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Planetary landing:. Modelling and control
of the propulsion descent

Canuto Enrico', Molano-Jimenez Andrés',
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(1. Politecnico di Torino, Dipartimento di Automaticae Informatica, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;

2. Thales Alenia Space Italia, Strada Antica di Collegno 253, 10135, Torino, Italy)

Abstract: In the propulsion phase, after parachute release, of landing on Mars or the Moon,
horizontal motion is obtained by tilting the axial thrust so that it aligns either to the negative
velocity vector (gravity turn) or to the requested acceleration vector. The latter strategy is
assumed here, as it allows pinpoint landing. As such, tilt angles (pitch and yaw) become
proportional to the horizontal acceleration. Instead of designing a hierarchical guidance and
control in which horizontal acceleration becomes the attitude control target, a unique control
system was designed based on the fourth order dynamics from angular acceleration to position. It
is shown that the combined dynamics can be (quasi) input-state linearized except for the nonlinear
factor of the tilt angles (the axial thrust imposed by vertical braking). It is also shown that the
control design around the reference trajectory (tilt and position) can only exploit a partial input-
state linearization, but internal stability can be proved. Stability is also proved in the presence of
an external disturbance dynamics that is not stabilizable. The paper is restricted to closed-loop
control strategies, and their effectiveness is proved through Monte Carlo simulations.
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0 Introduction

Propulsion guidance and control of a landing
vehicle, during the terminal phase (descent) after
parachute release until thrusters are switched off,
is usually obtained by appropriate orientation of
the main engines in charge of vehicle braking. The
thruster assembly can only provide a three degrees-
of-freedom command (braking, pitch and yaw
torque) plus spin damping (around the vehicle
symmetry axis). Thrust may be oriented either
speed ( gravity-turn

opposite to the current

maneuver™ ) or along the desired acceleration
( Apollo-like In  Apollo-like

guidance, the centre-of-mass (CoM) trajectory is

guidancet™ ),

interpolated between initial and kinematic constraints
through a 3D polynomial, thus becoming suitable

B Polynomial degree depends

for pinpoint landing
on the constraint size: a quartic polynomial is
capable of respecting initial and final positions and
rates, but only final not initial, acceleration. A
quintic polynomial satisfies also initial acceleration.

MSL ( Mars

which successfully landed on

The guidance of the Science

Laboratory®#1),
August 2012, followed a modified Apollo guidance
law using a quintic polynomial law.

The majority of the above studies are concentrated
on the guidance problem, and the relevant issues of
adaptive guidance to contrast disturbancet™, altitude
measurement errors and target site modification. From
this standpoint simple feedback laws around the
guidance trajectory are kept as sufficient (see for
instance the sliding mode control strategy in Ref.

[15]). They are completed by an attitude control

around the attitude reference imposed by a guidance
law'? which aligns the vehicle axis either to the
negative velocity vector or to the acceleration vector.
Here the overall powered descent control will
be studied combining CoM and tilt (pitch and yaw)
dynamics, as the latter provides the acceleration
for the horizontal motion (a similar approach
addressing quad-rotors control is Ref. [16]). The
approach as in Ref. [16] is to obtain an input-state
linearized dynamicst'™ from angular acceleration to
(horizontal) position (fourth order in each degree-
of-freedom), and to design guidance, navigation
and control based on the same combined state
suggested by Embedded Model

The paper, restricted to modeling

equations as
Control-*#4
and control, shows that a complete linearization is
not viable as the nonlinear and variable axial thrust
acceleration is the inherent (positive) gain ensuring
controllability of a fourth order series of integrators.
Moreover, but less severe, the gain connects both
horizontal axes and, further, an oscillatory zero
dynamics sets up because of a feed-forward
connection between command torques and horizontal
forces (due to slanted thrusters). Input-state
linearization is instead viable on the separated CoM
and attitude state equations. Control is designed by
assuming input-state linearization, and internal
stability of the tracking error equation is proved.
Actually tracking error is proved to be bounded
also in the presence of an external disturbance
dynamics that is not stabilizable. Indeed, under
perfect state knowledge, the output of the
disturbance dynamics can be exactly cancelled by

the control law. Instead, in the presence of
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measurement errors coming from navigation (not
treated in the paper), the disturbance can only be
bounded

prediction error) entering the prediction error

cancelled less a error ( actually a
equation as in Refs. [19-20,227]. The effectiveness

of the design is proved by Monte Carlo simulations.

1 Planetary descent dynamics

1.1 Assumptions

The dynamics of a landing body after
parachute release is derived in the Appendix under
these assumptions:

(I ) position and velocity coordinates are
defined in a planet-fixed local-vertical-local-
horizontal frame R;;

(II) CoM trajectory is actuated by body-fixed
quasi-axial thrusters, which implies that horizontal
motion can only be obtained by tilting the body
axis Eb;

(Il ) thrusters modulate the body tilt angles
(pitch 0 and yaw ¢) as requested by CoM guidance
and control;

(IV) tilt angles are 1 and 2 Euler angles of the
{1,2,3} body-to-local transformation R}; the third
angle ¢ (spin) is absorbed as a parameter of the
input matrices;

(V) the body is de-spun by a specific thruster
assembly;

(VI ) horizontal and vertical dynamics are
treated as decoupled in view of control design;

(V) tilt angles are bounded (a vertical cone
with a semi-aperture of about n/4) by sensor
limitations (radar, camera), the spin angle ¢ is
arbitrary;

(VI the body is axisymmetric with inertia matrix

J = diag(J.,J.,JD (D
Trigonometric notations are simplified to ¢, = cos x,
s.=sin x and t,=tanx, x being a generic angle.
1.2 Reference frames

The equations of flight and attitude of a body
over a rotating planet are recalled in the Appendix on

the basis of the three frames of reference as in Fig. 1.

The inertial frame R, = (C,, i,5 j,» k,) is

-~ —
“"‘-. ,‘(}”,‘ w
descent trajectory ™

X

o

’,‘l‘f’ 9{-:4" I.b‘;‘cal vertical

Inertial
frame

»
i horizontal plane

Fig. 1 Frames of reference

centered on the planet CoM C,, the co-rotating

local vertical local horizontal frame R,=
(O,Z,;HZL) (briefly local frame) is centered on
the fixed surface point O and has vertical direction
Z, , the body frame R,= (C, ;,, ,fb,Zb> is centered on
the body CoM C and the axial direction k:, is
directed opposite to the velocity vector %

The body to local and the local to planet
transformations are denoted by R} and R! respectively.
1.3 Attitude dynamics and input-state linearization

We start from the attitude dynamics which
acts as the actuator of the horizontal motion.
in Ref. [ 17 ] is

performed given a nonlinear function q(0) of the

Input-state linearization as

attitude vector 0; then a specific Euler angle
sequence ( triple) is looked for which allows
linearization and command decoupling between tilt
and spin in the case of axisymmetric inertia as in
(1). The selected triple is {1,2,3} ={¢,0,¢}. Full
command decoupling (block-diagonal) occurs if
only the spin rate, and not the spin angle ¢, is
controlled, which is the case when body
orientation is of no concern,
1.3.1 Linearization

Consider the kinematic and dynamic equations
of the triple =6, 6
define the body-to-local transformation R,(q), and
(in body

coordinates) @,. They are driven by the command

torque M, and hold

0; 1" of Euler angles that

of the corresponding angular rate

0= A0,
, . (2)
o, = J l(M+M4)*J l((l)hXJ‘FJ)COh

Eq. (2) correspond to the following nonlinear
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equation to-be input-state linearized

x(D) = f(x) +G(x)(utd)

x=[0" o], u=M, d= M,
r A o, 1

flx) = L , J (3)
— ] oy X ]+ Do,

0
G(x) = L]J

In Eq. (2) M, includes aerodynamic torques and

thruster errors, J is the inertia derivative
accounting for propellant consumption, and A;( )
depends on the selected Euler triple. The set Q of
the admissible 0, to be respected by the attitude
control, must guarantee that Ay; (0): Q—> R’ is
invertible in Q. The following Theorem proves
under which conditions (2) can be input-state
linearized.
Theorem 1.1  Given Eq. (2), consider the
smooth transformation q= q(® : 2—>R’ and assume
that the Jacobian Q(08) =dq(8)/d0 is invertible in
0. Then define the angular rate ®= S(0) w, with

the equality S(0)=Q(0) Ay(0).

=[5 oo+ [Joco]

€]
o(t) = L(O(M+ M, + m(0, »,) J
where L(0)=S(0)] ' must be invertible in Q.
Proof The proof follows because L (0) is
invertible in Q, owing to Q and A; being
invertible. The term m(0, ®,), playing the role of

a known disturbancet™ holds

m(0,0,) = L(O (o, X Jo, + Jo,) +

D180 0,00 ay (0) (5)

ko1

where S,(0) =3dS(0)/30,, and az (0) is the k-th
row of A,;. The state transformation T that defines

the new state vector z of the linearized equation holds

[q(ﬂ) }
z= T(x) =
S(0) w,

SIS

The resulting linear state equation which is the

(6)

same as Eq. (4) :
z2(1) = Az() + Ba (1) P

where @ has been defined in Eq. (4), and the

[ 0[]

The pair (A, B) is controllable and has a

multivariate companion form.

matrices are

1.3.2 Command decoupling
The next step is to find the right Euler
sequence satisfying Theorem 1. The introductory
assumption fixing a bounded tilt { ¢, 0} of E,, with
respect to Zl , and an arbitrary spin ¢, suggests the
following admissible set;
Q={ V& + ¢ < qu. < /2, gany}; (9)
Since given a Tayt-Brian sequence {0;,0,,0; }-each
rotation is about a different Cartesian axis —,
Ay(@® becomes singular when 6, = 4 /2, only the
following sequences satisfy Theorem 1, namely
{1.2,3},{3,2,1},{2,1,3},{3,1,2} (10)
Moreover, keeping the exchange between 1 and 2
not significant, the choice, restricted to the former
two sequences in Eq. (10), calls for further
criteria. A first criterion is to decouple tilt and spin
commands. That amounts imposing L(0) in Eq.
(4) to become block-triangular as follows:
Ly (0) 5 0
Lios (@) Ly ( 9)1><1i'
0="L¢ 0 ¢l
Full decoupling would call for L;;; (6) =0. Only

L(®) = [
e an

{1,2,3} satisfies Eq. (11) as the following Lemma
states.

Given Q(0) =1 and J in (1),
L(@)=A;(0) ] is block-triangular only for {1.2,3}.

Lemma 1.1

Proof  First consider {1, 2, 3} and write
Ay(0) as
1/¢cs 0 0
Ag(B) = | 0 1 0]Z(P 12)
—t 0 1

which is in the form of Eq. (11); the form is not
changed by J7'.
the same 0 as in Eq. (11). Ay(0), written as

Consider now {3,2,1}, and keep

1 0 Ly
A =10 1 0 |X(g (13)
0 0 1/(‘9
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does not respect Eq. (11).

A further advantage of {1,2,3} versus (3,2,
1} is that the series of attitude and CoM dynamics
can be partially input-state linearized only in the
former case. The body-to-local transformation R}
of {1,2,3} 1is

. Z}g((,b) 0

with
Co 0 So
RCop,0) = | ssy o — coSg
— $C, Sy CoCy J ¢ (15)

Cp — Sy
S¢ Cy

1.3.3 Body de-spinning

|

A specific orientation of the body is not
usually required: only de-spinning just after
thruster firing is mandatory. Hence ¢ need not be
directly controlled: Only w,. must be driven to
approach zero. With the help of Eq. (12), the
state z in Eq. (7) reduces to five components.

z=[q. L]t =
(4" o o] (16)

and the transformation T in Eq. (7) becomes

qy i W, W,

T=1[q¢Ce.0) [wn @,]S (O @] AD
with
@ pr ) = [q} (g ) = [C"S‘“M
qy N (18)
SO = Qiy (s 0) Zyy () J
and
dg. 1 9q.
Qi (0 = T 90 [C* 5051 19
dq, 1 dgq, 0 <
do ¢ 0

Notice that @, is just 2D. Since L;;;(0) =0 in Eq.
(17), L(6) in Eq. (11) becomes block-diagonal,
and the spin equation.

P =— ty(D w, (D) + aye (D 20)
comes out of Eq. (7). Assuming that w, >0, ¢
just accounts for the yaw rate w, (expressing a
change of direction) of a pitch-inclined body with
ty70. The yaw rate w, and the pitch § are brought

to zero close to landing, when vertical alignment of

the body axis is mandatory.
1.4 Overall dynamics

CoM and attitude dynamics are now separately
written assuming a specific attitude function q(¢, &)
that drives the horizontal trajectory. CoM
dynamics is obtained as a flat planet simplification
of the entry equations, that are recalled in the
Appendix. Both dynamics, if separated, can be
input-state linearized.
1.4.1

Start from Eq. (75) in the Appendix, and

CoM dynamics

assume that the attitude sequence {1, 2,3} has
been selected. Define the new position, velocity,
thrust acceleration and disturbance coordinates as

follows:

= T, = \
pa 0 1 Vs 0 1 (
[abxj' |:P Oj' [d[:| {P O:| J/
= a, » = d,
Qe 0 1 d. 0 1
where the permutation matrix P is defined by
0 —1
P= [ } 22
1 0
Applying Eq. (22) to Eq. (14) and using Eqgs. (18)
and (19) provides the equality.

P 0 P' 0 S(® q
R, ) Z() =
0 1 0 1 — B.(®) ¢

(23)

21

where
B.(®) = [,
(D) = ¢,
Using Eq. (23), Eq. (75) in the Appendix is

rewritten by splitting horizontal and vertical

S()C,P:Izlg((,b)} (24)

dynamics as follows:

x(0) = v, (D)

v.(D = a,(1)

. (25)
2(t) = v.(t) J

0,(0) = w. (D)

where Egs. (23) and (24) have been used to find

w.() = a.() — B.(®a,, () — g+ d.(D)
} (26)
a.() = cap (D)
and
(D = a,. (DqC) + a,(D
¢ et it } @n
a,( = S(B®a, () +d, (D
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Input-output linearization is ensured by the next equations become
Theorem. gD = o, (D
Theorem 1.2 Eq. (25) together with Eq. 0. () = o ()¢ (33)
(26) is input-state linearizable, if and only if w. = a.(1)

w() + g—d.(D+ B.(0a,. (D

(,Lbz(f) — (,(t) >O
(28)
Proof If a,.(t)>>0, an acceleration command

a, in Eq. (27) can be constructed such that
() = @ (D (a. (D — S(®a, (D —d.(D)
29
which proves sufficiency. Allowing a, (1) to
become negative would impede Eq. (29), thus
proving necessity. Eq. (28) is satisfied if
() >0 30)
which follows from Eq. (9), and if
u.() >— (g— d.(t) + B.(@a,, (1)) (GD
Inequality (31) can be simplified and completed as

follows:

—1+a<pu>=ﬂ%9<m,o<8<1@m

having assumed that | d. — B.(0) ay | is a small
fraction § of g=3.7 m/s* (Mars), and imposing
that the braking acceleration is smaller than
gravity. This is justified by the negligible vertical
aerodynamic acceleration d. and by a, which is
small fraction of g as proven by Eq. (42). Observe
that Eq. (32) allows the vehicle braking (u.>>0)
and accelerating (u. << 0). Acceleration may
become mandatory for avoiding obstacles and
pinpointing the target site.

Input-state linearization cannot be obtained in
the same manner for {3,2,1}. In the case of {1,2,
3} the tilt angles { ¢, 8} combine to move a body
along orthogonal directions, and opposite
directions are obtained by changing the angle sign
while keeping the maximum stroke less than 2 gpay.
In {3,2,1} the heading angle ¢ fixes the direction,
which requires a = stroke to move backward.
Horizontal motion along the given direction is
driven by 0.
1.4.2 Attitude dynamics

Using Egs. (4), (5) and (17), attitude

with the expressions

a = J.'S(OM, + J.'S(OM,, + m,.(0,®,)
m,(0,0,) = J.'S(OJ.— ]Dw.P — .Dey, +

IQiz (0

ae} Zlg(sb) (O],IO);E;-qk<6)

JS(® o, + )
ko1

@ =J. (— .+ M+ M)
(34)

In Eq. (34) q is the k-th row of Q.

The following corollary is a restatement of
Theorem 1. 1.

Corollary 1.1 Egs. (33) and (34) are input-
state linearized.

Theorem 1.2 and Corollary 1.1 suggest that
the control algorithms computing a. in Eq. (29)
and e, in Eq. (33) must be designed in a
hierarchical way as in Refs. [7-8,147]. A further
reason would come by the difficulties of combining

Egs. (25) and (33).

becomes not linearizable, and shows an oscillatory

Indeed the combination

zero dynamics. The main result of this paper is a
control design based on the combined dynamics,
together with a stability proof and simulated results.
1.5 Properties of the combined dynamics

CoM and attitude dynamics Egs. (25) and
(33) are now combined in a unique dynamics: the
process passes through the definition of the
thruster assembly and of the dispatching law. Only
the assembly in charge of the axial thrust F, and
of the tilt torques M, and M, is treated. It is
shown that the combined dynamics cannot be
input-state linearized, unless the second order
derivative of the axial acceleration a, is defined,
which is deemed useless. A linear time-varying
equation results, together with an oscillatory zero
dynamics. The main result is a stable and effective
control design for such a dynamics.
1.5.1

Combination of CoM and attitude dynamics is

Thruster assembly
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obtained by relating a, in Eq. (27) to @, in Eq.
(33), which needs to define the thruster assembly.
Consider for simplicity’s sake four thrusters k=1,
2,3,4 forming a cone with a semi-aperture of f=
0. 35 rad (see Fig. 1). The application points have
—h], with h<r,
The matrix thrust-to-force/torque, free of M., holds

body coordinates a, = [ tr =£r

MEy s 0 —5s 0]
Fy, 0 s 0 — 5| | Ua
. B[“l . . .
. Uy
= |t |y =
F. c c c ¢ U
Blz
M_T 0 — 0 0 o Upn
LM, J Lo 0 —0c 0
(35)
where u, is the thrust vector and
s= sin 8, ¢ = cos
¥ ¥ (36)

o = rcos B— hsin 3= rcos 3
and ¢ must not be confused with the symbol in Eq.
(24). The next Lemma is immediate.

Lemma 1.2 The matrix in Eq. (35) has rank
3, which implies that only three components are
controllable.

The last three components in Eq. (35), the
axial force Fy. and the tilt torques M, and M, are of
concern. A dispatching law, ensuring a thrust
vector u, >0 must be provided. To this end, the
torque components are written as
F.>0. M,=M,—M, , M, >0, M, >0
My,=M, —M,, M, =Z20,M,_ =0

37
The following Theorem, easy to be proved, is a
version of an unpublished Theorem proved by one of
the authors at the times of the early GOCE design“".

Theorem 1.3 A dispatching strategy ensuring
u, 0 is

(r1 0 7] 0 0 )
F.
1 1 0 O vy 0] [M,
u = Ml+ + > 0
del |1 0 0 vl M,
Mv\ A
1 v O ’ 0 0
Yy=2¢/06=2/r
(38)

As a consequence the horizontal components in

Egs. (26) and (27) hold

J.(Ds
2m(t) o

(39

Assuming that the landing body is near-cylindrical

(free of front shield and back-shell), with radius

n=r=2 m and height h, = pr, p << 2, the
coefficient b,, becomes

b, () ~ ¢ rtanf/24 < 0.05 m 40)

which shows that b, can be kept as a constant in

Ay
Ay, = P = [)VHJJIMJ’ bm(t) =

Apy

the presence of a variable mass m by an appropriate
Then

assuming the following bound to the commanded

layout and use of the propellant tanks.

angular acceleration (see Fig. 5).
| J.'M, |<<1 rad/s* 41)
proves that
| B.(®a,(p [<0.02m/s* < g (42)
as anticipated in the Theorem 1.1 proof.
1.5.2 Combined dynamics
Using Eqgs. (27), (34) and (39), and defining

the commanded angular acceleration u, as follows:

Ay L
bl” ( t) blﬂ

one finds that

a, () = b,(a, — d, (D)) = b,u,

u () = (S(p a,, () +d. (1)) (43)

d, () =— le(t) + J7'S(OM,, + m. (0, w,)
44)
Finally the attitude command holds
af - uI + dlﬂ (45)
The combined horizontal CoM and attitude dynamics is
x 0 I 0 0 x
! LL,:( ’ t) 1
Sl = = (0 +
q 0 0 0 Il q
0, 0 0 0 0 Lo,
0 0
b1 0
u, () + 0 d, (D (46)
I I

where the time varying gain a;,. >0 is a function of
q because of Eq. (28). Notice that the horizontal
components x and y in Eq. (21) are decoupled
except for the gain ¢ () = c,cp entering .. A

similar equation is in Ref. [16] but with b, = 0.
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Eq. (46) must be completed with the vertical and here, but following the embedded model

spin dynamics from Eqgs. (25) and (23).
Lemma 1.3 Eq. (46) is input-state linearized
except for the gain a,. (q. t), and b, (1) I. They

produce two pairs of imaginary zeros.

2.2 T 3,1 =4 Jwie
w. = Va.()/b, = 6 rad/s(1 Hzi un
@ (D _ w0+ g1 — o) J
Do (b,
in the transfer function from angular to CoM

acceleration. The zeros tend to be infinite for f—0
(axial thrusters). The zeros tend to vary only because
of the vertical acceleration u. and of ¢ in Eq. (24).

Fig. 2 the

dynamics, with

shows combined  horizontal

together vertical and spin
dynamics. Clouds denote unknown disturbance, to

be modeled be

estimated (18,207

as stochastic signals and to

by a disturbance observer
Interconnections that are cancelled by the control
law ( known disturbance rejection ) are not
indicated. The most important interconnection is

the > 0. A

interconnection generating a loop via vertical and

axial acceleration a. further

horizontal control is () >0.

2 Descent control design

2.1 Guidance and navigation

CoM and attitude guidance are not treated

controlt¥*?] they are computed on the same Eq.
(46) free of disturbances™/. Vertical and horizontal
guidance are separated. The descent phase duration ¢,
is fixed by the vertical guidance. At t= t; the
landing phase starts, depending on the touch-down
mechanism. In the first three cases (past Mars
missions and Ref. [5]) thrusters are switched off at
t;. In the last case (MSL, [8,13]) thrusters hover the
body until the payload touches the ground. Vertical
guidance provides reference altitude z, velocity w,
and acceleration a. (reference variables are underlined).
Given a., a.=a./(cos gcos () is computed.

Horizontal guidance minimizes the energy of
the tilt angles ¢, 0. Optimization is constrained by
the tilt bounds @uus Ouwns and is iterated for
accommodating the nonlinear gain between a. and
a,.. Here we assume that a reference trajectory is
available for all the state variables in Eq. (46),
namely x. v., g, ®. together with a reference
angular acceleration u,.

Navigation (see Ref. [22] for concepts and
Monte Carlo runs), driven by accelerometers and
gyros and updated by local sensors, has been
extended to measure unknown disturbances like d.
in Eq. (26), d,, in Eq. (45) and M,. in Eq. (34)
(clouds in Fig.2).

control law to recover the parametric uncertainty

The latter ones allow the

o T Y
horizontal
| orizon . |
Iomd) I I
: | SO T M :
| 1 .'=/I;,\ |
| N |
| d, | _ x |
M 4 u Y~ @y q Y L x
| < Va * M .
: ST~ F4eci—»4 .
| |
v e e e e e e e /
/ ! e
| |
Y a. V. -
— thrusters : 1/m =2t <« y |
o _yeticall —> “E_,
2 A -_’_'r_ ________ \
I 1’4 by @ I | W
M. ~ @y ¥ — |
: P D—{1—
| Spin L |
\ Ma J

Fig. 2 Block-diagram of the overall linearized equations
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affecting the known disturbance model. Each

associated with a
[20]

unknown disturbance is

stochastic dynamics driven by noise Noise
estimation updates disturbance and controllable
state variables as in Kalman filters. Disturbances
in Egs. (46), (34) and (26) are split into state,
noise and known terms. A first order stochastic
dynamics (random drift) is assumed, for the
horizontal dynamics (46) as follows:

d, (v = x,(0+w, () + m.(+)

. } 48)

x,(0 = w, (D
as well for the vertical CoM dynamics in Eq. (26)

and the spin dynamics in Eq. (34).

d.() = x,() + w. (1) ]

20D = wae. (D

rat D = et L
Md:(t)/]z:

e (D) w0, (D J
L (0 = W (D

All the noise vectors w, and w; in Eq. (48) and w.,
Wye s Wy and wy,. in Eq. (49) are (statistically)
bounded and zero mean. In the following m,( « )=
0 and is included in x,(t). The random drift state
variables x,,(t), x; and x,. make the horizontal,
vertical and spin dynamics not stabilizable. The
only stabilization procedure is to measure and cancel
the drifting variables. Indirect measurements, not
treated here, are provided by noise estimators.
They estimate in real-time the noise samples for
driving a discrete-time version of Egs. (48) and
(49), as shown in Refs. [ 19-20, 22 ]. Then
cancellation becomes feasible less a bounded error.
2.2 Control law

Only horizontal dynamics is addressed.

2.2.1

Given a reference trajectory, control law aims

Horizontal dynamics

to reject known and unknown disturbance, and to
make the tracking error bounded. Bounded error
corresponds to internal stability. Because of the
incomplete input-to-state linearization of Eq. (46),
an “extended” tracking error must be defined
including  disturbance  variables. A single
horizontal component is considered, exploiting the
coordinate decoupling emerging from Eq. (46).

Identity matrices in Eq. (46) are replaced by unit.

Denote the four-dimensioned controllable state in
Eq. (46) with x., the scalar disturbance variable in
Eq. (48) with d,,, and the scalar command with
u,. Dropping m., ( = ) as anticipated above, the
corresponding equation is rewritten as

x. () = A(Dx () + Bu, (D) + Hdm(t)l

dn () = 2,(D + w, (D ¢ (50)

(D) =— ex,, + w, (D J
where matrices and vectors derive from Eq. (46)

and hold

0 1 0 0
0 0 ax(s) O
X, = =
0 0 0 1
0 0 0 0
D
0 0
b 0
B= » H=
0 0
1 1

The unknown part of d, has been written as the
sum of a wide-band noise (white noise in discrete
time) and a random drift x,. Leaving e >0 makes
x,, drift and diverge, thus forcing the design of a
robust disturbance rejection. The * extended”
tracking error is defined as
e(t) = x.(t) — x.(t) — QD) x,,(1) (52)

where x. is the reference state and Q is a four-
dimensional vector to be found. The output
tracking error corresponds to position error and
can be written as

e, () = Ce (1)

C=1[1 0 0 0]
Following Eqs. (45), (34) and (44) the control

(53

law is found to be

w. () = u, () + KDe () — plv) x,, () (54)
where K(1t) stabilizes A(t) —BK(1), and p(1) is a
scalar to be found together with Q(t).

As shown in Ref. [ 18] the unknown gains Q
and p, weighting the disturbance state, are not to
be designed like K., but they directly derive from
Eq. (52) through the Sylvester matrix equation.

0 [ C O} [Q(t)}
) = (55)
H+ Qo ACt Bl Lp(p)
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which has a solution if the system matrix in Eq.
(55) has no zeros in the origin. The solution of
Eq. (55) can be found to be

[QmJ [ C OT [ 0 }

= , (56)
p Al B H+ Q1

and

p() =1+ g ()
Q=10 0 ¢ =—"bu/an(D c'b(l)]}
(57

As a result, attitude and angular rate tracking
errors, i. e, the third and fourth component of e, in
Eq. (52), must include the disturbance state.

It is of interest to assess the value and bound
of ¢; and of its derivatives in Eq. (57).

Lemma 2.1 ¢ and the first and second

derivatives are bounded if and only the vertical jerk
u.» the vertical snap u., the angular rates ¢, 0 and

the accelerations gé,éare bounded.
Proof Firstly, using Eq. (32) and setting p=
p— 0, rewrite the bounded ¢; (1) as follows:

b, b,.c(t) 2

) _ b, _ b, 0. 005 2
(o | ah(t) g(l+u)< o8 08
Setting u. — g0 and u.= u.— g8 the first and

second derivatives hold

|‘.ls(t) |=

| g | ‘ (1+ )thdngc@than@go‘ 0.02 s
s (0 | =

| | ‘ (1+ )+f<u,e L. 0, @‘

(59
where f is a complex trigonometric function. Egs.
(58) and (59) prove the Lemma. wu. and u. are
bounded by guidance thrust slew rate, angular
rates and accelerations.

The bounds in Egs. (58) and (59) correspond
to the following bounds employed by Monte Carlo
simulations in Section 3.

| w/g(l+w |[<1s'!
lu/g(l 4w [<1s?
101, [ ol m/4 : (60)
101, | ¢ <1 rad/s

161, ] ¢l<1 rad/s?

In view of the second inequality in Eq. (49), the
approximation p=1 in Eq. (57) has been adopted,
which avoids ¢; computation.

The following theorem provides the conditions
bounded,
notwithstanding the unbounded drift in Eqgs. (48)
and (49).

Theorem 2.1

for the tracking error to be

Assume perfect knowledge of
the parameters in Eq. (50) and that u, and x.
satisfy Eq. (50) free of disturbance, i. e.
x(D = ADx.(D+ Bu, (v, Al = A, B=B
61)
Moreover, assume that w, and w, are bounded,
and that u, is affected by a bounded error Au,
because of the navigation errors. The tracking
error Eq. (52) is bounded if and only if K (t)
asymptotically stabilizes A.() =A() —B(1) K(v)
and Eq. (56) holds.
Proof

unbounded disturbance state x,, from the tracking

Eq. (56) cancels the unknown and

error equation.
e() = Ae(D— Huw, (1) — Qus(1) — BAu, (1)
e, () = Ce. (D)
(62)
Because A. is asymptotically stable, and because
Wy s wy and Au, are bounded, Eq. (62) proves the
sufficient condition. Asymptotical stability of
A.(t) is necessary for Eq. (62) to be bounded-
input-bounded-output. Eq. (56) is necessary to
fully cancel the unbounded z,, from Eq. (62).
The next lemma is preliminary to Theorem 2. 2.
Lemma 2.2 Given a Hurwitz polynomial
with constant coefficients.
PO =X+l +eX+ar+q (63
a unique matrix K'=[k, k ks k; ] exists such
that P(Q) is the characteristic polynomial of A, in
Eq. (62).
Proof The feedback gains exist because a,.>
0 and hold
ki = /s ke = 1/ ap

ks = ¢ — « bm/ Apes ky =

Since control performance is defined at the terminal

64

¢ — 1 b/ ap

time ¢y, convergence of (62) as =1, is of interest.
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Theorem 2.2 Under Theorem 2.1 and
assuming Au,—>0 for +—=>t; and a,.—>a;. (constant) ,
the expected value E{e (t;)} is bounded by an
arbitrarily = small value dependent on the
eigenvalues of Eq. (63). A bound™ is

In [7| Ii{j‘((ot;)f | J< 1= ay T (m— DlnCp)
(65)
which is dominated by the negative term for
Tuin (AD) <Kty In Eq. (65) 14, (A is the least time
constant of A, m=4 and 7 depends on m and on
the normalized eigenvector matrix of A..
Assuming {,>>30 s and 7 <<5 s, E{e (1)}
quickly converges to zero for t—(;, and the only
random deviations are due to w,,s wy and Au,.
2.2.2 Control law tuning
Tuning of the gains in Eq. (64) is made by
assuming that the navigation error Au, dominates
w,, and w,;. To this end Au, can be expressed from
Eq. (54) as
Au, (D = K(De() (66)
i.e. as a combination of the vector e of the state
navigation errors. Assuming their covariance
matrix S is known, the tracking error covariance
Si(t) =E{e (t) e (1)} can be reduced below a
target bound S ... (t;) at the terminal time by
tuning the gains in Eq. (64) or the relevant
eigenvalues A={A;,***,A;}. Theorem 2. 1 makes it
possible to replace S (t;) with the steady state
solution ¢ of the Lyapunov equation.

At SE+ SEAT (1) + Kt SEK (1) = 0 (67)
Tuning has been done numerically assuming that A is
defined by a single unknown eigenvalue as follows:

A= {A=—2xnf,.A,A/10,1/10} (68)
Partition of Eq. (68) into fast and slow eigenvalue
pairs reflects the hierarchy between attitude and
horizontal motion, as attitude must change faster
to drive horizontal velocity and position to change.

Figs. 3 and 4 show the standard deviations
obtained from the square root of the diagonal of S
versus the design frequency f, in Eq. (68).
Attitude and horizontal

velocity impose the

solution because of the target. Performance is

given in terms of the absolute velocity v, and of the

body axial tilt g, at the terminal time. They are

defined as
Up — (Vﬁj(t‘(’)\’x(tv{>>1'2
. s (69)
qr = (q' Ctp)qle))?
‘[— attitude/rad

015.‘

——- angular rate/(rads ")
H H T j’ ‘e

0.10F -+

unit / rad

005} -\

1E-1 0
f/Hz

Fig. 3 Standard deviation of the attitude

and angular rate errors

0.4 ; ES. ..é,....———positionfm
S = velocity/(m-s™)

0.3

P EA2 W

unit / rad

ok NG .-

f/Hz

Fig.4 Standard deviation of position and velocity errors

Tab. 1 reports the target max values, the a
priori max values obtained from S’ and the a
posteriori values computed from the Monte Carlo
runs in Section 3. The designed frequency f, has
been selected to match a priori and target values,
and is close to the minima of the tilt and velocity
standard deviations in Figs. 3 and 4.

Tab.1 Control law tuning and Monte Carlo results

No. parameter symbol unit value
0 Body axial tilt (max) rad 0.02
1 Absolute velocity (max) m/s 0.5
2 Designed frequency fu Hz 0.3
3 A priori max tilt qf,max rad 0.02
4 A priori max absolute velocity = vf.max m/s 0.17
5 A posteriori max tilt rad 0.015
6 A posteriori max absolute velocity m/s 0.13
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3 Simulated results

One hundred Monte Carlo runs have been

Mars

atmosphere and winds, sensor and thruster noise,

performed under the following conditions.

thruster dynamics, navigation errors ( initial

attitude error of about 0.02 rad), have been
simulated. The main data and Monte Carlo initial
conditions are in Tab. 2.

Tab. 2 Main data and Monte Carlo conditions

No. parameter symbol unit value
0 Wet mass my kg 4000
1 Inertia I kgm? 3000
2 Inertia J. kgm? 5000
3 Initial altitude 0 m 4000 to 5000
4 Vertical velocity [ 00| m/s 80 to 120
5 Horizontal speed [ 00100l m/s <30
6 Initial tilt (tp%+0%)1/2 rad <20. 35
7 Initial angular rate Whr0 5 Whyo rad/s <20.05
8 Control rate fe Hz 10
9 Distance (radius) (F+ )2 m <3500

Fig. 5 shows the ensemble of the commanded
angular acceleration (yaw) during the first 10 s of
the descent phase lasting 100 s. The pair of initial

oscillations are

necessary to recover wrong

directions at the onset. They are the second
derivative of the initial yaw peak in Fig. 6. After
that, acceleration damps out into a band less than

0.1 rad/s%.

=
Lh

=

|
o
h

angular acceleration / (rads™)

Fig.5 Yaw commanded acceleration (enlargement)

Fig. 6 shows the ensemble of the Monte Carlo
profiles for the yaw angle ¢. Tilt versus altitude is
in Fig. 8. After a first movement to correct initial
conditions (the top sharp turn in Fig. 8), the tilt

profile resembles the smooth shape of a bang-bang

angle / rad

0 20 40 60 80 100 120
tls

Fig. 6 Monte Carlo profiles of the yaw angle

angle / rad

0 20 40 60 80 100 120
tls

Fig.7 Monte Carlo profiles of the pitch angle

5000 o

Pitch-g, —0.5 -0.2 0
Fig. 8 Tilt versus altitude

acceleration: acceleration, coasting and braking.
Zero terminal tilt is achieved in short time (the

bottom sharp turn in Fig.8). The peak value of

0.5 rad times (2 corresponds to the cone semi-

aperture of Gu..= n/4 in Eq. (60).

Fig. 9 shows the histograms from the 100 runs
of the body axial tilt at t=1;, defined in Eq. (69).
Fig. 10 shows the histogram of the absolute
horizontal velocity defined in Eq. (69). They meet

target requirements in Tab. 1.
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absolute tilt at terminal time and holds
035 — O . . -
ool [Eon0wisad] stk m/l
0.251 [y : : r — 'U[},i["’“l)[xj#"vkk[a (71)
= : .
S ki +uk J
& . u = v, + vyj T vk
E 0.]5" ......... Frannarerennaad {esrsreraraining
& : . .
0.10f where r, is fixed, r, and v, are derivatives in the
0.05} local frame. The local-to-planet transformation Rf
00 ' 0.005 0010 0.015 0.020 employs 2-1-3 Euler angles { A(t) + X, — L, y},
angle / rad where longitude A, latitude L and heading y refer
Fig. 9 Histogram of the axial tilt to O and are fixed, whereas A(t) accounts for the
absolute horizontal velocity at terminal time reference meridian rotation. Local coordinates @, of
0.25 _ o .
. [ = bin=0.015ms"' | the planet rotation w,= w,j, hold
0.20} T || s 0 SecL]
o = (R "o |= |cer
Z 0.15 — ......................... 0 S
5 5 b
z : 7
£ 0.10 ............................ G T RSL SacL o — 85 0
R[P — 0 CL SI \A Cy 0
0.05 ............... — 5 — OSL crepd O O 1
0 0.05 0.10 0.15 0.20 The kinematic equations of r is
velocity / (ms h . .
Fig. 10 Histogram the absolute horizontal velocity r=r+w, X (,+r)
4 Conclusion r= o+ w, X (w, X (r,+ 1)) + 2w, X 1,
(73)

The paper solves propulsion planetary descent
using combined attitude and CoM dynamics, which
is 4" order in the horizontal components. The
combined dynamics is not input-state linearized
which

internal stability to be proved. Control design has

requires a specific control design and
been done and stability has been proved in the

presence of external disturbances that are
unbounded and not stabilizable. Monte Carlo runs
show that the designed control is effective in
reaching the expected terminal requirements when
thrusters are switched off. Experimental test using

a quadrotor is under development.

5 Appendix

The equations of flight of a body over a
rotating planet are derived™. The position vectors

are defined as

-

ry — Cpov :l = @ 70)

lead to the local state equations:
vi() = r(, r0) =rg

vi(t) = F,(0)/m(t) — 1\

o X (o, X (r,+ 1)) — 20, X v,

m() =— p(0), m(0) = my, v,(0) = vy

-

(74
where local coordinates r;s v, and F, have been used
for position, velocity and force, and the mass flow
m has been added. Separating gravity, thrust and
aerodynamic forces, the second equation in Eq.
(74) is rewritten as

v =—g+d(0+Ra, g=[0 0 g]'

(75)
where g2~ 3. 7 m/s* (Mars ground), d, includes
aerodynamic forces and the kinematic accelerations
in Eq. (74), and a, denotes the thrust acceleration
in the body frame. Eq. (75) can be seen as the flat
approximation of the planetary

planet entry
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