. (star markers); 
t=1mm (dotted line) vs exp. (circular markers); t=1.25mm (solid line) vs exp. (square markers). 

 
Figure 14. Air gap Sensitivity Analysis: generated power with external load equal to generator 
resistance. t=0.5 mm (dashed line), t=1 mm (dotted line), t=1.25mm (solid line).  



 
Trade-off Analysis and Design of a Hydraulic Energy Scavenger 483 

 
Figure 15. Number of coils Sensitivity Analysis: generated power with external load equal to generator 
resistance. Nominal N=1200 (dashed line), N=800 (dash dotted line), N=620 (dotted line) and N=490 
(solid line). 

A lower influence has been found with the variation of the number of coils of the generator 
stator N as shown in Fig. 15, leaving a certain degree of freedom from this point of view. 

4.2. Wet test rig 

A second test rig has been developed in order to test the electrical generator coupled with 
the hydraulic turbine, which makes it possible to characterize both the generator and the 
hydraulic machine as shown in Fig. 16. This wet test rig is composed by the scavenger (1), 
connected in series to a flow meter (2), which are both supplied by a domestic water  
pipeline, where the water flow is adjustable by a tap (3). The measuring system consists of a 
flow meter (2), a multimeter (4) and an oscilloscope (5) in order to correlate the generated 
power with the available flow rate. In the lower left box of Fig. 16 an enlarged view of the 
rapid prototyping realization of the scavenger (1) is also shown. 

In Fig. 17 a cross-section of the scavenger is reported; the device incorporates a eighteen 
blades Banki turbine (1) (see Tab. 5 for other specifications) and a claw-poles voltage 
generator (2) (see Tab. 7 for nominal specifications). The design of the integration between 
the two parts required special attention, in particular to ensure the sealing between rotating 
and fixed parts and to prevent the direct contact between the main water flow and the 
electrical generator. The presence of the magnet in the generator rotor and ferromagnetic 
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residues in the water may lead to choking risk. To solve the problem of sealing an O-ring (4) 
has been introduced; to limit as much as possible the choking risk labyrinth seals have been 
used among the rotor housing and the runner.  

 
Figure 16. Wet Test Rig: scavenger (1), flow meter (2), domestic water supply and tap (3), multimeter 
(4) and oscilloscope (5). 

 
Figure 17. Cross-section view of the scavenger: Banki turbine (1), claw pole generator (2), permanent 
magnet rotor (3) and O-ring (4). 

Owing to manufacturing problems related to the choice of the rapid prototyping process, 
the implementation of the first scavenger prototype presented an air gap equal to 1.25 mm 
which is greater than the nominal value. This fact has a significant impact on the system 
performances as shown in Fig. 18. Comparing the data of the power generated by the wet 
test rig with those of the dry test rig, it is noticed a further drop of performance of the 
generated power. It goes from 9.1 mW produced at 1000 rpm on the dry test rig to 5.2 mW 
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generated by the wet test rig. This decay can be explained with stick-slip phenomena 
present among rotating and non rotating parts of the turbine,  and it will be addressed and 
fixed in future studies. 

 
Figure 18. Wet Test Rig: generated power with external load equal to generator resistance. Nominal 
N=1200 (dashed line), N=800 (dash dotted line), N=620 (dotted line) and N=490 (solid line). 

5. Conclusions 

This study presents the trade-off analysis, the design, and the experimental validation of an 
Hydraulic Energy Scavenger applied to a motorized valve for domestic heating systems. 
The trade-off analysis conducted on the hydraulic and electric machines has identified the 
Banki turbine coupled to a claw poles generator  as the solution to investigate and design. In 
this configuration the axis of rotation of the machine results to be perpendicular to the flow 
of the water thereby limiting problems of choking. The models underlying the design are 
validated from the electrical perspective by the dry test rig, and for the whole system by the 
wet test rig. The investigation was performed for different values of the air gap t, of the 
number of coils N, and of the resistive load of the device. The comparison between model 
and experiments show a good correlation, even though the power generated by the device 
resulted to be lower than the desired design value. This lower power production is 
essentially related to manufacturing issues, namely an higher value of the air gap and a 
lower value of the permanent magnet induction. However, the good correlation between the 
experimental and theoretical data makes it possible to predict the achievement of the 
desired performance in case the indicated designed parameters are respected. 
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