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Abstract:

The present paper proposes a statistical model for describing sigmoidal crack growth rate curves.
Major novelties are: a) exploitation of the Maximum Likelihood Principle for obtaining material
estimates by pooling together experimental data belonging to the different crack propagation
regions; b) a general formulation which allows to adopt different sigmoidal models and any kind of
statistical distribution for the model variables; c) fatigue life predictions through numerical
integration of analytical functions with no need of Monte Carlo simulations.

Experimental data taken from NASGRO database are used to check the validity of the statistical
model in estimating material parameters included in the crack growth NASGRO algorithm.
Illustrative plots of number of cycles to failure and crack length after a given number of cycles are
presented, showing good agreement between the proposed statistical model and NASGRO results.
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Nomenclature
a = crack length

ao, Ao, Ay, B, Cep,, C;;l, D, q, ty, ps = constant coefficients of NASGRO model
a. = critical crack length

Ay Aeq iy Niaoyr Va1-ys Vay = y-thor (1 — y)-th quantiles

Aoy = final crack length after N cycles

as = initial crack length

C,n = random coefficients of NASGRO model

E[-] = expectation of a random variable

f, kq, k, = functions in NASGRO model

T T Foar Foal@kenieedr T ol (@K ens o kic) Jakens fakens o0 = PTObADIlity density functions

o By, v FNf »Froo Foglaken k) Fogr Fak,, = cumulative distribution functions
as, as !

K. = fracture toughness

K;. = plane strain fracture toughness

K?, Ko, vg, AKLy, AK 1 o0, = values assumed by random variables
KZ, Kicmin» AK{p » AKn1 o0 min = lower limits of integration

K;, Kicmax» AKny AKin1 comax = upper limits of integration
Kpax = maximum stress intensity factor (SIF)

Kpin = minimum SIF

L = Likelihood function

N = number of cycles

Nfas = number of cycles to failure

P[] = probability of an event

R = stress ratio

S, =yield strength

t = thickness

v, = In[da/dN] = natural logarithm of the crack growth rate

Y = geometry factor for SIF computation

AK = SIF range

AK;;, = random threshold SIF range

AK;p1 0 = random threshold SIF range at R — 1 and for long cracks (a > a)
Ao = stress range

Her Biper B Bog Haky,, . = lOCation parameters

p = correlation coefficient between C and n

0¢) OK1er Ons Ovgr O ey o0 = scale parameters

¢[:] = standardized Normal probability density function

®[:] = standardized Normal cumulative distribution function
0 = (6,,0,, ...,0,) = set of parameters in Likelihood function
“= estimate

-| -= conditional event



1. Introduction

Fatigue crack growth is statistical in nature. Life prediction and reliability evaluation are critical for
the design and maintenance planning of many structural components. Different algorithms for
predicting life of cracked components are available in the literature. However, as well discussed
in', most algorithms are not able to take into account statistical variability of the many material
parameters that are necessary to describe the crack growth phenomenon.

In general, crack propagation curves are represented in the double logarithmic plot of crack
growth rate, da/dN, versus the stress intensity factor (SIF) range, AK. Curves show a typical
sigmoidal shape with three distinct crack propagation regions: (I) near-threshold region limited by
threshold stress intensity factor range, AK,y; (I1) stable crack propagation region described by the
well-known Paris power law; (lll) unstable crack propagation region controlled by fracture
toughness, K.

Starting from Paris law, different models have been proposed to include the near-threshold region
and, in fewer cases, the unstable crack propagation region (e.g., Collipriest?, Priddle®, NASGRO®).
These models, all deterministic in nature, describe the sigmoidal shape of the empirical crack
growth curve. Among these models, due to its completeness, NASGRO algorithm is often
considered as the reference algorithm®”.

Several papers deal with statistical and stochastic models for crack propagation®*°. Nevertheless,
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due to the complexity of the phenomenon, most models are only based on the Paris law, so

that it is difficult to make a comprehensive evaluation of scatter characteristics of sigmoidal crack

growth curves. In more recent works">”*"*2

a nonlinear fitting is applied to experimental data in
the attempt to model the whole sigmoidal shape. Data fitting is applied separately to the different
crack propagation regions. When computed, fatigue life predictions employ time intensive Monte

Carlo simulations.

In the present paper, a general formulation for the statistical distribution of the crack growth rate
is proposed. The formulation allows for: a) exploiting the good asymptotic properties of the
Maximum Likelihood (ML) Principle in estimating material parameters by pooling together
experimental data points belonging to the three crack propagation regions; b) adopting different
sigmoidal models and any kind of statistical distribution for the model variables; c) making fatigue
life predictions through numerical integration of analytical functions.

Numerical examples based on NASGRO algorithm illustrate the potentiality of the proposed
statistical model.

2. Statistical distribution of crack growth rate

To identify a statistical model for sigmoidal crack-growth-rate curves, some initial hypotheses are
required:



1) AKy is a random variable (rv) with cumulative distribution function (cdf) F,x,, [-] and
probability distribution function (pdf) fAKth[-]: AK,y, values vary randomly from specimen to
specimen, even if specimens are made of the same nominal material;

2) K.isarvwith cdf Fy_[-] and pdf fx_[-]: K. values vary randomly from specimen to specimen,
even if specimens are made of the same nominal material;

3) AK;, and K, are independent rv’s;

4) the logarithm of the crack growth rate, given that 4K;;, = AK}}, and K. = K, is a conditional
rv, Va|(AKip, Ko), with cdf Fy a0 -] @and pdf fo 1k ko -

Considering hypotheses 1)-2), the probability of having no crack propagation at given minimum
SIF, K;pyin, and maximum SIF, K,,,,.., is equal to:

P[no crack propagation] = P[AK;;, = (Kjmax — Kmin)» K¢ > Kmax]- (1)

Recalling the definition of SIF range, AK = K, — Kinin, and of stress ratio, R = Kpin/Kmax =
1 — AK /K, 4., and by taking into account hypothesis 3), Equation (1) becomes:

P[no crack propagation] = (1 — Fag,, [4K]) - (1 — Fy, [f_—KR ) (2)

It must be pointed out that, for some combinations of AK and R values, if AK;;, and K are
continuous rv’s defined on the whole positive real axis, there is a nonzero probability of having a
specimen with 4K, larger than AK (meaning no crack propagation) and K, smaller than K,,,
(meaning specimen failure). This is obviously not acceptable from a physical point of view, since it
would mean that specimen failure is admissible in a no crack propagation region. Thus, a fifth
hypothesis must be added:

5) the event 4K, < K.(1 — R) is almost sure (i.e., P[AK,, < K.(1 —R)] = 1) for any R value
smaller than 1.

It is worth noting that hypothesis 5) adds a constraint to the relationship between the
distributions of 4K}, and K but it is not in contrast with hypothesis 3). Indeed, in order to fulfill
hypothesis 5), it is sufficient to assume for AK;; a continuous distribution with a fixed upper limit

*

value, 4K/}, and for K, a continuous distribution with a fixed lower limit value, K7, larger than
AKt*h/(l — R). Once the range of validity of the two distributions has been defined, random
values for AK;;, and K. can be independently drawn, thus fulfilling hypothesis 3).

As shown in Figure 1, hypothesis 5) can be graphically visualized with a AK axis representation
pertaining to a single specimen.
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Figure 1: Stress-intensity-factor-range axis representation of hypothesis 5).

According to hypotheses 3) and 5), and with reference to Figure 1, Equation (2) can be further
simplified:

P[no crack propagation] = P[AK., = AK] =1 — Fyg,, [AK].  (3)

It can be shown (Appendix A) that, taken hypotheses 1)-5) and Equation (3), the probability of
having the logarithm of the crack growth rate, v,, smaller than a specific value, v, is given by:

. K AK * .
Fva [va] =1- FAKth [AK] + fifKC (fAth Fva|(AKth,Kc)fAKthdAKth> dKCI (4)
1-R L

where F,_[v,;] is the cdf of v, evaluated at v;, 4K}, denotes the lower limit of 4K, and K

represents the upper limit of K.

Deriving the right-hand side of Equation (4) with respect to v,, it is possible to obtain the pdf of v,
as follows:

. K AK " *
fva [vel = ﬁfxc (fAK;h fvaI(AKth,Kc)fAKthdAKth) dK;, (5)
1-R L
where f,, [vg] denotes the pdf of v, evaluated at v,.

2.1. Parameter estimation

The distributions given in Equations (4) and (5) usually depend on a set of r unknown parameters,
0 = (6,,6,, ...,0,), which must be estimated from the experimental data set through an
appropriate estimation method.

Parametric estimation based on the ML Principle is a common practice, since it allows for
censoring and truncation of experimental data and it gives raise to estimators with good
asymptotic properties (consistency, unbiasedness, efficiency and normality™®).

In the following, the ML Principle is used to estimate the parameters involved in the statistical
model given in Equations (4) and (5).

* *

For the statistical model previously defined, with sample data v;;l, Vg, = Va,, at SIF levels
AK,, AK,, ..., AK,,, respectively, the Likelihood function, L[0], takes the form:

L16] = ITiLs fo,[va; AK;, 0].(6)



According to the ML Principle, the ML estimate 8 of 8 is the set of parameter values that
maximizes L[@] in Equation (6).

2.2. Number of cycles to failure

A first application based on the proposed statistical model is the estimation of the number of

cycles to failure, a quantity often required for reliability prediction of critical components®>*.

Given the initial crack length, a,, the number of cycles to failure, Nfas’ can be computed as follows:
p— aC -
Ny, = fas e Yada, (7)

where a, denotes the crack length leading to failure (i.e., the critical crack length).

It can be shown (Appendix B) that, taken Equation (7), the cdf of Nfas’ FNfa , is given by:
FNfas =1-F,. (8)

Taking into account Equation (8), if the y-th quantile of Nfas’ Nfas.y' is of interest, then it can be

computed from the (1 — y)-th quantile of v,, v4 1y, as follows:

Np oy = f:;’ye_”m—vda, (9)

where a.,, is the y-th quantile of the critical crack length. Indeed, a, is a monotone decreasing
function of v, (i.e., if vy 1 < V45, thenag, > a.,) and, as a consequence, if F,, = 1 —y, then
F,, = v. In particular, for given AK and R, a.,, in Equation (9) can be obtained by solving the
following equation:

AK[aC_y]]
1-R I

Y = Fx, [
where AK[ac,y] denotes the applied SIF range evaluated at a .
2.3. Crack length after a given number of cycles

A second application based on the proposed statistical model is the estimation of the crack length
after a given number of cycles, a relevant quantity required for planning inspection intervals of
critical componentszz.

Given the initial crack length, a,, the crack length after N cycles, e, ys CAN be computed by

solving the following integral:
— aeas, —Vq
N = fas N e~Yadq. (10)

It can be shown (Appendix C) that, taken Equation (10), the cdf of a, F, e is given by:
as,

ag,N’ ~ Qe

Fa, = Foe (12)



Considering Equation (11), the y-th quantile of a,, ,, a can be computed by solving the

sN’ “€ag,N)Y’

following equation:
N = [easN¥ ¢~vardq, (12)
where v, is the y-th quantile of v,.

3. Numerical example

In the attempt to show potential applications of the proposed statistical approach, a numerical
example is discussed hereafter based on the deterministic model adopted in the NASGRO sw v.
4.02*. Applicability of the approach goes beyond the illustrated example.

For sake of clarity, the NASGRO model is first rapidly recalled. Secondly, estimation of the
parameters necessary to the model is obtained by applying the ML principle to experimental data
taken from NASGRO database. lllustrative plots are drawn for statistical prediction of the number
of cycles to failure and of the crack length after a given number of cycles.

3.1. NASGRO model

NASGRO model was developed at NASA, based on formulation by Forman and Mettu®®. The crack
propagation law is:

da B 1_f n (1_AKth)p
% = ¢ (L ak) - i X (13)
(1-R)K¢

where f is the closure function and C, n, p and q are empirical constants.

The dependence of 4K;;, on a and R is described by the following equation:

( (1—R)(1+CthR)

1-f

AK AK | (1-44) "Ry’ =0
_ thi,00 _ thi,00 —Ag
ARen = ag kl [R] - \/70 { 1-r\(1+CHR) , (14)
1+7 1+7 (_)
—~=Fr R <0

(1—A0)(Cg—h_ct_hR)

where C;}, C;, and A, are constant coefficients, a, is the El-Haddad parameter* and AKip oo
denotes the threshold SIF range at R — 1 and a > a,.

The dependence of K. on specimen thickness, t, can be described by the following equation:
t 2
~(41z5)
K. = Kicka[t] = Kje | 1+ Bre Y70/ |, (15)

where K is the plane strain fracture toughness, A, B), are constant coefficients, and t; is defined
as:



2
t, = 2500 (K—’) . (16)
Sy

where §,, denotes the material yield strength.
3.2. Parameter estimation and applications

To introduce statistical variability in NASGRO model, the major sources of scatter have to be

1,5,6,13

identified. According to the literature , it can be assumed that:

e (in Equation (13) belongs to a LogNormal distribution with parameters . and o;

e nin Equation (13) belongs to a Normal distribution with parameters u,, and o;

e log[C] and n are jointly Normal®? with correlation coefficient equal to p;

e AK.p1 0 in Equation (14) belongs to a LogNormal distribution with parameters KAk s 0 and

GAKthl,w;

e Kj. in Equation (15) belongs to a LogNormal distribution with parameters u, and oy, .

The above assumptions are not the only one possible, as the proposed method is open to any
choice of distribution types. Alternative statistical distributions can be adopted and their suitability
evaluated by carrying out parameter estimation through the Maximum Likelihood Principle and by
comparing the obtained Likelihood values.

To ensure fulfillment of hypothesis 5), that is to make sure that the upper limit of the no crack
propagation region is below the lower limit of the specimen failure region, distributions of both
AKip1 o and K. have been truncated. Truncation limits are chosen as the best trade-off between
the need of providing a sufficiently wide support of the distribution and, on the other side, to
cover the widest range possible for the stress ratio R. By truncating the distribution of the
logarithm of 4K}y, o at HaKepr oo T 3JAKth1,oo and at pg, . — 30k, the distribution of the logarithm
of K., fulfillment of hypothesis 5) is ensured up to R values of 0.96. Symmetric truncation of each
distribution is applied so to maintain the symmetry of the distribution. Overall, the probability
associated to the truncation of each distribution is very low (equal to 0.3%).

Equation (17) is the statistical pdf adopted for computing the Likelihood function, L[@], given in
Equation (6). Equation (17) can be obtained from Equation (5) by considering as rv’s, 4K;y; o, and
K.

K cmax AK ,00,max * *
fva [6] = f ! fKIC (f " fVal(AKthLoo,KIc)fAKthLoodAKthl,OO) dKic, (17)

ch,min AKth1,oo,min

p— 7
where 8 = {1k, o1 OK sy cor Hitrer OKier Hes O Fons Oy 15 @)y AN the PAT'S, £ (ak sy k)
fakn.e @Nd f,., @and the limits of integration, AKip1 co,mins AKtn1,00,maxs Kic;min @nd Kiemax, are
listed in Table 1.
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Table 1: List of functions and limits of integration used in Equation (17).

& log[AKt*hl,oo] ~ HAK haeo
1 JAKthl,w

fAKtm,oo = AKt*hl,ooaAKthl,w 2(1)[3] -1

AKip1 oomin = e“AKch1,oo_3JAKth1,oo

{AKthl,OO,max = min [max[e”AKthl,oo_3‘74’(”11,00’ AK/k1 [0]]' g”AKth1,w+364Kth1,w]

o log[Kje] — ug,,
_ 1 UKIC
fee = Kiog, 20[3]1-1

= eH'ch+3o—ch

{ch,min = min[max[e1c73%ic, AK /k,[3.048]], e*¥1ct3%1c |

K[c,max

1 vc;i — Uy,
fval(AKthl,oo»KIc) = gq) [ oy

| -
_ k1[0] AK/pio 1 4K

A o, oK | 1T® [1 B kz[3.048]K_7c]

{ | t |

l Ov, = \/UCZ + a2(log[(1 — f) - AK])? + 2poco,log[(1 — f) - AK]

Note: ¢[-] and @[] denote the standardized Normal pdf and cdf, respectively. fUaI(AKthloOvKIc) has been obtained by

considering that v, |(4Kn1.00, Kic) = log[C] + n - log[(1 — f) - AK] + constant, where log[C] and n are jointly
Normal with correlation coefficient p.

To ensure conservative predictions25 and for sake of simplicity, g,, is assumed equal to 0 and,
consequently, n is considered a parameter to be estimated. With this assumption, o;,, becomes
equal to g, regardless of the value of the correlation coefficient p. Nevertheless, it is worth
noting that the assumption of o, equal to 0 can be relaxed, since 6,, and p can be treated as
parameters to be estimated, obviously at the price of increased computational complexity.

Coefficients f, k1[0], ap and k,[3.048], which appear in Table 1, can be computed through
functions and coefficient values listed in Table 2. Both functions and coefficients are taken from
NASGRO database and refer to an AISI 4340 steel plate, 3.048 mm in thickness, testedat R = 0
(ref. C4ADI13AB1 in NASGRO sw v. 4.02%).

11



Table 2: NASGRO functions and coefficients.

NASGRO functions NASGRO coefficients
ap _ {ao = 0.038 mm
1+—=1 @ aq
« =25
= (0.825 — 0.34a + 0.05a2)%/cos[nps/2] = 0.275 {;fs o
f = max[0,4,] = 0.275
ky[0]=(1— f)"1(1 — 4,) Ch = 1.378 Ch=0
to = 2500(E[Kc]/S ) = 0.0322e2HK1c ks S, = 1586 MPa
A, = 0.75
3.048)2 o2 k
k,[3.048] = 1+ Bye &% ) = 14 0.5e-2300% (1 ki) B, =05

Note: t, has been computed by substituting the expectation of K., E[K,.] = ”KICJ'J’(IC/Z to K. in Equation (16).

Parameter estimates are obtained by applying the ML principle to material data taken from
NASGRO database. The vector of estimates, obtained through a maximization code implemented
in MATLAB®, is found to be:

0 = {fiak,n1 000 OaKens oo Birer k1o s Ocs fins B, G} =
= {1.037, 0.161, 4.574, 0.174, —20.92, 0.166, 1.668, 2.549, 0.861},

where the tilde accent mark, *, denotes estimated values.

In order to plot crack growth rate functions for different probability values, it is still necessary to
define the estimated statistical cdf of v,, Fva [vs, AK]. Starting from Equation (4), F"va [vs, AK] can
be obtained by considering as rv’s, 4K;,; o and K., and by substituting the true functions with
the estimated functions:

F, [v3,AK] = 1 = Fpy,, [AK] +

a
K cmax AK ,omax ol * *
I fKIC (f~ " i FUa'(AKthl,oo,KIc) ) fAKthl,oodAKthl,oo) dKIC' (18)

KIC min AKthl,oo,mln

In Equation (18), the estimated pdf’s f;\Kthm and lec’ and the estimated limits of integration,
AK 11 oo mins AKent oo maxs Kicmin @nd K¢ max, can easily be obtained by substituting 8 to  in
Tables 1 and 2; in addition, the estimated cdf’s, FAKth [AK] and ﬁvaI(AKtm,oo.ch)' are respectively

equal to:
[log[AK/kl[O]]—ﬁAKthloo] o[3]-1
= 24+ -
r _ aAKthl,oo
FAKth[AK] - 2@[3]_1
and

= _ Va—Hy,
Fva|(AKth1,oo,KIc) - (D[ g ]

12



Figure 2 shows estimated crack growth rate functions for different probability values, y. For each
y, the sigmoidal curve is obtained by solving Fva [17;,1,, AK] = y with respect to 7, ,, for different
AK values. As it can be observed, probabilistic curves conform well to experimental data.

Furthermore, the model well represents the well-known larger data scatter in the near-threshold

%

and unstable crack propagation regions.

4
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1 509/ | [«T—25
2

4 6 8 10 20 40 60 80 100 200
SIF Range

[MPa-ym]

Crack growth rate
[m/cycle]

Figure 2: Plots of crack growth rate functions obtained with the proposed statistical distribution at
different probability values. Experimental data points are taken from material NASGRO database”.

Once the y-th quantile curve of v, is estimated, the (1 — y)-th quantile of the number of cycles to
failure can be obtained through Equation (9). In Equation (9), integration with respect to a is
possible after having expressed the SIF range AK as a function of the stress range, Ao

AK =Y[a] Ao V7 a.
where Y[a] is the geometry correction factor.

Similarly, probabilistic curves of the crack length after a given number of cycles can be obtained
through Equation (12).

The illustrative plots of Figure 3 and 4 are drawn for the case of a center-through crack in a tensile
100x10 mm plate. For a center-through crack of finite width plate, the geometry correction factor

can be expressed as:
a
Y[a] = /secant [TL’ ;],

where 2a is the crack length and w is the plate width.

13
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Figure 3: Number of cycles to failure for different initial crack lengths: comparison between

simulated (empty circles) and proposed analytical cumulative distribution functions (black lines).

Ao =350 MPaatR = 0.

The data denoted as “NASGRO simulations” in the legend, that appear in Figures 3 and 4, were
obtained by running one hundred NASGRO computations. The required input material
parameters, AK;p; o, Kjc and C, were randomly drawn (Monte Carlo simulations) from the
estimated distributions; the other parameters, n, p and g, were taken from the vector of

estimates 0. As in the case of Figure 2, the proposed statistical model well compares with NASGRO

results.
0035 1250 /
' | | 95%
| ‘10% [
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0 2000 4000 6000 8000 10000 12000 14000

Number of cycles

Figure 4: Final crack length after different number of cycles: proposed analytical curves at
different probability values (black lines) as they compare with 100 NASGRO simulations (grey
lines). Ac = 350 MPaatR = 0; ag = 12.91 mm.

It should be noted that probabilistic curves plotted in Figure 2 are obtained by computing exact
confidence intervals for v, at different AK values (point-wise confidence bands). In this respect,
they only approximate the exact confidence bands for the curve of v, as a function of AK
(simultaneous confidence bands). Indeed, it is well known in the literature® that, even if
commonly adopted for estimating probabilistic curves, point-wise confidence bands do not
generally coincide with simultaneous confidence bands and can only provide approximated

14



results. Consequently, if point-wise confidence bands are considered for computing the number of
cycles to failure or the crack length after a given number of cycles, the computed values only
approximate the exact results. Nevertheless, approximation is generally negligible, as shown in
Figures 3 and 4.

4. Conclusions

A statistical distribution for the sigmoidal crack growth rate function is introduced. Due to the
general nature of the proposed distribution, any deterministic sigmoidal crack propagation model
can be utilized.

For obtaining material estimates, the ML Principle is adopted. No distinction among the three
regions of crack propagation is considered: all data points were taken into account as belonging to
the same population.

Reliability predictions (i.e., the number of cycles to failure and the crack length after a given
number of cycles) are obtained through numerical integration of analytical functions with no need
of Monte Carlo simulations.

Effectiveness of the proposed statistical model is shown through examples based on NASGRO
algorithm.

Further research is in progress to extend the applicability of the developed statistical distribution
to the case of variable amplitude loading, including load-interaction effects (e.g., Wheeler and
Willenborg load-interaction models).

15



APPENDIX A
Cumulative distribution function of v,

Taken hypotheses 1)-5) in Section 2, the probability of having, in the stable crack propagation
region (Figure 1), v, smaller than v, is given by:

AK
P[va v, AKey < 0K, Ko > o7 _R)] -
AK * * * * * *
— (e ch[ ¢l (f Fyy kim0 [Vas AK i K fak [AKth]dAKth) dK;:. (A.1)

Whereas the events AK < AK;y,, AK;, < AK < K.(1 — R) and 4K = K_.(1 — R) form a partition
of the whole sample space (Figure 1), it follows that the probability of the event v, < v is given
by:

Plv, < v;] = Plv, < v;|AK;, = AK)P[AKyy, = AK] +

+P v, < Vi, ARy < AK K, > R)]+P[va<va|1{ <Zplk. <] (a2

Since v, approaches —o (i.e., the crack growth rate is equal to 0 in the no crack propagation
region) when 4K, = AK, then P[v, < v;|AK;;, = AK] = 1; moreover, since v, approaches +o

(i.e., the crack growth rate is infinite when failure occurs) when K, < ﬁ, then

P [va <vilK, < f_—KR] = 0. Therefore, Equation (A.2) simplifies as follows:

Plv, < v:] = P[AK,, = AK] + P [va vi, MKy < AK, K, > (A.3)

(1 R)

Taking into account Equations (3) and (A.1), Equation (A.3) finally yields:

Fuylvi) = 1= Fay (8K + (3 fi KE) (S, Peotaminio foen 2K ) AR

APPENDIX B

Cumulative distribution function of Nfas

Consider two different crack growth rate functions, whose logarithms are denoted as v, ; and
Vg,2. Suppose that v, ; is defined in the range (ath_l, ac,l), where a;;, ; denotes the threshold
crack length of v, ; (crack length value for which v, ; = —o) and a. , is the critical crack length of
V41 (crack length value for which v, ; = +00). Analogously, suppose that v, , is defined in the
range (ath'z, acjz), where a,y, , denotes the threshold crack length of v, , (crack length value for
which v, , = —) and a., is the critical crack length of v, , (crack length value for which

Va2 = +o0).Furthermore, suppose that v, ; < v, ,. Being the logarithm of the crack growth rate a
monotone increasing function ranging from —oo to +oo, then as,, < agp 1 and ag, < ac ;.

Suppose that a;p, < appq < ag < ac, < aq, then Equation (7) becomes:
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a —
Nfas,1 = fa:‘l e Ua’ldar (Bl)
when v, ; is considered, and
a —
Ng, ., = fasc’z e Yazdaq, (B.2)
when v, , is considered.

The domain of integration of Equation (B.2) can be extended up to a4, since V22 = 0 in the

range [ac,z’ ac,l]:

= [(?e~Vazda + [** 0da = [*°* e™Pe2da. (B.3)
ag Ac2 Qs

fas,2

Taking into account Equations (B.1) and (B.3) and considering that v, ; < v, , and, consequently,
e Va1 > e7Vaz it follows that Nfas1 > Nfasz' Therefore, according to Equation (7), Nfas isa

monotone decreasing function of v,.

According to Theorem 2.1.3 in?’, if a, < as < a., the complementary cdf of Nfas is finally given

by:

1-F (B.4)

=F
Nfq, |ath<a5<ac valaip<as<ac’

where F is the conditional cdf of Nfas given that a;, < a; < a, and Fy g, <a.<a,

Nfaq |ath<as<ac

denotes the conditional cdf of v, given that a;;, < ag < a..

Taking Equation (7), if a; = a., then Nfas = 0 and, as a consequence:

1-F =plo>nN; |=0, (8.5)

>
Nfas|as_ac

where F is the conditional cdf of Nfas given that a; > a..

>
Nfag |a5_ac

Finally, if a; < a;p, then Nfas — 400 and, as a consequence:

1-F =P+ >N |=1.  (86)

Nfas|a55ath

where F . is the conditional cdf of Nfas given that ag < aqy.

Nfas|assat
Provided that the events ay < a;p, aw, < ag < a. and ag = a, form a partition of the whole
sample space, it follows, from Equations (B.4)-(B.6) that the complementary cdf of Nfag is given by:

1- FNfas = Plag, = a] + Fvalath<as<acp[ath <as <acl. (B.7)

Since the SIF range is a monotone increasing function of the crack length, then a;;,, a. and ag in
Equation (B.7) can be substituted by AK;,, K.(1 — R) and 4K (ay can be any a value below a.),
thus giving:
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1—Fy, =P[AKy, = AK] + P[v, < v;, 4Ky, < AK <K, (1—R)].  (B.8)

Taken (Equation A.3):

AK

P[ve < 3] = P[AKyy, = AK] + P [vq < v, AKey < AK, K, > =],

equation (B.8) finally yields:
1- FNfaS = Plv, < vl = F,,
or, equivalently:
FNfas =1-F,.
APPENDIX C

Cumulative distribution function of Ae, v

Consider the two functions v, ; and v, , introduced in Appendix B: i.e., v, ; defined in the range

(ath’l, ac,l), Vg, defined in the range (ath,z, ac,z), being v, ; < vg,.

Suppose that a,p , < a1 < a5 < ac, < a.;. For agiven N, since the integrand in Equation (10)
is a positive-definite function, if v, ; < v, (i.e., e77a1 > e7Va2), then there must exist two
different Aeq n values, Aeg yo1 and Ay n,20 such that:

N = fafasw'le—”a,lda, (C.1)
when v, ; is considered, and
N = [ esn? e~vazda, (C.2)

when v, , is considered. It is worth noting that the given value of N is upper limited to Nfas; this
follows from considering that the integral function in Equation (10) reaches the value Nfas when

e, y = Ac, and remains equal to Ny, in the open range [a;, +).

According to Equation (10), N represents the area enclosed by function e V¢, in the range

[as, aeasN], and the a-axis: therefore, taking into account Equations (C.1) and (C.2), in order to
maintain the area constant, if e 7Y@1 > e~Ya2, then it must be Qe 1 < Qeg y,2- Therefore, Ay n
is a monotone increasing function of v, and, according to Theorem 2.1.3in”, if a,, < a5 < a,, a

conditional cdf of Aey n7 is finally given by:

F (C.3)

=F,
aeaS,N|ath<as<aC Valatp<as<ac’

where Faeasw apn<as<a, 'S the conditional cdf of e,y BiVEn that a;, < ag < ag.
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Taken Equation (10), if ag = a, then Aoy y ~ +o00 regardless of the value of N and, as a

N
consequence:
oo fasza = P [+oo < aeas,N] =0, (C.4)
where F . N|a52ac is the conditional cdf of Aoy n given that ag > a..
as,

Finally, if a; < a;y, then Aoy y = s regardless of the value of N and, as a consequence:

N

=P [as < aZaS‘N] = 1. (C.5)

Aeqo N |assath

where F . is the conditional cdf of e, v BIVEN that a; < agp.

eas‘N|a55at

Provided that the events ag < a;p, aip < ag < a. and ag = a. form a partition of the whole
sample space, it follows, from Equations (C.3)-(C.5) that the cdf of Aoy is given by:

= Play, = ag] + Fvalath<a5<acp[ath <as <acg. (C6)

aeaS,N

Since the SIF range is a monotone increasing function of the crack length, then a;y, a. and ay in
Equation (C.6) can be substituted by 4K;;,, K.(1 — R) and 4K (a, can be any a value below a_),
thus giving:

F, = P[AK; = AK] + Plv, < v}, AK < AK < K.(1 = R)]. (C.7)

€ag,N
Taken (Equation A.3):

AK

P[ve < va] = P[AKyy, = AK] + P [vq < 03, AKey < 4K, K, > =25],

equation (C.7) finally yields:

Geqn = Plv, <vg]l = F,,.
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