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Create the truth that you wish to know; and I, 

in knowing the truth that you have proposed to 

me, will make it in such a way that there will 

be no possibility of my doubting it, since I am 

the very one who has made it. 

 

“Seeing knowing”, 2004, Castello di Rivoli. 

Joseph Kosuth quoting Giambattista Vico 
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ABSTRACT 

 

This work studies the possibility of using surface wave analysis as a tool for a robust 

estimation of the S-wave velocity  behaviour in laterally varying media.  The surface 

wave method, in fact, can be effectively adopted for different purposes and at different 

scales, but I focused on the geo-engineering and geotechnical applications of surface 

wave analysis and also on the production of near-surface models for deep exploration: 

in both cases the  aim is to retrieve the trend of the S-wave velocity in the first tens up 

to hundreds meters of depth of the subsoil. The surface wave method exploits the 

geometric dispersion proper of surface waves: in a non-homogeneous medium every 

frequency is characterized by a different phase velocity, as every frequency component 

travels through a portion of medium whose thickness is proportional to its wavelength. 

The curve associating every frequency component to its phase velocity is called 

dispersion curve, and it constitutes the experimental datum one uses for the solution of 

an inverse problem to estimate the behaviour of S-wave velocity in the subsurface. The 

inversion is performed by assuming a 1D forward modelling simulation and suffers 

from equivalence problems, leading to the non uniqueness of the solution. Despite its 

great ductility, the main limitation of surface wave method is constituted by its 1D 

approach, which has proved to be unsatisfactory or even misleading in case of presence 

of lateral variations in the subsoil. The aim of the present work is to provide data 

processing tools able to mitigate such limitation, so that the surface wave method can be 

effectively applied in laterally varying media. 

As far as the inadequacy of surface wave method in case of 2D structures in the subsoil, 

I developed two separate strategies to handle smooth and gradual lateral variations and 

abrupt subsurface heterogeneities. In case of smooth variations, the approach I adopted 

aims at “following” the gradual changes in  subsoil materials properties. I therefore 

propose a procedure to extract a set of neighbouring dispersion curves from a single 

multichannel seismic record by applying a suitable spatial windowing of the traces. 

Each curve corresponds to a different subsoil portion,  so that gradual changes in subsoil 

seismic parameters can be reconstructed through the inversion of dispersion curves. The 

method was tested on synthetic and real datasets, but proved its reliability in processing 

the data from a small scale seismic experiment as well.  In the context of characterizing 

smooth 2D structures in the subsurface via the surface wave method, I also developed a 

procedure to quantitatively estimate the (gradual) lateral variability of model parameters 



Paolo Bergamo                                      Surface wave analysis in laterally varying media 

 II  

by comparing the shape of local dispersion curves, without the need to solve a formal 

inverse problem. The method is based on a sensitivity analysis and on the applications 

of the scale properties of surface wave. The procedure can be devoted to different 

applications: I exploited it to extend a priori local information to subsoil portions for 

which an experimental dispersion curve is available and for an estimation of the lateral 

variability of model parameters for a set of neighboring dispersion curves. The method 

was successfully applied to synthetic and real datasets.  

To characterize sudden and abrupt lateral variations in the subsurface, I adopted another 

strategy: the aim is to estimate the location and embedment depth of sharp 

heterogeneities, to process separately the seismic traces belonging to quasi-1D subsoil 

portions. I adapted several methods, already available in literature but developed for 

different purposes and scales, to the detection of sudden changes in subsoil seismic 

properties via the analysis of anomalies in surface wave propagation. I got the most 

promising results when adapting these methods, originally developed for single shot 

configurations, to multifold seismic lines, exploiting their data redundancy to enhance 

the robustness of the analyses.  

The outcome of the thesis is therefore a series of processing tools that improve the 

reliability and the robustness of surface wave method when applied to the near surface 

characterization of laterally varying media.  
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INTRODUCTION 

 

Surface wave (SW) method has progressively established as an effective and reliable 

tool for the estimation of the mechanical properties of subsoil and materials. Its ductility 

has given birth to a wide range of applications, for different scales and purposes: from 

micro to macro scales, ultrasonic surface waves are exploited to identify material 

defects (Scales and Malcolm 2003), while seismologists use surface waves produced by 

earthquakes to investigate the structure of the earth’s crust and of the upper layers of the 

mantle (see for instance Trampert and Woodhouse 2005). At intermediate scales, 

geophysicists and geo-engineers make use of surface wave for the estimation of S-wave 

velocity in the first tens or hundreds of meters of the subsurface. This particular f ield 

has in turn a great number of applications: surface waves are used for the 

characterization of the near surface weathering layers in seismic hydrocarbon 

exploration (Bohlen et al. 2004), but also for the estimation of the dynamic behaviour of 

soils in structural engineering. As for the latter application, SW method has nowadays 

become a standard for seismic risk assessment studies, and has involved part of the 

activity of my doctorate (Bergamo et al. 2011, Foti et al. 2011).  Despite this great 

variety of purposes, all applications exploit the same property of SW, that is the 

geometric dispersion which occurs when surface waves travel through a non-

homogeneous medium (Socco and Strobbia 2004). Different kinds of surface waves can 

be generated and therefore analyzed (Love waves, Scholte waves, P-guided waves) but 

generally SW method exploits Rayleigh waves, which are easily generated and/or 

recorded on the ground surface.  

All surface wave analysis applications share the same procedure, which is based on 

three successive steps: 

1) acquisition of the experimental data. Recorded signal can be either generated by an 

active source (active methods) or by ambient noise or earthquakes (passive methods); 

2) acquired data are then processed to extract the experimental dispersion curve, that is 

a curve expressing the relationship between the frequencies and their respective phase 

velocities, caused by the geometric dispersion proper of SW. The dispersion curve can 

comprise more than one propagation mode; 

3) finally, the experimental dispersion curve undergoes an inversion process through 

which model parameters are estimated. 
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According to the scale and the application, these three steps can be achieved following 

different approaches. However, for geotechnical and geo-engineering applications, 

which are of greater interest for this work, the acquisition is performed with a 

multichannel array of vertical low-frequency geophones: the recorded seismogram is 

then converted to the frequency-wavenumber (f-k) or frequency-slowness (ω-p) domain, 

where the energy maxima are identified to extract the experimental dispersion curve. As 

far as the inversion is concerned, it exploits 1D forward modelling to estimate a 1D S-

wave velocity profile. Notwithstanding its great ductility, the SW method is however  

characterized by a 1D approach which might prove unsatisfactory, and sometimes 

misleading, when the method is applied in 2D environments (Semblat et al. 2005). 

In literature some strategies to overcome this limitation are present. A first strategy is 

based on a spatial windowing of the seismic traces (Bohlen et al. 2004; Boiero and 

Socco, 2011), so that the dispersion curve becomes a local property of the subsoil 

beneath the receivers whose traces are weighted more. This solution can be successfully 

and effectively adopted in case of smooth lateral variations: if the spatial window is 

successively shifted along the seismic profile, a set of dispersion curves can be extracted 

and the gradual change in subsoil seismic parameters can be reconstructed with a 

laterally constrained inversion of the dispersion curves yielding a pseudo-2D section of 

the shear wave velocity in the subsurface (Socco et al. 2009, Bergamo et al., 2010). In 

case of sharp and sudden 2D effects in the subsurface, another strategy should be 

preferred: it consists in estimating the location of discontinuities in seismic parameters 

of the subsoil and in processing separately seismic traces belonging to quasi-1D 

subsurface portions (Vignoli and Cassiani 2010, Vignoli et al. 2011).  

As for the last stage of SW analysis, that is the experimental dispersion curve inversion, 

different approaches have been developed. Most of them adopt deterministic (or local 

search) inversion techniques , that imply an iterative updating of the initial model based 

on the computation of partial derivatives. Being the data-model relationship for SW  

strongly non linear, the inversion suffers from equivalence problems (Tarantola 2005, 

Foti et al. 2009): great care must then be paid when choosing the initial model, as the 

non-uniqueness of the solution makes the inversion result very sensitive to it, driving 

the inversion towards local minima if the initial model is not correct (Sambridge 2001, 

Luke et al. 2003 and Wathelet 2005). The issue can then be faced by preferring  a global 

search method inversion algorithm, which is able to highlight the presence of 

equivalence problems by providing a set of solutions equally satisfying the experimental 
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data. A global search approach, however, implies greater computational costs with 

respect to deterministic inversion methods (Socco et al. 2010). The robustness of  SW 

inversion can be signif icantly improved by exploiting a priori information and/or other 

geophysical data available for the investigated site to produce a reliable initial model for 

local search algorithms or run a constrained or  joint inversion (Wisèn and Christiansen 

2005 and Schuler 2008). A similar  strategy is also applied by laterally constrained 

inversion (LCI) algorithms, where a set of  dispersion curves is inverted simultaneously 

and each  1D model is linked to its neighbours with mutual constraints to provide a 

single pseudo-2D model, thus increasing the robustness of the inversion process. 

Laterally constrained inversion,  in particular, has  proven to be an effective tool for the 

inversion of a set of neighbouring dispersion curves (Socco et al. 2009). 

The research activity that is presented in this work is mainly devoted to analyse and 

mitigate the  inability of SW method to adequately investigate lateral variations in the 

subsoil. I separately approached the problems arising from smooth, gradual 2D 

structures in the subsoil and from sharp lateral heterogeneities. As far as smooth lateral 

variations are concerned, I adopted the strategy to locally focus the investigation and to 

follow the gradual changes of subsoil seismic properties. The approach providing a 

local focusing of the examination has been chosen, among others, by Bohlen et al. 

(2004) who propose to spatially window the seismic traces: traces amplitudes are 

suitably weighted, to mitigate the effect of lateral variations and to centre the 

investigation within a certain spatial range. In this way the dispersion curve becomes a 

local property of the subsoil beneath the receivers whose traces are weighted more. I 

have set up a procedure to retrieve 2D structures from SW acquired with a limited 

number of receivers, for engineering or geotechnical purposes (Bergamo, Boiero and 

Socco 2010). My technique is based on a two-step process:  

1) extraction  of several local dispersion curves along the survey line using a spatial 

windowing  based on a set of Gaussian windows with varying shape whose maxima 

span the array line; 

2) inversion of the retrieved set of dispersion curves using a laterally constrained 

inversion (LCI) scheme based on a pseudo-2D model parameterisation together with 1D 

forward data simulation.  

Another procedure I developed to face smooth lateral heterogeneities in the subsurface 

allows to quantitatively estimate the lateral variability of model parameters by 

comparing the shape of local dispersion curves, without the need to perform their 
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inversion. The algorithm is based on a sensivity analysis and on the applications of the 

scale properties of surface wave (Maraschini et. al 2011). The procedure can be devoted 

to different applications: I exploited it to extend a priori punctual information to subsoil 

portions for which an experimental dispersion curve is available and for an estimation 

of the lateral variability of model parameters for a set of neighbouring dispersion 

curves. The first application allows to produce a consistent initial model based on a 

priori information accustomed according to local SW data; the evaluation of the 

expected spatial variability of model parameters was used to provide a data-consistent 

setting of the lateral constraints for a laterally constrained inversion (Boiero et al. 2009).  

As for handling sharp and abrupt subsoil heterogeneities, instead, I adopted a different 

strategy: the aim is not following smooth gradual variations but identifying  the location 

of sudden discontinuities to process separately the traces belonging to quasi 1D subsoil 

portions (see for instace Vignoli et al. 2010). For this purpose, I tested the applicability 

and the effectiveness in retrieving discontinuities in the subsoil of three methods, all of 

them exploiting the detection of anomalies: multi-offset phase analysis of surface wave 

(MOPA, introduced by Strobbia and Foti 2006), autospectrum method (described by 

Zerwer et al., 2005) and the attenuation analysis of Rayleigh waves (AARW, Nasseri-

Moghaddam et al., 2005). Although already available, these methods were originally 

developed for different purposes and different scale problems: therefore, I tested them 

on the same synthetic and real dataset, both of them characterized by the presence of a 

fault perpendicularly crossing the array line (Bergamo and Socco 2011).  

The aforementioned methods were implemented in Matlab ® and were f irst tested on 

synthetic datasets and later applied to real data.  In one case, the algorithm was also 

tested on seismograms derived from a small-scale seismic survey performed on a 

physical model.  

As for the synthetic datasets, they were produced to verify the applicability of the 

developed algorithms and to test their effectiveness in facing different kinds of lateral 

heterogeneities. I adopted several methods to generate the synthetic data: f inite element 

method (FEM) and finite difference method simulations were performed, but I also used 

a code implemented at Politecnico di Torino (Boiero 2009) able to model semi-

analytically only the Rayleigh wave propagation through a layered medium. As already 

mentioned, I also processed a dataset obtained from a small-scale seismic survey 

performed on a physical model. The experiment was performed at the Acoustics 

Laboratory of the Université du Maine, in Le Mans, France. The small scale model was 
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constituted by granular materials and the acquisition was obtained with a laser-Doppler 

interferometer: thanks to a proper choice of the materials, grain size and deposition 

process, I managed to produce a layered medium characterized by a 2D geometry.  

Small scale experiments are in fact gaining popularity in surface wave analysis literature 

because they allow to perform measurements on models whose geometry and 

mechanical properties are known and, at the same time, they are able to yield datasets 

whose quality is not far from the  real case acquisitions (their datasets are therefore 

more realistic than those derived from numerical simulations: see for instance 

Campman et al. 2005 and Bodet et al. 2010). The methods developed for the present 

work were eventually applied to real cases. Again, I used different kinds of field data: I 

exploited  MASW (multichannel analysis of surface wave) acquisitions,  but also 

seismic reflection surveys, performed in both cases for seismic risk assessment studies.  
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1 - RETRIEVING 2D STRUCTURES FROM SURFACE WAVE DATA  BY 

MEANS OF A SPACE-VARYING SPATIAL WINDOWING 

 

In this first chapter I introduce a processing technique I developed to reconstruct 

smooth lateral variations in the subsurface by means of the application of surface wave 

analysis. The technique is based on the spatial windowing of traces amplitudes, which 

allows to locally focus the investigation and, therefore, to “follow” gradual 2D 

structures in the subsoil, even when a limited number of shots is available. 

 

ABSTRACT 

Surface wave techniques are mainly used to retrieve 1D subsoil models. However, 

in 2D environments the 1D approach usually neglects the presence of lateral variations 

and, since the surface wave path crosses different materials, the resulting model is a 

simplified or misleading description of the site. We propose a processing technique to 

retrieve 2D structures from surface wave data acquired with a limited number of 

receivers. Our technique is based on a two-step process. First, we extract several local 

dispersion curves along the survey line using a spatial windowing based on a set of 

Gaussian windows with different shape; the window maxima span the survey line so 

that we are able to extract a dispersion curve from the seismogram for every window. 

This provides a set of local dispersion curves each of them referring to a different 

subsurface portion. This space varying spatial windowing provides a good compromise 

between wavenumber resolution and the lateral resolution of the obtained local 

dispersion curves. In the second step, we invert the retrieved set of dispersion curves 

using a laterally constrained inversion scheme.  We applied this procedure to the 

processing of both synthetic and real data sets and the method proved to be successful in 

reconstructing even complex 2D structures in the subsurface. 

 

 

INTRODUCTION 

Surface waves (SW) analysis is usually applied to estimate 1D subsurface shear 

wave velocity (Vs) models. However, when applied in 2D environments this 1D 
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approach might prove unsatisfactory and, sometimes, misleading (Boiero and Socco, 

2011). Indeed, in a fully 1D environment the dispersion curve represents the seismic 

properties of the subsurface, but the presence of lateral variations beneath the receiver 

spread affects the SW propagation and this should be accounted for when processing the 

data to retrieve the dispersion curves. Therefore, the question is: since the 1D approach 

neglects the presence of lateral heterogeneities, what is  the retrieved dispersion curve 

representative of in case of 2D structures in the subsurface? Can we refer the dispersion 

curve to an “average” subsurface shear wave velocity profile or does it represent a 

particular portion of the investigated subsurface?  

In the case of weakly laterally varying media, Boiero and Socco (2011) showed that, 

depending on the lateral variation pattern and wavenumber resolution of the measuring 

array, the dispersion curve, retrieved by applying wavefield transforms over the whole 

receiver spread, can be either representative of the average slowness along the 

propagation path or be definitely not representative of any portion of subsurface beneath 

the array. They also showed that in these cases the application of spatial windowing can 

make the dispersion curve representative of the local subsurface velocity beneath the 

window maximum. When strong and abrupt heterogeneities occur in the subsurface, 

they are likely to produce significant deviations of the SW path from the shortest path 

between source and receiver, with induced coupling between modal contribution 

(Strobbia and Foti, 2006).  Lin and Lin (2007) have proven that artifacts can be 

introduced in 2D Vs imaging if the effect of lateral heterogeneity is not accounted for. In 

literature some strategies to apply SW analysis in case of lateral variations are available 

(Socco et al., 2010). A first strategy is to detect discontinuities in subsurface seismic 

parameters and to process separately seismic traces belonging to quasi-homogeneous 

subsurface portions. This can be achieved by several approaches (see for instance 

Nasseri-Moghaddam et al., 2005, Zerwer et al., 2005, Strobbia and Foti, 2006, Vignoli 

and Cassiani, 2009). Another strategy, of greater interest for this work, is based on the 

spatial windowing of the seismic traces: trace amplitudes are suitably weighted, to 

mitigate the effect of lateral variations and to focus the investigation within a certain 

spatial range. In this way the dispersion curve becomes a local property of the subsoil 

beneath the receivers whose traces are weighted more. Bohlen et al. (2004) proposed an 

approach based on a moving spatial window for processing and extracting dispersion 

curves which are then inverted to generate a 2D shear wave velocity pseudosection. 

They applied it to a marine data set acquired for exploration purposes and indeed, 
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methods based on a moving window may only be applied to very long survey lines, like 

those used in exploration seismic reflection. On the contrary, we propose a processing 

technique to retrieve 2D structures from SW acquired with a limited number of 

receivers, for engineering or geotechnical purposes (Bergamo et al., 2010). Our 

technique is based on a two-step process:  

• extraction  of several local dispersion curves along the survey line using a spatial 

windowing  based on a Gaussian window with varying shape; 

• inversion of the retrieved set of dispersion curves using a laterally constrained 

inversion (LCI) scheme based on a pseudo-2D model parameterization together with 1D 

forward data simulation.  Auken and Christiansen (2004) first introduced LCI approach 

for the interpretation of resistivity data, and  Wisén and Christiansen (2005) and Socco 

et al. (2009) successfully applied it to the inversion of  SW data: LCI is a deterministic 

inversion in which each 1D model is linked to its neighbors with mutual constraints to 

provide a single pseudo-2D model.  

We present the proposed method in the following section and then we apply it to 

synthetic and field data.  

 

METHOD 

We firstly outline the proposed technique and then we discuss the consequences of 

its application in terms of lateral resolution and wavenumber resolution of the retrieved 

dispersion curves. 

The processing technique 

In the case of both weak and sharp lateral variations below the survey line, the 

dispersion curve assumed as corresponding to a 1D subsurface profile might not be 

representative of the seismic characteristics of the subsurface: a strategy to mitigate this 

problem is to focus the dispersion curve estimation on the array centre to reduce the 

effects of the lateral variations and make the dispersion curve a local property of the 

subsoil beneath the array centre (Boiero and Socco, 2011). Bohlen et al. (2004) have 

suggested to window the seismogram in the spatial domain with a Gaussian window. 

We propose to substitute this symmetric window with the maximum in the centre of the 

receiver array, with several windows whose maxima span the array (Figure 1.1).  
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Figure 1.1 – Gaussian windows used for the spatial windowing of the seismogram. 

Parameter α is 6 for all windows, parameter β is different for each window. 

 

For every window we extract a dispersion curve from the seismogram thus 

retrieving a set of dispersion curves, each of them referring to a different subsurface 

portion. We use a Gaussian window defined as follow: 

Nkew N

Nk

k ,...,1,0

2

2/2

1

1 ==







 −−

+

βα
                                                                                                (1) 

where w is the weight that is assigned to the k+1th trace, N  is the number of spatial 

samples minus one, β is a number ranging from 0 to 1 indicating the relative position of 

the maximum of the window with respect to the array length and α≥2 is a parameter 

inversely proportional to the window standard deviation σ, as 

ασ
2

N=                                                                                                                           (2) 

 Note that parameters α and β define the shape of the window: α, in particular, is  

related to the width of the window (Figure 1.2), which controls the extent of the 

investigated portion of subsoil and, thus, the lateral resolution of the retrieved 

dispersion curves. The following section explains in detail how we need to choose 

parameter α to conceal the wavenumber resolution requirements of the related 

frequency-wavenumber (f-k) spectra and the desired lateral resolution of the dispersion 

curves.  
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Figure 1.2 – Effect of parameter α on Gaussian windows shape. Parameter β is 0.5 for 

all windows, parameter α ranges from 3 to 7. 

 

 To summarize, we are able to extract several dispersion curves, each of them 

referred to a different subsurface portion, from the same seismogram by windowing it in 

space domain with a set Gaussian windows with constant α (i.e.: same Gaussian 

windows bell width) and increasing β  values (i.e.: different positions for the windows 

maxima). We conventionally refer every dispersion curve to the position of the 

corresponding window maximum. Moreover, we do not take into consideration the 

Gaussian windows whose maximum is 2σ or less far from one of the ends of the 

receiver array to avoid the cutting of the window tails. If two or more shots are available 

for the same array position, we can stack the f-k spectra from different shots with the 

same spatial windowing, thus improving the signal to noise ratio (Grandjean and Bitri, 

2006; Neducza, 2007): we then perform the picking of maxima on each stacked f-k 

spectra, obtaining higher quality dispersion curves.  

 We invert the set of dispersion curves obtained from the previously described 

procedure using a laterally constrained inversion (LCI) scheme based on a pseudo 2D 

model parameterization together with 1D forward data simulation (Auken and 

Christiansen, 2004, and Socco et al., 2009). The LCI is a deterministic inversion scheme 

inverting all the dispersion curves simultaneously, minimizing a common objective 

function: corresponding parameters from neighboring 1D models are linked by means 

of constraints that act as a regularization of the inversion process. The number of output 

1D models is equal to the number of dispersion curves, yielding a 2D pseudosection of 
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the S-wave velocity in the subsurface. LCI has proven to be a valuable tool able to 

retrieve 2D effects and to reconcile lateral variability with global homogeneity (Boiero 

and Socco, 2010). Its application as inversion scheme for our technique is justified, 

despite the expected lateral variations, by the spatial proximity of the dispersion curves. 

 

Resolution issues 

The application of the spatial windowing is not without consequences on the lateral 

resolution of the retrieved dispersion curves and on the wavenumber resolution of the 

related f-k spectra. We define the lateral resolution of a dispersion curve as the width of 

the subsoil portion the dispersion curve can be considered representative of. We have 

conventionally set this width as 2σ, i.e. we assume that every dispersion curve mainly 

reflects the seismic properties of a subsurface portion centered at the Gaussian window 

maximum and σ wide on both sides (see Figure 1.3).  

 

Figure 1.3 – Effect of Gaussian window shape on the lateral resolution of the 

corresponding dispersion curve. A Gaussian window with α = 6 and β = 0.35 is 

represented: the thick dashed black lines mark the projection on the array line of the 

points at window maximum +/- σ which are the ends of the subsurface portion 

influencing the most the corresponding dispersion curve (in the figure legend, the width 

of this portion is referred to as “area of interest”). 

 

A large value of α produces a small value of σ (because of the relationship between 

σ and α  expressed by equation 2) and improves the lateral resolution: vice versa, a 

small value of α produces a large value of σ and a poor lateral resolution. Unfortunately, 
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we cannot set at will the width of the Gaussian windows because the lateral resolution 

of the dispersion curves clashes with the wavenumber resolution of the f-k spectra. In 

order to define the wavenumber resolution, we have to recall that the SW method 

implies the analysis of the recorded seismic traces using a wavefield transform (e.g. f-k 

or ω-p) to retrieve the dispersion curves. In this paper we use and make reference to the 

f-k transform, but the following considerations, suitably modified, are valid for other 

wavefield transforms as well. The f-k spectrum we can compute from the recorded 

traces is indeed an estimate of the actual f-k spectrum of the vertical vibration velocity 

of the ground particles at the surface of the investigated site. The estimated spectrum, in 

fact, depends on the acquisition array geometry and on the used spectral estimator: these 

two factors are combined in the resolution function or Array Smoothing Function 

(ASF). Therefore, we have: 

( ) ( )kfPASFkfP ,*, =
∧

                                                                                                  (3) 

where ( )kfP ,
∧

 is the estimated f-k spectrum, ( )kfP , is the theoretical spectrum and ASF 

is the array smoothing function (Johnson and Dudgeon, 1993). When we use the Fourier 

transform, we can write the ASF as: 

( ) ( )∑
=

⋅=
N

n
nn xikwkASF

1

exp                                                                                                      (4) 

where wn is the weight for the nth sensor, which depends on the window coefficients, k 

is the wavenumber, xn the position of  the nth receiver and N is the total number of 

receivers. The ASF amplitude represents the leak of energy: the main-lobe width 

(Figure 1.4) is determined by N, the spacing between neighboring receivers dx and the 

window coefficients wn  and it quantifies the wavenumber resolution of the estimated f-k 

spectrum.  
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Figure 1.4 – Array Smoothing Function for a 48 receiver array with spacing 1.5 m 

spatially windowed with a Gaussian window defined by α = 6 and β = 0.5. The 

wavenumber of the ASF at -6 dB, called half width (HW), defines the array wavenumber 

resolution. 

 

According to the Rayleigh resolution criterion, the half of the main lobe width at -6 dB 

(half width or HW in Figure 1.4) quantifies the array wavenumber resolution (Johnson 

and Dudgeon, 1993). HW defines both the minimum detectable wavenumber and the 

minimum wavenumber distance between neighboring events on the f-k plot (e.g. two 

different SW propagation modes) so that the two events can be distinguished. The ASF, 

equation  4, is function of wn, the window coefficient attributed to the nth trace, hence, 

the application of a spatial windowing to the seismogram has consequences on the ASF 

and, therefore, on the wavenumber resolution.  In general, the wider the window, the 

narrower the ASF main lobe and therefore the smaller HW: hence it exists a drawback 

between lateral and spectral resolution.  

 Figure 1.5 represents the ASFs for a 48 receiver array with 1.5 m spacing.  
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Figure 1.5 – a) 48 receiver array with 1.5 m spacing; traces are spatially windowed 

with a Hanning window (gray line), a Gaussian window (dashed black line) defined by 

α = 5 and β = 0.5, and a box window (black continuous line) 2σ wide. b) the ASFs for 

the three windows, displayed with the same line styles. 

 

We spatially windowed the traces by a box window, a Hanning window and a Gaussian 

window with α = 5 and β  = 0.5 (Figure 1.5a portrays the windows while Figure 1.5b 

depicts the corresponding ASFs). Several authors have already used the Hanning 

window for the mitigation of lateral variations effects on SW analysis and to attenuate 

“ghost” maxima on the f-k spectrum (Boiero, 2009), extracting a single dispersion curve 

from the seismogram: on the contrary, a sliding box window (which equals to dividing 

the seismogram into sub-seismograms) or the Gaussian windows described in the 

previous section provide a set of dispersion curves from the same seismogram.  Figure 

1.5 shows that the Gaussian window is a good compromise between the optimal 

wavenumber resolution of the Hanning window and the high lateral resolution of the 

box window: the HW for the Gaussian window is greater than the Hanning window one 

but smaller than the box. In other words, the use of a spatial windowing based on a set 

of  Gaussian windows defined as proposed allows several local dispersion curves to be 

extracted from a single seismogram and, at the same time, it ensures a greater 

wavenumber resolution with respect to subdividing the seismogram into several 

portions. Care has to be taken when choosing the width of the Gaussian windows, i.e. 

for the choice of parameter α: the greater is α, the poorer the wavenumber resolution, 

the better the lateral resolution of the retrieved dispersion curves, and vice versa (Figure 
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1.6). The optimal α value should then guarantee a sufficient wavenumber resolution (i.e. 

we must warrant a suitable minimum k and we must be able to detect surface-wave 

propagation modes as separate events on the f-k plot) but it should also ensure 

dispersion curves as local as possible. 

 

Figure 1.6 – a) 48 receiver array with 1.5 m spacing; traces are spatially windowed 

with Gaussian windows defined by increasing α values and β  = 0.5; b) the ASFs for the 

windows, displayed with the same colors. Note that the wider the window, the greater 

HW. 

 

 According to the previous definition of lateral resolution (2σ)  and spectral 

resolution (HW), we can compute, for a given receiver spread, the value of lateral and 

spectral resolution provided by a chosen value of α. The plot in Figure 1.7 represents the 

relationship among the value of parameter α, the lateral resolution of the respective 

dispersion curves, and the wavenumber resolution of the f-k spectra for several array 

configurations. If only the fundamental mode is present on the computed f-k spectrum, 

we can improve the lateral resolution as long as we ensure the necessary minimum 

wavenumber.  
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Figure 1.7 – The plot represents the relationship among the value of α, the lateral 

resolution of the respective dispersion curves and the wavenumber resolution of the f-k 

spectra for several array configurations. The wavenumber resolution is multiplied by 

the spacing between receivers, yielding the normalized wavenumber resolution; the 

lateral resolution is represented in terms of  ratio between 2σ  and the total array 

length. 

 

If several dispersive events are displayed on the f-k spectrum, we can retrieve the 

wavenumber resolution that is required to distinguish them from the f-k plot obtained 

from the same seismogram without windowing. By entering the chart in Figure 1.7 with 

the required wavenumber resolution we can get the value for parameter α and the 

consequent lateral resolution of the dispersion curves. Once the lateral resolution is 

known, we can determine the spacing between neighboring dispersion curves (and 

therefore the appropriate β values): as we set the width of the area of influence of a 

dispersion curve to 2σ, the spacing between the Gaussian windows maxima should 

indicatively assume the same value. However, in case of particularly complex expected 

lateral heterogeneities, a finer dispersion curves extraction can be appropriate. 
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RESULTS 

Synthetic examples 

We assessed the feasibility of the proposed method for the processing of SW data on 

three synthetic data sets characterized by different kinds of lateral variations. The first 

synthetic model is made of two layers overlying a half-space (Figure 1.8). The thickness 

of the two layers linearly varies along the survey line, which is made up of 181 

receivers with 1 m spacing.  

 

Figure 1.8 – First synthetic model geometry. The upper layer is characterized by a 

shear wave velocity of 150 m/s, whereas the second layer velocity is 250 m/s. The half-

space has a velocity of 500 m/s. The rhombi on the top surface of the model mark the 

positions of the Gaussian windows maxima and, therefore, the locations of the retrieved 

dispersion curves. 

 

We modeled the Rayleigh wave fundamental mode propagation by the following 

equation (Woodhouse, 1974; Boiero, 2009): 

( ) ( ) ( ){ } ( )
0

, , exp  ,
j

J

j j jray
j

u X R X i dx p x Sω ω ω ω ω
=

= −∑ ∫                                             (5) 

where, pj(x,ω) is the slowness distribution along the ray path X for the jth mode while 

Sj(ω) represents the excitation imposed by the source, and Rj(X,ω) includes the terms 

dependent on receiver depth and the geometrical spreading of the surface waves. We 
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simulated two shots in (0,0) and (180,0), respectively. We applied the processing 

scheme based on Gaussian windows to the synthetic data to extract a set of 12 

dispersion curves, evenly-spaced along the line. We set parameter α to 5: as we 

simulated only the fundamental mode propagation, no other dispersive events are 

present on the f-k plot and therefore the choice of the optimal α is driven only by the 

minimum k that we have to guarantee. The minimum wavenumber (kmin), in fact, is 

related to the maximum recordable wavelength (λmax), as maxmin 2 λπ=k , and λmax itself 

is linked to the investigation depth (zmax)., being roughly between two and three times 

zmax. To guarantee an investigation depth able to ensure a good characterization of all the 

three layers (zmax ≈ 30 m), we estimate a required minimum wavenumber equal to 

=== maxmaxmin 5.222 zk πλπ 8.4 10-2 rad/m. Hence, as presented in Figure 1.9, the 

appropriate α value is around 5: the guaranteed lateral resolution is 35 m, but we opted 

for a denser dispersion curve extraction (a curve every 10 m) to carefully follow the 

expected lateral variation.  

 

 

Figure 1.9 – Chart from Figure 1.7 accustomed for the first synthetic model (Figure 

1.8) array configuration. By entering the plot with the required k resolution, we obtain 

an α value of 5 and a lateral resolution of 35 m. 



Paolo Bergamo                                      Surface wave analysis in laterally varying media 

 22 

 

As two shots were available, we stacked the f-k spectra from the two shots with the 

same spatial windowing, and we performed the picking of maxima on each stacked f-k 

spectrum. 

  Figure 1.10 represents the obtained dispersion curves both in terms of frequency 

versus phase velocity  and pseudo-depth (wavelength/2.5) versus apparent S-wave 

velocity (1.1 times phase velocity): the latter representation is referred to as 

“approximate inversion” in engineering geophysics (O’Neill, 2004) and it is a rough 

indication of the lateral and vertical variation of shear wave velocity (Vs).  

 

Figure 1.10 – Dispersion curves from the synthetic model in Figure 1.8. a) Dispersion 

curves represented in terms of phase velocity versus frequency: the dispersion curves 

color depends on the reference point position. b) Dispersion curves represented in 

terms of pseudo-depth (wavelength/2.5) versus apparent S-wave velocity (1.1 times 

phase velocity). 
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In Figure 1.10b the trend of the two interfaces is quite well marked by velocity 

discontinuities in the dispersion curves. We eventually inverted the dispersion curves 

using an LCI approach setting medium constraints among velocities and loose 

constraints among thicknesses. Figure 1.11 shows the inversion results, with the actual 

position of the interfaces depicted in black: we managed to retrieve the 2D structure of 

the model and the obtained velocity values have a maximum estimation relative error of 

9%.  

 

Figure 1.11 – Inversion results of the dispersion curves from the synthetic model of 

Figure 1.8. The black lines mark the actual positions of the interfaces. 

 

We produced the second and the third synthetic data sets by using an available 

finite-element method (FEM) code for numerical simulations (COMSOL Multiphysics 

®). The second synthetic model is a 2D linear, elastic isotropic model. Its geometry and 

Vs are represented in Figure 1.12: the model is made up of two layers and a half-space, 

but the second layer contains a lens whose mechanical properties are the same as the 

half-space. The model geometry is therefore not trivial, with abrupt lateral variations 

hard to be retrieved. We used a Ricker source centered at 10 Hz  for the shots 

simulation: again, we simulated two shots, with the source position in (310,0) and  
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(490,0)  respectively. We recorded the vertical vibration velocity at the surface in 181 

positions between the two sources locations with 1 m spacing.  

Figure 1.12 – Second synthetic model geometry. For graphical clarity reasons, in the 

current figure only the central portion of the model is displayed: the synthetic model 

extends from X = 0 to X = 800 m and from Y = 0 down to -220 m without any other 

vertical or lateral variations. The model is a 2D model carried out by using COMSOL 

Multiphysics ®. The upper layer S-wave velocity is 120 m/s, the second layer velocity is 

170 m/s and the half-space Vs is 270 m/s. The lens has the same velocity as the half-

space. 

 

Table 1.1 displays other numerical simulation details.  

 

Table 1.1 – Finite-element method simulation parameters for the second synthetic model. 

Total number of FEM elements 142047 mesh elements 

Degrees of freedom 5720004 

Time step 10-3 s 

Maximum simulation time 3.5 s 

 

Again, we applied the processing scheme based on Gaussian windows to the 

synthetic data. First, we computed the f-k spectrum of the first simulated seismogram 

without any windowing to estimate the necessary wavenumber resolution. As 
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highlighted in Figure 1.13, the minimum k we need to compute and the distance 

between dispersive events (fundamental and first higher mode) is around 0.11 rad/m, so 

that the appropriate value for α is 6 (Figure 1.14).  

 

Figure 1.13 – Zoom of the f-k spectrum of the simulated shot in (310, 0) without spatial 

windowing. Red arrows mark the minimum k (k min) that we need to compute and the 

wavenumber distance between two dispersive events that we have to guarantee (∆k). 

 

Figure 1.14 – Chart from Figure 1.7 accustomed for the second synthetic model (Figure 

1.12) recording array configuration. By entering the plot with the required k resolution, 

we obtain an α value of 6 and a lateral resolution of 30 m. 
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The guaranteed lateral resolution is  30 m, but we extracted a dispersion curve 

every 5 m being the 2D structure of the model particularly challenging. We obtained 25 

dispersion curves, evenly spaced along the survey line: these dispersion curves are 

depicted in Figure 1.15 in pseudo-depth (wavelength/2.5) versus apparent S-wave 

velocity (1.1 times phase velocity) and in frequency versus phase velocity.  

 

Figure 1.15 – Dispersion curves from the synthetic model in Figure 1.12. a) Dispersion 

curves relevant to the left hand side of the model (as the model is symmetric dispersion 

curves are symmetric as well) represented in terms of phase velocity versus frequency: 

the dispersion curves color depends on the reference point position. b) Dispersion 

curves represented in terms of pseudo-depth (wavelength/2.5) versus apparent S-wave 

velocity (1.1 times phase velocity). 

 

In Figure 1.15a the dispersion curves interested by the presence of the lens are 

characterized by increasingly higher velocities in the 5-20 Hz frequency band as the 

lens thickness increases; in Figure 1.15b the same curves are characterized by higher 

velocities at pseudo-depths approximately equal to the lens position: such higher 
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velocities affect a wider range of pseudo-depths as the lens thickness increases. As for 

the LCI, we applied weak constraints for all thicknesses and velocities but for the half-

space velocity, for which we imposed a medium constraint. In Figure 1.16 we show the 

LCI results: we managed to correctly retrieve the interface between first and second 

layer and the upper edge of the lens and even to satisfactorily reconstruct the overall 

trends of the lower edge of the lens and of the deepest interface.   

 

Figure 1.16 – Laterally constrained inversion results for the second synthetic model 

(Figure 1.12). 

 

As far as the velocities are concerned, their estimation relative errors are below 

15% with the exception of the Vs of  the layers at the two edges of the lens: in this case, 

the smoothing effect induced by the lateral resolution of the Gaussian windows, whose 

width is controlled by the minimum necessary wavenumber resolution, does not allow 

the inversion to completely follow this abrupt lateral variation.  

We produced the third synthetic data set by using COMSOL Multiphysics ® 

again. The synthetic model is a 2D linear, elastic isotropic model. Its geometry and Vs 

characteristics are displayed in Figure 1.17: an upper 2 m thick layer tops a second layer 

whose thickness abruptly decreases from 8 to 2 m at the centre of the model.  
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Figure 1.17 – Third synthetic model geometry. For graphical clarity reasons, only the 

central portion of the model is displayed: the synthetic model extends from X = 0 to X = 

710 m and from Y = 0 down to -200 m without any other vertical or lateral variations. 

The model is a 2D model carried out by using COMSOL Multiphysics ®. The upper 

layer S-wave velocity is 120 m/s, the second layer velocity is 170 m/s and the half-space 

Vs is 270 m/s. 

 

We created this model because we wanted to test our technique on such a strong 

and sharp lateral variation: besides, a similar model had already been used by Nagai et 

al. (2005) to test another lateral shear wave velocity imaging technique based on 1D SW 

inversion. We simulated two shots, with the source position in (280,0) and (430,0): our 

source signal was again a Ricker source centered at 10 Hz. For both shots, we recorded 

the vertical vibration velocity by means of 301 synthetic receivers located on the top 

surface of the model between the sources positions with 0.5 m spacing. The number of 

FEM elements, sampling rate and recording time are reported in Table 1.2.  

 

Table 1.2 – Finite element method simulation parameters for the third synthetic model. 

Total number of FEM elements 167500 mesh elements 

Degrees of freedom 677300 

Time step 1.25 10-3 s 

Maximum simulation time  3 s 
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Once again, we applied the processing scheme based on Gaussian windows to 

the synthetic data. As far as the choice of the optimal α is concerned, we computed the 

f-k spectrum of the simulated seismogram whose source is located at (430,0) without 

any windowing applied (Figure 1.18).  

 

Figure 1.18 – a) Zoom of the f-k spectrum of the simulated shot with source  in 

(430,0) without spatial windowing. Red arrows indicate the minimum k (kmin) we need to 

compute and the wavenumber distance between two dispersive events that we have to 

guarantee (∆k). b) Corresponding dispersion curve: the unreliability of the curve below 

4.5 Hz justifies the choice of the minimum wavenumber kmin. 

 

The minimum distance between dispersive events on the f-k plot that we must 

preserve is around 0.13 rad/m but the minimum k is around 0.04 rad/m: however, due to 

the frequency resolution, the dispersion curve is not reliable below 4.5 Hz (Figure 

1.18b) which approximately corresponds to 0.13 rad/m on the f-k plot. Therefore, by 

entering this wavenumber resolution value in the chart (Figure 1.19), we set α to 6. The 

ensured lateral resolution is hence 25 m, but we opted for a finer dispersion curves 

extraction (one curve every 5 m, for a total number of 21 dispersion curves). The 

retrieved dispersion curves are represented in Figure 1.20 both in terms of pseudo-depth 

(wavelength/2.5) versus apparent S-wave velocity (1.1 times phase velocity) and in 

frequency versus phase velocity plot. Both plots in Figure 1.20 show the effectiveness 
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of the dispersion curves to describe the model beneath the Gaussian windows maxima 

and thus to reconstruct lateral variations.  

 

Figure 1.19 – Chart from Figure 1.7 accustomed for the third synthetic model recording 

array configuration. By entering the plot with the required k resolution, we obtain an α 

value of 6 and a lateral resolution of 25 m. 
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Figure 1.20 – Dispersion curves from the synthetic model in Figure 1.17. a) Dispersion 

curves represented in terms of phase velocity versus frequency: the dispersion curves 

color depends on the reference point position. b) Dispersion curves represented in 

terms of pseudo-depth (wavelength/2.5) versus apparent S-wave velocity (1.1 times 

phase velocity). 

 

However, especially when looking at Figure 1.20a it appears clearly that the 

dispersion curves closer to the model discontinuity are influenced by both the 

subsurface portions left and right of the fault making the lateral variation to look 

smoother than it actually is. This is due to the width of the Gaussian windows bells: a 

greater value for α could attenuate such smoothing effect but the choice of the α value 
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was driven by wavenumber resolution requirements. As already stated in the “Method” 

section we need to find a balance between lateral and wavenumber resolutions.   

We inverted the dispersion curves using the laterally constrained approach and 

imposing a medium constraints between the shear wave velocities of corresponding 

neighboring layers and no constraints on layer thicknesses. Figure 1.21 depicts the 

inversion results: we satisfactorily reconstructed both the interfaces depths and the Vs 

but the smoothing effect already noticed in the dispersion curves has obviously the same 

consequences on the inversion results. We could reconstruct the sharpness of the lateral 

discontinuity by suitably tuning the constraints (i.e. by “breaking” the constraints on the 

discontinuity) but this would require an a priori knowledge of the position of the lateral 

variation itself. 

 

Figure 1.21 – Laterally constrained inversion results for the third synthetic model 

(Figure 1.17). 

 

 

Field example 

The real data set on which we tested the procedure was acquired in Tarcento, north-

west Italy, during a seismic risk assessment campaign (Piatti et al., 2009). The recording 
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array was made up of 48 vertical 4.5 Hz geophones with 1.5 m spacing. The acquisition 

consisted in 20 shots performed with a hammer source, 10 of them with the source 

located 1.5 m before the first receiver and the other ones with the source located 1.5 m 

past the last receiver. The acquisition parameters in time domain are 2 s acquisition 

length and 0.5 ms sampling rate.  We windowed all seismograms in the spatial domain 

using a set of Gaussian windows. For the estimation of the optimal α value we 

computed the f-k spectra of some shots without applying any windowing: we 

determined the required wavenumber resolution by inspecting these f-k plots. In Figure 

1.22 the spectrum from a shot  whose source is located 1.5 m before the first receiver is 

depicted: at low frequencies (<12 Hz) the spectrum is quite noisy, so that the minimum 

useful k is approximately 0.23 rad/m and the distance between neighboring dispersive 

events is greater than this value.  

 

Figure 1.22 – Zoom of the f-k spectrum of one of the shots from the real data set without 

any spatial windowing. Red arrows mark the minimum k (k min) we need to compute and 

the wavenumber distance between two dispersive events that we have to guarantee (∆k). 

 

By entering 0.23 rad/m into the chart (Figure 1.23), the resulting α is 4.75: the 

consequent ensured lateral resolution is 15 m but once again we decided to get  a finer 

coverage of the expected lateral variations in the subsoil (we extracted a dispersion 

curve every 4.5 m).  
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Figure 1.23 - Chart from Figure 1.7 accustomed for the real case array configuration. 

By entering the plot with the required k resolution, we obtain an α value of 4.75 and a 

lateral resolution of 15 m. 

 

We stacked the f-k spectra from different shots with the same spatial windowing, 

and we performed the picking of maxima on each stacked f-k spectrum, obtaining a set 

of 10 dispersion curves evenly-spaced along the survey line (Figure 1.24). As for the 

lateral constrained inversion, according to the a priori geological information available 

for the site, we imposed weak constraints for the layers thicknesses and we chose 

moderate constraints for their Vs. Inversion results are displayed in Figure 1.25 together 

with the P-wave tomography results for the same site: both of them point out a 

shallower interface at 2-4 m depth gently sloping to the left and a deeper interface at 8-

12 m depth leaning to the right. 
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Figure 1.24 – Real data set dispersion curves. a) Dispersion curves are represented in 

terms of frequency versus phase velocity, and the color depends on the position of the 

Gaussian windows maxima. b) The same dispersion curves represented in terms of 

pseudo-depth (wavelength/2.5) versus apparent S-wave velocity (1.1 times phase 

velocity). 
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Figure 1.25 – Real data SW inversion results (vertical bars) and P-waves tomography 

results (background). 

 

 

DISCUSSION 

Both synthetic and real data sets presented in the previous section show the 

application of the proposed procedure in different conditions with quite satisfactory 

results: by suitably windowing the record of a single receiver spread it is possible to 

reconstruct a 2D pseudosection of the subsurface even in case of abrupt lateral 

variations. However, the key point that clearly emerges from the examples is the 

balance that we need to find between the lateral resolution of the dispersion curves and 

the wavenumber resolution of the related f-k spectra. Indeed, the more local the 

dispersion curves (i.e. the greater their lateral resolution), the more accurately we can 

reconstruct lateral variations, especially in case of strong and/or sudden lateral 

discontinuities  (see for example the lens ends of the second synthetic model  in Figure 

1.12 or the “fault” of the last synthetic model in Figure 1.17). However, we cannot 

narrow at will the Gaussian windows for the spatial windowing: the wavenumber 

resolution of the f-k spectra gets poorer so that the minimum k of the spectrum increases  

and we cannot distinguish the surface wave dispersion modes anymore and therefore we 

obtain an apparent dispersion curve (Socco and Strobbia, 2004). As a consequence, we 

can improve the lateral resolution of the dispersion curves provided that we guarantee a 
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sufficient wavenumber resolution. To meet the necessity to balance lateral and spectral 

resolution we provide a chart (Figure 1.7) representing the relationship among 

parameter α (and therefore the Gaussian windows width) with the consequent value of 

area of influence of the extracted dispersion curves and of  the ensured wavenumber 

resolution. By using the chart it is possible to handle such balance, so that i) the 

problem can be addressed from different points of views (e.g. retrieving lateral 

resolution from the necessary k resolution and vice versa) and ii) it is possible to know 

what information gets lost  in case one of the two resolutions is favored. We applied the 

chart in all presented cases to get the optimal spatial windowing, to ensure the best 

possible lateral resolution without renouncing to the minimum necessary spectral 

resolution. The obtained results are good, we managed to correctly retrieve 2D 

structures: however,  some  smoothing of sudden lateral variations has to be accounted 

for (see how the “fault” in Figure 1.21 or the lens ends in Figure 1.16 are reconstructed) 

because we cannot narrow Gaussian windows beyond a certain threshold without the 

loss of some information or accuracy. Eventually, both in real and synthetic cases we 

applied a very fine dispersion curves extraction, which is appropriate to thoroughly 

follow 2D effects in the subsurface.  

 

CONCLUSION  

We propose a processing technique to retrieve 2D structures from SW acquired with 

a limited number of receivers: the goal is to get a set of local dispersion curves out of a 

single seismogram. Our technique is based on a two step process: firstly, we extract a 

set of  local dispersion curves along the receiver spread using a spatial windowing based 

on Gaussian windows with different maximum position; secondly, we invert the 

retrieved dispersion curves using a laterally constrained inversion (LCI) scheme 

yielding a 2D pseudosection of the S-wave velocity. We studied the consequences  of 

the spatial windowing both on the lateral resolution of the dispersion curves and on  the 

wavenumber resolution of the relevant f-k spectra: we pointed out the clash between the 

two resolutions (the more one is fostered, the more the other worsens and vice versa) 

and the necessity to find a compromise to ensure a correct and accurate description of 

the subsoil lateral variations. We therefore provided a chart quantitatively representing 

the relationship existing among the Gaussian windows width, the lateral resolution and 

the wavenumber resolution they ensure. We tested our technique on four data sets, three 

synthetic and one real: as  far as the synthetic data sets are concerned, the relevant 
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models are characterized by increasingly complex lateral heterogeneities. We managed 

to successfully retrieve such 2D structures at the end of the laterally constrained 

inversion, the last step of our procedure: however, when lateral variations were 

particularly sharp, they tended to look smoother in the final Vs pseudosection. This was 

due to the necessity to guarantee a minimum wavenumber resolution, which imposed 

the choice of Gaussian windows slightly wider than what was necessary to correctly 

follow such abrupt lateral variations. Once we proved the reliability of our technique on 

synthetic data, we applied it to a real case: its inversion results are in good agreement 

with the results of the P-wave tomography performed on the same site, which suggests 

that we correctly and successfully applied our procedure. 

A further development of the present work would be to set up a procedure to properly 

tune the constraints for the LCI to attenuate  what is the main drawback of the proposed 

procedure, i.e. the “smoothing” effect that is caused by the insufficient lateral resolution 

ensured by the Gaussian windows. In fact, LCI constraints should be “broken” or 

weakened by the lateral discontinuity and strengthened where we expect a lesser 

variability by exploiting, for instance, available a priori information or SW analysis 

approaches which do not require a dispersion curve extraction.  
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2- LASER-DOPPLER SEISMIC EXPERIMENTS ON A SMALL SCA LE 

PHYSICAL MODEL 

 

In this  chapter I present an application of the processing technique that is  described in 

Chapter 1. The technique is here addressed to process a dataset derived from a small-

scale laboratory seismic survey performed on a physical model. The physical model is 

characterized by a 2D geometry, so that the use of the technique introduced in Chapter 

1 is necessary in order to correctly interpret the data. In the previous chapter  the 

method, based on a spatial windowing of seismic traces, was  successfully applied to 

both synthetic and field data: however, such small-scale  laboratory experiments offer 

the possibility to overcome the limitations of the test on both field and synthetic 

acquisitions, since they  provide real data (similar to those obtained from a field 

campaign) which are however extracted from a model whose geometry and mechanical 

properties are known (as in the case of numerical simulations).  

 

ABSTRACT 

Laboratory experiments using laser-based ultrasonic techniques are frequently 

proposed to study theoretical and methodological aspects of seismic methods, more 

particularly when experimental validations of processing or inversion techniques are 

required. Lasers are mainly used to simulate typical field seismic surveys, at the 

laboratory scale. Most of the time, homogeneous and consolidated materials such as 

metals and thermoplastics are used to build small-scale physical models  of the Earth. 

Both their geometry and mechanical properties can be perfectly controlled, which 

makes it possible to address with real data, the efficiency, the robustness or the 

limitations of studied methods. The use of granular materials is suggested here to enable 

the physical modelling of seismic methods in more complex and porous media, 

constituted by lateral heterogeneities, property contrasts and velocity gradients. We 

were able to construct a physical model with two layers presenting distinct in-depth 

velocity gradients, separated by a sloping interface. We used this physical model to 

address the efficiency of an innovative surface-wave processing technique developed to 

retrieve two-dimensional (2D) structures from a limited number of receivers, using a 

spatial windowing based on a set of Gaussian windows with different shape. A step by 

step inversion procedure yielded accurate and meaningful results so that the 2D 
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structure of the physical model was satisfactorily reconstructed, although strong a priori 

knowledge was required. Interestingly, the gravity-induced velocity gradients within 

each layer were accurately retrieved as well, confirming current theoretical and 

experimental studies regarding guided surface acoustic modes in unconsolidated 

granular media. 

 

 

INTRODUCTION 

Non-contacting ultrasonic techniques, such as mechanical-wave generation 

using high frequency laser sources and particle motion measurement using laser-

Doppler interferometers, recently appeared to represent powerful tools to address the 

physics of various processes in geosciences. In geophysics, their non-contacting 

character provides flexibility that, if combined with high-density sampling abilities, 

gives the opportunity to simulate typical seismic records in the laboratory. This 

approach proved to be efficient in the physical modelling of seismic-wave propagation 

at various scales, thus providing a wide range of applications in civil engineering (Bodet 

et al., 2005, 2009), exploration seismic (Campman et al., 2005) or seismology (van 

Wijk et al., 2004). Bodet et al. (2010) recently addressed the ability of laser-Doppler 

experiments in the systematic characterization of granular materials involved in 

geological analogue modelling. A methodology has been validated on an 

unconsolidated granular laboratory medium, perfectly characterized in terms of elastic 

parameters by Jacob et al. (2008). A mechanical source and a laser-Doppler vibrometer 

were used to record small-scale seismic lines at the surface of the granular medium. 

Pressure-wave first arrival times and P-SV waves dispersion were then inverted for one-

dimensional (1D) Pressure- and Shear-wave propagation velocity profiles with depth. 

Inferred velocity structures appeared to match previously thoroughly estimated 

properties of the probed medium, thus validating this approach (Bodet et al., 2010). The 

present work involves similar experiments, performed in order address their ability in 

the imaging of laterally varying granular structures in the context both geological 

analogue and seismic modelling. The experimental set-up described above was 

reproduced with a two-layer model presenting a sloping interface. 
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PHYSICAL MODEL PREPARATION 

Granular materials (such as natural sand, granular silica or glass beads) offer an 

evident flexibility in terms of physical models construction and choice of parameters. 

Their mechanical properties are the subject of active investigations in various 

application fields (Valverde and Castellanos, 2006; Hentschel and Page, 2007) and they 

are widely used for both geological and physical modelling purpose. However, these 

materials remain delicate to manipulate as soon as the experiments involve great 

quantities but still require the medium homogeneity to be controlled. In this study, the 

medium preparation basically reproduced the technique previously proposed by Jacob et 

al. (2008) and Bodet et al. (2010) and originally designed to set-up an unconsolidated 

granular packed structure under gravity. This technique has been recently thoroughly 

addressed in terms of reproducibility of the medium preparation using micrometric glass 

beads (Bodet et al., 2011). Similar glass beads were chosen here to build a two-layer 

physical model presenting both in-depth property gradients and a sloping interface, as 

shown on Figure 2.1a. 

 

 

Figure 2.1 – Laser-Doppler experiments: preparation of the medium and experimental 

set-up. (a) The medium consisted of two glass beads layers (GBL1 and GBL2) prepared 

in a wooden box and presenting a sloping interface. φGBL and ρGBL are the layers bulk 

porosities and densities respectively. (b) laser-Doppler vibrometer used to record 

seismograms of particle vertical velocity at the surface of the medium excited by a 

mechanical source at position (xs ,ys). Following a step by step procedure, the laser 

scanned the surface and, thanks to an oscilloscope, particle normal velocities were 

recorded at each offset along a linear section (line), the source remaining still. 
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The glass beads (GB) presented two ranges of diameter: 200-300 µm (GB1) and 

100-200 µm (GB2). These GB were sieved or poured into a 1000×800×300 mm box, 

presented on Figure 2.1a. Compared to the experiments previously cited, Bodet et al. 

(2010) chose the box dimensions large enough to limit wave-reflections from sidewalls 

and consequently avoid boundary effects. However, due to obvious practical limitations 

in terms of material quantities and model weight, the height of the box remained too 

small to avoid bottom reflections. The bottom of the box moreover consisted of a 

micrometric metallic sieve glued on a perforated plate  that was originally built to inject 

over-pressured air into the granular material and to study the influence of pore 

overpressure on seismic-wave propagation at very low confining pressures (Bodet et al., 

2011). Strong bottom reflections were thus expected due to high impedance contrast 

between the granular material and the metallic sieve. In order to mitigate such bottom 

reflections and their possible influence on the data, several countermeasures were 

proposed by Bodet et al. (2011), among which the simple setting up of a 4 mm thick 

paper-board plate onto the sieve (depicted by the thick black line on Figure 2.1). 

The bottom layer of the physical model (GBL1 on Figure 2.1a) was built by 

sieving GB1 through a 400-micron sieve. This layer was compacted every centimetre by 

means of a flattening tool and vibrations applied to the box. Its final thickness was 205 

mm. The bulk porosity (φGBL1) and density (ρGBL1) of the medium were estimated by 

means of laboratory measurements as  equal to 0.38 and 1550 kg m−3 respectively. A 

sloping surface was then thoroughly dug by one centimetre steps between the positions 

x=350 mm and x=650 mm, as presented on Figure 2.1a. The slope was approximately 

7.6°. The sloping interface was graded flat by stamping the surface with a flattening 

tool, as recommended by Buddensiek (2009). The top layer (GBL2 on Figure 2.1a) was 

finally achieved by thoroughly pouring GB2 onto GBL1. Its final thickness varied from 

20 to 60 mm. We did not compact this layer in order to ensure a porosity contrast with 

GBL2. The bulk porosity (φGBL2) and density (ρGBL1) of GBL2 were estimated by 

means of laboratory measurements as equal  to 0.42 and 1440 kg.m−3 respectively. 

The physical model presents a total thickness of 225 mm and can be considered 

as a sequence, in the x-direction, of three different geometries: a 2-layer model with an 

upper layer thickness of 20 mm between the positions x=0 mm and x=350 mm; a 2-

layer model with an upper layer thickness varying from 20 to 60 mm between the 

positions x=350 mm and x=650 mm; a 2-layer model with an upper layer thickness of 

60 mm between the positions x=650 mm and x=1000 mm. The contrast between the two 
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layers is ensured via the estimated porosities which compare well with previous studies 

(Sherlock, 1999; Sherlock and Evans, 2001; Graveleau, 2008; Buddensiek, 2009). The 

porosity of glass beads in GBL1 appears close to the random close packing limit, while 

it tends to the random loose packing limit in GBL2 (Valverde and Castellanos, 2006). 

The additional complexity and interest of this physical model is that each layer presents 

a gravity-induced stiffness gradient that will be described in the following. 

 

 

EXPERIMENTAL SETUP AND DATA ACQUISITION 

As previously proposed for the physical modelling of wave propagation at the 

laboratory scale (van Wijk et al., 2004; Campman et al., 2005; Bodet et al., 2005, 2009), 

laser-Doppler acquisitions were performed here to simulate a seismic survey at the 

surface of the physical model. The experimental set-up, adapted to granular materials by 

Jacob et al. (2008) and Bodet et al. (2010), basically involved a laser-Doppler 

vibrometer to record seismograms of particle normal velocity at the surface of the 

medium which was excited by a mechanical source at position (xs ,ys), as presented on 

Figure 2.1b. 

The source was a 3 mm diameter metallic stick attached to a low-frequency (LF) 

shaker and buried in the granular material with an angle of 20° from the normal to the 

free surface. The force source signal was sent from a pulse generator to the LF-shaker, 

exciting the stick. A detailed view of the source set-up and its characteristics are given 

on Figure 2.2.  
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Figure 2.2 – Source set-up and characteristics. (a) The force source signal was sent 

from a pulse generator to a low frequency (LF) shaker exciting a metallic stick buried 

in the granular material. (b) The force source signal (blue line) was a Ricker pulse with 

frequency spectrum centred on 1.5 kHz. Before each seismogram acquisition, the laser 

beam was set at the zero offset position to record the stick normal velocity (red dashed 

lines). 

 

The force source signal (blue line on Figure 2.2) was a Ricker pulse with 

frequency spectrum centred on 1.5 kHz. Before each seismogram acquisition, the laser 

beam was set at the zero offset position (xs on Figures 1a and 2a) to record the stick 

normal velocity (red dashed lines on Figure 2.2b). The zero offset position was actually 

chosen where the stick enters the medium. 

To record a seismogram, the source remained still and the laser-Doppler 

vibrometer scanned by constant steps (1, 2 or 3 mm) the surface of the granular 

medium. Using an oscilloscope, up to 300 traces were recorded in linear single-channel 

walkway mode, parallel to the long edges of the box (see Table 2.1 for details about the 

acquisition geometries). Each trace was stacked 50 times and the time sampling rate was 

100 kHz over 5002 samples. Each seismogram was 300 mm long. As shown on Figure 

2.3a a first seismogram of particle vertical velocity was recorded at the surface of GBL1 

before the preparation of the sloping interface. 
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Table 2.1 – acquisition parameters of collected seismograms (illustrated on Figure 2.3)  
 

Line 

Source 
position 

xs 
(mm) 

Spacing 
between 
traces 
(mm) 

Total 
number 

of 
traces 

Source–
first 

receiver 
distance 

(mm) 

Source– 
last 

receiver 
distance 

(mm) 

Sampling 
rate 

(kHz) 

Time 
samples 

1 350 3 100 3 300 100 5002 
2 50 2 150 2 300 100 5002 
3 370 1 300 1 300 100 5002 
4 950 2 150 2 300 100 5002 
5 650 1 300 1 300 100 5002 

 

 

 

 

 

 

Figure 2.3 – Laser-Doppler experiments: data acquisition. (a) A seismogram (Line 1) 

was recorded at the surface of GBL1 before the preparation of the sloping interface 

(100 traces with 3 mm spacing). (b) Four seismograms were recorded on the two-layer 

physical model. The lines are red when the laser scanned lines along the positive x-

direction (direct shot) and green along the negative x-direction (reverse shot), the stars 

giving sources position. The recorded lines were 300 mm long with a space-sampling 

interval of 2 mm above the flat interface part of the model (Lines 2 and 4) and of 1 mm 

above the slope (Lines 3 and 5). (c, d) Two example seismograms recorded along Line 2 

(c) and Line 5 (d) show that, despite strong amplitudes associated to the source ringing 

(Sr), the recorded wavefields clearly present coherent events such as P- and P-SV wave 

trains. Along the Line 5, it is possible to guess bottom-reflected arrivals (bR). 
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This seismogram should allow a good characterisation of the bottom layer. Once 

the final model was prepared, four seismograms were recorded at its surface (on Figure 

2.3b). Only one shot was recorded above each horizontally layered (1D) part of the 

model (Line 2 and Line 4 on Figure 2.3b). However, the 2D central part was probed 

using both direct and reverse shooting (Line 3 and Line 5 on Figure 2.3b) in order to 

provide an optimal data-set to be processed using the technique proposed by Bergamo et 

al., (2010). The recorded lines were 300 mm long with a space sampling interval of 2 

mm above the flat-interface parts of the model (Lines 2 and 4) and of 1 mm above the 

sloping interface (Lines 3 and 5). As examples, the seismograms recorded along Line 2 

and Line 5 are presented on Figure 2.3c and Figure 2.3d respectively. 

The recorded wavefields clearly present coherent events such as P- and surface  

wave trains (P and P-SV on Figures 3c and 3d). Along the Line 5, it is possible to guess 

bottom-reflected arrivals (bR on figure 2.3d). The seismograms are however corrupted 

by strong amplitudes typically related to the source ringing (Sr on Figures 3c and 3d). 

These experimental artefacts will be mitigated by deconvolution with the source signal, 

recorded at the zero offset position (Figure 2.2b). The P-SV events identified on every 

seismogram can be quantitatively interpreted using typical seismic surface-wave 

processing techniques, as proposed by Bodet et al. (2010). An important improvement 

of the methodology proposed here consists in applying the technique previously 

developed by Bergamo et al. (2010) to retrieve the lateral variation of shear-wave 

velocities in the physical model. 

 

SURFACE WAVE DISPERSION EXTRACTION 

A - Pre-processing of data 

Once traces were collected, a pre-processing stage was necessary before the 

dispersion curves extraction. First of all, a high-pass filter at 100 Hz was applied in 

order to suppress ambient noise that might have corrupted the acquisitions. Secondly, 

raw seismograms (Figure 2.4) appeared affected by evident source ringing as noticed in 

the previous section (Figure 2.5). Moreover, during one of the acquisitions (line 3) an 

electrical shutdown occurred: as we started again to acquire, it was not possible to set 

the laser in the exact position where it was before the interruption, so that the traces 

acquired after the shutdown appear to be slightly misplaced in the final raw seismogram 

(see Figure 2.6a). The strategies we adopted for these two problems were the traces 
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deconvolution with the source signal for the ringing suppression and an estimate of the 

actual position of the misplaced traces by means of cross-correlation.  

 Figure 2.4 – Line 5: raw seismogram. 

Figure 2.5 – Source signal from line 5. Source ringing is clearly evident in the trace 

portion in the circle. 
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Figure 2.6  – Line 3 raw traces (a) and after the gap recovery (b). 

 

To mitigate the ringing in the seismograms, raw traces were deconvolved with 

the source signal (i.e. the signal that was recorded by setting the laser beam on the stick 

just before it plunges into the glass beads bed, see Figures 2.2 and 2.5). The result is 

presented in Figure 2.7, displaying the traces of Figure 2.4 after deconvolution: ringing 

is attenuated and data quality has improved. Figure 2.6a shows the raw traces from Line 

3 whose recording was interrupted by a power shutdown. At around 0.24 m offset there 

is a clear discontinuity in the seismogram: such oddity is due to the fact that the traces 

recorded after the shutdown (which are beyond 0.24 m offset) are displayed at an offset 
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that is slightly smaller than the actual one. In order to retrieve the actual position of 

these traces we crosscorrelated the P-wave arrival parts of neighbouring traces to 

estimate the time lapse occurring between them.  

Figure 2.7  – Line 5 traces after deconvolution 

 

Therefore, a comparison between the average time lapse before the gap and the 

time lapse at the discontinuity allowed estimating the shift in space that was required to 

move the traces of the seismogram at a proper offset. The gap was then filled with blank 

traces (see Figure 2.6b for the final result). 

 

B - Dispersion curves extraction  

First of all, we extracted a dispersion curve from every shot by applying an f-k 

transform to the seismograms and then picking the energy maxima on the spectra 

(Figure 2.8): these dispersion curves are displayed in Figure 2.9.  
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Figure 2.8  – Normalized f-k spectrum from line 2 seismogram. 

Figure 2.9  – Dispersion curves from the five survey lines 

 

All curves are characterized by the presence of three surface-wave propagation 

modes: not surprisingly, the dispersion curve from Line 1 is characterized by higher 

phase velocity values, as the lower layer is stiffer than the upper one. As for the other 

four dispersion curves (Lines 2-5), fundamental mode phase velocities are quite similar 

from 600 Hz on: at lower frequencies the dispersion curves are affected by the lower 

layer and show a rapid increase of the velocity. In particular, the frequency at which this 

increase takes place depends on the interface depth and therefore is roughly the same 

(about 500 Hz) for the two dispersion curves relevant to the dipping interface part of the 

model and it is smaller (around 400 Hz) for the dispersion curve retrieved from the 
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portion of the model where the interface is deeper (60 mm). Moreover, to get a better 

description of the lateral variation of the physical model, we applied to the central shots 

(Lines 3 and 5) an algorithm developed by Bergamo et al. (2010) based on a spatial 

windowing of the traces to extract a set of dispersion curves from a single shot. This 

method applies to the seismogram a spatial windowing which is based on Gaussian 

windows whose maxima span the survey line thus assigning from time to time a 

different weight to the same trace in order to retrieve a set of dispersion curves each of 

them referring to a different subsurface portion. These dispersion curves are reported on 

Figure 2.10, where are related to different positions of the Gaussian window maxima 

along the receiver spread.  

Figure 2.10 - Dispersion curves retrieved from lines 3 and 5 seismograms by applying a 

space-varying spatial windowing 

 

Again, three propagation modes are identified: as seen in Figure 2.9 the velocity 

of the fundamental modes starts to differ at 600 Hz (the deeper the interface, the lower 

the phase velocities and vice versa). This effect can be clearly seen in Figure 2.11, 

where the ten dispersion curves referring to the sloping interface portion of the model 

and the two curves relevant to the 1D portions are represented in terms of pseudo-depth 

(wavelength/2.5) versus pseudo-Vs (phase velocities times 1.1).  
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Figure 2.11 – Dispersion curves fundamental modes represented in terms of pseudo-

depth (wavelength/2.5) versus pseudo-Vs (phase velocity times 1.1). 

 

 

DISPERSION CURVES INVERSION 

The last stage of the process involved the dispersion curves inversion. As 

already successfully done by Jacob et al. (2008) and Bodet et al. (2010) we adopted the 

relationship introduced by Gassmann (1951) where P- and S-wave velocity are 

considered as power-law dependent on overburden pressure: 

( ) SPgzV SPSP
,

,,
αργ=   (1) 

where g is the gravity acceleration, z is the depth, ρ is the bulk density, γP,S is a depth-

independent coefficient mainly depending on the elastic properties of the grains and αP,S 

is the power-law exponent. We therefore assumed that in the two-layer physical model 

the S-wave velocities follow a power-law trend which is controlled by five parameters: 

the two couples of αS and γS for the upper and lower layer, and the interface depth. 

Within each layer, the bulk density can be assumed constant with depth even if it may 

slightly vary in the vicinity of the free surface, at pressures less than 75 Pa, as 

previously noted by Jacob et al. (2008). However, the contribution of such density 
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variation to velocity change with depth is indeed negligible (Gusev et al., 2006). The 

whole inversion process was subdivided into three successive steps: 

a) estimating parameters αS and γS for GBL2; 

b) estimating parameters αS and γS for GBL1; 

c) estimating the interface depth. 

In the following paragraphs, the three inversion steps are extensively described. 

 

A - Retrieving parameters αS and γS for the lower layer 

As described in the experimental set-up and data acquisition section, a first 

seismogram was acquired on top of GBL1 before digging the slope and adding the glass 

beads for GBL2 (Line 1, Figure 2.3a). Therefore, the acquired data could be used for the 

estimation of αS and γS for GBL1. A dispersion curve was extracted by picking the 

energy maxima on the f-k spectrum derived from the seismogram (see black dotted 

curve on Figure 2.9).  

Prior to the model construction, we performed a series of numerical FEM (finite 

element method) simulations for the calibration of the physical model: these simulations 

showed that, in case of a single layer model, the dispersion curve fundamental mode 

represented in terms of pseudo-depth (wavelength/2.5) versus pseudo-Vs (phase velocity 

times 1.1) follows with a good level of approximation the S-wave vertical velocity 

distribution described by equation 1 (see Figure 2.12a). This agreement does not hold 

true in case of a two or more layer model (Figure 2.12c). Most probably, the relatively 

great acoustic impedance contrast between the glass beads layers causes a mode jump in 

the experimental dispersion curve at low frequencies (Figure 2.12d), so that the curve 

represented as pseudo-depth versus pseudo-VS does not follow the trend expected by 

equation 1 for pseudo-depths greater than the interface depth (Figure 2.12c). In order to 

optimize the agreement between the dispersion curves represented in pseudo-VS versus 

pseudo-depth and the actual trend of VS with depth we performed a parametric analysis 

to determine the optimal value for the ratio between wavelengths and pseudo-depths. 

We ran a FEM analysis simulating the propagation of  body and surface waves through 

a horizontally homogeneous medium with mechanical properties similar to the ones of 

the physical model media and whose vertical profile of Vs with depth is described by 

equation 1, assuming γS = 5.25, αS = 0.33 and ρ = 1580 kg/m3. From the synthetic 

seismogram (Figure 2.13a), by applying the surface wave method, we extracted a 

dispersion curve (Figure 2.13b). 
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Figure 2.12 – a) Comparison between the power law VS profile of the one-layer 

synthetic model (gray line) and the dispersion curve (black dots) extracted from the shot 

that was numerically simulated on the synthetic model. The dispersion curve is here 

represented in terms of pseudo-depth (wavelengths/2.5) versus pseudo-VS (phase 

velocities times 1.1). b) Theoretical dispersion curve (gray line) for the VS profile of the 

synthetic model of (a) and  extracted dispersion curve (black dots: same as in (a), but 

represented in frequencies vs phase velocities).   c) Comparison between the power law 

VS profile of the two-layer synthetic model (gray line) and the dispersion curve (black 

dots) extracted from the shot that was numerically simulated on the synthetic model 

itself. The dispersion curve is represented in terms of pseudo-depth (wavelengths/2.5) 

versus pseudo-VS (phase velocities times 1.1) d) Theoretical dispersion curve (gray line) 

for the VS profile of the synthetic model of (c) and  extracted dispersion curve (black 

dots: same as in (c), but represented in frequencies vs phase velocities). 
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Figure 2.13 – a) Synthetic seismogram from FEM simulation; b) extracted dispersion 

curve; c) relative error in the estimation of αS  and γS as a function of the assumed ratio 

between wavelengths and pseudo-depths. 
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 This dispersion curve was then translated to the pseudo-VS – pseudo-depth plane 

assuming 1.1 as the ratio between pseudo-VS and the Rayleigh wave phase velocities 

(Abbiss, 1981) and by successively adopting a different value for the ratio between 

wavelengths and pseudo-depths, chosen within the range 1.5 – 3. For every value of 

ratio between wavelengths and pseudo-depths, γS and αS were estimated by linearizing 

equation 1 and applying a least square approach: 

( ) ( ) ( )SvGGG log
log

T1T −
=
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with g the gravity acceleration, ρ the bulk density and z1…zn the pseudo-depths of the 

extracted dispersion curve. 

As shown in Figure 2.13c, the estimation of αS is not influenced by the value of 

the dividend translating the wavelengths into pseudo-depths, while the lowest 

estimation error for γs is obtained for the dividend equal to 2.62. Hereafter, we will use 

this value to express the ratio between wavelengths and pseudo-depths. 

Being the physical model before the addition of GBL2 a single layer model, we 

used the dispersion curve from Line 1 (Figure 2.9) reproduced in terms of pseudo-depth 

versus pseudo-Vs for the estimation of parameters αS and γS controlling the S-wave 

vertical velocity distribution in GBL1. We adopted a grid search approach (on the 

fundamental mode only): its results are reported in Figure 2.14, where the misfit 

evaluated for every possible couple of αS and γS is displayed on a logarithmic scale 

(Figure 2.14a). The couple yielding the minimum misfit value is αS = 0.345 and γS = 6.5: 

Figure 2.14b reports the good agreement between the experimental points and the 

power-law S-wave velocity trend determined by these values of αS and γS. On Figure 

2.14a, many (αS, γS) couples exhibit low misfit values around the minimum. But even if 

the corresponding power-laws only theoretically cross at one depth below zero, they 

remain very close to each other in terms of velocity profiles. This consequently 

generates equivalent misfit values according to the dispersion estimations errors. 
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Figure 2.14 – a) Misfit surface in the αS - γS domain for the inversion of the dispersion 

curve from Line 1: the white cross marks the position of the minimum misfit point; b) 

comparison between the experimental dispersion curve represented in terms of pseudo-

depth versus pseudo-VS and the best fitting VS profile. 
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B - Retrieving parameters αS and γS for the upper layer 

The second step of the inversion process involved the estimation of the couple of αS 

and γS controlling the power-law behaviour of the S-wave velocity in GBL2. Differently 

from what had been done for GBL1, values for αS and γS were determined for every 

dispersion curve extracted from the seismograms acquired on the top of the upper layer 

(Figure 2.10). The lower layer, as described in the experimental set-up section, was 

arranged into the box with special cares (i.e. glass beads were sieved and compacted 

every centimetre) and, at the end of the deposition process, a greater compaction was 

achieved by vibrating the wooden box. Therefore, such compaction is quite likely to 

ensure material homogeneity and constant values of αS and γS, on the contrary, the upper 

layer glass beads were simply poured, so that slight heterogeneities and different S-

wave velocity behaviours (and therefore αS and γS values) are expected over the model. 

As already shown in the previous paragraph, in case of a multi-layer granular model, 

the experimental dispersion curve fundamental mode represented in terms of pseudo-

depth versus pseudo-VS follows the exponential trend described by equation 1 until the 

upper interface depth (Figure 2.12c). The basic idea was then to use the experimental 

fundamental modes points with pseudo-depths smaller than the interface depth to 

estimate αS and γS for the upper layer similarly to what had already been done for the 

lower layer. However, the interface depth is not precisely known, as first layer smaller 

glass beads might have leaked down among larger lower layer glass beads (thus turning 

the interface into a transition zone): moreover, interface depth is also one of the 

parameters to be retrieved through inversion. 

Therefore, the following approach was adopted for each dispersion curve:  

- dispersion curve Rayleigh wave fundamental mode is  represented in terms of 

pseudo-depth versus pseudo-VS (Figure 2.15a); 

- the experimental points are sorted with increasing values of pseudo-depth (z); 

- a “for” loop over the n points of the experimental curve is implemented. For 

every ith iteration (with i ranging from 2 to n) only the first i points are 

considered (i.e. the points up to the ith z value): parameters αSi and γSi are 

computed with a least squares approach (see equations 2 and 3), minimizing the 

misfit mi between ( ) SiigSi
αργ ):1(, zv theorS = and the experimental pseudo-VS 

values ):1( iexpS,v . At the end of every iteration, αSi, γSi and the relevant misfit mi 

are represented at depth zi (see Figs 2.15b, 2.15c and 2.15d); 
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- eventually, the couple of αS and γS describing the VS  behaviour of GBL2 is 

chosen. Up to a certain depth, in fact, the misfit is low and almost constant: 

beyond a certain depth threshold, it suddenly increases, because equation 1 is no 

more able to model the behaviour of S-wave velocity with depth because of the 

influence of the deeper layer (see Figure 2.15b). Therefore, we chose the αS and 

γS values at the ones relevant to the greatest depth that still provides low misfit. 

Moreover, it has been noticed that, not surprisingly, this depth threshold roughly 

coincides with the expected interface between GBL2 and GBL1. 

 

 

Figure 2.15 – Retrieving parameters αS and γS for GBL2 for the dispersion curve at 

x=0.462 m. a) Experimental dispersion curve represented in pseudo-Vs versus pseudo-

depth (black dots) compared with the best fitting Vs profile (gray line) obtained from the 

chosen value of αS and γS and computed for the pseudo-depths of the experimental 

points considered for αS and γS estimation.  b) trend of misfit as a function of pseudo-

depth, i.e. as a function of the set of points considered for αS and γS estimation.  c) 

Estimated values of αS  versus pseudo-depth. The black circle marks the chosen value 

for αS. d) Estimated values of γS  versus pseudo-depth. The black circle marks the chosen 

value for γS.   

 

Figure 2.16 represents the couples of αS and γS for GBL2 that were retrieved from all 

dispersion curves. αS and γS values are located at the corresponding dispersion curve 

position. The estimated αS and γS values (lying within 0.31-0.35 and 4.3-6 respectively) 
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do not have a large variability and they are in agreement with the results previously 

achieved by Jacob et al. (2008) and Bodet et al. (2010, 2011) on similar physical 

models. The (αS, γS) couples should in fact be constant along the line, this layer being 

assumed laterally homogeneous. Here again, their slight variability remain satisfying 

since they lead to close VS values. Signif icantly, the power-law parameters retrieved for 

the upper layer are generally lower than the ones estimated for the lower layer (αSGBL1 = 

0.345 and γSGBL1 = 6.5) and, in any case, they yield slower S-wave velocity profiles. In 

particular, αSGBL1 roughly coincides with the upper limit of the values for αSGBL2 and 

γSGBL1  is greater than any value retrieved for γSGBL2: moreover, relatively high values of 

αSGBL2 are associated to relatively low values for γSGBL2 and vice versa, so that all 

retrieved couples of αSGBL2 and γSGBL2 ensure lower VS values with respect to the ones 

determined by αSGBL1 and γSGBL1. The lower layer, in fact, was vibrated in order to get a 

good compaction degree, and greater compaction implies a stiffer medium and therefore 

higher S-wave velocities. 

 

 

 

 

 

Figure 2.16 – Estimated values of αS and γS for GBL2. 
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C – Interface depth estimation  

Finally the interface depth was estimated for all available dispersion curves. A grid 

search approach was chosen, made up of the following steps and individually applied to 

each dispersion curve:  

- the interface depth is moved by 1 mm steps within the range 3-90  mm; 

- the S-wave velocity profile determined by parameters αS and γS for the upper and 

lower layer and by the current  interface depth is discretized into 1 mm thick 

layers, so that a theoretical dispersion curve can be computed through the 

Haskell and Thomson approach (Thomson, 1950; Haskell, 1953 and 1964); 

- the misfit is evaluated by comparing the experimental dispersion curve with the 

theoretical fundamental mode and first two higher modes, to fully exploit the 

information contained in the experimental data; 

- the results are plotted according to the misfit and the interface depth yielding the 

minimum misfit is chosen. 

Figure 2.17a represents the experimental dispersion curve located at x = 0.462 m 

(Figures 2.10 and 2.11) compared with the theoretical dispersion curves corresponding 

to the 10 best fitting interface depths while the corresponding Vs profiles are depicted in 

Figure 2.17b: note that the estimated interface depths are quite close to 0.035 m, which 

is the expected value for that location. 
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Figure 2.17 – a) Comparison between the experimental dispersion curve at x = 0.462 m 

and the theoretical dispersion curves corresponding to  the best 10 fitting Vs profiles 

(colour scale ranges from yellow = best profile to blue = 10th best profile). b) best 

fitting Vs profiles. 

  

Figure 2.18 portrays the 1D VS  profiles that were obtained by combining the values of 

αS and γS for the two layers and of the interface depths that were retrieved for every 

inverted dispersion curves: as far as the interface depth estimation is concerned, the 

agreement with the expected values is good, as the maximum discrepancy between 

estimated and expected interface does not exceed 1 cm.  Indeed, the global result is 
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satisfactory, as the lateral variation is correctly retrieved and the S-wave velocity 

behaviour is coherent among all profiles.  

 

 

 

 

  

 

Figure 2.18 – Inversion results. 1D Vs profiles obtained by combining the estimated 

values of αS and γS for the two layers and the interface depth. Vs profiles are located at 

the maximum of the Gaussian window used  to extract the corresponding dispersion 

curves 
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CONCLUSION 

Previous studies by Jacob et al., 2008 and by Bodet et al., 2010, 2011 have 

proven the possibility to retrieve the elastic parameters of granular media through 

seismic acquisitions performed on physical models with a laser scanner measuring the 

vertical vibration velocity of the grains on the free surface of the model. These 

experiments involved single layer models, basically made up of uncompacted grains 

with a relatively uniform diameter size, depicting a gravity induced stiffness gradient. 

The main task of our work was to test the feasibility of building granular physical 

models with a more complex geometry (i.e. constituted by materials with different 

elastic behaviours and with 2D structures) and to retrieve their characteristics by 

analyzing the propagation of the surface wave recorded with small-scale “laser-Doppler 

surveys”. The creation of two granular media with different elastic behaviours was 

achieved through the deposition technique. Once we had evidence of the possibility to 

create granular materials with different degrees of stiffness, we were able to construct a 

physical model with two layers whose reciprocal interface is characterized by a uniform 

slope in the central part of the model itself. By following the purpose of our work, 

several small-scale seismic acquisitions were performed on the free surface of the 

model, in order to get a dataset exhaustively depicting surface wave propagation in the 

model. The last stage of the process involved the extraction of surface wave dispersion 

curves from the recorded seismograms and their inversion. In particular, in order to get 

a more accurate description of the 2D portion of the model, an algorithm by Bergamo et 

al. (2010) based on a spatial windowing of the traces to get several local curves from the 

same seismogram was applied. As far as the dispersion curves inversion is concerned, 

we adopted the relationship introduced by Gassmann (1951) where S-wave velocity is 

considered as power-law dependent on pressure. The unknowns to be retrieved were 

power-law exponents controlling the Vs behaviour for each layer and the interface 

depth. Unknown parameters were not estimated by a single inversion process but by 

means of a step by step inversion procedure, isolating from time to time a parameter or 

a couple of parameters to be retrieved. Such procedure, although biased by the a priori 

knowledge of the geometry model, yielded accurate and meaningful results: the 2D 

structure of the analogue model was satisfactorily reconstructed, and the estimated 

values of the power-law exponents roughly match the results of previous works by other 

authors and are coherent with the granular materials deposition process. A further step 

of the research work would be to attempt an inversion process inverting for all 
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parameters at the same time, in order to evaluate the possible presence of equivalence 

phenomena and to test the effectiveness and reliability of a more “blind” inversion 

procedure. 
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3 – EXPLOITING SCALE PROPERTIES TO RETRIEVE CONSIST ENT 

INITIAL MODELS FOR SURFACE WAVE INVERSION AND TO ES TIMATE 

SUBSOIL SPATIAL VARIABILITY  

 

In the present  chapter I introduce another processing tool I developed to make the 

surface wave method more reliable in the reconstruction of smooth lateral variations in 

the subsurface. The algorithm I implemented  exploits the scale properties of surface 

wave: given two dispersion curves, by comparing their “shapes” it is possible to 

retrieve the ratios between analogous parameters of the two corresponding S-wave 

velocity profiles, without the need to solve a formal inverse problem. This algorithm is 

exploited for two different applications: the first one aims at  building reliable initial 

models for the deterministic inversion of a set of dispersion curves, by spreading 

available local a priori information to all locations where experimental dispersion 

curves are present. In its second application, the algorithm is used to perform a 

preliminary assessment  of the spatial variability of S-wave velocity  model parameters 

via the comparison of the available experimental  dispersion curves.  

 

 

ABSTRACT 

Deterministic inversion of surface wave data suffers from solution non 

uniqueness and is hence biased by the choice of the initial model. A priori geological 

information (from log surveys, down-hole tests) can be used to produce a reliable initial 

model for the inversion of the experimental dispersion curves: this local information, 

however, is rarely available along all the survey line  the dispersion curves are extracted 

from. We therefore implemented a method to extend a priori local information to the 

location of the experimental dispersion curves consistently with the available surface 

wave data. This allows a proper initial model to be generated to make the inversion 

process more reliable. This method depends on an algorithm which is turn based on a    

sensitivity analysis and on the application of scale properties of surface waves: given 

two dispersion curves, by comparing their “shapes” the algorithm estimates the scaling 

factors between analogous parameters of the two corresponding S-wave velocity 

profiles, without the need to solve a formal inverse problem. We also addressed the 

same algorithm to a second application, that is the estimation of the lateral variability of 
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Vs model parameters based on the analysis of surface wave dispersion data, so that it is 

possible to preliminary estimate  the general trend of Vs model parameters to be later 

used as a-priori information in the inversion. Once we had stated these novel 

methodologies, we applied them to two synthetic datasets, derived from models 

characterized by the presence of 2D structures. We were able to reconstruct such lateral 

variations by extending a known local Vs profile to the whole subsurface of both 

models: we also correctly estimated the overall trend of the corresponding Vs model 

parameters. Eventually, we processed a real dataset: again, we managed to spread the 

local information provided by two down-hole tests over the seismic line the dispersion 

curves were extracted from and we also estimated the spatial variability of the pseudo-

2D section model parameters. In both cases, the results we got are in good agreement 

with other geophysical analyses performed on the same site and confirm the 

applicability and reliability of our methods. 

 

 

INTRODUCTION  

Surface wave (SW) analysis is nowadays regarded as a powerful tool for the 

estimation of vertical 1D S-wave profile in the subsurface. SW analysis involves the 

extraction of an experimental dispersion curve from active or passive seismic 

measurements and its inversion to estimate the vertical profile of S-wave velocity (Vs) 

distribution. Nevertheless, the main drawback of SW method is that the inversion 

suffers from solution non-uniqueness (Tarantola 2005 and Foti et al. 2009): in other 

words, several theoretical dispersion curves relevant to as many Vs profiles fit equally 

well the experimental curve. Literature offers some strategies to handle this issue. If a 

global search inversion algorithm is chosen, it is possible to single out which subsoil 

models have a similar level of consistency with the data. However, global search 

methods (GSMs) have greater computational costs when compared to deterministic 

inversion methods (Socco et al. 2010). To  reduce such costs, some optimization 

methods have been developed, such as simulated annealing (based on the work by 

Metropolis et al. 1953), genetic algorithms, or the application of scale properties of 

surface wave (Socco and Boiero 2008). If a deterministic inversion algorithm is 

preferred, great care must be paid in selecting the model parameterization and the initial 

model, as the non-uniqueness of the solution makes the inversion result very sensitive to 

them, and they can drive the inversion towards local minima if they have not been 
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properly chosen (Sambridge, 2001; Luke et al., 2003; Wathelet, 2005). The effects of 

this criticism can be mitigated by exploiting a priori information from borehole logs 

and/or other geophysical data available for the investigated site. Moreover, constrained 

or joint inversion algorithms, by combining different kinds of geophysical data or 

integrating the inversion of neighbouring datasets, can improve the consistency of the 

inversion result and the reliability of its physical meaning (see for instance Wisén and 

Christiansen 2005, for a joint inversion of surface wave and resistivity data, and 

Forbriger 2003 for a joint analysis of refraction and surface wave data). Although the 

improvement induced by joint and constrained inversion algorithms has been shown by 

several papers, the common practice in surface wave analysis is that when other data are 

available at the site they are simply used for a posteriori comparison of the results. In 

geotechnical engineering, in particular, when borehole tests are available, they are 

frequently combined with surface-wave seismic surveys: in fact, downhole or crosshole 

tests results are generally viewed as more reliable when compared to surface-wave 

analysis based Vs profiles and usually, the agreement between the two results is used to 

prove the reliability of the latter (Malovichko et al. 2005). Therefore, a priori 

information is not fully exploited in a rigorous and quantitative way.  

The present work faces the issue of the solution non-uniqueness of surface wave data by 

proposing a procedure (Boiero et al. 2009) able to quantitatively integrate a priori local 

information into the inversion of surface wave dispersion curves gathered in 

neighbouring sites by extracting available punctual data from log surveys and adapting 

them according to the observed surface wave dispersive behaviour. This goal is 

achieved by applying an approach based on a sensitivity analysis followed by the 

exploitation of the scale properties of surface waves. Scale properties of surface wave 

have been introduced by Socco and Strobbia (2004), applied to Monte Carlo inversion 

by Socco and Boiero (2008) and inserted in the perspective of full-waveform inversion 

by Maraschini et al. (2011). They are based on the non-dimensionalization of the related 

forward modelling, so that if seismic parameters of two different models differ only for 

scale factors, the two corresponding dispersion curves can be derived one from the other 

by applying a proper scaling. As already proposed by Socco and Boiero (2008), in the 

procedure presented in this paper we exploit surface waves scale properties to derive the 

scale factors between seismic parameters of different models from the comparison of 

the shape of the corresponding dispersion curves. In our case, however, every seismic 

parameter can scale separately from the other ones, so that a sensitivity analysis is 
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necessary to separate the contribution of every single model parameter on the dispersion 

curves scaling.  

We used a similar approach, based  on the same principles (sensitivity analysis,  

exploitation of scale properties of surface waves), to face another issue related to the 

application of the  surface wave method, that is the reconstruction of 2D structures in 

the subsurface. The surface wave (SW) method is in fact characterized by a 

monodimensional approach and might therefore prove unsuitable when applied in 2D 

environments (Semblat et al. 2005). Some recent papers propose strategies to 

reconstruct lateral variations from surface wave dispersion analysis: they are mainly 

based on a moving spatial window to extract a set of neighbouring local dispersion 

curves, which are later separately inverted (see Tian et al., 2003; Bohlen et al., 2004; 

Neducza 2007). Grandjean and Bitri (2006) and Socco et al. (2009) exploit the data 

redundancy proper of reflection seismic recordings by stacking in the f-k domain 

different records referenced to the same spatial location: again, the dataset to be inverted 

is an ensemble of dispersion curves located along the acquisition line. In this work, we 

introduce a method to estimate the lateral variability of model parameters of a 2D 

pseudosection of S-wave velocity in the subsoil based on the analysis of surface wave 

dispersion data. The method exploits the same approach presented above, which allows 

computing the scaling factors between corresponding parameters of two Vs models via 

the comparison of the two related dispersion curves and the application of scale 

properties of surface waves (Socco and Boiero, 2008). The retrieved information on the 

spatial variability of model parameters can be effectively used to single out areas with 

greater or lower lateral variability, for a proper choice of the inversion algorithm 

(constrained or unconstrained). In particular, if a laterally constrained algorithm (LCI; 

Auken and Christiansen, 2004) is preferred, the estimated lateral variability can be 

effectively exploited for a data-consistent tuning of the lateral constraints.  

  The two novel methodologies (building a consistent initial model and estimating 

the spatial variability of model parameters) and the algorithm both are based on are 

thoroughly described in the following section: we then present their application to two 

synthetic datasets and, finally, to a real case. 
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METHODS 

In this section, we first illustrate the algorithm the two procedures presented in this 

work are based on and later we will show how it can be applied for the build-up of a 

consistent initial model based on a-priori local information and for the estimation of the 

expected lateral variability of Vs model parameters. 

 

 

Comparison between two dispersion curves  

The key point of our work is a method to retrieve the ratios between 

corresponding parameters of two 1D Vs profiles by comparing the two corresponding 

dispersion curves: therefore, if  one of the two Vs profiles is known, the other one can be 

estimated (Figure 3.1).  

 

Figure 3.1 – Sketch of the comparison between two dispersion curves: Vs profile 1 is 

known, the corresponding dispersion curve (dispersion curve 1) and the dispersion 

curve related to the unknown Vs profile 2 are available. The ratios between analogous 

parameters of the  Vs profiles are obtained from the comparison of the two dispersion 

curves so that Vs profile 2 can be estimated. 
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Such comparison method requires that the two 1D subsoil profiles refer to 

horizontally layered media that have the same number of layers. Moreover, we assume 

the densities and the Poisson’s ratios of corresponding layers of the two subsoil profiles 

to be equal, i.e. they don’t scale, as they have a limited influence on the dispersion of 

surface waves (Nazarian, 1984). The model parameters whose scaling factors are 

estimated are therefore the layers thicknesses and S-wave velocities.  

The comparison method is based on a sensitivity analysis and on the application of the 

scale properties.  

A general description of scale properties of seismic waveform has been presented 

by Maraschini et al. 2011. Scale properties of surface wave dispersion curves were 

enunciated in the work by Socco and Strobbia (2004) and formally demonstrated and 

applied by Socco and Boiero (2008). They can be summarized in the statement that “the 

phase velocities and the frequencies of the dispersion curve scale simply if all the layer 

velocities are scaled; the frequencies of the dispersion curve scale if all the layer 

thicknesses are scaled” (Socco and Strobbia, 2004). In other words, given a layered 

subsoil model M(h,vs,ν,ρ) where h, vs, ν and ρ represent the vectors of the layers 

thicknesses, S-wave velocities, Poisson’s ratios and densities respectively, and given its 

corresponding dispersion curve whose points coordinates in the frequency-phase 

velocity space are described by the frequencies vector f and by the phase velocities 

vector v, the dispersion curve related to the scaled model M ’(β·h,γ·vs,ν,ρ), where β and γ  

are the scaling factors for thicknesses and S-wave velocities, can be derived from model 

M  dispersion curve, as 

 vv ⋅= γ' ; ff ⋅=
β
γ

'    (1)   

where v’ and f’ are the vectors of phase velocities and frequencies of the dispersion 

curve related to model M ’. Consequently, if dispersion curves are represented on a bi-

logarithmic axis  plot, the application of the scaling factors of model parameters implies 

a rigid translation of the modal curves (Figure 3.2). Equation 1 for the dispersion curves 

represented in frequency-wavenumber domain becomes:  

kkff ββ
γ 1';' =⋅=             (2) 

where k and k’ represent the vectors of the wavenumbers of the points of the 

dispersions curves related to model M  and M ’ respectively. 

 



Paolo Bergamo                                    Suraface wave analysis in laterally varying media 
 

 77 

 

Figure 3.2 – Example of scaling properties of modal curves: in a bi- logarithmic axis 

plot (b), the scaling of frequencies and velocities according to the scaling of model 

parameters (a) produces a rigid translation of the modal curves (from Socco and Boiero 

2008). 

 

In our case we have to extend this concept to the case in which different model 

parameters are scaled differently and our aim is to estimate the scale factor for each 

model parameter. To do this, prior to the application of scale properties, we perform a 

sensitivity analysis, in order to estimate the contribution of every single model 

parameter to the overall scaling of the dispersion curve.     

 

Sensitivity analysis 

The task of the sensitivity analysis is to understand how much the dispersion curve 

points are sensitive to each parameter of the layered Vs profile, i.e. how much their 

phase velocity and frequency values change if one model parameter (either a layer 

thickness or a S-wave velocity) is perturbed. Here’s the list of the steps explaining how 

the sensitivity analysis needs to be computed to be consistent with the application of the 

scale properties: 

- a for loop is run over the Vs model parameters (layers thicknesses and S-wave 

velocities): at every iteration, the jth parameter pj is chosen; 

- parameter pj is successively increased and then decreased by a relative quantity 

α: 

      ( ) ( ) jjjj pppp αα −=+= −+ 1;1         (3) 
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      where pj
+ and pj

- correspond to parameter pj increased and decreased and α is the 

perturbation relative quantity (we have generally set α = 0.05); 

- consequently, two Vs profiles (Vsj
+  and Vs j

-) are created, similar to the original Vs 

model but where the value of pj is substituted by pj
+ and pj

- respectively; 

- theoretical dispersion curves dcj
+ and dcj

- corresponding to Vs models Vsj
+ and 

Vsj
- are computed by applying a Haskell and Thomson forward modelling 

(Haskell 1953, Thomson 1950): in both cases the fundamental mode only is 

computed; 

if parameter pj  is a layer thickness, its sensitivity sj  is estimated by evaluating 

how the frequencies of the theoretical dispersion curves scale, phase velocities 

being equal (Figure 3.3), because a scaling of the thicknesses produces a scaling 

of the frequencies only  (equation 1). Sensitivity is computed by applying the 

following equations:  

 






















































 −−=−++=+
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p
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p;
j
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p log
j

log
j

log
j

log
j

ffsffs
  

( ) 2jjj
−+ += sss                                                                                 (4) 

 

 where sj
+ and sj

- are the vectors storing the scaling of the frequencies with 

respect to an increase and to a decrease of parameter pj, f are the frequencies of 

the points of dispersion curves dcj
+ and dcj

- at the same phase velocities of f.  On 

the other hand, if parameter pj is a layer S-wave velocity, the original dispersion 

curve, dcj
+ and dcj

- are turned from phase-velocity versus frequency domain into 

frequency-wavenumber domain because a scaling of the velocities produces a 

scaling of frequencies alone in f-k domain (equation 2). The sensitivity is then 

computed by evaluating how the frequencies of the theoretical dispersion curves 

scale, wavenumbers being equal (Figure 3.4). Again, equations 4 are used for 

the computation of the sensitivity, but now  f represents the frequencies of the 

points of the original dispersion curves and f j
+ and f j

- are the frequencies of the 

points of dispersion curves dcj
+ and dcj

- at the same wavenumbers of f.  
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Figure 3.3 – Example of computation of the sensitivities: sensitivity for the 1st layer 

thickness of Vs profile 1 from Figure 1. a) original dispersion curve (black line) and 

dispersion curves corresponding to the two Vs profiles where the 1st layer thickness has 

been increased and decreased (dcj
+ and dcj

-, blue line and red line); b) zoom of the 

previous plot highlighting the scaling of frequencies; c) sensitivity for the 1st layer 

thickness. 
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Figure 3.4 – Example of computation of the sensitivities: sensitivity for the 1st layer S-

wave velocity of Vs profile 1 from Figure 3.1. a) original dispersion curve (black line) 

and dispersion curves corresponding to the two Vs profiles where the 1st layer velocity 

has been increased and decreased (dcj
+ and dcj

-, blue line and red line); b) zoom of the 

previous plot highlighting the scaling of frequencies; c) sensitivity for the 1st layer S-

wave velocity. 

 

Figure 3.5 represents the sensitivities computed for the parameters of Vs model 1 

represented in Figure 3.1: not surprisingly, parameters of shallower layers have a greater 

influence at high frequencies, while parameters of deeper layers have higher sensitivity 

values at low frequencies.  
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Figure 3.5 – Sensitivities for the parameters of  Vs model 1 from Figure 3.1. a) 

sensitivities relevant to layers S-wave velocities, indicating how much phase velocity 

and frequency values of the points of the corresponding dispersion curve change with 

respect to a scaling of the S-wave velocities. b) sensitivities relevant to layers 

thicknesses, indicating how much phase velocity and frequency values of the points of 

the corresponding dispersion curve change with respect to a scaling of the S-wave 

velocities. In both plots sensitivities are here represented as a function of the frequency 

of the dispersion curve points, and black lines indicate the sum of the sensitivities for 

each dispersion curve point. 

 

It is worth noting that the sum of the thickness sensitivities and the sum of the 

velocity sensitivities carried out for every frequency is one (black lines in Figure 3.5): in 

fact, the scaling in frequency and phase velocity of every point of the dispersion curve 

can be explained as the result of a weighted sum of the scaling of the Vs model 

parameters, where the weights correspond to the parameter sensitivities at the same 

frequency of the point itself. 
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Application of scale properties 

We have shown that given two subsoil Vs models M  and M ’ with the same 

number of layers whose thicknesses and S-wave velocities are homogeneously scaled, it 

is possible to derive the dispersion curve related to M ’ from the dispersion curve 

corresponding to M  by properly scaling the frequencies and phase velocities of the 

known dispersion curve according to the scaling of the model parameters (equations 1 

and 2). However, for the purposes of our work, we need to retrieve the scale factors for 

each Vs model parameter if not all layers thicknesses and not all layers S-wave 

velocities are scaled the same. To do this, we consider the scaling of the frequencies and 

phase velocities of the dispersion curve as the weighted sum of the effects of the scaling 

of the different model parameters, where the weights are provided by the sensitivity 

analysis.  In other words, sensitivities are computed  to know how much frequencies 

and phase velocities of the modal curve scale if one single  parameter is scaled at a time: 

once sensitivities are known, they are used as weights for the application of the 

superposition principle. To specify the previous statements, we reconsider the scale 

properties (equations 1 and 2). A subsoil layered model M(h,vs,ν,ρ) is given,  where h, 

vs, ν and ρ refer to the vectors of the layers thicknesses, S-wave velocities, Poisson’s 

ratios and densities respectively: its corresponding dispersion curve is constituted by n 

points whose frequencies and phase velocities are stored  in vectors f and v respectively. 

The sensitivities of the dispersion curve points with respect to the scaling of the m+1 

layers S-wave velocities are computed as shown in the previous paragraph and  can be 

stored in matrix Sv: 
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whose generic element si,j represents the sensitivity of the ith point of the dispersion 

curve with respect to the jth layer S-wave velocity. Similarly, the sensitivities with 

respect to the m thicknesses are stored in Sh matrix: 
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whose generic element si,j represents the sensitivity of the ith point of the dispersion 

curve with respect to the jth layer thickness. 
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The dispersion curve related to model M ’(Β·h,Γ·vs,ν,ρ), where Β and Γ are 

diagonal matrices whose main diagonal entries are the scaling factors for thicknesses 

and S-wave velocities respectively, can be derived from the curve corresponding to 

model M(h,vs,ν,ρ)  by applying the superposition principle; the scaling of phase 

velocities is computed as follows: 

( ) ( )[ ])diag(log)log('log v ΓSvv ⋅=−         (7) 

and therefore 

( )[ ]{ })diag(logexp' v ΓSvv ⋅⋅=          (8) 

where v’  is the vector of the phase velocities of the points of the dispersion curve 

corresponding to model M ’(Β·h,Γ·vs,ν,ρ).  

The scaling of the frequencies can be estimated in a similar way: 

( )[ ] ( )[ ])diag(log)diag(log)log()'log( hv ΒSΓSff ⋅−⋅=−    (9) 

which can be rewritten as  

( )[ ] ( )[ ]{ })diag(log)diag(logexp' hv ΒSΓSff ⋅−⋅⋅=     (10) 

with f’  the vector of the frequencies of the points of the dispersion curve corresponding 

to model M ’(Β·h,Γ·vs,ν,ρ). 

As the scaling of frequencies and phase velocities is substantially evaluated by 

solving a system of linear equations (equations 8 and 10), it is then possible to solve the 

inverse problem as well, i.e. estimating the scaling factors of model parameters being 

known the scaling of frequencies and phase velocities. In other words, it is possible to 

estimate Β and Γ, and therefore the parameters of model M ’(Β·h,Γ·vs,ν,ρ) being given 

model M(h,vs,ν,ρ) and the two corresponding dispersion curves, defined by vectors v, f  

and v’, f’. As both dispersion curves are known, it is possible to evaluate how 

frequencies and phase velocities of dispersion curve of model M  need to be scaled to 

match the shape of dispersion curve of model M’ . However, this match cannot be 

interpreted uniquely, as there are infinite combinations of scaling able to make the curve 

of model M  to assume the shape of the curve of model M ’: therefore it is necessary to 

assume that either only layers thicknesses or only layers S-wave velocities can vary, so 

that either the scaling of frequencies alone in the f-v plane or the scaling of frequencies 

alone in the f-k plane is  evaluated. In both cases, the measured scaling vector can be 

referred to as f
f ' , i.e. the vector of the ratios between frequency values of the curve of 

model M ’ and the frequency values of the curve of model M , being either phase 

velocities or wavenumbers constant. 
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If the thicknesses are assumed to be constant and only S-wave velocities can vary, 

equation 9 can be rewritten as: 

( ) [ ])log()'log()diag(log g
v ffSΓ −⋅= −          (11) 

and therefore 

[ ]{ })log()'log(exp)diag( g
v ffSΓ −⋅= −         (12) 

where Γ is the diagonal matrix whose main diagonal entries are the ratios between 

corresponding S-wave velocities of model M  and model M ’ and g
v

−S  is the generalized 

inverse of sensitivity matrix Sv (see equation 5). g
v

−S  is defined as  

( ) v

1

v
T
v

g
v SSSS

−− =         (13) 

Note that the linear system of equations in 12 has one and valid solution and g
v

−S  

can be defined as in equation 13 if the number of elements of vector f
f '  is greater than 

the number of unknowns, which is equal to the number of layers in the models. 

Similarly, if S-wave velocities are assumed to be equal in both models, the ratios 

between corresponding thicknesses of model M ’  and model M  (the elements of the 

main diagonal of matrix Β) can be obtained by rewriting equation  9 as  

( ) [ ])log()'log()diag(log g
h ffSΒ −⋅−= −        (14)  

and therefore 

[ ]{ })log()'log(exp)diag( g
h ffSΒ −⋅−= −        (15) 

where g
h

−S  is the generalized inverse of sensitivity matrix Sh (see equation  6) and it is 

defined as: ( ) h

1

h
T
h

g
h SSSS

−− =         (16) 

Two examples of the application aforementioned method are presented in Figures 3.6 

and 3.7: in Figure 3.6 S-wave thicknesses are assumed constant, while in Figure 3.7 

velocities are the same in both models.  
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Figure 3.6 – Example of the application of the method exploiting the comparison 

between two dispersion curves to retrieve the ratios between corresponding parameters 

of both models. In this case, thicknesses are constant and only S-wave velocities can 

vary. a) The two dispersion curves, represented in a f-k plot, and the evaluation of the 

scaling of frequencies for the dispersion curve 1 (whose corresponding model is known) 

to match dispersion curve 2; b) the estimated scaling of frequencies; c) sensitivities of 

dispersion curve 1 computed with respect to the S-wave velocities of model 1; d) subsoil 

models: model 1 is given, model 2 is estimated and compared with its true Vs profile. 
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Figure 3.7 – Example of the application of the method exploiting the comparison 

between two dispersion curve to retrieve the ratios between corresponding parameters 

of both models. In this case, S-wave velocities do not vary and only thicknesses can 

change their value.  a) The two dispersion curves, represented in a f-v plot, and the 

evaluation of the scaling of frequencies for the dispersion curve 1 (whose 

corresponding model is known) to match dispersion curve 2; b) the estimated scaling of 

frequencies; c) sensitivities of dispersion curve 1 computed with respect to the 

thicknesses of model 1; d) subsoil models: model 1 is given, model 2 is estimated and 

compared with its true Vs profile.  

 

In both cases the unknown model is correctly estimated starting from the 

knowledge of the other model and having the two dispersion curves.  

The main limitation of the presented approach is that it can be reliably applied if the 

scaling factors of model parameters, stored in  the main diagonal of matrices Β and Γ, 

are not too far from α±1 , where α is the parameter perturbation relative quantity 

introduced in the sensitivity computation (see previous section): if this condition does 

not hold true, the approximation introduced by linearizing the problem (see equations 7 

and 9) may not be valid anymore. From several numerical tests, we have concluded that 

the presented method can be reliably applied if the following inequalities: 
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10
1)diag(

1.0 ≤
−

≤
α
Β

 ; 10
1)diag(

1.0 ≤
−

≤
α
Γ

 (15) 

hold true for all the elements of the main diagonal of Β and Γ. 

Figure 3.8 displays a flow-chart of the presented method, by which it is possible 

to estimate the scaling factors between the parameters of two Vs models via the 

comparison of the corresponding dispersion curves.  

 

Figure 3.8 – Flowchart of the method by which it is possible to estimate the scaling 

factors between the parameters of two Vs models (M and M ’) via the comparison of the 

corresponding dispersion curves (indicated as dc and dc’). 
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Production of consistent initial model 

The goal of our procedure is to use the a-priori information that may be available 

at a position in the neighbouring of the seismic line to build up a consistent initial model 

also for dispersion curves which are not close to the a-priori information location. This 

is achieved by updating the Vs model provided by the a-priori information available at 

one place to the location of the dispersion curve in a way which is consistent with the 

dispersion curve itself. The scaling factors for the model parameter update are retrieved 

by means of the comparison method presented in the previous paragraph.  

The first step is to compute the theoretical dispersion curve relative to the Vs 

model that represents the a-priori information, usually derived from a down-hole or 

cross-hole test results. The curve is then used for the sensitivity analysis that supplies 

the weights for the application of the scale properties. Eventually, the available 

experimental dispersion curves are compared one by one to the theoretical curve 

through the application of scale properties of surface waves: this provides the update of 

the a-priori model at each experimental dispersion curve position (Figure 3.9). The 

obtained models are based on the parameterization obtained from the a-priori 

information and are modified according to the local information contained in the 

dispersion curve: they are hence consistent with both a-priori information and raw data. 

They can be hence used as consistent initial model for inversion. 
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Figure 3.9 – Scheme of the procedure to estimate a consistent initial model for the 

inversion of a set of experimental dispersion curves. Experimental dispersion curves are 

compared with the theoretical curve corresponding the Vs profile retrieved from log 

survey or a down-hole test. The result of each comparison is a 1D Vs profile 

corresponding to the a priori information properly customized according to the 

considered experimental dispersion curve. 
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Estimation of expected lateral variability 

The input data that is required for the estimation of the expected lateral variability 

of Vs model parameters is a set of dispersion curves spatially located at different 

positions along the seismic line they were extracted from. The preliminary step is 

attributing an estimate of the subsoil Vs profile to all available experimental dispersion 

curves by applying, for instance, the procedure for the production of a consistent initial 

model presented in the previous paragraph. If no a priori model is available this can be 

replaced, only for the purpose of estimating the lateral variability of the parameters, by 

the result of the inversion of one of the experimental curves. The aim of attributing a 

rough estimate of the subsoil model to the experimental dispersion curves is to provide 

each curve a Vs profile to perform a sensitivity analysis.  The lateral variability of each 

model parameter can then be estimated by comparing the experimental dispersion 

curves two by two, thus retrieving the ratios between corresponding parameters, either 

S-wave velocities or thicknesses according to the chosen simplification assumption. For 

the necessity to choose such simplification assumption, see the “Comparison between 

two dispersion curves“ paragraph. Therefore, if the set of dispersion curves to be 

inverted is made up of  n curves, every model parameter of a Vs model has n-1 estimates 

of its ratio with respect to the corresponding parameter of the other models. For the kth 

model parameter the reciprocal ratios between model parameters derived from the 

comparison of every couple of dispersion curves form the n x n matrix Rk: 

 

 

(16) 

 

where the generic element r i,j is derived from the comparison between the ith and jth 

dispersion curve. By subtracting to all the ratios the mean of the ratios belonging to the 

same row (i.e. each ratio turns into the relative deviation from the average value of the 

parameter) we obtain R’ k: 

 

  

 

(17) 
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whose generic element is r’ i,j = r i,j - ir  with ir  the mean of the ratios from the ith 

row of Rk. 

Then, by averaging over the columns of R’ k, the expected spatial variability for the 

kth parameter is obtained:  
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ESV      (18) 

where ESVk is the expected spatial variability for the kth model parameter, i.e. a 

vector whose elements represent an estimate of the trend of the kth parameter value 

along the survey line. A simplified sketch of the presented method is displayed in 

Figure 3.10. 

 

 

Figure 3.10  – Sketch of the method for the estimation of the expected lateral variability 

of  Vs model parameters  

 

The estimated lateral variability can then be used to tie different 1D model through 

spatial regularisation in the inversion, for instance using a laterally constrained 

inversion scheme (Socco et al., 2009). The basic idea is to customize the strength of 

lateral constraints on the expected lateral variability of the model parameters: where the 
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variability is higher, constraints can be loosened, while they can be strengthened where 

the model parameters are expected to assume similar values. 

 

 

SYNTHETIC DATA 

The procedures for the production of a consistent initial model and for the 

estimation of the lateral variability of Vs model parameters was firstly tested on two 

synthetic datasets.  

The first synthetic dataset presented in this work was originally produced by Boiero and 

Socco (2010). The model was generated through a finite element method available code 

(COMSOL Multiphysics®, stress-strain module) using an axial symmetric scheme and 

a Ricker signal (dominant frequency 10 Hz) to simulate the seismic source. The model 

(Figure 3.11) is linear elastic isotropic and presents three layers, topographic 

unevenness and a dipping layer: its seismic properties are reported in Table 3.1.  

 

Figure 3.11 – Geometry of the first synthetic model: all dimensions are in meters. The 

vertical thick dashed line visible on the left side marks the position of the simulated 

down-hole test used to build the initial model.  

 

 

Table 3.1 – Seismic properties of the layers of the first synthetic model. 

Layer VP  [m/s] VS [m/s] ρ[kg/m3] 

1 240 120 1800 
2 340 170 2100 
3 500 270 2400 
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The generated dataset represents a typical multifold seismic survey with 

geophones every 5 m and shot points every 20 m. As for the dispersion curves 

extraction, the procedure is extensively described in the aforementioned paper by 

Boiero and Socco (2010). A set of 12 dispersion curves (Figure 3.12) was retrieved 

from the stacked f-k spectrum computed for each position of a moving window of 24 

channels with an overlap between neighbouring positions of the window of 75%. The 

dataset to be inverted is hence a series of dispersion curves evenly-spaced along the 

seismic line.  

 

Figure 3.12 – Dispersion curves extracted from the first synthetic model. Each 

dispersion curve is identified by the X value of its corresponding reference point. 

 

We applied our proposed methods to this dataset. First, we produced an initial 

model based on a priori information by supposing  that a log survey had been performed 

by the position of the leftmost dispersion curve of the synthetic model (Figure 3.11, see 

thick black dashed line). The vertical Vs profile that is supposed to be known in that 

position was extended to the whole survey line, by adapting it according to the 

comparison of the dispersion curves. Velocities were assumed to be constant, and only 

thicknesses were left free to vary. The obtained initial model is displayed in Figure 

3.13: both interfaces depth were reconstructed with a good degree of accuracy, as the 

relative estimation errors never exceed 12 % (Figure 3.14). 
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Figure 3.13 – Consistent initial model produced by spreading the exact Vs profile 

indicated in Figure 3.11 to the whole survey line. Thin black lines indicate the actual 

position of the model interfaces and its boundaries.  

 

 

Figure 3.14 – Relative estimation errors for the interfaces depths of the first synthetic 

model. 

 

 

 

We also computed the expected spatial variability for the Vs model layers 

thicknesses (Figure 3.15), assuming constant S-wave velocity values. In Figure 3.15b 

the expected spatial variability shows a good agreement with the actual trend of the 

corresponding parameters.  
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Figure 3.15 – Expected spatial variability of the thicknesses of the first synthetic model. 

a) ratios among corresponding the thicknesses computed for  every couple of dispersion 

curves (matrices Rk of equation 16) and b) represents the derived expected spatial 

variability (vectors ESVk of equation 18) compared with the true trend of the values of 

the two thicknesses. 

 

The second synthetic dataset was originally produced and used by Socco et al. 

(2011). It was generated by means of a f inite-difference code for numerical simulations 

FD2.0, implemented by the Geophysics Laboratory of Politecnico di Torino in 

FORTRAN 90/95 standard and based on the works by Chapman (1994) and Nyhoff 

(1997). FD2.0 is able to produce, starting from a 2D subsoil layered model described by 

the seismic properties of its materials, a seismic dataset characterized by spatial 

sampling consistent with the mesh size and by a fixed number of shots. The geometry of 

the synthetic model is represented in Figure 3.16 and the seismic properties of the layers 



Paolo Bergamo                                    Suraface wave analysis in laterally varying media 
 

 96 

are reported in Table 3.2: again, the model is characterized by signif icant lateral 

variations, as a basin is present on the left side of the model while on the right side the 

second layer progressively emerges reducing the thickness of the shallower layer up to 

10 m.  

 

Figure 3.16 – Geometry of the synthetic model: all dimensions are in meters. The 

vertical dashed line visible on the left side marks the position of the simulated down-

hole test used to produce the initial model. Side and bottom boundaries are modelled as 

absorbing boundaries. 

 

Table 3.2 – Seismic properties of the layers of the second synthetic model. 

Layer VP  [m/s] VS [m/s] ρ[kg/m3] 

1 800 500 1800 
2 1300 800 1800 
3 1800 1100 2000 
4 2600 1600 2400 

 

As for the shot simulations a Ricker source centred at 10 Hz was used: a multifold 

seismic survey was simulated, with shots every 10 m and spacing between neighbouring 

receivers of 5 m. A dispersion curves extraction technique, similar to that described in 
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Boiero and Socco (2010) for the previous synthetic model, was applied: a moving 

window 200 m wide was progressively shifted by 100 m steps along the simulated 

seismograms and a set of 14 dispersion curves was extracted (Figure 3.17). Again, the 

Vs profile located at the thick black dashed line in Figure 3.16 was supposed to be 

known and spread to the survey line and customized according to the available surface 

wave data, assuming constant velocities and estimating the trend of the layers 

thicknesses along the line.  

 

Figure 3.17 – Dispersion curves extracted from the second synthetic model. Each 

dispersion curve is identified by the X value of its corresponding reference point. 

 

The obtained model is represented in Figure 3.18 and the relevant relative 

estimation errors for the interfaces depths are reported in Figure 3.19.  
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Figure 3.18 – Consistent initial model produced by spreading the exact Vs profile 

indicated in Figure 3.16 to the whole survey line. Thin black lines indicate the actual 

position of the model interfaces. 

 

Figure 3.19 – Relative estimation errors for the interfaces depths of the second 

synthetic model. 

 

On the whole, results are satisfying, as the majority of the errors are equal or 

lower than 20 %: however, estimation errors are greater than those found for the 

previous synthetic dataset, probably because of the lower quality of the dispersion 

curves.  The most remarkable errors are produced for the vertical Vs profiles located at 

or near the basin on the left side of the model: being the window used for the dispersion 

curves extraction 200 m wide, the dispersion curves cannot perfectly follow the trend of 
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lateral variations as they are not representative of the vertical profile beneath the centre 

of the receiver spread.  

We then estimated the expected lateral variability for the layers thicknesses 

(Figure 3.20).   

 

 

Figure 3.20 – Expected spatial variability of the thicknesses of the second synthetic 

model. a) ratios among corresponding the thicknesses computed for every couple of 

dispersion curves (matrices Rk of equation 16) and b) represents the derived expected 

spatial variability (vectors ESVk of equation 18). 

 

As it is shown in Figure 3.20b, the gradual emerging of the second layer in the 

right hand side part of the model is better reconstructed than the basin (see Figure 3.16 

for the model geometry): in fact, being the window used for the dispersion curves 
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extraction 200 m wide, the dispersion curves cannot fully follow the trend of sharp 

lateral variations (such as the extremities of the basin) as they are not perfectly 

representative of the vertical profile beneath the centre of the receiver spread. Finally, it 

must be noticed that the trend of the third layer thickness is estimated with lesser 

accuracy when compared to the upper layers thicknesses, as the sensitivity of the 

dispersion curves with respect to this parameters is poorer.  

 

 

REAL CASE  

The dataset was acquired in an alpine valley in NW Italy for a seismic risk 

assessment campaign (Socco et al., 2009). The geology of the site is characterized by 

shallow fluvial sediments whose thickness may vary between 10 and 50 m interposed 

by lacustrine sediments: the bedrock is expected to have a depth greater than 100 m in 

the central part of the valley. Two high resolution reflection surveys were carried out 

across the valley: both lines are about 800 m long and were acquired using 240 active 

channels with 10 Hz vertical geophones, 2 m geophone spacing, 6 m shot spacing, 1 ms 

sampling rate and 2 s recording time. Surface wave data are signif icantly present in the 

recorded seismograms, and were used to estimate the Vs distribution in the overburden. 

We applied our technique to one of the two lines, for which two S-wave down hole tests 

are available in its proximity (see Figure 3.21).  
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Figure 3.21 – a) Map of the site and  location of the seismic refraction line (from which 

experimental dispersion curves were extracted) and of the down-hole tests; b) 

dispersion curves reference points and their division into two subsets; c) DH 1 test S-

wave velocity profile; d) DH 2 test S-wave velocity profile.  

 

As for the dispersion curves extraction, a moving window 24 channel wide with a 

50% overlap between its neighbouring positions was chosen, so that a set of 36 

dispersion curves was obtained (Figure 3.22). According to the topography of the site 

the curves can be easily divided into two subsets, separated by a steep slope: for each 

dispersion curves subset a Vs vertical profile estimated from a down-hole test is 

available, and so the profile from DH 1 test was used to build an initial model for subset 

1 and the profile from DH 2 was spread along subset 2. Layer thicknesses were assumed 

to be constant in both cases, but thicker layers (second and third layer of DH 1 profile 

and third and fourth layer of DH 2 profile) were split into two sub-layers to allow for a 

greater complexity of the Vs distribution.  
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Figure 3.22 – Experimental dispersion curves from Torre Pellice site. Curves are 

represented with a colour scale according to the dispersion curves reference point. In 

a) the dispersion curves from the first subset (see Figure  3.21b) are reported, while  in 

b) the second subset group is represented.  
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The corresponding two initial models are reported in Figure 3.23: both models 

highlight a velocity inversion linked to the presence of soft lacustrine deposits affecting 

almost all vertical Vs profile at around 500 m of elevation.  

 

Figure 3.23 – Initial model for the real dataset. The model was obtained by extending 

the Vs profiles retrieved from two down-hole tests (DH 1 and DH 2 in Figure 3.21) to 

the experimental dispersion curves from subset 1 and 2 respectively  (Figure 3.22). 

 

Moreover, two regions characterized by higher values of S-wave velocity, 

especially at large depths, are detected at  around X = 500 m and X = 800 m: as for the 

initial model for subset 1, an increase in S-wave velocity of the intermediate layers  

with greater X values is worth noticing.  The reliability of both initial models is backed 

by their consistency (Figure 3.24) with the P-wave tomography performed on the same 

site and by their similarity to the results of a previously run laterally constrained 

inversion of the same experimental dispersion curves (Socco et al. 2009). 
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Figure 3.24 – a) Initial model for the real dataset, superimposed to the P-wave velocity 

tomography results; b) laterally constrained inversion results of same experimental 

dispersion curves datasets from Boiero et al. (2009) superimposed to the P-wave 

velocity tomography results. 

 

We later computed the expected lateral variability of all layers S-wave velocities 

for both the dispersion curves subsets  (see Figures 3.25 – 3.28).  
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Figure 3.25  – Ratios among corresponding velocities (matrices Rk of equation 16)   

computed for every couple of dispersion curves from subset 1 (see Figure 3.21).  

 

 

Figure 3.26 – Expected spatial variability (vectors ESVk of equation 18)  for the 

velocities of the layers relevant to the initial model retrieved for the dispersion curves 

from subset 1 (Figure 3.21). 
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As for the expected lateral variability for the first subset of curves (Figure 3.25 

and 3.26), despite the anomalous behaviour of the Vs profile at X = 85 m, a gradual 

increase towards greater X values  of the S-wave velocities of the second, third and 

fourth layer can be observed, while the shallowest and the two deepest layers velocities  

tend to remain almost constant. Switching to the estimated lateral variability for subset 

2 (Figures 3.27 and 3.28), the two upper layers substantially keep their S-wave 

velocities constant, but the four deeper layers see their Vs values increase up to 

approximately X = 625 m, then their S-wave velocities are decreased until 750 m, 

where they increase again (probably, this latter increase is overestimated, reaching 

values of 250 % and more).  The aforementioned features are in good agreement with 

the dispersion curves inversion results already presented by Socco et al. (2009) and with 

the results of the P-wave tomography performed on the same site (Figure 3.24).  

 

 

 

 

Figure 3.27 – Ratios among corresponding velocities (matrices Rk of equation 16) 

computed for every couple of dispersion curves from subset 2 (see Figure 3.21).  
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Figure 3.28  – Expected spatial variability (vectors ESVk of equation 18)  for the 

velocities of the layers relevant to the initial model retrieved for the dispersion curves 

from subset 2 (see Figure 3.21). 

 

  

 

DISCUSSION 

We applied the two processing techniques presented in this chapter (the 

construction of an initial model exploiting local a priori information and the estimation 

of the spatial variability of VS model parameters) to two synthetic and one real datasets.  

As far as the synthetic datasets are concerned, the 2D structures of both models 

were satisfyingly reconstructed both by “spreading” known VS profiles (Figures 3.13 – 

3.14 and 3.18 – 3.19)  and by evaluating the lateral variability of VS models parameters 

(Figures 3.15 and 3.20). However, in both procedures a lower accuracy in the estimation 

of deeper layers parameters can be observed, as dispersion curves have a poorer 

sensitivity to parameters belonging to deeper layers than to shallow layers. Besides, the 

reliability of the results has proven to be quite dependent on the quality of the input set 

of dispersion curves, as the results we got from the first synthetic dataset, characterized 

by higher quality, are better than those obtained from the second one. However, these 
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two  problems can be  also met in the actual  inversion process, where deeper model 

parameters may be unresolved and poor data quality can indeed affect the inversion 

results.  

We also applied the same processing techniques to a set of experimental 

dispersion curves from a real acquisition line. The real dataset geology is particularly 

challenging, being characterized by lateral heterogeneities and a velocity inversion: two 

Vs profiles from down-hole tests are available in proximity of the seismic line, and we 

managed to extend these profiles to the whole survey line (Figures 3.23 and 3.24). We 

also reconstructed the spatial trend of the Vs model parameters (Figures 3.25 – 3.28). 

Though preliminary and rough they may be, the results  we got are meaningful and 

reliable, as their agreement with the P-wave tomography results and with the Vs 

distribution from a previously performed laterally constrained inversion is remarkable 

(Figure 3.24). 

Eventually, the applications to both synthetic and field data point out the main 

limitation of the two methodologies, i.e. the fact that it is only possible to consider the 

variation of one kind of parameter  (i.e. either layers S-wave velocities or thicknesses).  

 

 

CONCLUSION 

We have set up two procedures to enhance the reliability of the surface wave 

method in investigating smooth 2D structures in the subsurface. The aim of the first 

technique is to build an initial model for the deterministic inversion of surface wave 

data by systematically integrating a-priori local Vs information available in proximity of 

the locations of the available experimental dispersion curves. The robustness of the 

inversion process can be hence improved by providing a reliable initial model for the 

inversion using local a priori information that are extended to the survey line and 

updated according to surface wave data in the form of dispersion curves. The second 

technique provides an estimation of the spatial variability of Vs model parameters based 

on the analysis of  surface wave dispersion data (in particular, of a set of neighbouring 

dispersion curves). This preliminary assessment of the lateral variability of the Vs model 

can direct the choice of the method for the inversion of surface wave dispersion data: if  

a laterally constrained inversion algorithm is preferred, such estimate can be exploited 

for the tuning of lateral constraints. The strength of the constraints can therefore be 

based on data analysis and not on a priori or a posteriori considerations.  
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Both procedures are based on an algorithm able to retrieve the scale factors 

between the parameters of two 1D Vs models via the comparison of the two 

corresponding dispersion curves: the procedure is based on a sensitivity analysis and the 

following exploitation of the scale properties of surface waves.  

After formalizing the two approaches, we applied them to two synthetic and one 

real datasets, all of them sharing the presence of lateral heterogeneities. As for the 

synthetic data, we correctly reconstructed the Vs distribution of both models, providing 

proper initial models and reliable estimates of the spatial trend of Vs model parameters. 

Regarding the application to the field data, we managed to extend the local a priori 

knowledge of Vs distribution provided by two down-hole tests to all the seismic line; we 

also reconstructed the overall trend of the Vs model parameters along the survey line. 

The validity of the results we got is  confirmed by their agreement with other 

geophysical surveys performed on the same site and other analyses of the same data. 

The application to real and synthetic data has also pointed out the weaknesses of 

the proposed methodologies: the main drawback of the two procedures is that they 

require to assume that either layers thicknesses or S-wave velocities are constant, so that 

the trend of either velocities or thicknesses can be estimated. Overcoming this limitation 

could be a starting point for future developments. Another perspective of future work is 

making the developed approaches more robust, as the quality of their results has proven 

to be heavily dependent on the quality of the input dispersion curves: a possible strategy 

would be to exploit dispersion curves higher modes in the whole procedure. 
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4 -  APPLICATION OF METHODS BASED ON SURFACE WAVES POWER 

AND PHASE SPECTRA FOR THE DETECTION OF DISCONTINUIT IES ON 

SYNTHETIC AND REAL DATA 

 

In the previous chapters (1-3) I have illustrated some techniques to provide the surface 

wave method the tools to handle smooth lateral variations in the subsurface: I have also 

presented some applications of these methods, which have been tested on synthetic and 

field data and, in one case, on a dataset derived from small-scale seismic experiments 

carried out on a physical model. The present chapter is instead devoted to address the 

problem of sharp, sudden lateral heterogeneities in the subsurface when applying the 

surface wave method. In case of abrupt lateral variations, I have adopted the strategy to 

identify the position of the discontinuity, to process separately the seismic traces located 

on the two sides of the heterogeneity. This chapter therefore presents several 

methodologies to determine the location and the embedment depth of sharp 

heterogeneities in the subsurface. 

 

ABSTRACT 

Surface Wave techniques are characterized by a 1D approach which might prove 

unsatisfactory when relevant 2D effects are present in the investigated subsoil. In case 

of sharp and sudden heterogeneities in the subsurface a strategy to tackle this limitation 

is to estimate the location of the discontinuities and to separately process seismic traces 

belonging to quasi-1D subsoil portions. In the present work we have addressed our 

attention to methods aimed at locating discontinuities already available in literature and 

sharing the exploitation of anomalies in surface wave propagation and attenuation 

detected by means of the computation of phase and power spectra. The considered 

methods are the phase analysis of surface wave (MOPA), the autospectrum computation 

and the attenuation analysis of Rayleigh waves (AARW). These methods were 

developed for different purposes and different scale problems, but we applied them to 

the same datasets  (a synthetic data from a FEM simulation and a real dataset from a 

seismic reflection line) sharing  the presence of an abrupt lateral variation (in the real 

case, a seismic fault) perpendicularly crossing the acquisition line. We also developed a 

method derived from the AARW for the detection of sharp discontinuities in the subsoil 

from large and redundant datasets and we tested it on our real case dataset. All three 
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methods proved to be effective for the detection of the discontinuity, by portraying 

phenomena linked to the presence of the heterogeneity, such as the interaction between 

forward and reflected wave trains, and energy concentration and subsequent decay at 

the fault location. Moreover, additional information were  retrieved, such as the 

embedment depth and the sharpness of the retrieved discontinuity.  

 

 

INTRODUCTION 

In surface wave analysis, usually, the experimental dispersion curve of surface waves 

(i.e. phase velocities vs frequencies) undergoes an inversion process yielding as a result 

an estimate of the shear wave velocity profile in the subsoil. However, surface wave 

techniques are mainly used to retrieve 1D subsoil models: in 2D environments the 1D 

approach neglects the presence of  lateral variations and, since the surface wave path 

crosses different materials, the retrieved dispersion curve results in a simplified or 

misleading description of the site (Boiero, 2009). In literature, some strategies to 

overcome this limitation are present. A first strategy is based on a spatial windowing of 

the seismic traces (Bohlen et al. 2004; Boiero and Socco, 2011), so that the dispersion 

curve becomes a local property of the subsoil beneath the receivers whose traces are 

weighted more. This solution can be effectively adopted in case of smooth lateral 

variations: if the spatial window is successively shifted along the seismic profile, a set 

of dispersion curves can be extracted and the gradual change in subsoil seismic 

parameters can be reconstructed with a laterally constrained inversion of the dispersion 

curves yielding a pseudo-2D section of the shear wave velocity in the subsurface 

(Bergamo et al.,2010; Socco et al. 2009). In case of sharp and sudden 2D effects in the 

subsurface, another strategy should be preferred: it consists in estimating the location of 

discontinuities seismic parameters and processing separately seismic traces belonging to 

quasi-1D subsurface portions. The latter strategy is studied in the present work; among 

the available  methods able to point out lateral heterogeneities, we focus on three of 

them: 

- multi-offset phase analysis of surface waves (MOPA) presented by Strobbia 

and Foti (2006) and modified by Vignoli and Cassiani (2010); 

- computation of the austospectrum of the seismic traces, as suggested by Zerwer 

et al. (2005) for the detection of cracks in concrete beams; 
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- attenuation analysis of Rayleigh waves (AARW) as developed by Nasseri-

Moghaddam et al. (2005) for the estimation of the location and embedment depth of 

underground cavities. We also set up a procedure for an effective and quick application 

of the AARW to large multifold datasets such as the seismic reflection line which is our 

real case dataset. 

The above-mentioned techniques, which will be briefly described in the 

following section, were applied to both synthetic and real datasets. As for the synthetic 

dataset, the model presents a sharp lateral variation caused by the sudden rise of the stiff 

halfspace (Figure 5.1); in the real dataset, the seismic line crosses a fault, so that an 

abrupt discontinuity is expected. The surface wave phase analysis was already tested on 

real and synthetic datasets similar to the ones we present in this study (Vignoli et al, 

2011): on the contrary, the autospectrum method and the AARW were developed for 

smaller scale problems and for differently shaped lateral variations, respectively. The 

aim of the study is to test the applicability of the two latter techniques in fault detection 

cases and to compare the results of the three methods. 

 

 
Figure 5.1- Synthetic model geometry: the VS values for the three layers are (from top 

to bottom): 120 m/s, 170 m/s and 270 m/s. Only the central portion of the model is 

displayed: the synthetic model extends from X=0 to X=710 m and down to Y=-200 m 

without any other vertical or lateral variation. 
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METHODS 

In the present section we briefly describe the three methods adopted in this 

work. 

 

Multi-offset phase analysis of surface wave (MOPA). 

This technique requires a multichannel seismic acquisition and it is based on the 

analysis of the phase of surface waves versus offset, frequency by frequency. The phase 

spectrum is computed for every seismic trace so that the trend of surface wave phase 

versus offset can be reconstructed for every frequency. By unwrapping the phase, the 

phase versus offset plot slope estimates the phase velocity for the considered frequency 

at a certain offset. As shown by Vignoli and Cassiani (2011), MOPA can be  used for 

the  evaluation of the local phase velocity of surface wave  frequency by frequency 

and/or for the estimation of the position of sharp lateral variations, as a sudden change 

of the slope of the phase versus offset reveals a discontinuity in the phase velocity for 

the considered frequency. MOPA technique is able to exploit the data redundancy 

typical of a multifold seismic dataset for a robust extraction of the modal phase  and a 

rigorous evaluation of the uncertainties and it has already proved its reliability when 

applied to datasets similar to those processed for this work (Strobbia and Foti 2006 and 

Vignoli and Cassiani 2011): therefore  we limited ourselves to a rough application of 

MOPA, evaluating frequency by frequency  the local phase velocity of surface wave  

simply derived from the slope of the unwrapped phase versus offset graph. 

 

Autospectrum method.  

This method is based on the computation of the autospectral density of every 

seismic trace z(t): 

( )[ ]{ } ( )[ ]{ }22
ωImωRe ZZGxx +=                                                                    (1) 

where Gxx is the autospectral density  and Z(ω) is the Fourier transform of z(t) (from 

Zerwer et al. 2005). The autospectrum plot hence displays the energy content of a 

seismogram as a function of frequency and offset. Austospectrum calculations were 

exploited by Zerwer et al. (2005) for the detection of cracks in concrete members, as 

they observed that cracks cause strong Rayleigh wave reflections that are easily 

highlighted in the autospectrum plots: moreover they succeeded in estimating the depth 

of the cracks by pointing out the frequency marking the border between the frequencies 
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that undergo backward reflection phenomena and the frequencies that don’t. Therefore, 

we applied the autospectrum method to our datasets  with the aim of identifying 

anomalies in Rayleigh waves behavior due to lateral heterogeneities and to  the 

propagation of the wave train through different materials.  

 

Attenuation analysis of Rayleigh waves (AARW).  

The procedure was developed by Nasseri-Moghaddam et al. (2005) to determine 

the location and the embedment depth of underground cavities using surface waves. 

Oddities in Rayleigh waves propagation are detected by means of the energy-distance 

(ED), logarithmic decrement (LD) and  amplified logarithmic decrement (ALD) 

parameters: prior to the computation of such parameters, traces amplitudes are 

multiplied by a gain function to correct for the effect of geometrical spreading, so that 

anomalies only in surface wave propagation are detected. The energy-distance plot is 

based on the computation of the signal energy (Ez) for every receiver location  as:  

2

,∑
f

zfz UE =           (2) 

where zfU ,  is the amplitude of the spectrum at frequency f for receiver number z. 

Nasseri-Moghaddam et al. observed that the ED plot is characterized by fluctuations in  

the proximity of the void, allowing an estimation of the location of the cavity.  The 

logarithmic decrement (LD) is defined as  
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where Uj,z and Uj,z+1 are the Fourier spectrum amplitudes for frequency fj computed at 

two consecutive receivers z and z+1.  As stated by Nasseri-Moghaddam et al., LD 

highlights the either constructive or destructive interaction between the reflected and the 

propagating front: in particular, typical amplification-attenuation patterns can be spotted 

in the LD plot before and after the void location, and the frequency range at which such 

patterns are visible can help estimating the cavity embedment depth. To single out the 

frequencies most affected by the presence of the void, Nasseri-Moghaddam et al. 

suggest the computation of the Amplified Logarithmic Decrement (ALD):      
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where j refers to fj, the frequency for which the ALD is computed, zmax is the 

maximum number of receivers, Uj,z and Uj,z+1 are the Fourier spectrum amplitudes at 

frequency fj for two consecutive receivers z and z+1, α is an experimental constant to 

reduce the effect of noise  and β  is an even exponent to magnify the peaks and keep the 

ALD values positive (in Nasseri-Moghaddam et al.’s paper α is assumed to be 0.5% the 

maximum value of the spectrum magnitude and β is 4: for the present work, we retained 

the same values).   The ALD value can be normalized, thus obtaining the Nomalized 

Amplified Logarithmic Decrement (NALD):  

( )ALD

ALD
NALD j

j max
=        (5) 

where j refers to the frequency fj  for which ALDj and NALDj are computed. 

Nasseri-Moghaddam et al. show that values of NALD close to 1 are assumed by 

frequencies whose wavelengths are comparable with the embedment depth of the cavity. 

We applied the AARW procedure as developed by Nasseri-Moghaddam et al. to our 

synthetic and real datasets to test its effectiveness for an aim (detecting abrupt lateral 

heterogeneities) slightly different from the one it was primarily developed for ( i. e. 

estimating the location of underground cavities). Moreover, we set up a procedure for a 

quick but effective analysis of the energy versus distance trend of a multifold seismic 

line, like the one constituting our real dataset.  The procedure we propose requires a 

multifold 2D seismic acquisition and it is based on three steps: 

- energy-distance plot is computed for all available shots, excluding the 

traces at small offsets whose geometrical attenuation follows the body waves 

attenuation trend. In this case, traces are not compensated by any gain function. 

- a moving window is shifted along each ED plot and for each position of 

the window the   exponent controlling the energy decay as a function of the offset (i.e. 

the slope of the ED plot reported in bi-logarithmic scale) is evaluated. In fact we assume 

that the intrinsic attenuation can be neglected, so that the energy trend as a function of 

offset is explained by the geometrical spreading alone: 
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where Ez and Ez+1 represent the signal energy at receivers z and z+1 (see equation 

2), offsetz and offsetz+1 are the distance from the source for receivers z and z+1  and γ is 

the decay exponent (γ = 2 for body waves and γ = 1 for surface waves geometrical 

spreading). Therefore, if the obtained γ value is 1, energy decays according to surface 
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wave geometrical attenuation rule; an γ value lower than 1 denotes energy accumulation 

and γ > 1 denotes an energy decay due to a reflection caused by a discontinuity in the 

subsoil. Decay exponents retrieved from the  positive offset portion of ED plots are 

distinguished from the exponents obtained from negative offset portion of ED plots. 

Finally, all exponents derived from the same position of the moving window and from 

all available shots are averaged, so that for every position along the seismic line two 

exponents controlling the energy decay as a function of the offset are available: one for 

the positive offset traces and one for the negative offset traces. By following the trend of 

γ along the seismic line we expect to identify areas with sharp subsoil heterogeneities  

(e.g. faults) which should be characterized by values of γ far from 1, denoting energy 

concentrations and sudden decays: moreover, by separately processing decay exponents 

from negative and positive offset traces we expect to observe different behaviors 

according to the direction the wave front approaches the discontinuity. This procedure 

was applied only to the real dataset, as the synthetic data are not multifold, and its 

results are displayed in the “Real case” section.  

 

SYNTHETIC DATA  

We obtained the synthetic dataset by using the finite element method (FEM) code for 

numerical simulations COMSOL Multiphysics ®. Two mirror-like axial-symmetric, 

linear, elastic isotropic models were produced to simulate two shots whose sources are 

located at both ends of the synthetic recording array. We show the model in Figure 5.1: 

an upper 2 m thick layer tops a second layer whose thickness abruptly decreases from 8 

to 2 m at the centre of the model. The model is a simplified representation of a fault-like 

pattern and to assess the applicability of the methods to this kind of lateral variations we 

simulated a very dense acquisition. As already mentioned, we simulated two shots, with 

the source position in (280,0) and (430,0) respectively: the used source signal was a 

Ricker source centred at 12.5 Hz. For both shots, we simulated the vertical vibration 

velocity at 301 synthetic receivers located on the top surface of the model between the 

two source positions with 0.5 m spacing (Figure 5.2).  
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Figure 5.2 – a) Synthetic seismogram of the shot in (280,0) and b) synthetic seismogram 

of the shot in (430,0). 

 

The time step for the numerical simulation was 1.25 ms, and the total simulation time 

was 3 s.  Both seismograms are characterized by the presence of Rayleigh waves and P-

guided waves phenomena, as shown in Figure 5.3. In Figure 5.3a and 5.3b the 

normalized f-k spectra of the traces belonging to the two 1D portions of the synthetic 

model are displayed: in both cases, P-guided wave dispersion modes can be spotted, as 
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dispersive events with phase velocities greater than 270 m/s (that is the cut-off velocity 

for Rayleigh waves, being the greatest S-wave velocity of the synthetic model) are 

present. In Figure 5.3c and 5.3d the energy maxima picked in 3a and 3b are reported in 

f-v domain and superimposed to the modulus of the determinant of the Haskell-

Thomson forward modelling for the two respective 1D portions  of the synthetic model 

(Maraschini et al. 2010) :  the picked dispersive events (white dots) lie in the regions of 

the determinant surface whose modulus is close to 0, thus validating the synthetic 

dataset. 

 

Figure 5.3 – a) Normalized f-k spectrum of the traces with X < 355 m of the shot in 

(280,0): white dots represent the picked energy maxima; b) normalized f-k spectrum of 

the traces with X > 355 m of the shot in (430,0): white dots represent the picked energy 

maxima; c) surface of the modulus of the determinant of the Haskell-Thomson forward 

modelling for the 1D portion of the model at X < 355 m: white dots represent the 

experimental dispersion curve and correspond to the energy maxima picked in a); d) 

surface of the modulus of the determinant of the Haskell-Thomson forward modelling 

for the 1D portion of the model at X > 355 m: white dots represent the experimental 

dispersion curve and correspond to the energy maxima picked in b). In all plots, the 

white continuous line is the constant velocity line at 270 m/s, marking the upper bound 

for Rayleigh wave dispersive events. 
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We applied the above-mentioned methods for the detection of lateral variations 

in surface wave propagation to both simulated shots; in Figure 5.4 the theoretical 

dispersion curves related to the S-wave velocity (Vs) profiles of the two 1D portions of 

the synthetic model are reported, in order to identify the range of frequencies that are 

most affected by the lateral heterogeneity (i.e. the frequencies whose phase velocity 

changes when switching from one 1D portion to another) and therefore to assess the 

reliability of the experimental results subsequently described. 

 

Figure 5.4 – Theoretical dispersion curves relevant to the two 1D portions of the 

synthetic model in Figure 5.1: a) dispersion curves in frequency-phase velocity domain 

and b) in frequency-wavelength domain. 

 

 

Figure 5.5 reports the phase velocity-offset-frequency distribution plot retrieved 

by applying the MOPA technique to both synthetic seismograms: the position of the 

lateral heterogeneity clearly corresponds to the discontinuity in phase velocity that can 

be observed at around X=355 m in the 5-20 Hz frequency range.  This result is 

coherent, both in terms of phase velocities and frequency range affected by the lateral 

variation, with the theoretical dispersion curves in Figure 5.4. In fact, the rise of the 

high S-wave velocity halfspace induces higher phase velocities in the lower frequencies. 

Moreover, the presence of ripples in the plot region before the discontinuity (X<355 m), 

mainly in the seismogram whose source is located before the step (Figure 5a), reveals 

an interaction between the propagating and the reflected wave train. The same effect is 

visible in the autospectrum plots (Figure 5.6): again, undulations due to the constructive 

or destructive interaction between propagating and back reflected wavefront are present 
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on the left hand side of  Figure 5.6a plot and, at a lesser extent,  on the right hand side of 

Figure  5.6b.   

 

Figure 5.5 – Synthetic data: phase velocity distribution in  offset-frequency domain for 

the shot in (280,0) (a) and for the shot in (430,0) (b). The vertical dashed white line 

marks the border between the two 1D portions of the synthetic model geometry (Figure 

5.1). 

 

Moreover, in Figure 5.6a, which refers to the seismogram whose shot is before 

the step, a clear energy decay occurs for frequencies lower than 15 Hz at around X=355 

m: similarly to what was observed by Zerwer et al. 2005, the rise of the stiff halfspace 

blocks the propagating wave energy.  
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Figure 5.6 – Synthetic data: autospectrum plot for the shot in (280,0) (a) and for the 

shot in (430,0) (b). In both plots, the vertical dashed white line marks the position of the 

lateral variation in the synthetic model geometry (Figure 5.1). 

 

The range of the frequencies affected by the lateral heterogeneity is therefore 

narrower than the one observed in Figure 5.5 and expected from Figure 5.4, probably 

because a dramatic energy decay does not occur for the frequencies whose wavelengths 

are only partially affected by the lateral heterogeneity (Figure 5.4b). As for the opposite 
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shot (Figure 5.6b) no substantial energy decay can be observed because  the energy 

released by the seismic source cannot significantly spread beyond the top of the stiff 

halfspace, and in fact energy is concentrated at higher frequencies with respect to Figure 

5.6a:  the transition between the two 1D parts of the model is marked by a slight energy 

decrease as past the fault the energy is not bounded anymore by the shallow and stiff 

halfspace.  Observations in good agreement with the autospectrum results can be 

retrieved from the energy-distance plot in Figure 5.7. At small offsets, signal energy 

decays very quickly following body waves geometrical spreading law: besides, the 

peaks that are present in the energy-distance trend of both shots are linked to P-guided 

wave events. The energy-distance plot of the shot in (280,0) shows an energy 

concentration at the location of the lateral variation  (marked with “A” in Figure 5.7), 

similarly as observed by Masseri-Moghaddam et al. (2005): the energy concentration is 

due to the fact that, as it is shown in Figure 5.6a, part of the energy of the direct wave 

train is back reflected by the “step” of the halfspace and cannot spread beyond the 

lateral variation. The energy decline noticed in the energy-distance plot for the shot in 

(430,0) and labelled with “B” in Figure 5.7, instead, is due to change of depth of the 

upper boundary of the stiff halfspace: as the wave train passes beyond the “step”,  its 

energy is no more bounded by the shallow top of the halfspace and so an energy decay 

is noticed on the upper surface of the model, where the synthetic geophones are placed.  
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Figure 5.7 – Energy-distance plot  for both simulated shots. The vertical dashed line 

marks the location of the lateral variation of the synthetic model geometry (Figure 5.1). 

“A” indicates the energy concentration due to the backward reflection of the direct 

wave train against the halfspace vertical interface  while “B” points out the energy 

decay at the border between the two 1D portions of the synthetic model. 

 

The interaction between forward and back reflected wave train is enhanced in 

the logarithmic decrement plot (Figure 5.8) where the logarithm of the  ratio between 

Uj,z and Uj,z+1,  which are the Fourier spectrum amplitudes at frequency fj for two 

consecutive receivers z and z+1 (Equation 3), is displayed as a function of frequency 

and offset: positive values of logarithmic decrement show attenuation (as Uj,z>U j,z+1), 

negative values correspond to amplification (Uj,z<U j,z+1).  

The patterns appearing in Figure 5.8a and, at a lesser extent,  in Figure 5.8b 

between the source position and the lateral heterogeneity are attenuation/magnification 

curves denoting the interaction between the wave front propagating from the source and 

the waves backward reflected by the halfspace vertical boundary: these patterns are 

pretty similar to the ones observed by Nasseri-Moghaddam et al. (2005) and  exhibit the 

same shape, as they asymptotically bend against the “step” location. The other curves 

that are present on the LD plots, turning from vertical to horizontal as the frequency 

decreases, are caused  by the propagation of P-guided waves through the two upper 

layers of the  model.  

Finally, by applying Equation 4 and 5 we obtained the trend of NALD 

(Normalized Amplified Logarithmic Decrement) versus frequency for both synthetic 

seismograms. As already proved by Nasseri-Moghaddam et al. (2005), high NALD 
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values characterize the frequencies whose propagation is particularly affected by the 

lateral heterogeneity. As shown in Figure 5.9 NALD values close to 1 are retrieved in 

the frequency range 12-20 Hz: these frequencies correspond to wavelengths of 

approximately 10 m (that is the deepest position of the halfspace upper surface) and 

therefore their propagation touches entirely the lateral heterogeneity.  

 

Figure 5.8 – Synthetic data: logarithm of the ratio between the spectral amplitude 

values assumed by the same frequency at neighbouring receiver locations for a) the 

seismogram whose shot is located at (280,0) and b) for the opposite shot. The vertical 

dashed black line marks the position of the lateral variation in the synthetic model 

geometry (Figure 5.1). 
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Figure 5.9 – Synthetic data: NALD versus frequencies for both simulated shots. 

 

 

 

REAL CASE 

Real dataset was acquired in New Zealand by ETH Zurich: the aim of the recording 

campaign (Carpentier et al., 2010) was the characterization of the Alpine fault in the 

South Island (Figure 5.10). Five seismic reflection lines between 400 and 1200 m long 

were acquired across the fault: 30 Hz vertical geophones were used, but nevertheless the 

presence of surface waves in the seismograms is signif icant. The five seismic datasets 

have already been interpreted by the geophysics group of ETH Zurich (Carpentier et al., 

2010), and a seismic reflection section and a  P-wave tomography results are available 

for every seismic line, allowing a localization of the main fault and of the minor side 

faults and an estimation of their maximum depth (500 m approximately).  Being the 

presence of ground roll in the seismograms significant, surface wave data too were 

analyzed and interpreted, with aim of estimating the S-wave velocity behavior and the 

Poisson’s ratio of the shallower layers (Garofalo et al. and Konstantaki 2011). Without 

going into details, both the P-wave tomography sections and the surface wave analysis 

results have pointed out that the fault marks the border between two different 

stratigraphies:  in particular, NW of the of the fault higher S-wave velocity values were 

observed. Besides this, it is also worth mentioning the fact that the dispersion curves 

that were extracted from the seismic reflection lines are characterized by the presence of 

energetic higher modes,  generally for frequencies greater than 20-30 Hz: this has had 
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consequences on the application of the methods considered in the present work, the 

MOPA technique in particular.  We decided to test lateral variation detection techniques 

on two shots from the same seismic line whose sources are located on both sides of the 

main fault (Figure 5.11 and Figure 5.12). Sources locations are approximately 70 m far 

from the fault, and we considered the first 240 m of offset (spacing between receivers is 

2 m). A topographic unevenness is also present, as the fault is located at the lower end 

of a 10 m slope stretching for 70 m approximately. 

 

Figure 5.10 – Map of the Alpine Fault in New Zealand and location of the site of 

investigation. 
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Figure 5.11 – Real case shots. S1 and S2 indicate the position of the source for shot 1 

and shot 2, array 1 and array 2 denote the location of the array for shot 1 and shot 2. 

The seismic line stretches from south-east (SE) to north-west (NW). 

 

Figure 5.12 – Seismograms of the real case selected shots: shot 1 (a) and shot 2 (b). 
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 Figure 5.13 presents the phase velocity distribution in frequency-offset domain 

derived from the application of MOPA on both considered seismograms. In both images 

a discontinuity in the phase velocity distribution is visible at about X = 300 m, marking 

the border between a higher velocities region (X > 300 m, NW of the fault) and a lower 

velocities zone ( X < 300 m, SE of the fault). This result is coherent with the results of 

the surface wave analysis performed in the same area of the seismic line (Garofalo et al. 

2011, Konstantaki 2011): in particular, the velocities retrieved by applying MOPA 

technique are consistent with the phase velocities of the fundamental mode of the 

dispersion curves extracted from the same stretch of the seismic line. In Figure 5.13 the 

phase velocities  retrieved in the 4-20 Hz frequency range only are displayed, as for 

higher frequencies we obtained substantially higher velocity values, higher modes 

becoming energetically   prevailing.  

 

Figure 5.13 –  Real data: phase velocity distribution in  offset-frequency domain for 

shot 1 (a) and for shot 2 (b).  

 

The presence of an abrupt discontinuity at around X = 300 m is even more clear 

in Figure 5.14, that shows the autospectrum plots for both shots: seimic energy clearly 

undergoes a dramatic decay at X = 300 m, as it is almost entirely back reflected by the 

fault. Unlike what has been observed for the synthetic data and by Zerwer et al. 2005, 
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the energy decay affects all the considered frequency range, suggesting that the fault 

stretches deeper than the investigation depth of surface wave (which is very 

approximately one half of the array length, that is 120 m in this case).   

 

Figure 5.14 – Real data: autospectrum plots for a) shot 1 and b) shot 2. 

 

We also generated the energy-distance graph and we plotted it on a logarithmic 

scale (Figure 5.15) for graphical clarity reasons. Again, sharp energy decays are visible 

at X = 300 m (labelled with A and B in Figure 5.15) and in both shots these decays are 

signif icantly preceded by a concentration of energy (C and D) due to the reflection of 

surface wave against the fault (similarly as observed by Nasseri-Moghaddam et al. 

2005). We show the logarithmic decrement plots in Figure 5.16: 

amplification/attenuation patterns similar to the ones observed for the synthetic dataset 

and by Nasseri-Moghaddam et al. (2005) are visible for X < 300 m for shot 1 (Figure 

5.16a) and, for X > 300 m for shot 2 (Figure 5.16b). However, they are less evident than 

the ones observed in the synthetic dataset LD plots (Figure 5.8) and they are present 

only in a limited frequency range (5-40 Hz).  In Figure 5.17 we present the NALD 

values computed in the 2-80 Hz frequency range for both shots. The frequencies 

between 15 and 45 Hz appear to be the ones whose propagation is most perturbed  by 

the presence of the fault: however, the NALD plots for the two shots are not completely 
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consistent with each other and a more robust estimate of frequencies most affected by 

the fault could be derived from the computation of the NALD plot for a greater number 

of shots.  

 

Figure 5.15 – Real data, energy-distance plot for shot 1 and shot 2. A and B label the 

sudden energy decay at and past the fault while C and D mark the energy accumulation 

right before it. 

 

Finally, since the energy-distance plot had proven to be a simple but effective 

tool to estimate the position of discontinuities by retrieving energy accumulations and 

decays, we decided to exploit it and the data redundancy proper of a seismic reflection 

line  dataset for a more robust and automatic detection of sharp subsoil discontinuities, 

as explained in the “Method” section. In Figure 5.18 we show the results of the 

application of the proposed procedure to the whole seismic line: in Figure 5.18a we 

show the trend of the energy decay exponent, computed for negative and positive offset 

traces and compared with the estimate of the location of the faults from seismic 

reflection interpretation (Figure 5.18b). Discontinuities are characterized by an energy 

accumulation followed by a sudden energy decay in the positive offset decay exponent 

graph (black line) and, at the same location, by a sharp energy decay followed by an 

energy accumulation in the negative offset decay exponent graph (gray line). Four faults 
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were detected (their approximate position is marked by a dashed line) and their location 

is consistent with the seismic reflection results for the same line: moreover, it should be 

noted that the main fault produces the most remarkable perturbations in the decay 

exponent plot. 

 

Figure 5.16 – Real data, logarithmic decrement plots for a) shot 1 and b) shot 2. 

 

Figure 5.17 – Real data, NALD graph for shot 1 and shot 2. 
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Figure 5.18 – a) Real data, positive and negative offset decay exponents  plot. 

Continuous red and black lines join the averages of the decay exponents available for 

each positions and the error bars denote the corresponding standard deviations. 

Vertical dashed lines indicate the estimated positions of the faults; “energy 

accumulation” and “energy decay” labels refer to the energy trend anomalies linked to 

the presence of the main fault; b) seismic reflection section of the same seismic line: 

black continuous lines mark the location of the faults. 

 

 

DISCUSSION 

As far as the synthetic dataset results are concerned, they are satisfying and in good 

agreement with the ones presented in the papers that introduced the methods applied in 

the present work (Nasseri-Moghaddam et al. 2005, Zerwer et al. 2005 and Vignoli et al. 

2011): we could thoroughly analyze the phenomena linked to the effects produced by a 

sharp lateral variation on the surface wave propagation. All methods yielded consistent 

information on the location and embedment depth of the discontinuity (Figures 5-9) : 

besides, we could also appreciate the differences in the surface wave propagation and 

attenuation depending on the direction the direct wave front approaches the step 

(Figures 6-8). As we moved to the real dataset, MOPA, the autospetrum method and the 
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energy distance analysis (Figures 13-15) proved to be equally effective as in the 

synthetic case: on the contrary the logarithmic decrement method for the detection of 

the interferences between direct and back reflected wave trains turned out to be less 

robust and more sensitive to noise, as well as the NALD computation (Figures 16 and 

17). Finally, we got promising results from the procedure we developed to apply the 

energy-distance analysis to large datasets involving multifold 2D acquisition (Figure 

5.18): a strategy to overcome the relative weakness of the logarithmic decrement plot 

and of the NALD would be to adapt them to such datasets to exploit their redundancy.     

 

CONCLUSIONS 

We applied to real and synthetic data  three methods for the detection of sharp lateral 

variations exploiting  anomalies in surface wave propagation and attenuation. The 

considered methods are the phase analysis of surface wave (MOPA), the autospectrum 

computation and the attenuation analysis of Rayleigh waves (AARW). These methods 

were developed for different purposes and different scale problems, but we applied 

them to the same datasets  (a synthetic data from a FEM simulation and a real dataset 

from a seismic reflection line) to compare their results and test their effectiveness in a 

particular condition: the two sets of data, in fact, share the presence of an abrupt lateral 

variation (in the real case, a seismic fault) perpendicularly crossing the acquisition line. 

All three methods proved to be effective for the detection of the location of the 

discontinuity, by portraying phenomena linked to the presence of the heterogeneity, 

such as the interaction between forward and reflected wave trains, and energy 

concentration and subsequent decay at the fault location. Moreover, additional 

information were  retrieved, such as the embedment depth and the sharpness of the 

retrieved discontinuity. The results we got, disregarding the scale and the geometry of 

the applications, are consistent with the results presented in the papers that originally 

introduced the methods. Finally, we developed the attenuation analysis of Rayleigh 

waves method by proposing a procedure allowing to effectively and quickly apply the 

AARW to large and redundant datasets (such as seismic reflection datasets) for the 

detection of sharp lateral discontinuities. Even though we could apply this novel 

procedure to the real case dataset only, results are satisfying and  encourage further 

developments. 
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CONCLUSIONS 

 

In the present work I have presented a series of procedures and processing tools to 

enhance the reliability of  the surface wave (SW) method when investigating 2D 

structures in the subsoil.  

I propose some methods to face both smooth lateral variations and sharp changes in 

materials properties in the subsoil. As suggested by literature, I adopted two different 

strategies, one to handle gentle changes in subsoil geometry and one devoted to abrupt 

discontinuities. In the first case, the aim is following the lateral variability of subsoil 

seismic parameters. I therefore developed a procedure able to retrieve 2D structures 

from SW acquired with a limited number of receivers by extracting a set of 

neighbouring local dispersion curves out of a single seismogram. The technique consists 

of the extraction of   local dispersion curves along the survey line using a spatial 

windowing based on Gaussian windows with different maximum position; every curve 

therefore refers to a slightly different subsurface portion, so that gradual changes in 

subsoil seismic parameters can be reconstructed through the dispersion curves 

inversion. I thoroughly studied  the consequences  of the spatial windowing both on the 

lateral resolution of the dispersion curves and on  the wavenumber resolution of the 

relevant f-k spectra (which is linked to the possibility to distinguish two different events 

in the f-k domain and to the maximum investigation depth): I pointed out the clash 

between the two resolutions (the more one is fostered, the more the other worsens and 

vice versa) and the necessity to find a compromise to ensure a correct and accurate 

description of the subsoil lateral variations. I therefore provided a chart quantitatively 

representing the relationship existing among the Gaussian windows width, the lateral 

resolution and the wavenumber resolution they ensure. In the context of characterizing 

smooth 2D structures in the subsurface via the surface wave method,  I also developed a 

second procedure to quantitatively estimate the lateral variability of model parameters 

by comparing the shape of local dispersion curves, without the need to perform their 

inversion. The method is based on a sensivity analysis and on the applications of the 

scale properties of surface wave. The procedure can be devoted to different 

applications: I exploited it to extend a priori punctual information to subsoil portions for 

which an experimental dispersion curve is available and for an estimation of the lateral 

variability of S-wave velocity model parameters for a set of neighbouring dispersion 

curves. Thanks to the first application I managed to produce a consistent initial model 



Paolo Bergamo                                      Surface wave analysis in laterally varying media 

 
 

140 

based on a priori information accustomed according to local SW data; the evaluation of 

the expected spatial variability of model parameters was used to provide a data-

consistent setting of the lateral constraints for a laterally constrained inversion. 

Switching from gradual and smooth to abrupt and sudden lateral variations, I focused 

my attention on the estimation of the location and of the embedment depth of such 

heterogeneities, in order to process separately the traces belonging to quasi 1D subsoil 

portions and therefore to overcome the drawbacks caused by sudden changes in subsoil 

materials properties on SW method. I used three methods (multi-offset phase analysis of 

surface wave or MOPA, autospetrum method and attenuation analysis of Rayleigh 

waves or AARW) all of them exploiting the detection of anomalies in surface wave 

propagation by means of the analysis of phase and power spectra of the recorded 

seismograms. Although developed for different purposes and different scales, I adapted 

them to the detection of discontinuities in the subsoil by means of near-surface 

characterization surveys.  

The aforementioned algorithms were first tested on synthetic datasets and then applied 

to real data.  In one case, the algorithm was also tested on seismograms derived from a 

small scale seismic survey performed on an analogue model.  

I applied the procedure to reconstruct smooth lateral variations by means of a spatial 

windowing  to three synthetic datasets extracted from models with an increasing degree 

of complexity  in 2D structures  and on a real case: I was able to reliably retrieve the  

2D behaviour of the S-wave velocity in the subsurface. However, particularly  when 

commenting on synthetic data results, I felt the necessity to adopt  a laterally 

constrained inversion (LCI) algorithm  and tune the lateral constraints according to the 

expected lateral variability of the model parameters, adapting the constraints to the 

physical reality of the materials properties in the subsoil. I finally managed to provide a 

tool to estimate the overall trend of the model parameters by exploiting the scale 

properties of surface waves.  The same procedure was also applied to a dataset obtained 

from a small scale seismic experiment performed on an analogue model. The two main 

tasks of the experiment were a) to produce a small scale physical model constituted by 

granular materials and characterized by lateral heterogeneities  and b)  to obtain a 

characterization of the model itself by means of surface wave analysis, also applying the 

aforementioned technique to handle its 2D structure. Both goals were achieved, and the 

technique based on Gaussian windows proved to be effective in producing a good 

pseudosection of the S-wave velocity behaviour of the model.  
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In a similar fashion, I first tested the algorithm I developed to quantitatively estimate the 

lateral variability of model parameters by comparing the shape of local dispersion 

curves on two synthetic datasets from numerical simulations; later, I applied the same 

procedure to a real case, again a seismic reflection survey. In all cases I exploited the 

algorithm to customize punctual a priori information according to the available 

experimental dispersion curves and to estimate the spatial variability of model 

parameters. As far as the synthetic data results are concerned, in both cases I got a  

satisfactory description of the global trend of model parameters. I then applied the 

method to the real case, managing to spread the a priori information  provided by two 

down-hole test to the whole set of dispersion curves extracted from a seismic reflection 

line. The reliability of this result is confirmed by its agreement with  other geophysical 

survey and data processing results available for the same site. However, despite the 

good results retrieved from real and synthetic data, further work is needed to make the 

whole procedure more robust and less sensitive to data quality.  

As for the detection of sharp heterogeneities, I applied the selected methods (MOPA, 

AARW and autospectrum method) to a synthetic dataset, obtained from a FEM 

simulation on a model with an abrupt lateral variation, and on  real data from a seismic 

reflection survey acquired over a fault in New Zealand. I got meaningful and consistent 

results from the three methods, similar to the ones observed in their original 

applications. I was able to investigate the anomalies in Rayleigh wave propagation due 

to the presence of an abrupt discontinuity in the subsoil, to estimate its location and 

embedment depth. Being the real dataset a multifold seismic acquisition, I partly 

adapted one of the methods (AARW) to such datasets to exploit their data redundancy. 

A further development of the work will be to fully customize the  whole procedure to 

multifold datasets to enhance the robustness of its results.  

On the whole, this thesis provides several processing tools for the improvement of the 

reliability of the surface wave method, particularly suitable for its applications to near 

surface subsoil characterization by means of active surveys. In  particular, these tools 

aim at mitigating the effects of the 1D approach proper of SW method, so that it can be 

effectively applied to laterally varying media. A future development of the work would 

extend these tools to 3D seismic data. 

 

 


