
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Comparative Analysis of Software Reliability Growth Models using defects data of Closed and Open Source Software /
Ullah, Najeeb; Morisio, Maurizio; Vetro', Antonio. - STAMPA. - (2013), pp. 187-192. (Intervento presentato al convegno
35TH ANNUAL IEEE SOFTWARE ENGINEERING WORKSHOP tenutosi a HERACLION, CRETE, GREECE nel 12-13
OCTOBER 2012) [10.1109/SEW.2012.26].

Original

A Comparative Analysis of Software Reliability Growth Models using defects data of Closed and Open
Source Software

Publisher:

Published
DOI:10.1109/SEW.2012.26

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2502526 since:

IEEE

A Comparative Analysis of Software Reliability Growth Models

using defects data of Closed and Open Source Software
Najeeb Ullah, Maurizio Morisio, Antonio Vetro’

Control and Computer Engineering Department, Politecnico Di Torino

10129, Torino, Italy

najeeb.ullah@polito.it, maurizio.morisio@polito.it, antonio.vetro@polito.it

Abstract— The purpose of this study is to compare the fitting

(goodness of fit) and prediction capability of eight Software

Reliability Growth Models (SRGM) using fifty different failure

Data sets. These data sets contain defect data collected from

system test phase, operational phase (field defects) and Open

Source Software (OSS) projects. The failure data are modelled

by eight SRGM (Musa Okumoto, Inflection S-Shaped, Goel

Okumoto, Delayed S-Shaped, Logistic, Gompertz, Yamada

Exponential, and Generalized Goel Model). These models are

chosen due to their prevalence among many software reliability

models.

The results can be summarized as follows

 Fitting capability: Musa Okumoto fits all data sets, but all

models fit all the OSS datasets

 Prediction capability: Musa Okumoto, Inflection S-

Shaped and Goel Okumoto are the best predictors for

industrial data sets, Gompertz and Yamada are the best

predictors for OSS data sets

 Fitting and prediction capability: Musa Okumoto and

Inflection are the best performers on industrial datasets.

However this happens only on slightly more than 50% of

the datasets. Gompertz and Inflection are the best

performers for all OSS datasets.

Keywords— Software Reliability Growth Models, SRGM, Open

Source Software, Failure Data, Software Reliability Models

I. INTRODUCTION

Software development is a brain intensive activity. Therefore,

the quality of the product is subject to large variations.

Reliability is one of the most important attributes of software

quality, which is defined as the probability of failure-free

software operation for a specified period of time in a specified

environment [47]. Starting from the 70’s different Software

Reliability Models (SRM) have been proposed for software

reliability characterization and prediction. SRM is a

mathematical expression that specifies the general form of the

software failure process as a function of factors such as fault

introduction, fault removal, and the operational environment

[47]. SRM is composed of different parameters. Parameter is

a variable or arbitrary constant appearing in a mathematical

expression, each value of which restricts or determines the

specific form of the expression. The failure rate (failures per

unit time) of a software system is generally decreasing due to

fault identification and removal. Software Reliability

modelling is done to estimate the form of the curve of the

failure rate by statistically estimating the parameters

associated with the selected model. The purpose of this

measure is twofold: 1) to estimate the extra execution time

during test required to meet a specified reliability objective

and 2) to identify the expected reliability of the software when

the product is released.

 In general SRM are categorized as white box and black box.

White box approaches analyze the structure i.e. the

architecture of the software that has been specified and

designed. These models predict the reliability of software on

the basis of the relationship among different components and

their interactions. These approaches are also called

deterministic approaches. They are based on logical

complexity, decision point, program length, operands and

operators of software. Path-Based Models and State-Based

Models are two examples of this type of reliability model. In

the literature these models are known as Architecture Based

Reliability Models.
Black box approaches treat the software as an entity and

ignore the interdependencies of the software internal

components. There are some basic assumptions which are

similar for all these kinds of models [49].

1. When a fault is detected it is removed immediately.

2. A fault is corrected instantaneously without

introducing new fault into the software.

3. The software is operated in a similar manner as

that in which reliability predictions are to be made.

4. Every fault has the same chance of being

encountered within a severity class as any other

fault in that class.

5. The failures, when the faults are detected, are

independent.

 The Black Box approaches are classified into different

types, Early Prediction Models, SRGM, Input Domain Based

Model, and Hybrid Black Box Models. Our work is focused

on SRGM models because of their widespread use. SRGM

can be applied to guide the test board in their decision of

whether to stop or continue the testing. Herein we present a

comparative analysis of SRGM models in term of goodness-

of-fit, prediction accuracy and correctness based on thirty

eight failure data sets containing system test failures data,

field and OSS defects data.

The rest of the paper is organized as follows. Section 2

contains background information and literature review.

Section 3 provides the goals and research questions of this

study; section 4 describes models and data selection. Section 5

describes results; section 6 contains discussion and in 7 threats

to validity has been discussed. Section 8 concludes the study.

II. BACKGROUND

A. Reliability Modelling

Software Reliability Models (SRM) can both assess and

predict reliability. In reliability assessment SRM are fitted to

the collected failure data using statistical techniques (e.g.

Linear Regression, Non Linear regression) based on the nature

of collected data. In reliability prediction, the total number of

expected future failures is forecasted on the basis of fitted

SRM. Both assessment and prediction need good data, which

implies accuracy - i.e., data is accurately recorded at the time

the failures occurred- and pertinence - i.e., data relates to an

environment that resembles to the environment for which the

forecast is performed-. For reliability modelling, software

systems are tested in an environment that resembles to the

operational environment. When a failure (i.e., an unexpected

and incorrect behaviour of the system) occurs during testing, it

is counted with a time tag. Cumulative failures are counted

with corresponding cumulative time: when 60% of tests are

completed then SRM is fitted to the collected data and used to

predict the total number of expected defects in the software

[42].

Hence, typically reliability modelling is composed of 5

steps: keeping a log of past failures, plotting the failures,

determining a curve (i.e. Model) that best fits the observations,

measuring how accurate the curve model is and then using the

best fitted model predicting the future reliability in terms of

predicting total number of expected defects in the software

system.

However, there is no universally applicable reliability

model due to the fact that reliability is not independent of the

application. One option to select a good model is to fit several

models to observed data and take the one that best fits the data.

B. Software Reliability Growth Models

SRGM is one of the prominent classes of black box SRM.

They assume that reliability grows after a defect has been

detected and fixed. SRGM can be applied to guide the test

board in their decision of whether to stop or continue the

testing. These models are grouped into concave and S-Shaped

models on the basis of assumption about failure occurrence

pattern. The S-Shaped models assume that the occurrence

pattern of cumulative number of failures is S-Shaped: initially

the testers are not familiar with the product, then they become

more familiar and hence there is a slow increase in fault

removing. As the testers’ skills improve the rate of uncovering

defects increases quickly and then levels off as the residual

errors become more difficult to remove. In the concave shaped

models the increase in failure intensity reaches a peak before a

decrease in failure pattern is observed. Therefore the concave

models indicate that the failure intensity is expected to

decrease exponentially after a pick was reached.

Software Reliability Growth Models measure and model

the failure process itself. Because of this, they include a time

component, which is characteristically based on recording

times ti of successive failures i (i ≥1). Time may be recorded

as execution time or calendar time. These models focus on the

failure history of software. The failure history is affected by a

number of factors, including the environment within which the

software is executed and how it is executed. A general

assumption of these models is that software must be executed

according to its operational profile; that is, test inputs are

selected according to the probability of their occurrence

during actual operation of the software in a given environment

[8]. There are many detailed descriptions of SRGM ([2], [7],

[8], [13], [16], [19], [22]) with many studies and applications

of the models in various contexts ([24], [25], [26]). Models

differ based on their assumptions about the software and its

execution environment.

C. Model selection

Over the past 40 years many SRGM have been proposed

for software reliability characterization. The recurring

question is therefore which model to choose in a given context.

Different models must be evaluated, compared and then the

best one should be chosen [29]. Many researchers like Musa et

al. [30] have shown that some families of models have certain

characteristics that are considered better than others; for

example, the geometric family of models (i.e. models based

on the hyper-geometric distribution for estimating the number

of residual software faults) has a better prediction quality than

the other models. By comparison with different models,

Schick and Wolverton [31], and Sukert [32], proposed a new

approach, which suggested techniques for finding the best

model for each individual application among the existing

models. Brocklehurst et al. [33] proposed that the nature of

software failures makes the model selection process in general

a difficult task. They observed that hidden design flaws are the

 Table 1: Summary of SRGM used in this study
Model Name Type Mean Value Function, m (t) Failure Intensity Function , (t)

Musa-Okumoto [27] Concave m(t) = a ln(1+bt) (t) = ab/(1+bt)

Inflection S-Shaped [28] S-Shaped m(t) = a(1-e
-bt

)/(1+βe
-bt

) (t) = abe
-bt

(1+βt)/(1+βe
-bt

)
2

Goel-Okumoto [28] Concave m(t) = a(1-e
-bt

) (t) = abe
-bt

Delayed S-Shaped [28] S-Shaped m(t) = a(1-(1+bt)e
-bt

) (t) = ab
2
te

-bt

Generalized Goel [28] Concave m(t) = a(1-e
-bt^c

) (t) = abct
c-1

e
-bt^c

Gompertz [28] S-Shaped m(t) = ak
b^t

(t) = abln(k)k
b^t

Logistic [28] S-Shaped m(t) = a/(1+ke
-bt

) (t) = abke
-bt

/(1+ke
-bt

)
2

Yamada Exponential [22] Concave m(t) = a(1-e
-rα(1-exp(-βt)

) (t) = arαβe
-rα(1-exp(-βt)-βt

main causes of software failures. Goel’s [34] paper stated that

different models predict well only on certain data sets; and the

best model for a given application can be selected by

comparing the predictive quality of different models. Abdel-

Ghaly et al. [35] analyzed the predictive quality of 10 models

using 5 methods of evaluation. They observed that different

methods of model evaluation select different model as best

predictor. Also, some of their methods were rather subjective

as to which model was better than others. Khoshgoftaar [36]

suggested Akaike Information Criteria (AIC), best model

selection criteria. Subsequent work by Khoshgoftaar and

Woodcock [37] proved the feasibility of using the AIC for

model selection. Khoshgoftaar and Woodcock [38] proposed

a method for the selection of a reliability model among

various alternatives using the log-likelihood function (i.e. a

function of the parameters of the models). They applied the

method to the failure logs of a project. Lyu and Nikora [39]

implemented Goodness-of-Fit (GOF) in their model selection

tool.

In spite of the fact that many studies have been conducted,

there is no agreement on how to select the best model before

starting a project.

D. SRGM in open source systems

Different studies are available in the literature about the

applicability of software reliability models for OSS, with

unclear results. Syed Mohamad et al. [43] examined the defect

discovery rate of two OSS products with software developed

in-house using 2 SRGM. They observed that the two OSS

products have a different profile of defect discovery. Ying

Zhou et al [44] analyzed bug tracking data of 6 OSS projects.

They observed that along their developmental cycle, OSS

projects exhibit similar reliability growth pattern with that of

closed source projects. They proposed the general Weibull

distribution to model the failure occurrence pattern of OSS

projects. Bruno Rossi et al [45] analyzed the failure

occurrence pattern of 3 OSS products applying SRGM. They

proposed that the best model for OSS is the Weibull

distribution. Cobra Rahmani et al. [46] compared the fitting

and prediction capabilities of 3 models using failure data of 5

OSS projects. They observed Shneidewind model is the best

while Weibull is the worst one. Fengzhong et al [47]

examined the bug reports of 6 OSS projects. They modelled

the bug reports using nonparametric techniques. They

suggested that Generalized Additive (GA) models and

exponential smoothing approaches are suitable for reliability

characterization of OSS projects. Hence in a generalized way

empirical validation of software reliability models for OSS

projects is needed, in order to make clear the applicability of

software reliability models for OSS projects.

III. GOAL, RESEARCH QUESTIONS AND METRICS

As the aforementioned background section showed, there is

no agreement on what is the best reliability model for a given

project, especially at its inception. Different models predict

well only on certain data sets and the best model can be

selected by comparing the predictive qualities of a number of

models only at the end of a project. That is why the goal of

this study is to compare the reliability characterization and

prediction quality of different SRGM in order to draw a

general conclusion about the best fitting and best predictor

models among them. We believe that such knowledge will

help project managers in the selection of a good SRGM model

and in making an informed decision on the release of the

product.

Moreover, since we reported in the Background section that

different studies report different results for the applicability of

software reliability models in OSS projects reliability

characterization [43][44][45][46][47], we want to study

SRGM models with both industrial and open source data.

Herein, we summarize the goal and introduce the research

questions that drive this study using the GQM [48] template.

Object of

the study

Analyze different SRGM models

Purpose to compare

Focus Their capability to characterize and predict the

reliability of a project

Stakeholder from the point of view of maintenance and

quality managers

Context

factors

in the context of industrial and open source

systems

We describe the research questions and metrics that complete

the GQM. The first step is analysing the capability of models

to simply fit the data sets. At this regard we define RQ1 and

compare the fitting capability, in terms of R
2,

of the models on

the whole dataset. The second step is analysing the capability

of prediction. To this purpose we use the first two thirds of the

data sets to fit models, and estimate the remaining third. The

two thirds threshold was selected following [42]. To the

regard of prediction we have two different RQs. RQ2 simply

compares the models in terms of PRE and TS. RQ3 tries to

help in selecting a model, taking the point of view of a project

manager who only has available part of the dataset and needs

to select a model for prediction. So RQ3 analyzes if a model

with a good fit (high R
2
) is also a good predictor.

The RQs are now presented in detail.

RQ 1: Which SRGM models fit best?

Or, in operational terms, which SRGM has the best R
2
?

Models are fitted on the whole data sets, and their R
2
 are

analysed and compared. Model fitting is required to estimate

the parameters of the models and produce a prediction of

failures. Fitting can be done using Linear or Non Linear

Regression (NLR). In linear regression, a line is determined

that fit to data, while NLR is a general technique to fit a curve

through data. The parameters are estimated by minimizing the

sum of the squares of the distances between data points and

the regression curve. We will use NLR fitting due to the

nature of data.

NLR is an iterative process that starts with initial estimated

values for each parameter. The iterative algorithm then

gradually adjusts these until to converge on the best fit so that

the adjustments make virtually no difference in the sum-of-

squares. A model’s parameters do not converge to best fit if

the model cannot describe the data. On consequence the

model cannot fit to the data.

On the contrary, in case of convergence of the iterative

algorithm, the R
2
 [40] is the metric that indicates how

successful the fit is. We use R
2
 for goodness of fit test because

it is the more powerful measure [50]. It is defined as:

In the expression k represents the size of the data set, m(ti)

represents predicted cumulative failures and mi represents

actual cumulative failures at time ti. R
2
 takes a value between

0 and 1, inclusive. The closer the R
2
 value is to one, the better

the fit.

We consider a good fit when R
2
 > 0.90. We preferred to

show boxplots about fitting than doing hypotheses testing

because some models fit too few datasets (i.e. 10 fit for

Generalized Goel). We analyse and rank models based on

their R
2
.

RQ 2: Which SRGM models are good predictors?

Or in operational terms, which models have best TS (for

prediction accuracy) and PRE (for prediction correctness). We

use the partial failure history of the products to accomplish the

prediction as [46]. The first two thirds data points of the each

datasets following [42], is used to estimate the parameters.

These estimated values of the parameters are then applied to

the entire time span for which failure data is collected in each

dataset in order to compare the prediction qualities of the

models.

Prediction capability can be evaluated under two points of

view, accuracy and correctness. Accuracy deals with the

difference between estimated and actual over a time period.

Correctness deals with the difference between predicted and

actual at a specific point in time (e.g. release date). A model

can be accurate but not correct and vice versa. For this reason

we use the Theil’s Statistic (TS) for accuracy and Predicted

Relative Error (PRE) for correctness.

1) The Theil’s statistic (TS) is the average deviation

percentage over all data points. The closer Theil’s

statistic is to zero, the better the prediction accuracy of

the model. It is defined as [41]

2) Predicted Relative Error is a ratio between the error

difference (actual versus predicted) and the predicted

number of defects at the time point of failures prediction

(e.g. release time).

We consider a prediction as good if TS is below 10% and PRE

is within the range [-10%, +10%] of total number of actual

defects. As for RQ1, we preferred to show boxplots about

prediction accuracy and correctness than doing hypotheses

testing because some models fit too few datasets. We rank

models based on their TS and PRE

RQ 3: A model with good fit is also a good predictor?

Or, in operational terms, a model with a good R
2
 also has

good TS and PRE? Models are fitted on two thirds of the data

sets, the R
2
 is computed on this fit, TS and PRE are computed

on the remaining third of the dataset.

RQ2 tries to understand what models are best predictors, but

takes an a posteriori view. RQ3 takes an a priori view, or uses

the view of a project manager who has to decide what model

to use before the end of the project (at two thirds of it), and

only has the goodness of fit as a rationale for a decision.

IV. MODELS AND DATA SELECTION

A. SRGM models

This study used eight SRGM, selected because they are the

most representative in their category. Table 1 reports their

name and reference and, for each of them:

 m (t) = mean value function that represents the

cumulative number of failures through time t

 ʎ (t) = Software failure rate function

Each model has a different combination of parameters in

the two aforementioned functions:

 a = expected total number of defects in the code

 b = shape factor, i.e. the rates at which failure rate

decreases

 c = expected number of residual faults in software at

end of system test

B. Datasets

The goal of the study is to analyse the selected SRGM using

as many software failure data sets as possible. For this

purpose we collected failure data from the literature. We have

searched papers on IEEE Explorer, ACM Digital Library and

in three journals, i.e. Journal of Information and Software

Technology, the Journal of System and Software and IEEE

software. For papers searching these strings have been used:

 Software failure rate

 Software failure intensity

 Software failure Dataset

 Failure rate and Reliability

 Failure intensity and Reliability

We found 2100 papers, 19 of which were relevant for our

study because they contained failure data sets on 38 projects.

Among these, 32 projects were closed source and 6 were Open

Source. In 32 closed source projects, 22 contain system test

failure data (Table 2) and 10 contain field defect data

collected from the operation phase (Table 3). OSS projects

data (Table 4) have no distinction between phases. The

complete data sets along with their references are available

online
1. We have selected both system test and field defect

data sets in order to evaluate the best fitting and best predictor

SRGM for both system test and operation phase, because the

1
 http://softeng.polito.it/najeeb/confdata/DS1.pdf

Table 2: System Test Data Sets

Ref Project

[1] Pocket Power View Software

[9] Network Management System, R2

Network Management System, R1

[14] NTDS Data Set—Musa’s Data Set

[17] Real Time Command & Control System

DS2 from Ohba’s Study 1984

[4] Tandem Computer Software, R1

Tandem Computer Software, R2

Tandem Computer Software, R3

Tandem Computer Software, R4

[3] Real Time Control system –Musa’s Data Set1

[14] Musa’s Data set2

[21] Telecommunication Product

[17] Large Medical Record System, R1

Large Medical Record System, R2

Large Medical Record System, R3

[20] Wireless Network management System, R3

[12] Telecommunication Product B

Telecommunication Product C

[5] Software Testing Data of Armoured Force Eng.

Institute, China

National Tactical Data System

[10] Wireless Telecommunication Product, R3

Table 3: Field Defect Data Sets

Ref Project

[6] Stratus-I

Stratus-II

[9] Network Management System, R1

[20] Wireless Network Management System, R1

Wireless Network Management System, R2

Wireless Network Management System, R3

[11] Telecommunication product for voice and Data

[15] PSO Product A

[10] Wireless Telecommunication product, R1

Wireless Telecommunication product, R2
Table 4: OSS Defect Data Sets (Collected from Literature)
Ref Project

[18] GNOME V2.0

GNOME V2.2

GNOME V2.4

Apache V2.0.35

Apache V2.0.36

Apache V2.0.39
Table 5: OSS Projects Details (Collected from Apache)

Project Version Release Date

C++ Standard Library V4.1.2 18/07/2005

V4.1.3 30/01/2006

V4.1.4 3/7/2006

V4.2.0 29/10/2007

V4.2.1 1/5/2008

V4.2.2 30/06/2008

V4.2.3 1/9/2008

V5.0.0 31/05/2009

JUDDI V0.9 14/06/2005

V2.0 2/8/2009

V3.0 26/10/2009

V3.1.0 27/06/2011

software reliability models are used for the prediction of failure in both phases and the phase may be a factor for model

selection. Table 4 contains the list of OSS defect data sets. Six

data sets contain defect data of two OSS Projects, Apache and

GNOME. Three data sets have been collected from different

versions of each of the two OSS projects.

Apart from this we identified two notable and active open

source projects from apache.org (https://issues.apache.org/).

These projects are C++ Standard Library and JUDDI. The

Apache C++ Standard Library provides a free implementation

of the ISO/IEC 14882 international standard for C++ that

enables source code portability and consistent behaviour of

programs across all major hardware implementations,

operating systems, and compilers, open source and

commercial alike. JUDDI is an open source Java

implementation of the Universal Description, Discovery, and

Integration (UDDI v3) specification for (Web) Services. Both

of these projects are considered stable in production. The 66%

of the reported issues in first project have been fixed while in

the second project 95% of the reported issues have fixed and

closed. We collected defect data of the selected projects from

apache.org using JIRA. JIRA is a commercial issue tracker.

Issues can be bugs, feature requests, improvements, or tasks.

JIRA track bugs and tasks, link issues to related source code,

plan agile development, monitor activity, report on project

status.

For each version found in the issue tracking system we have

collected all the issues reported at our date of observation

together with the date at which they were reported (date of

opening). For each open source project, we have considered

all the major versions until April 2012. For C++ Standard

Library we were able to get eight (8) versions. Unfortunately,

JUDDI had not so many reports and versions as compared to

C++ Standard Library and we had to limit the versions to four

(4) for JUDDI until October 2011. Table 5 lists the

information of the projects.

After a deep inspection of the repositories and of their

documentation, we have decided to focus on those issues that

were declared “bug” or “defect” excluding “enhancement,”

“feature-request,” “task” or “patch”. For the same reason, we

have considered only those issues that were reported as closed

or resolved (according to the terminology of the single

repository) after the release date of each version. Further, we

excluded issues closed before the release date. These issues

are typically found in the candidate (or testing) releases of

projects. The complete datasets are available online
2
.

V. RESULTS

RQ1: Which SRGM models fit best?

First we consider the basic capability of a model to fit the

dataset (fits or not), irrespective of the goodness of fit (R
2
).

Figure 1 reports for each model on the X axis the percentage

of datasets fitted (axis Y) in each data group (colour bars).

Musa Okumoto fitted to all data sets in each group, most

models also fit, except Yamada exponential, Gompertz,

Generalized Goel that fit poorly, especially field test and

system test datasets.

Now let’s analyse goodness of fit too. Figure 2 reports how

many times a model is the one with best R
2
. For instance

2
 http://softeng.polito.it/najeeb/confdata/DS2.pdf

Musa Okumoto has the best R
2
 on 60% of field defect

datasets. Musa Okumoto is top performer on field defects

data; Gompertz has very good results on OSS datasets directly

followed by Inflection S-Shaped Model. But apart from that

there is no clear best model.

However, analysing the top performer only as in Figure 2

can be misleading, in case many models fit with a similar R
2

the same dataset. Therefore in boxplots of Figure 5 we report

the boxplots of R
2
 per model and per dataset category. It

should be reminded however that boxplots of Figure 5

excludes the models that did not fit at all the datasets (Figure

1) and is therefore meaningful for all models except Yamada

exponential, Gompertz, and Generalized Goel. Musa

Okumoto remains the best performer (no outliers and narrow

boxplot on all categories of datasets). Next to it the other

models have also narrow boxplot (always better than 0.9, the

threshold depicted as a colour horizontal line) but some

outliers. It should be noted that all models behave extremely

well (R
2
 close to 1 and no outliers) on the OSS datasets except

Generalized Goel.

In summary:

 Considering plain fitting (Fig 1), Musa Okumoto fits

all datasets, Yamada exponential, Gompertz,

Generalized Goel fit more OSS datasets but

behave poorly on the others, the others fit at least

80% of the data sets

 Considering the R
2
 of models that fit the datasets

(Figure 5), Musa Okumoto has always a very

good fit (better than 0.9), the others, except

Generalized Goel, also perform quite well but

with outliers.

RQ2. Which SRGM models are good predictors?

For models that could fit the data set we used the first two-

third data points of the data sets to train the model, and

predicted the last third. We analyse their predicting capability

in terms of accuracy and precision.

Accuracy

Figure 3 shows the number of times a model is the best

predictor in terms of TS. It is clear that Musa Okumoto

outperforms the others in both the industrial datasets. The

Logistic Model is directly behind it. On the contrary in the

case of OSS we got several ties (this explains why the sum of

percentage might be greater than 100%), and the best model is

Gompertz directly followed by Logistic.

Figure 6 reports the TS values for all datasets. The red line

represents the 0.1 threshold, usually considered indicator of

good accuracy. Figure 6 allows us to discuss good models,

instead of best model as in Figure 3.

In System Test data, all models show variations, however

Musa Okumoto and Inflection S-Shaped have a median below

the 0.1 threshold. This happens also for Gompertz and the

Generalized Goel models; however they do not fit in several

cases (Figure 1).

In Field data sets all models except Delayed S-Shaped have a

median below the threshold, but indeed show variation. Musa-

Okumoto is the first in 60% of datasets. In OSS the situation

Figure 5: No of DS for each Best Fitted Model

Figure 2: No of DS for each best Predictor Model – Accuracy (TS

value)

Figure 3: No of DS for each best Predictor Model – Correctness

(PRE value)

Figure 1: No of DS fitted by each Model

Figure 2: Ranking on Best Fitting-R2

Figure 3: Ranking on best prediction: TS

Figure 4: Ranking on best prediction: PRE

is completely different all models have TS below 0.1 except

Generalized Goel. Whereas Musa Okumoto, the best model

for both industrial datasets, has median line on the threshold.

In summary:

 On industrial data sets (System test and field data)

accuracy is slightly better for Musa Okumoto and

Inflection S Shaped, but all models have variations.

 On OSS data sets only the best model, Musa

Okumoto, for both industrial datasets and

Generalized Goel have TS above 0.1.

Correctness

Correctness results are shown in the boxplots of Figure 7. The

red lines represent the range ±10% of total number of actual

defects.

In System test only Musa Okumoto, Inflection S-Shaped, Goel

Okumoto and Yamada Exponential are reasonably within the

range ±10% (but Yamada fits less datasets). Worse, all the

others tend to underestimate the actual number of faults.

In field data, the same first three models (Musa Okumoto,

Inflection S-Shaped, and Goel Okumoto) are reasonably

within range. Gompertz is fully within range, but fits only

20% of data sets.

Finally, in OSS, only Musa and Generalized Goel are out of

range. Musa overestimates while Generalized Goel

underestimates. All other are within range but Goel and

Yamada.

Looking at ranks in the bar chart diagram in Figure 4, we

observe that Musa Okumoto is the best model in terms of

correctness in the majority of both system test and field

defects dataset. Inflection S-Shaped is directly behind Musa

Okumoto in the case of system test data sets while Logistic is

directly behind this in the case of field defect data sets. On

contrary in the case of OSS Gompertz is the best one. Apart

from this there is no clear winner.

In summary:

 On industrial data sets, Musa Okumoto, Inflection S-

Shaped and Goel Okumoto fit most datasets and

provide good accuracy and prediction.

 On OSS data sets Inflection S-Shaped, Gompertz and

Yamada fit all data sets and provide optimal

accuracy and prediction.

Figure 5: Box Plots of fitting (R2) values

Figure 6: Box Plots of Prediction Accuracy (TS) values

Figure 7: Box Plots of Prediction Correctness (PRE) values

Table 2: Fitting and prediction capability of models

 System test DS Field DS OSS DS

Model Fitted
DS

R2 >= 0.9
AND TS
<0.1

R2 >= 0.9
AND PRE
within
0.1

Fitted
DS

R2 >= 0.9
AND TS
<0.1

R2 >= 0.9
AND PRE
within
0.1

Fitted
DS

R2 >= 0.9
AND TS
<0.1

R2 >= 0.9
AND PRE
within
0.1

Musa 22/22 13/22 12/22 10/10 7/10 5/10 18/18 4/18 1/18

Inflection 22/22 15/22 10/22 9/10 6/10 4/10 18/18 7/18 7/18

Goel 21/22 7/22 6/22 8/10 6/10 3/10 18/18 5/18 6/18

Delayed 20/22 6/22 3/22 9/10 1/10 2/10 16/18 8/18 1/18

Logistic 20/22 7/22 5/22 9/10 5/10 5/10 15/18 5/18 5/18

Yamada 18/22 3/22 4/22 5/10 2/10 1/10 18/18 5/18 6/18

Gompertz 14/22 6/22 3/22 2/10 2/10 2/10 17/18 8/18 8/18

Generalized 10/22 2/22 1/22 1/10 1/10 0/10 16/18 4/18 2/18

 RQ3. A model with good fit is also a good

predictor?
Here we fit models on two thirds of the data sets and we

analyse if the ones with good R
2
 are also good predictors.

Table 5 reports models and data sets. A model is described by

three cells per category of dataset. The first contains the

number of times a model fits the dataset, with any R
2

(information is also in Figure 1), the second shows how many

times the model fits a data set with R
2
 better than 0.9 and

predicts with TS < 0.1, the third shows how many times the

model fits a data set with R
2
 better than 0.9 and predicts with

PRE within 10%. . We observe from Table 5 that:

 On industrial datasets, Musa and Inflection are the

ones with better prediction capability – however

this happens only in a bit more than half the

datasets

 On OSS datasets Gompertz and Inflection have good

prediction capability for all datasets, followed by

Logistic and Goel Okumoto.

VI. DISCUSSION

We have attempted to derive general conclusion about best

fitter and best predicting SRGM model applying eight

different models to a wide range of datasets on failures.

Considering the three RQs the origin of datasets appears to be

a factor. The performance of models differs slightly between

System test and Field test datasets. Results show that models

that have good performances in fitting and predicting in

system tests are still good in fitting and predicting field

defects. We think this is a very practical and important finding

because quality and maintenance managers might choose only

one model regardless of the phase of the software lifecycle

data come from.

Yet another interesting fact from the analysis is that there is a

clear difference between OSS and industrial data sets. The

best performer models are Musa Okumoto and Inflection for

industrial datasets, while Gompertz is the best for OSS

datasets followed by Inflection S-Shaped Model. This is due

to the fact that these models are S-shaped and apply better to

the fitted data. It might indicate an initial learning phase in

which the community of end-users and reviewers of the open

source project does not react promptly to the new release. Yet

another explanation could be that OSS datasets are

significantly different from industrial datasets (there is no

distinction between System Test failures and Field defects), so

we cannot really derive any meaningful consequence.

We finalize this discussion with a message to the maintenance

and quality manager that might read this analysis. We

provided ranks and boxplots to show to the readers that certain

models got good fitting\prediction performances in several

datasets. Although the high number of datasets used (50)

might make our findings generalizable, we strongly suggest

the reader to define her own thresholds for fitting, accuracy

and correctness of predictions and re elaborate the results

according to those thresholds, using the boxplot provided. In

fact we are convinced that each context has unique

combination of characteristics that make some thresholds

more appropriate than others, thus the choice of the SRGM

should be based on characteristics of the context and the data

it is going to be applied.

VII. THREATS TO VALIDITY

We recognize a first conclusion threat in the methodology

we used to answer research questions, because we did not

apply hypothesis testing due to the low cardinality of some

datasets. Moreover the choice of threshold is also not

grounded in the literature.

This approach was conscious and deliberate though. We

preferred to choose indicative thresholds and show all

boxplots to not bias the reader: we strongly believe that

classifying a model as good or bad is a task that strictly

depends on the level of performances that the manager wants

to achieve. Each reader might decide by herself whether the

threshold we used is appropriate for her context or not, and

classify differently the models by looking at the boxplots.

However, we did not leave this threat uncontrolled and we

provided the reader with ranks to identify the best model for

each type of datasets and metric.

We observe a construct threat in the impossibility to

adequately compare industrial datasets with OSS datasets due

to the lack of information on the defect detection phase

(system test, operation) in latter one: we could not build a

proper control strategy except avoiding a structured

comparison between industrial and OSS results.

We notice a conclusion threat in the choice of not

performing cross validation in prediction. However we

grounded our choice in the literature.

Finally, an external threat is the low number of datasets in

for field defects. However Apache and GNOME projects both

have large and well organized communities, where a great

number of developers contribute to the projects. The large

sizes of these two projects make them the state-of-the-art in

terms of management of OSS projects.

VIII. CONCLUSIONS

We have studied selected SRGM in generalized way for the

purpose to derive general conclusion. In the literature nobody

has validated the SRM in such generalized way: at maximum

four/five models are validated on two/three datasets [42, 4, 17].

We found that the Musa-Okumoto model is the best one in

fitting and predictions in industrial datasets. Although also

Inflection S-Shaped achieved very good results with respect to

the metrics thresholds we adopted. The Musa-Okumoto model

did not hold the same performances in OSS data, in which the

Gompertz model applied better, followed by Inflection S-

Shaped.

We also observed two other interesting facts: 1) models which

have good performances with system test data sets also good

performances with field defect data, and 2) models that fit

very well system test data not always predict with same

performances. The practical consequences and

recommendations to quality and maintenance managers are: 1)

choose only one model regardless of the phase of the software

lifecycle, 2) identify and choose a model that is flexible

enough in case the quality process is under definition or in

generable susceptible of important changes.

Our future work will be devoted to the extension of the

datasets used to increase the generalizability of these findings,

especially in OSS projects where results and structure of

datasets were very different from industrial ones.

REFERENCES:
[1] Arora, S. et al, “Software Reliability Improvement through Operational

Profile Driven Testing”, Proceedings Reliability and Maintainability

Symposium, 2005.
[2] Goel, A. L., and Okumoto, K. 1979. “A time dependent error detection

model for software reliability and other performance measures”, IEEE
Transactions on Reliability 28(3): 206–211.

[3] Xuemei Zhang, et al, “Considering Fault Removal Efficiency in Software

Reliability Assessment”, IEEE Transactions on Systems, Man, and
Cybernetics—PART A: System and Human, Vol. 33, No. 1, January 2003

[4]Wood, Alan, “Software-reliability growth model: primary-failures generate

secondary-faults under imperfect debugging and. IEEE Transactions on
Reliability, 43, 3, 408 (September 1994).”

[5] Yongqiang Zhang, et al, “Improved Genetic Programming Algorithm

Applied to Symbolic Regression and Software Reliability Modeling”, Journal

of Software Engineering and Applications, pages 354-360, 2009

[6] Mullen, Robert E, “The Lognormal Distribution of Software Failure Rates:

Application to Software Reliability Growth Modeling Cisco Systems 250
Apollo Road”.

[7] Kececioglu, D. 1991. Reliability Engineering Handbook, Vol. 2,

Englewood Cliffs, NJ: Prentice-Hall.
[8] Lyu, M. (ed.): 1996, Handbook of Software Reliability Engineering. New

York: McGraw-Hill.

[9] Jeske, Daniel R., et al, “Adjusting Software Failure Rates That Are
Estimated from Test Data”, IEEE Transaction on Reliability, Vol. 54, No. 1,

March 2005.

[10] Jeske, D.R., et al, “Accounting for Realities When Estimating the Field

Failure Rate of Software”, Proceedings of 12th International Symposium on
Software Reliability Engineering, 2001.

[11] Jeske, D.R., et al, “Estimating the failure rate of evolving software

systems”, Proceedings 11th International Symposium on Software Reliability
Engineering, 2000.

[12] Derriennic, H., Le Gall, G., “Use of failure-intensity models in Software-

validation Phase for Telecommunications”, IEEE Transaction on Reliability,
Vol. 44, No. 4, 1995 December.

[13] Musa, J., Iannino, A., and Okumoto, K. 1987. Software Reliability:

Measurement, Prediction, Application. New York: McGraw-Hill.
[14] Cao, Yong. , Zhu, Qingxin, “The Software Failure Prediction Based on

Fractal”, Journal Advanced Software Engineering and Its Applications, Pages

85-90, 2008.
[15] Jalote, Pankaj, et al, “Post-release reliability growth in software

products”, ACM Transactions on Software Engineering and Methodology,

Vol. 17, Pages 1-20, 2008.
[16] Trachtenberg, M. 1990, “A general theory of software-reliability

modeling”, IEEE Transactions on Reliability 39(1): 92–96.

[17] Lo, J., Huang, C., “An integration of fault detection and correction
processes in software reliability analysis”, Journal of Systems and Software,

Vol.79, Pages 1312-1323, 2006.

[18] Li, Xiang, et al, “Reliability analysis and optimal version-updating for
open source software”, Journal of Information and Software Technology, Vol.

53, Pages 929-936, 2011.

[19] Yamada, S., Ohba, M., and Osaki, S. 1983. “S-shaped reliability growth
modeling for software error detection”, IEEE Transactions on Reliability

32(5): 475–478.
[20] Jeske, D, “Some successful approaches to software reliability modeling

in industry”, Journal of Systems and Software, Vol. 74, Pages 85-99, 2005.

[21] Kelani Bandara, K.B.P.L.M. et al, “Optimal selection of failure data for
reliability estimation based on a standard deviation method”, Proceedings of

International Conference on Industrial and Information Systems, 2007.

[22] Yamada, S., Ohtera, H., and Narihisa, H. 1986. Software reliability
growth models with testing effort. IEEE Transactions on Reliability 35(1):

19–23.

[23] Stringfellow, C, et al, “An Empirical Method for Selecting Software
Reliability Growth Models”, pages 1-21.

[24] Musa, J., and Ackerman, A. 1989, Quantifying software validation:

When to stop testing. IEEE Software. 19–27
[25] Wood, A. 1996, Predicting software reliability. IEEE Computer 29(11):

69–78.

[26] Wood, A. 1997. Software reliability growth models: Assumptions vs.
reality. Proceedings of the International Symposium on Software Reliability

Engineering 23(11): 136–141.

[27] J. D. Musa and K. Okumoto, “A logarithmic Poisson execution time
model for software reliability measurement,” in Conf. Proc. 7th International

Conf. on Softw. Engineering, 1983, pp. 230–237.

[28] C. Y. Huang, M. R. Lyu, and S. Y. Kuo, “A unified scheme of some non-
homogenous Poisson process models for software reliability estimation,”

IEEE Trans. Softw. Engineering, vol. 29, no. 3, pp. 261–269, March 2003.

[29] Kapil Sharma, et al, “Selection of Optimal Software Reliability Growth
Models Using a Distance Based Approach”, IEEE TRANSACTIONS ON

RELIABILITY, VOL. 59, NO. 2, JUNE 2010

 [30] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability
Measurement, Prediction, Application. : McGraw Hill, 1987

[31] G. H. Schick and R. W. Wolverton, “An analysis of competing software

reliability models,” IEEE Trans. Software Engineering, pp. 104–120, March
1978.

[32] A. N. Sukert, “Empirical validation of three software errors predictions

models,” IEEE Transaction on Reliability, pp. 199–205, August 1979.
[33] S. Brocklehurst, P. Y. Chan, B. Littlewood, and J. Snell, “Recalibrating

software reliability models,” IEEE Trans. Softw. Engineering, vol. SE-16, no.

4, pp. 458–470, April 1990.
[34] A. L Goel, “Software reliability models: assumption, limitations, and

applicability,” IEEE Transaction on Software Engineering, pp. 1411–1423,

December 1985.
[35] Abdel-Ghaly, P.Y. Chan, and B. Littlewood, “Evaluation of competing

software reliability predictions,” IEEE Trans. Softw. Engineering, vol. SE-12,

no. 12, pp. 950–967, September 1986.
[36] T. M. Khoshgoftaar, “On model selection in software reliability,” in 8th

Symposium in Computational Statistics, August 1988, pp. 13–14,

(Compstat ’88).
[37] T. M. Khoshgoftaar and T. G. Woodcock, “A simulation study of the

performance of the Akaike information criterion for the selection of software

reliability growth models,” in Proc. of the 27th Annual South East Region
ACM Conf., April 1989, pp. 419–423.

[38] T. M. Khoshgoftaar and T. Woodcock, “Software reliability model

selection: A case study,” in Proc. of the 2nd International Symposium on
Software Reliability Engineering. Austin, TX: IEEE Computer Society Press,

1991, pp. 183–191.

[40] K. Pillai and V. S. S. Nair, “A model for software development effort and
cost estimation,” IEEE Transaction on Software Engineering, vol. 23, no. 8,

pp. 485–497, 1997.

[41] K. C. Chiu, Y. S. Huang, and T. Z. Lee, “A study of software reliability
growth from the perspective of learning effects,” Reliability Engineering and

System Safety, pp. 1410–1421, 2008.

[42] Carina Andersson , “A replicated empirical study of a selection method
for software reliability growth models”, journal of Empirical Software

Engineering, pages 161-182, year 2006

[43] Syed-Mohamad et al, “Reliability Growth of Open Source Software
Using Defect Analysis”, International Conference on Computer Science and

Software Engineering, 2008.

[44] Ying Zhou et al, “Open source software reliability model: an empirical
approach”, ACM SIGSOFT Software Engineering Notes, 2005

[45] Bruno Rossi et al, “Modelling Failures Occurrences of Open Source

Software with Reliability Growth”, journal of Open Source Software: New
Horizons, page 268-280, 2010.

[46] Cobra Rahmani et al, “A Comparative Analysis of Open Source Software

Reliability”, Journal of Software, page 1384-1394, 2010.
[47] IEEE Std 1633-2008 IEEE Recommended Practice in Software

Reliability

[48] Basili, et al, "The Goal Question Metric Approach", in Encyclopedia of
Software Engineering, Wiley, 1994.

[49] http://www.cse.cuhk.edu.hk/~lyu/book/reliability/
[50] O. Gaudoin et al, “A simple goodness of fit test for the power law

process based on the Duane plot”,IEEE Transactions on Reliability

