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Abstract

Consider random vectors formed by a finite number of independent groups of i.i.d. random
variables, where those of the last group are stochastically smaller than those of the other
groups. Conditions are given such that certain functions, defined as suitable means of su-
permodular functions of the random variables of the vectors, are supermodular or increasing
directionally convex. Comparisons based on the increasing convex order of supermodular
functions of such random vectors are also investigated. Applications of the above results
are then provided in risk theory, queueing theory, and reliability theory, with reference to
(i) net stop-loss reinsurance premiums of portfolios from different groups of insureds, (ii)
closed cyclic multiclass Gordon-Newell queueing networks, and (iii) reliability of series sys-
tems formed by units selected from different batches.

Keywords: Supermodular functions; Directionally convex functions; Increasing convex
order; Risks portfolio; Cyclic queueing network; Reliability; Series systems.



1 Introduction

In a previous paper (Di Crescenzo and Pellerey [12]) the reliability of series or parallel
system has been studied when the system components are randomly chosen from two different
batches, the components of the first batch being more reliable than those of the second. It has
been proved that the system’s reliability increases, in the usual stochastic order sense, when
the random number of components chosen from the first batch increases in the increasing
convex order. As a consequence, the randomness in the number of components extracted
from the two batches improves the reliability of the series system.

Stimulated by the previous research, in this paper we aim to obtain similar results in-
volving stochastic systems described by more general mathematical structures than series
or parallel systems. The starting idea is to consider random vectors composed by a finite
number of independent groups of i.i.d. random variables, where the sizes of the groups are
random themselves, and where the random variables of the last group are stochastically
smaller than those of the other groups. Roughly speaking, we purpose to show that if the
randomness in the sizes of the groups increases in some stochastic sense, then suitable mea-
sures of the random vectors, expressed by supermodular functions, increase in the ‘increasing
convex’ stochastic order.

We recall that recent contributions oriented to the stochastic comparisons of random
vectors, and involving increasing directionally convex transformation of the vectors, are given
in Belzunce et al. [5]. See also Balakrishnan et al. [1], where increasing convex comparisons
of generalized order statistics are given, and are extended to the increasing directionally
convex comparisons of random vectors of generalized order statistics.

This is the plan of the paper. Section 2 is devoted to recall some useful notions that
will be used in the sequel, such as certain properties of multidimensional functions, and the
definitions of various 1-dimensional and multi-dimensional stochastic orders.

The two main results of the paper are given in Section 3, where conditions are given
such that a suitable function of the sizes of the groups is supermodular or is increasing
directionally convex, and where stochastic comparisons are shown for pairs of supermodular
functions of the underlying random vectors.

In Section 4 we present some applications of the main results. The first case deals with
risk theory, and involves stochastic comparisons of the total claim amount from a possible
portfolio of risks, where the number of insureds of each group is random. In the second case
we consider closed cyclic multiclass Gordon-Newell queueing networks with FCFS service
discipline, where some units of the network provide a service gaining a prot and other units
supply auxiliary services originating a cost. We stochastically compare the total profit gained
by the activity of the multiclass queueing network in the equilibrium state, by emphasizing
the dependence on the random sizes of the units’ classes. The last application involves the
reliability of series systems formed by units selected from different batches. Comparisons are
given for the availability and the lifetimes of different systems.

Throughout the paper, the terms ‘increasing’ and ‘decreasing’ are used in non-strict sense.
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2 Preliminary notions

Hereafter we recall some necessary notions and useful properties of n-dimensional functions.
Let ≤ denote the coordinatewise ordering in Rn. Given a function φ : Rn → R, we recall

that it is said to be
– directionally convex if for any xi ∈ Rn, i = 1, 2, 3, 4, such that x1 ≤ x2 ≤ x4, x1 ≤ x3 ≤ x4

and x1 + x4 = x2 + x3, one has

φ(x2) + φ(x3) ≤ φ(x1) + φ(x4);

– coordinatewise convex if it is convex in each coordinate when the remaining ones are fixed;
– supermodular if for any x,y ∈ Rn it satisfies

φ(x) + φ(y) ≤ φ(x ∧ y) + φ(x ∨ y), (1)

where the operators ∧ and ∨ denote respectively coordinatewise minimum and maximum;
– symmetric supermodular if it is supermodular and satisfies

φ(x1, . . . , xn) = φ(xπ(1), . . . , xπ(n))

for all permutations (π(1), . . . , π(n)) of (1, . . . , n).

Remark 1. We notice (see Section 7.A.8 of Shaked and Shanthikumar [21]) that in the

multivariate case directional convexity neither implies, nor is implied by, conventional con-

vexity, whereas in the univariate case the two notions are identical. Moreover, directionally

convexity implies supermodularity. We also recall that a function is directionally convex if

and only if it is both supermodular and coordinatewise convex.

Remark 2. We note that if a function φ : Rn → R is supermodular, and if ψ : R → R is

increasing, then the composition ψ(φ) is not necessarily supermodular. Indeed, for n = 2,

let us consider the supermodular function φ(x1, x2) = (x1+x2)
2, and the increasing function

ψ(u) = uc, u ≥ 0, for 0 < c < 1/2. When x = (0, 1) and y = (1, 0) we have φ(x) = φ(y) = 1,

φ(x ∧ y) = 0 and φ(x ∨ y) = 4, so that (1) is satisfied. However ψ(φ) is not supermodular,

since

2 = ψ[φ(x)] + ψ[φ(y)] > ψ[φ(x ∧ y)] + ψ[φ(x ∨ y)] = 4c

for 0 < c < 1/2.

Various properties of the above notions are given in Shaked and Shanthikumar [21],
where their use in the definition of suitable stochastic orders is also pinpointed. Chapter 6 of
Marshall and Olkin [16] contains useful examples of supermodular functions, denominated as
“L-superadditive” functions. We remark that supermodular functions play a significant role
in applied fields, such as optimization and game theory (see Carter [8], for instance). Recent
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contributions dealing with applications of directionally convexity and supermodularity to
risk management, insurance, queueing and macroeconomic dynamics are given for instance
in Müller [19], Meester and Shanthikumar [18], Datta et al. [9], Cai and Li [7], Denuit et al.
[10], Öner et al. [20].

Let us now recall the definitions of four stochastic orders that will be used later (see
Shaked and Shanthikumar [21], for other details):

(i) a random variable X is said to be larger than Y in the usual stochastic order (denoted
by X ≥st Y ) if P(X > t) ≥ P(Y > t) for all t ∈ R or, equivalently, if E[ψ(X)] ≥ E[ψ(Y )] for
all increasing functions ψ : R → R for which the expectations exist;

(ii) a random variable X is said to be larger than Y in the increasing convex order
(denoted by X ≥icx Y ) if E[ψ(X)] ≥ E[ψ(Y )] for all increasing convex functions ψ : R → R
for which the expectations exist;

(iii) a d-dimensional random vector X is said to be larger than Y in the increasing
directionally convex order (denoted by X ≥idcx Y) if E[ψ(X)] ≥ E[ψ(Y)] for all increasing
directionally convex functions ψ : Rd → R for which the expectations exist;

(iv) a d-dimensional random vector X is said to be larger than Y in the supermodular
order (denoted by X ≥sm Y) if E[ψ(X)] ≥ E[ψ(Y)] for all supermodular functions ψ : Rd →
R for which the expectations exist.

We remark that the supermodular order strictly implies the increasing directionally con-
vex order. However, the supermodular order compares only dependence structure of vectors
with fixed equal marginals, whereas the increasing directionally convex order also compares
the marginals both in variability and location, where the marginals are possibly different.
Moreover, when d = 1, the increasing directionally convex order reduces to the increasing
convex order.

3 The main results

We first recall a preliminary result on the monotonicity of a function expressed in terms
of means of a supermodular function, and of stochastically ordered random variables. The
proof of this statement may be found, for example, in Theorem 3.1 of Kijima and Ohnishi
[15].

Lemma 1. Let X ≥st Y ; if φ : R2 → R is a supermodular function, then

h(z) = E[φ(X, z)− φ(Y, z)]

is an increasing function of z, provided that the above means are finite.

In the following, given the random variables Xi, i = 1, 2, . . . , d, and Y , we consider
n-dimensional random vectors of the form

(X1,1, . . . , X1,k1 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗), (2)
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where we have set k∗ := k1 + . . . + kd, and where Xi,j and Yj, for i = 1, 2, . . . , d and j ≥ 1,
denote independent copies of Xi and Y , respectively. Independence among all the random
variables appearing in these vectors is also assumed from now on. Moreover, we set

Dn := {(k1, . . . , kd) ∈ Nd : k∗ ≤ n}. (3)

The following theorem shows that if Xi and Y are stochastically ordered, then the mean
of a symmetric supermodular [resp., increasing symmetric supermodular] function of (2)
is supermodular [resp., increasing directionally convex] in the sizes of the groups of i.i.d.
variables.

Theorem 1. If Xi ≥st Y for all i = 1, 2, . . . , d, and if φ : Rn → R is a symmetric su-

permodular [resp., increasing symmetric supermodular] function, then for 1 ≤ d ≤ n the

function

ψ(k1, . . . , kd) := E[φ(X1,1, . . . , X1,k1 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗)] (4)

is supermodular [resp., increasing directionally convex] in (k1, . . . , kd) ∈ Dn, provided the

expectation is finite.

Proof. To prove the supermodularity of φ it is enough to consider the case d = 2. Indeed,

due to (1), the supermodularity of a d-dimensional function follows from the supermodularity

with respect to any pair of its coordinates. Hence, we have to prove that

ψ(k1, k2)− ψ(k1 + 1, k2)− ψ(k1, k2 + 1) + ψ(k1 + 1, k2 + 1) ≥ 0 (5)

for positive integers k1, k2 such that k1+k2+2 ≤ n. Consider the (n−2)-dimensional vector

V = (X1,1, . . . , X1,k1 , X2,1, . . . , X2,k2 , Y1, . . . , Yn−k1−k2−2).

It is enough to prove inequality (5) under the conditional expectation, namely given V = v.

Since φ is symmetric by assumption, we have to prove that

E[φ(Y1, Y2,v)− φ(Y1, X2,v)] ≥ E[φ(X1, Y2,v)− φ(X1, X2,v)]. (6)

Since φ is supermodular, for x > y we have that

φ(x, t,v)− φ(y, t,v)

is monotone increasing in t. From assumption X2 ≥st Y2 we thus have, for x > y,

E[φ(x,X2,v)− φ(y,X2,v)] ≥ E[φ(x, Y2,v)− φ(y, Y2,v)].
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Hence,

E[φ(x,X2,v)− φ(x, Y2,v)]

is increasing in x. This implies (6), by using again assumption X1 ≥st Y1. The proof for

supermodularity of φ is thus completed. Let us now prove that ψ is increasing directionally

convex when φ is increasing symmetric supermodular. Due to Remark 1 it is now sufficient

to prove that ψ is coordinatewise convex, for instance in the first coordinate. Hence, we need

to prove that

ψ(k1 + 1,k)− ψ(k1,k) ≥ ψ(k1,k)− ψ(k1 − 1,k), (7)

where k = (k2, . . . , kd) and k1 + . . . + kd ≤ n − 1. Let us consider the (n − 2)-dimensional

vector

W = (X1,1, . . . , X1,k1−1, X2,1, . . . , X2,k2 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗−1),

where k∗ := k1+. . .+kd. It is now enough to prove Eq. (7) under the conditional expectation,

i.e. given W = w. Since φ is a symmetric function, we have

ψ(k1 + 1,k)− ψ(k1,k) = E[φ(X1,k1 , X1,k1+1,w)− φ(X1,k1 , Yn−k∗ ,w)]

≥ E[φ(Yn−k∗ , X1,k1 ,w)− φ(Yn−k∗ , Yn−k∗+1,w)] = ψ(k1,k)− ψ(k1 − 1,k).

Indeed, the above inequality immediately follows from Lemma 1 and recalling the assumption

X1 ≥st Y . The proof is thus completed by noticing that the monotonicity of ψ can be proved

by means of the same arguments.

Suitable examples of symmetric supermodular functions, thus satisfying the first case of
the assumptions of Theorem 1, are:

(i) φ(x1, . . . , xn) = −max{x1, . . . , xn},
(ii) φ(x1, . . . , xn) = γ(x1 + . . .+ xn), if γ(·) is convex,
(iii) φ(x1, . . . , xn) = x1 · . . . · xn.

Moreover, examples of increasing symmetric supermodular functions, that satisfy the second
case of the assumptions of Theorem 1, are:

(i) φ(x1, . . . , xn) = min{x1, . . . , xn},
(ii) φ(x1, . . . , xn) = γ(x1 + . . .+ xn), if γ(·) is increasing convex,
(iii) φ(x1, . . . , xn) = x1 · . . . · xn, if x1, . . . , xn ≥ 0.
Let K = (K1, . . . , Kd) and M = (M1, . . . ,Md) be random vectors taking values in Dn.

Let
ZK = φ(X1,1, . . . , X1,K1 , . . . , Xd,1, . . . , Xd,Kd

, Y1, . . . , Yn−K∗), (8)

whose distribution is expressed by

P[ZK ≤ t] =

∫
Dn

Fk(t) dPK(k),
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where Fk is the distribution of φ(X1,1, . . . , X1,k1 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗) and PK

is the distribution of K. Similarly we define ZM and its distribution.
Hereafter we provide a comparison result that follows from Theorem 1.

Theorem 2. Let Xi ≥st Y for all i = 1, 2, . . . , d.

(i) If

K ≥sm M, (9)

and φ : Rd → R is a symmetric supermodular function, then

E[ZK] ≥ E[ZM],

provided the expectations exist.

(ii) If

K ≥idcx M, (10)

and φ : Rd → R is an increasing symmetric supermodular function, then

ZK ≥icx ZM.

Proof. (i) Let ψ(k) be defined as in (4). Thus, recalling Eq. (8) and that φ is symmetric

supermodular,

E[ZK] = E[E[ZK|K]] = E[ψ(K)]

≥ E[ψ(M)] = E[E[ZM|M]] = E[ZM],

where the inequality follows from Theorem 1 and assumption (9).

(ii) Let h : R → R denote any increasing convex function. We recall that (see Bäuerle

[3], for instance) under the given assumptions the composition h ◦φ is increasing symmetric

supermodular. Thus, denoting

ψ(k) = E[h ◦ φ(X1,1, . . . , X1,k1 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗)],

and setting K∗ := K1 + . . .+Kd and M∗ :=M1 + . . .+Md, it follows

E[h(ZK)] = E[h ◦ φ(X1,1, . . . , X1,K1 , . . . , Xd,1, . . . , Xd,Kd
, Y1, . . . , Yn−K∗)]

= E[E[h ◦ φ(X1,1, . . . , X1,K1 , . . . , Xd,1, . . . , Xd,Kd
, Y1, . . . , Yn−K∗)|K]]

= E[ψ(K)]

≥ E[ψ(M)] = E[h(ZM)],

where the inequality follows from Theorem 1 and assumption (10).
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We notice that a result similar to (ii) of Theorem 2, with ZK ≥st ZM instead of ZK ≥icx

ZM, cannot be obtained, due to Remark 2.
Hereafter we give an example of random vectors K and M satisfying conditions (9) and

(10).

Example 1. Let K and M be bivariate random vectors such that

P[K = (0, 0)] = P[K = (1, 1)] =
1

2
, P[M = (0, 1)] = P[M = (1, 0)] =

1

2
.

Hence, since any supermodular function η can be expressed as

η(x) =
∑
i

aiηi(x),

where ai ≥ 0 for all i, and ηi(x) = 1Ui∪Li
(x), where Ui and Li are suitable upper and

lower orthants, respectively, it is not hard to verify that K ≥sm M, which, in turns, implies

K ≥idcx M.

Remark 3. We point out that, since in the univariate case the increasing directionally

convex order reduces to the increasing convex order, if d = 1 then the inequality (10) can

be replaced by K ≥icx M in the statement of Theorem 2, and everywhere in the subsequent

section.

4 Applications

This section deals with applications of the previous results in various fields.

4.1 Application to risk theory

We consider a finite population of n insureds divided into d + 1 different groups with sizes
k1, k2, . . . , kd, n− k∗, where k∗ = k1 + k2 + . . .+ kd ≤ n. Let

(X1,1, . . . , X1,k1 , . . . , Xd,1, . . . , Xd,kd , Y1, . . . , Yn−k∗) (11)

be a possible portfolio of risks, where Xi,j is a non-negative random variable denoting
the amount of the claim caused by the jth insured of the ith group (i = 1, 2, . . . , d;
j = 1, 2, . . . , ki). Assume that claims within groups are identically distributed, variables
Xi,j are independent, and Xi ≥st Y . This situation can happens, for example, in a bonus
malus system where insured drivers are classified according to their potential risk, so that
good drivers having low damage experience pay less premium than drivers with higher prob-
ability for damage. For example, drivers living in regions with low traffic or careful drivers
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have low probability for damage. In this case the risk for these drivers is stochastically
smaller than the risk of the other drivers. This phenomena also occurs in health insurance
where people with “good” genetic or healthy life style have smaller risk. Examples of models
where risks are divided into more groups is also provided in Bäuerle and Muller [4]. We
notice that such paper presents also some comparison results involving the supermodular
ordering and the symmetric supermodular ordering.

Let us now assume that the size of each group is random, and denote byK = (K1, K2, . . . , Kd)
the random vector of the first d groups’ sizes, so that the last group, formed by insured caus-
ing stochastically smaller claims, has size n−K∗. Consider the total claim amount

SK =
d∑

i=1

Ki∑
j=1

Xi,j +
n−K∗∑
j=1

Yj, (12)

and similarly define the total claim amount SM when the portfolio has distinct groups’ sizes
M = (M1,M2, . . . ,Md).

Proposition 1. Let K = (K1, . . . , Kd) and M = (M1, . . . ,Md) be random vectors taking

values in the set Dn. If

K ≥idcx M

then

SK ≥icx SM.

Proof. It follows from (ii) of Theorem 2, since Xi ≥st Y and

φ(x1,1, . . . , x1,k1 , . . . , xd,1, . . . , xd,kd , y1, . . . , yn−k∗) =
d∑

i=1

ki∑
j=1

xi,j +
n−k∗∑
j=1

yj

is an increasing symmetric supermodular function.

We remark that Eq. (12) gives the total claim amount when the variability in the insureds
groups’ sizes is described by K. Proposition 1 thus shows that the total claim amount
increases in icx-order as the variability in the groups’ sizes increases in idcx-order.

Remark 4. Consider the net stop-loss reinsurance premium of portfolio (11), i.e.

πK(a) = E

[(
d∑

i=1

Ki∑
j=1

Xi,j +
n−K∗∑
j=1

Yj − a

)
+

]
, a > 0, (13)

where as usual (w)+ := max{w, 0}, and similarly define πM(a) when the portfolio has distinct

groups’ sizes M. Hence, under the assumptions of Proposition 1, in particular we have

πK(a) ≥ πM(a), a > 0,

provided the expectations exist.
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Figure 1: Closed cyclic network with n queues.

4.2 Application to a closed cyclic multiclass queueing network

Consider a closed Gordon-Newell network of n queues with exponential service times, and
with a total population of ℓ > 0 customers. For the definition of closed Gordon-Newell
queues see for instance the seminal paper by Gordon and Newell [14] or the book by Breuer
and Baum [6]. Assume that the network is cyclic, so that every customer completing service
at queue i moves to queue i+ 1, if 1 ≤ i < n, or to queue 1, if i = n. The state space of the
network is given by

S(ℓ, n) =

{
(x1, · · · , xn) ∈ Zn :

n∑
i=1

xi = ℓ and xi ≥ 0 ∀i = 1, 2, . . . , n

}
,

where xi represents the number of customers in the ith queue. A model of the network is
shown in Figure 1.

Let us now introduce a multiclass nature in the network units. Assume that the network
units may perform two kinds of activity: some units provide a service gaining a certain profit,
whereas the remaining units supply auxiliary services, such as recovery or repair activity,
originating a cost. Precisely, we assume that the n queues of the network are partitioned
in d + 1 classes, each class being formed by a random number of units. The i-th class, for
i = 1, 2, . . . , d, is formed byKi units. Each customer of the j-th unit of the i-th class provides
a random profit of Ai,j ≥ 0 assets (due to some performance of the job on that station).
Note that such profit is identical for each customer in the queue. Moreover, the (d + 1)-th
class is formed by n−

∑d
i=1Ki units. Each customer of the j-th unit of the (d+ 1)-th class

causes a random cost Cj ≤ 0, which is identical for each customer in the queue. Hence, only
the first d classes are ‘producing classes’. The random vector (K1, K2, · · · , Kd) describes the
sizes of the d producing classes, and takes values in Dn (see Eq. (3)).

Moreover, we assume that the service discipline at all queues is FCFS, and the exponential
service times of the queues within each class are identically distributed. We thus denote by
µi the parameter of the service times of the queues of class i, for i = 1, 2, . . . , d+1. Denoting
by X̃i,j the number of customers in the jth queue of the ith class in the equilibrium state,
and by Ỹj the number of customers in the jth queue of the (d+1)th class in the equilibrium
state, then the state of the network in the equilibrium state is described by the n-dimensional
random vector

(X̃, Ỹ) =
(
X̃1,1, · · · , X̃1,K1 , · · · , X̃d,1, · · · , X̃d,Kd

, Ỹ1, . . . , Ỹn−K∗

)
, (14)
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whereK∗ =
∑d

i=1Ki, with state space S(ℓ, n). The equilibrium state probability distribution
of the network conditional on (K1, K2, · · · , Kd) = (k1, k2, · · · , kd) ∈ Dn is given, for (x,y) ∈
S(ℓ, n), by

π(x,y) =
1

G(ℓ, n)

d∏
i=1

ki∏
j=1

(
1

µi

)xi,j n−k∗∏
j=1

(
1

µd+1

)yj

,

where k∗ =
∑d

i=1 ki and

G(ℓ, n) =
∑

(x,y)∈S(ℓ,n)

d∏
i=1

ki∏
j=1

(
1

µi

)xi,j n−k∗∏
j=1

(
1

µd+1

)yj

is the normalizing constant. We remark that subvectors (Xi,1, · · · , Xi,Ki
), for i = 1, 2, . . . , d,

and (Y1, . . . , Yn−K∗) are formed by i.i.d. random variables.
Let us now define the following random variables:

Xi,j = Ai,jX̃i,j, i = 1, 2, . . . , d, j = 1, 2, . . . , Ki,

Yj = CjỸj, j = 1, 2, . . . , n−K∗.

Hence, Xi,j represents the profit gained due to the customers in the j-th unit of the i-th
class, whereas Yj gives the cost caused by the customers in the j-th unit of the (d + 1)-th
class. We notice that Xi,j ≥st Yj. Let

SK =
d∑

i=1

Ki∑
j=1

Xi,j +
n−K∗∑
j=1

Yj

be the total profit gained by the activity of the multiclass queueing network in the equilibrium
state when the d producing classes have random sizes K1, . . . , Kd. Similarly define SM

when the producing classes have random sizes M1, . . . ,Md. Hence, as for Proposition 1, if
K ≥idcx M, then SK ≥icx SM. This implies that the total profit increases in icx-order as the
variability in the groups’ sizes increases.

4.3 Application to the reliability of series systems

Results involving the fact that increasing the randomness in the structure of reliability
systems causes a stochastical improvement of the system have been given recently in Di
Crescenzo and Pellerey [11], where it is shown that the lifetime of a series or of a parallel
system may be stochastically improved by means of suitable mixtures. See also Di Crescenzo
and Pellerey [12], where the reliability of a system improves by introducing randomness in
the number of system components extracted from different batches.

Along the above lines, hereafter we consider a series system formed by n units randomly
selected from d + 1 different batches. Precisely, assume that K1, K2, . . . , Kd, n − K∗ units
are selected from the 1-th, 2-nd, . . ., d-th, (d+ 1)-th batch, where the non-negative integer-
valued random variables Ki are such that K∗ = K1 +K2 + . . .+Kd ≤ n. For i = 1, 2, . . . , d
and j = 1, 2, . . . , Ki let Xi,j(t) denote the Bernoulli random variable that describes the
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functioning at time t ≥ 0 of the j-th unit selected from the i-th batch. Similarly, Yj(t) is the
Bernoulli random variable describing the functioning at time t ≥ 0 of the j-th unit selected
from the (d + 1)-th batch, which is assumed to contain weaker units. Hence, denoting
by pi,j(t) = P[Xi,j(t) = 1] and qj(t) = P[Yj(t) = 1] the availability of Xi,j(t) and Yj(t),
respectively, we have

pi,j(t) ≥ qj(t), t ≥ 0,

so that Xi,j(t) ≥st Yj(t). Moreover, we assume that the random variables that describe the
functioning of the components within each batch are i.i.d. The overall functioning of the
series system at time t ≥ 0 is given by (see Barlow and Proschan, 1996)

RK(t) =
d∏

i=1

Ki∏
j=1

Xi,j(t)
n−K∗∏
j=1

Yj(t), (15)

and RM(t) is similarly expressed when M1,M2, . . . ,Md, n−M∗ are the random numbers of
units.

Proposition 2. Let K = (K1, . . . , Kd) and M = (M1, . . . ,Md) be random vectors taking

values in Dn. If

K ≥idcx M

then

RK(t) ≥icx RM(t)

for all t ≥ 0.

The proof of Proposition 2 is similar to that of Proposition 1, since Xi,j(t) ≥st Yj(t), and

since φ(x,y) =
∏d

i=1

∏ki
j=1 xi,j

∏n−k∗

j=1 yj is an increasing symmetric supermodular function
for xi,j, yj ≥ 0.

Remark 5. Let SK be the lifetime of the above series system under randomization of

number of units described by K, and similarly for SM. Under the above assumptions, due

to Proposition 2, we also have

P[SK > t] = E[RK(t)] ≥ E[RM(t)] = P[SM > t], ∀t ≥ 0,

that is SK ≥st SM. This shows that the system lifetime stochastically increases as the

variability of the groups’ sizes increases.
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