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Abstract— The purpose of this study is to compare the fitting 

(goodness of fit) and prediction capability of eight Software 

Reliability Growth Models (SRGM) using fifty different failure 

Data sets.  These data sets contain defect data collected from 

system test phase, operational phase (field defects) and Open 

Source Software (OSS) projects. The failure data are modelled 

by eight SRGM (Musa Okumoto, Inflection S-Shaped, Goel 

Okumoto, Delayed S-Shaped, Logistic, Gompertz, Yamada 

Exponential, and Generalized Goel Model).  These models are 

chosen due to their prevalence among many software reliability 

models.  

 
The results can be summarized as follows 

 Fitting capability: Musa Okumoto fits all data sets, but all 

models fit all the OSS datasets 

 Prediction capability: Musa Okumoto, Inflection S-

Shaped and Goel Okumoto are the best predictors for 

industrial data sets, Gompertz and Yamada are the best 

predictors for OSS data sets 

 Fitting and prediction capability: Musa Okumoto and 

Inflection are the best performers on industrial datasets. 

However this happens only on slightly more than 50% of 

the datasets.   Gompertz and Inflection are the best 

performers for all OSS datasets. 
 

 

Keywords— Software Reliability Growth Models, SRGM, Open 

Source Software, Failure Data, Software Reliability Models 

I. INTRODUCTION 

Software development is a brain intensive activity. Therefore, 

the quality of the product is subject to large variations. 

Reliability is one of the most important attributes of software 

quality, which is defined as the probability of failure-free 

software operation for a specified period of time in a specified 

environment [47]. Starting from the 70’s different Software 

Reliability Models (SRM) have been proposed for software 

reliability characterization and prediction. SRM is a 

mathematical expression that specifies the general form of the 

software failure process as a function of factors such as fault 

introduction, fault removal, and the operational environment 

[47]. SRM is composed of different parameters.  Parameter is 

a variable or arbitrary constant appearing in a mathematical 

expression, each value of which restricts or determines the 

specific form of the expression. The failure rate (failures per 

unit time) of a software system is generally decreasing due to 

fault identification and removal. Software Reliability 

modelling is done to estimate the form of the curve of the 

failure rate by statistically estimating the parameters 

associated with the selected model. The purpose of this 

measure is twofold: 1) to estimate the extra execution time 

during test required to meet a specified reliability objective 

and 2) to identify the expected reliability of the software when 

the product is released.  

  In general SRM are categorized as white box and black box. 

White box approaches analyze the structure i.e. the 

architecture of the software that has been specified and 

designed. These models predict the reliability of software on 

the basis of the relationship among different components and 

their interactions. These approaches are also called 

deterministic approaches.  They are based on logical 

complexity, decision point, program length, operands and 

operators of software. Path-Based Models and State-Based 

Models are two examples of this type of reliability model. In 

the literature these models are known as Architecture Based 

Reliability Models.  
Black box approaches treat the software as an entity and 

ignore the interdependencies of the software internal 

components. There are some basic assumptions which are 

similar for all these kinds of models [49]. 

1. When a fault is detected it is removed immediately. 

2. A fault is corrected instantaneously without 

introducing new fault into the software. 

3. The software is operated in a similar manner as 

that in which reliability predictions are to be made. 

4. Every fault has the same chance of being 

encountered within a severity class as any other 

fault in that class. 

5. The failures, when the faults are detected, are 

independent. 

 

    The Black Box approaches are classified into different 

types, Early Prediction Models, SRGM, Input Domain Based 

Model, and Hybrid Black Box Models. Our work is focused 

on SRGM models because of their widespread use. SRGM 

can be applied to guide the test board in their decision of 

whether to stop or continue the testing. Herein we present a 

comparative analysis of SRGM models in term of goodness-

of-fit, prediction accuracy and correctness based on thirty 

eight failure data sets containing system test failures data, 

field and OSS defects data. 



The rest of the paper is organized as follows. Section 2 

contains background information and literature review. 

Section 3 provides the goals and research questions of this 

study; section 4 describes models and data selection. Section 5 

describes results; section 6 contains discussion and in 7 threats 

to validity has been discussed.  Section 8 concludes the study. 

II. BACKGROUND 

A. Reliability Modelling 

Software Reliability Models (SRM) can both assess and 

predict reliability. In reliability assessment SRM are fitted to 

the collected failure data using statistical techniques (e.g. 

Linear Regression, Non Linear regression) based on the nature 

of collected data. In reliability prediction, the total number of 

expected future failures is forecasted on the basis of fitted 

SRM. Both assessment and prediction need good data, which 

implies accuracy - i.e., data is accurately recorded at the time 

the failures occurred-  and pertinence - i.e., data relates to an 

environment that resembles to the environment for which the 

forecast is performed-.  For reliability modelling, software 

systems are tested in an environment that resembles to the 

operational environment. When a failure (i.e., an unexpected 

and incorrect behaviour of the system) occurs during testing, it 

is counted with a time tag. Cumulative failures are counted 

with corresponding cumulative time: when 60% of tests are 

completed then SRM is fitted to the collected data and used to 

predict the total number of expected defects in the software 

[42].  

Hence, typically reliability modelling is composed of 5 

steps: keeping a log of past failures, plotting the failures, 

determining a curve (i.e. Model) that best fits the observations, 

measuring how accurate the curve model is and then using the 

best fitted model predicting the future reliability in terms of 

predicting total number of expected defects in the software 

system. 

However, there is no universally applicable reliability 

model due to the fact that reliability is not independent of the 

application. One option to select a good model is to fit several 

models to observed data and take the one that best fits the data.  

B. Software Reliability Growth Models 

SRGM is one of the prominent classes of black box SRM.  

They assume that reliability grows after a defect has been 

detected and fixed. SRGM can be applied to guide the test 

board in their decision of whether to stop or continue the 

testing. These models are grouped into concave and S-Shaped 

models on the basis of assumption about failure occurrence 

pattern.  The S-Shaped models assume that the occurrence 

pattern of cumulative number of failures is S-Shaped: initially 

the testers are not familiar with the product, then they become 

more familiar and hence there is a slow increase in fault 

removing. As the testers’ skills improve the rate of uncovering 

defects increases quickly and then levels off as the residual 

errors become more difficult to remove. In the concave shaped 

models the increase in failure intensity reaches a peak before a 

decrease in failure pattern is observed. Therefore the concave 

models indicate that the failure intensity is expected to 

decrease exponentially after a pick was reached. 

Software Reliability Growth Models measure and model 

the failure process itself. Because of this, they include a time 

component, which is characteristically based on recording 

times ti of successive failures i (i ≥1). Time may be recorded 

as execution time or calendar time. These models focus on the 

failure history of software. The failure history is affected by a 

number of factors, including the environment within which the 

software is executed and how it is executed. A general 

assumption of these models is that software must be executed 

according to its operational profile; that is, test inputs are 

selected according to the probability of their occurrence 

during actual operation of the software in a given environment 

[8]. There are many detailed descriptions of SRGM ([2], [7], 

[8], [13], [16], [19], [22]) with many studies and applications 

of the models in various contexts ([24], [25], [26]). Models 

differ based on their assumptions about the software and its 

execution environment. 

 

C.  Model selection 

Over the past 40 years many SRGM have been proposed 

for software reliability characterization.  The recurring 

question is therefore which model to choose in a given context.  

Different models must be evaluated, compared and then the 

best one should be chosen [29]. Many researchers like Musa et 

al. [30] have shown that some families of models have certain 

characteristics that are considered better than others; for 

example, the geometric family of models (i.e. models based 

on the hyper-geometric distribution for estimating the number 

of residual software faults) has a better prediction quality than 

the other models. By comparison with different models, 

Schick and Wolverton [31], and Sukert [32], proposed a new 

approach, which suggested techniques for finding the best 

model for each individual application among the existing 

models. Brocklehurst et al. [33] proposed that the nature of 

software failures makes the model selection process in general 

a difficult task. They observed that hidden design flaws are the 

  Table 1: Summary of SRGM used in this study 
Model Name Type Mean Value Function, m (t) Failure Intensity Function , (t)  

Musa-Okumoto [27] Concave m(t) = a ln(1+bt) (t) = ab/(1+bt) 

Inflection S-Shaped [28] S-Shaped m(t) = a(1-e
-bt

)/(1+βe
-bt

) (t) = abe
-bt

(1+βt)/(1+βe
-bt

)
2 

Goel-Okumoto [28] Concave m(t) = a(1-e
-bt

) (t) = abe
-bt 

Delayed S-Shaped [28] S-Shaped m(t) = a(1-(1+bt)e
-bt

) (t) = ab
2
te

-bt
 

Generalized Goel [28] Concave m(t) = a(1-e
-bt^c

) (t) = abct
c-1

e
-bt^c

 

Gompertz [28] S-Shaped m(t) = ak
b^t 

(t) = abln(k)k
b^t 

Logistic [28] S-Shaped m(t) = a/(1+ke
-bt

) (t) = abke
-bt

/(1+ke
-bt

)
2 

Yamada Exponential [22] Concave m(t) = a(1-e
-rα(1-exp(-βt)

) (t) = arαβe
-rα(1-exp(-βt)-βt

 

  



main causes of software failures. Goel’s [34] paper stated that 

different models predict well only on certain data sets; and the 

best model for a given application can be selected by 

comparing the predictive quality of different models.  Abdel-

Ghaly et al. [35] analyzed the predictive quality of 10 models 

using 5 methods of evaluation. They observed that different 

methods of model evaluation select different model as best 

predictor. Also, some of their methods were rather subjective 

as to which model was better than others.  Khoshgoftaar [36] 

suggested Akaike Information Criteria (AIC), best model 

selection criteria. Subsequent work by Khoshgoftaar and 

Woodcock [37] proved the feasibility of using the AIC for 

model selection.  Khoshgoftaar and Woodcock [38] proposed 

a method for the selection of a reliability model among 

various alternatives using the log-likelihood function (i.e. a 

function of the parameters of the models). They applied the 

method to the failure logs of a project. Lyu and Nikora [39] 

implemented Goodness-of-Fit (GOF) in their model selection 

tool.  

In spite of the fact that many studies have been conducted, 

there is no agreement on how to select the best model before 

starting a project.  

D. SRGM in open source systems 

Different studies are available in the literature about the 

applicability of software reliability models for OSS, with 

unclear results. Syed Mohamad et al. [43] examined the defect 

discovery rate of two OSS products with software developed 

in-house using 2 SRGM. They observed that the two OSS 

products have a different profile of defect discovery.  Ying 

Zhou et al [44] analyzed bug tracking data of 6 OSS projects. 

They observed that along their developmental cycle, OSS 

projects exhibit similar reliability growth pattern with that of 

closed source projects. They proposed the general Weibull 

distribution to model the failure occurrence pattern of OSS 

projects. Bruno Rossi et al [45] analyzed the failure 

occurrence pattern of 3 OSS products applying SRGM. They 

proposed that the best model for OSS is the Weibull 

distribution. Cobra Rahmani et al. [46] compared the fitting 

and prediction capabilities of 3 models using failure data of 5 

OSS projects. They observed Shneidewind model is the best 

while Weibull is the worst one. Fengzhong et al [47] 

examined the bug reports of 6 OSS projects. They modelled 

the bug reports using nonparametric techniques. They 

suggested that Generalized Additive (GA) models and 

exponential smoothing approaches are suitable for reliability 

characterization of OSS projects.  Hence in a generalized way 

empirical validation of software reliability models for OSS 

projects is needed, in order to make clear the applicability of 

software reliability models for OSS projects. 

III. GOAL, RESEARCH QUESTIONS AND METRICS 

As the aforementioned background section showed, there is 

no agreement on what is the best reliability model for a given 

project, especially at its inception. Different models predict 

well only on certain data sets and the best model can be 

selected by comparing the predictive qualities of a number of 

models only at the end of a project. That is why the goal of 

this study is to compare the reliability characterization and 

prediction quality of different SRGM in order to draw a 

general conclusion about the best fitting and best predictor 

models among them. We believe that such knowledge will 

help project managers in the selection of a good SRGM model 

and in making an informed decision on the release of the 

product. 

Moreover, since we reported in the Background section that 

different studies report different results for the applicability of 

software reliability models in OSS projects reliability 

characterization [43][44][45][46][47], we want to study 

SRGM models with both industrial and open source data.   

Herein, we summarize the goal and introduce the research 

questions that drive this study using the GQM [48] template.  

 

Object of 

the study 

Analyze different SRGM models 

Purpose to compare  

Focus Their capability to characterize and predict the  

reliability of a project  

Stakeholder from the point of view of maintenance and 

quality  managers 

Context 

factors 

in the context of industrial and open source 

systems 

 

We describe the research questions and metrics that complete 

the GQM. The first step is analysing the capability of models 

to simply fit the data sets. At this regard we define RQ1 and 

compare the fitting capability, in terms of R
2, 

of the models on 

the whole dataset. The second step is analysing the capability 

of prediction. To this purpose we use the first two thirds of the 

data sets to fit models, and estimate the remaining third. The 

two thirds threshold was selected following [42]. To the 

regard of prediction we have two different RQs.  RQ2 simply 

compares the models in terms of PRE and TS. RQ3 tries to 

help in selecting a model, taking the point of view of a project 

manager who only has available part of the dataset and needs 

to select a model for prediction. So RQ3 analyzes if a model 

with a good fit (high R
2
) is also a good predictor. 

The RQs are now presented in detail. 

RQ 1: Which SRGM models fit best? 

Or, in operational terms, which SRGM has the best R
2
? 

Models are fitted on the whole data sets, and their R
2
 are 

analysed and compared. Model fitting is required to estimate 

the parameters of the models and produce a prediction of 

failures. Fitting can be done using Linear or Non Linear 

Regression (NLR). In linear regression, a line is determined 

that fit to data, while NLR is a general technique to fit a curve 

through data. The parameters are estimated by minimizing the 

sum of the squares of the distances between data points and 

the regression curve. We will use NLR fitting due to the 

nature of data. 

NLR is an iterative process that starts with initial estimated 

values for each parameter. The iterative algorithm then 

gradually adjusts these until to converge on the best fit so that 

the adjustments make virtually no difference in the sum-of-

squares. A model’s parameters do not converge to best fit if 

the model cannot describe the data. On consequence the 

model cannot fit to the data.  



On the contrary, in case of convergence of the iterative 

algorithm, the R
2
 [40] is the metric that indicates how 

successful the fit is. We use R
2
 for goodness of fit test because 

it is the more powerful measure [50]. It is defined as: 

 

 

 

In the expression k represents the size of the data set, m(ti) 

represents predicted cumulative failures and mi represents 

actual cumulative failures at time ti. R
2
 takes a value between 

0 and 1, inclusive.  The closer the R
2
 value is to one, the better 

the fit. 

We consider a good fit when R
2
 > 0.90. We preferred to 

show boxplots about fitting than doing hypotheses testing 

because some models fit too few datasets (i.e. 10 fit for 

Generalized Goel).  We analyse and rank models based on 

their R
2
. 

 

RQ 2: Which SRGM models are good predictors? 

Or in operational terms, which models have best TS (for 

prediction accuracy) and PRE (for prediction correctness). We 

use the partial failure history of the products to accomplish the 

prediction as [46]. The first two thirds data points of the each 

datasets following [42], is used to estimate the parameters.  

These estimated values of the parameters are then applied to 

the entire time span for which failure data is collected in each 

dataset in order to compare the prediction qualities of the 

models.  

Prediction capability can be evaluated under two points of 

view, accuracy and correctness. Accuracy deals with the 

difference between estimated and actual over a time period. 

Correctness deals with the difference between predicted and 

actual at a specific point in time (e.g. release date).  A model 

can be accurate but not correct and vice versa. For this reason 

we use the Theil’s Statistic (TS) for accuracy and Predicted 

Relative Error (PRE) for correctness.   

1) The Theil’s statistic (TS) is the average deviation 

percentage over all data points.  The closer Theil’s 

statistic is to zero, the better the prediction accuracy of 

the model.  It is defined as [41] 

 

 

2) Predicted Relative Error is a ratio between the error 

difference (actual versus predicted) and the predicted 

number of defects at the time point of failures prediction 

(e.g. release time). 

                  

                  

We consider a prediction as good if TS is below 10% and PRE 

is within the range [-10%, +10%] of total number of actual 

defects. As for RQ1, we preferred to show boxplots about 

prediction accuracy and correctness than doing hypotheses 

testing because some models fit too few datasets. We rank 

models based on their TS and PRE  

RQ 3: A model with good fit is also a good predictor? 

Or, in operational terms, a model with a good R
2
 also has 

good TS and PRE?  Models are fitted on two thirds of the data 

sets, the R
2
 is computed on this fit, TS and PRE are computed 

on the remaining third of the dataset. 

RQ2 tries to understand what models are best predictors, but 

takes an a posteriori view. RQ3 takes an a priori view, or uses 

the view of a project manager who has to decide what model 

to use before the end of the project (at two thirds of it), and 

only has the goodness of fit as a rationale for a decision. 

IV. MODELS AND DATA SELECTION 

A. SRGM models 

This study used eight SRGM, selected because they are the 

most representative in their category. Table 1 reports their 

name and reference and, for each of them: 

 m (t) = mean value function that represents the 

cumulative number of failures through time t 

 ʎ (t) = Software failure rate function 

 

Each model has a different combination of parameters in 

the two aforementioned functions: 

 a = expected total number of defects in the code 

 b = shape factor, i.e. the rates at which failure rate 

decreases 

 c = expected number of residual faults in software at 

end of system test 

B. Datasets 

The goal of the study is to analyse the selected SRGM using 

as many software failure data sets as possible.  For this 

purpose we collected failure data from the literature. We have 

searched papers on IEEE Explorer, ACM Digital Library and 

in three journals, i.e. Journal of Information and Software 

Technology, the Journal of System and Software and IEEE 

software. For papers searching these strings have been used:  

 
 Software failure rate  

 Software failure intensity 

 Software failure Dataset  

 Failure rate and Reliability 

 Failure intensity and Reliability 

 

We found 2100 papers, 19 of which were relevant for our 

study because they contained failure data sets on 38 projects. 

Among these, 32 projects were closed source and 6 were Open 

Source.  In 32 closed source projects, 22 contain system test 

failure data (Table 2) and 10 contain field defect data 

collected from the operation phase (Table 3). OSS projects 

data (Table 4) have no distinction between phases. The 

complete data sets along with their references are available 

online
1.  We have selected both system test and field defect 

data sets in order to evaluate the best fitting and best predictor 

SRGM for both system test and operation phase, because the 

                                                 
1
 http://softeng.polito.it/najeeb/confdata/DS1.pdf 



Table 2: System Test Data Sets 

Ref Project 

[1] Pocket Power View Software 

[9] Network Management System, R2 

Network Management System, R1 

[14] NTDS Data Set—Musa’s Data Set 

[17] Real Time Command & Control System  

DS2 from Ohba’s Study 1984 

[4] Tandem Computer Software, R1 

Tandem Computer Software, R2 

Tandem Computer Software, R3 

Tandem Computer Software, R4 

[3] Real Time Control system –Musa’s Data Set1 

[14] Musa’s Data set2 

[21] Telecommunication Product 

[17] Large Medical Record System, R1 

Large Medical Record System, R2 

Large Medical Record System, R3 

[20] Wireless Network management System, R3 

[12] Telecommunication Product B 

Telecommunication Product C 

[5] Software Testing Data of Armoured Force Eng. 

Institute, China 

National Tactical Data System 

[10] Wireless Telecommunication Product, R3 

Table 3: Field Defect Data Sets 

Ref Project 

[6] Stratus-I 

Stratus-II 

[9] Network Management System, R1 

[20] Wireless Network Management System, R1 

Wireless Network Management System, R2 

Wireless Network Management System, R3 

[11] Telecommunication product for voice and Data 

[15] PSO Product A 

[10] Wireless Telecommunication product, R1 

Wireless Telecommunication product, R2 
Table 4: OSS Defect Data Sets (Collected from Literature) 
Ref Project 

[18] GNOME V2.0 

GNOME V2.2 

GNOME V2.4 

Apache V2.0.35 

Apache V2.0.36 

Apache V2.0.39 
Table 5: OSS Projects Details (Collected from Apache) 

Project Version Release Date 

C++ Standard Library V4.1.2 18/07/2005 

V4.1.3 30/01/2006 

V4.1.4 3/7/2006 

V4.2.0 29/10/2007 

V4.2.1 1/5/2008 

V4.2.2 30/06/2008 

V4.2.3 1/9/2008 

V5.0.0 31/05/2009 

JUDDI V0.9 14/06/2005 

V2.0 2/8/2009 

V3.0 26/10/2009 

V3.1.0 27/06/2011 

 

software reliability models are used for the prediction of failure in both phases and the phase may be a factor for model 

selection. Table 4 contains the list of OSS defect data sets. Six 

data sets contain defect data of two OSS Projects, Apache and  

GNOME. Three data sets have been collected from different 

versions of each of the two OSS projects.  

Apart from this we identified two notable and active open 

source projects from apache.org (https://issues.apache.org/). 

These projects are C++ Standard Library and JUDDI. The 

Apache C++ Standard Library provides a free implementation 

of the ISO/IEC 14882 international standard for C++ that 

enables source code portability and consistent behaviour of 

programs across all major hardware implementations, 

operating systems, and compilers, open source and 

commercial alike. JUDDI is an open source Java 

implementation of the Universal Description, Discovery, and 

Integration (UDDI v3) specification for (Web) Services. Both 

of these projects are considered stable in production. The 66% 

of the reported issues in first project have been fixed while in 

the second project 95% of the reported issues have fixed and 

closed.  We collected defect data of the selected projects from 

apache.org using JIRA. JIRA is a commercial issue tracker. 

Issues can be bugs, feature requests, improvements, or tasks. 

JIRA track bugs and tasks, link issues to related source code, 

plan agile development, monitor activity, report on project 

status. 

For each version found in the issue tracking system we have 

collected all the issues reported at our date of observation 

together with the date at which they were reported (date of 

opening). For each open source project, we have considered 

all the major versions until April 2012. For C++ Standard 

Library we were able to get eight (8) versions.  Unfortunately, 

JUDDI had not so many reports and versions as compared to 

C++ Standard Library and we had to limit the versions to four 

(4) for JUDDI until October 2011.  Table 5 lists the 

information of the projects. 

After a deep inspection of the repositories and of their 

documentation, we have decided to focus on those issues that 

were declared “bug” or “defect” excluding “enhancement,” 

“feature-request,” “task” or “patch”. For the same reason, we 

have considered only those issues that were reported as closed 

or resolved (according to the terminology of the single 

repository) after the release date of each version. Further, we 

excluded issues closed before the release date. These issues 

are typically found in the candidate (or testing) releases of 

projects. The complete datasets are available online
2
. 

V. RESULTS  

 

RQ1: Which SRGM models fit best? 

First we consider the basic capability of a model to fit the 

dataset (fits or not), irrespective of the goodness of fit (R
2
). 

Figure 1 reports for each model on the X axis the percentage 

of datasets fitted (axis Y) in each data group (colour bars). 

Musa Okumoto fitted to all data sets in each group, most 

models also fit, except Yamada exponential, Gompertz, 

Generalized Goel that fit poorly, especially field test and 

system test datasets.   

Now let’s analyse goodness of fit too. Figure 2 reports how 

many times a model is the one with best R
2
. For instance 

                                                 
2
 http://softeng.polito.it/najeeb/confdata/DS2.pdf 



Musa Okumoto has the best R
2
 on 60% of field defect 

datasets.   Musa Okumoto is top performer on field defects 

data; Gompertz has very good results on OSS datasets directly 

followed by Inflection S-Shaped Model. But apart from that 

there is no clear best model. 

However, analysing the top performer only as in Figure 2 

can be misleading, in case many models fit with a similar R
2 

the same dataset.  Therefore in boxplots of Figure 5 we report 

the boxplots of R
2
 per model and per dataset category. It 

should be reminded however that boxplots of Figure 5 

excludes the models that did not fit at all the datasets (Figure 

1) and is therefore meaningful for all models except Yamada 

exponential, Gompertz, and Generalized Goel.  Musa 

Okumoto remains the best performer (no outliers and narrow 

boxplot on all categories of datasets).  Next to it the other 

models have also narrow boxplot (always better than 0.9, the 

threshold depicted as a colour horizontal line) but some 

outliers. It should be noted that all models behave extremely 

well (R
2
 close to 1 and no outliers) on the OSS datasets except 

Generalized Goel. 

 

In summary: 

 Considering plain fitting (Fig 1), Musa Okumoto fits 

all datasets, Yamada exponential, Gompertz, 

Generalized Goel fit more OSS datasets but 

behave poorly on the others, the others fit at least 

80% of the data sets 

 Considering the R
2
 of models that fit the datasets 

(Figure 5), Musa Okumoto has always a very 

good fit (better than 0.9), the others, except 

Generalized Goel, also perform quite well but 

with outliers. 

 

RQ2. Which SRGM models are good predictors? 

For models that could fit the data set we used the first two-

third data points of the data sets to train the model, and 

predicted the last third. We analyse their predicting capability 

in terms of accuracy and precision.  

 

Accuracy 

Figure 3 shows the number of times a model is the best 

predictor in terms of TS. It is clear that Musa Okumoto 

outperforms the others in both the industrial datasets. The 

Logistic Model is directly behind it. On the contrary in the 

case of OSS we got several ties (this explains why the sum of 

percentage might be greater than 100%), and the best model is 

Gompertz directly followed by Logistic.  

 

Figure 6 reports the TS values for all datasets. The red line 

represents the 0.1 threshold, usually considered indicator of 

good accuracy. Figure 6 allows us to discuss good models, 

instead of best model as in Figure 3. 

 

In System Test data, all models show variations, however 

Musa Okumoto and Inflection S-Shaped have a median below 

the 0.1 threshold. This happens also for Gompertz and the 

Generalized Goel models; however they do not fit in several 

cases (Figure 1).  

 

In Field data sets all models except Delayed S-Shaped have a 

median below the threshold, but indeed show variation. Musa-

Okumoto is the first in 60% of datasets.  In OSS the situation 

 

 
Figure 5: No of DS for each Best Fitted Model 

 
 
Figure 2: No of DS for each best Predictor Model – Accuracy (TS 

value) 

 

 

Figure 3: No of DS for each best Predictor Model – Correctness 

(PRE value) 

 

 
Figure 1: No of DS fitted by each Model 

 
Figure 2: Ranking on Best Fitting-R2 

 
Figure 3: Ranking on best prediction: TS  

 
Figure 4: Ranking on best prediction:  PRE  

 



is completely different all models have TS below 0.1 except 

Generalized Goel. Whereas Musa Okumoto, the best model 

for both industrial datasets, has median line on the threshold. 

 

 

In summary: 

 

 On industrial data sets (System test and field data) 

accuracy is slightly better for Musa Okumoto and 

Inflection S Shaped, but all models have variations. 

 On OSS data sets only the best model, Musa 

Okumoto, for both industrial datasets and 

Generalized Goel have TS above 0.1. 

 

Correctness 

Correctness results are shown in the boxplots of Figure 7. The 

red lines represent the range ±10% of total number of actual 

defects. 

In System test only Musa Okumoto, Inflection S-Shaped, Goel 

Okumoto and Yamada Exponential are reasonably within the 

range ±10% (but Yamada fits less datasets). Worse, all the 

others tend to underestimate the actual number of faults.  

In field data, the same first three models (Musa Okumoto, 

Inflection S-Shaped, and Goel Okumoto) are reasonably 

within range. Gompertz is fully within range, but fits only 

20% of data sets.  

Finally, in OSS, only Musa and Generalized Goel are out of 

range. Musa overestimates while Generalized Goel 

underestimates. All other are within range but Goel and 

Yamada. 

Looking at ranks in the bar chart diagram in Figure 4, we 

observe that Musa Okumoto is the best model in terms of 

correctness in the majority of both system test and field 

defects dataset. Inflection S-Shaped is directly behind Musa 

Okumoto in the case of system test data sets while Logistic is 

directly behind this in the case of field defect data sets. On 

contrary in the case of OSS Gompertz is the best one. Apart 

from this there is no clear winner. 

In summary: 

 On industrial data sets, Musa Okumoto, Inflection S-

Shaped and Goel Okumoto fit most datasets and 

provide good accuracy and prediction. 

 On OSS data sets Inflection S-Shaped, Gompertz and 

Yamada fit all data sets and provide optimal 

accuracy and prediction. 

 

 
Figure 5: Box Plots of fitting (R2) values  

 
Figure 6: Box Plots of Prediction Accuracy (TS) values 

 

 

 

 
Figure 7: Box Plots of Prediction Correctness (PRE) values 

 



Table 2: Fitting and prediction capability of models 

 System test DS Field DS OSS DS 

Model Fitted 
DS 

R2 >= 0.9 
AND TS 
<0.1 
 

R2 >= 0.9  
AND PRE 
within  
0.1 

Fitted 
DS 

R2 >= 0.9 
AND TS 
<0.1 
 

R2 >= 0.9  
AND PRE 
within 
0.1 

Fitted 
DS 

R2 >= 0.9 
AND TS 
<0.1 
 

R2 >= 0.9  
AND PRE 
within 
0.1 

Musa 22/22 13/22 12/22 10/10 7/10 5/10 18/18 4/18 1/18 

Inflection 22/22 15/22 10/22 9/10 6/10 4/10 18/18 7/18 7/18 

Goel 21/22 7/22 6/22 8/10 6/10 3/10 18/18 5/18 6/18 

Delayed 20/22 6/22 3/22 9/10 1/10 2/10 16/18 8/18 1/18 

Logistic 20/22 7/22 5/22 9/10 5/10 5/10 15/18 5/18 5/18 

Yamada 18/22 3/22 4/22 5/10 2/10 1/10 18/18 5/18 6/18 

Gompertz 14/22 6/22 3/22 2/10 2/10 2/10 17/18 8/18 8/18 

Generalized 10/22 2/22 1/22 1/10 1/10 0/10 16/18 4/18 2/18 

 

 
  RQ3. A model with good fit is also a good 

predictor?  
Here we fit models on two thirds of the data sets and we 

analyse if the ones with good R
2
 are also good predictors. 

Table 5 reports models and data sets. A model is described by 

three cells per category of dataset. The first contains the 

number of times a model fits the dataset, with any R
2
 

(information is also in Figure 1), the second shows how many 

times the model fits a data set with R
2
 better than 0.9 and 

predicts with TS < 0.1, the third shows how many times the 

model fits a data set with R
2
 better than 0.9 and predicts with 

PRE within 10%.  . We observe from Table 5 that: 

 On industrial datasets, Musa and Inflection are the 

ones with better prediction capability – however 

this happens only in a bit more than half the 

datasets 

 On OSS datasets Gompertz and Inflection have good 

prediction capability for all datasets, followed by 

Logistic and Goel Okumoto. 

VI. DISCUSSION 

We have attempted to derive general conclusion about best 

fitter and best predicting SRGM model applying eight 

different models to a wide range of datasets on failures.  

Considering the three RQs the origin of datasets appears to be 

a factor. The performance of models differs slightly between 

System test and Field test datasets. Results show that models 

that have good performances in fitting and predicting in 

system tests are still good in fitting and predicting field 

defects. We think this is a very practical and important finding 

because quality and maintenance managers might choose only 

one model regardless of the phase of the software lifecycle 

data come from. 

Yet another interesting fact from the analysis is that there is a 

clear difference between OSS and industrial data sets. The 

best performer models are Musa Okumoto and Inflection for 

industrial datasets, while Gompertz is the best for OSS 

datasets followed by Inflection S-Shaped Model. This is due 

to the fact that these models are S-shaped and apply better to 

the fitted data. It might indicate an initial learning phase in 

which the community of end-users and reviewers of the open 

source project does not react promptly to the new release. Yet 

another explanation could be that OSS datasets are 

significantly different from industrial datasets (there is no 

distinction between System Test failures and Field defects), so 

we cannot really derive any meaningful consequence. 

We finalize this discussion with a message to the maintenance 

and quality manager that might read this analysis. We 

provided ranks and boxplots to show to the readers that certain 

models got good fitting\prediction performances in several 

datasets. Although the high number of datasets used (50) 

might make our findings generalizable, we strongly suggest 

the reader to define her own thresholds for fitting, accuracy 

and correctness of predictions and re elaborate the results 

according to those thresholds, using the boxplot provided. In 

fact we are convinced that each context has unique 

combination of characteristics that make some thresholds 

more appropriate than others, thus the choice of the SRGM 

should be based on characteristics of the context and the data 

it is going to be applied.  

VII. THREATS TO VALIDITY 

We recognize a first conclusion threat in the methodology 

we used to answer research questions, because we did not 

apply hypothesis testing due to the low cardinality of some 

datasets. Moreover the choice of threshold is also not 

grounded in the literature. 

This approach was conscious and deliberate though. We 

preferred to choose indicative thresholds and show all 

boxplots to not bias the reader: we strongly believe that 

classifying a model as good or bad is a task that strictly 

depends on the level of performances that the manager wants 

to achieve. Each reader might decide by herself whether the 

threshold we used is appropriate for her context or not, and 

classify differently the models by looking at the boxplots. 

However, we did not leave this threat uncontrolled and we 

provided the reader with ranks to identify the best model for 

each type of datasets and metric.  

We observe a construct threat in the impossibility to 

adequately compare industrial datasets with OSS datasets due 

to the lack of information on the defect detection phase 

(system test, operation) in latter one: we could not build a 

proper control strategy except avoiding a structured 

comparison between industrial and OSS results. 



We notice a conclusion threat in the choice of not 

performing cross validation in prediction. However we 

grounded our choice in the literature. 

Finally, an external threat is the low number of datasets in 

for field defects. However Apache and GNOME projects both 

have large and well organized communities, where a great 

number of developers contribute to the projects. The large 

sizes of these two projects make them the state-of-the-art in 

terms of management of OSS projects. 

VIII. CONCLUSIONS 

We have studied selected SRGM in generalized way for the 

purpose to derive general conclusion. In the literature nobody 

has validated the SRM in such generalized way: at maximum 

four/five models are validated on two/three datasets [42, 4, 17]. 

We found that the Musa-Okumoto model is the best one in 

fitting and predictions in industrial datasets. Although also 

Inflection S-Shaped achieved very good results with respect to 

the metrics thresholds we adopted. The Musa-Okumoto model 

did not hold the same performances in OSS data, in which the 

Gompertz model applied better, followed by Inflection S-

Shaped.  

We also observed two other interesting facts: 1) models which 

have good performances with system test data sets also good 

performances with field defect data, and 2) models that fit 

very well system test data not always predict with same 

performances.  The practical consequences and 

recommendations to quality and maintenance managers are: 1) 

choose only one model regardless of the phase of the software 

lifecycle, 2) identify and choose a model that is flexible 

enough in case the quality process is under definition or in 

generable susceptible of important changes. 

 

Our future work will be devoted to the extension of the 

datasets used to increase the generalizability of these findings, 

especially in OSS projects where results and structure of 

datasets were very different from industrial ones. 
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