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ABSTRACT

Personal cloud storage services are gaining popularity. With
a rush of providers to enter the market and an increasing of-
fer of cheap storage space, it is to be expected that cloud
storage will soon generate a high amount of Internet traffic.
Very little is known about the architecture and the perfor-
mance of such systems, and the workload they have to face.
This understanding is essential for designing efficient cloud
storage systems and predicting their impact on the network.
This paper presents a characterization of Dropbox, the

leading solution in personal cloud storage in our datasets.
By means of passive measurements, we analyze data from
four vantage points in Europe, collected during 42 consecu-
tive days. Our contributions are threefold: Firstly, we are
the first to study Dropbox, which we show to be the most
widely-used cloud storage system, already accounting for a
volume equivalent to around one third of the YouTube traffic
at campus networks on some days. Secondly, we characterize
the workload typical users in different environments gener-
ate to the system, highlighting how this reflects on network
traffic. Lastly, our results show possible performance bot-
tlenecks caused by both the current system architecture and
the storage protocol. This is exacerbated for users connected
far from control and storage data-centers.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Miscella-
neous; C.4 [Performance of Systems]: Measurement
Techniques

General Terms

Measurement, Performance
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Dropbox, Cloud Storage, Internet Measurement.
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1. INTRODUCTION
Recent years have seen the introduction of cloud-based

services [18], offering people and enterprises computing and
storage capacity on remote data-centers and abstracting
away the complexity of hardware management. We witness
a gold rush to offer storage capabilities on the Internet, with
players like Microsoft, Google and Amazon directly entering
the market at the end of April 2012. They face a crowded
scenario against popular solutions like SugarSync, Box.com,
UbuntuOne, and Dropbox. The latter, active since 2007,
currently counts over 50 million users, uploading more than
500 million files daily1.

It is thus not surprising that cloud storage has gained
increasing momentum within research community. Some
works explicitly consider system architecture design [12],
while others focus on security and privacy issues concern-
ing the storage of user data [19]. Considering commer-
cial offers, little is known, with most players providing
proprietary solutions and not willing to share information.
Some studies present a comparison among different storage
providers [13, 17]: by running benchmarks, they focus on
the user achieved performance, but miss the characteriza-
tion of the typical usage of a cloud service, and the impact of
user and system behavior on personal storage applications.

In this paper, we provide a characterization of cloud-
based storage systems. We analyze traffic collected from
two university campuses and two Points of Presence (POP)
in a large Internet Service Provider (ISP) for 42 consecutive
days. We first devise a methodology for monitoring cloud
storage traffic, which, being based on TLS encryption, is
not straightforward to be understood. We then focus on
Dropbox, which we show to be the most widely-used cloud
storage system in our datasets. Dropbox already accounts
for about 100GB of daily traffic in one of the monitored net-
works – i.e., 4% of the total traffic or around one third of the
YouTube traffic at the same network. We focus first on the
service performance characterization, highlighting possible
bottlenecks and suggesting countermeasures. Then, we de-
tail user habits, thus providing an extensive characterization
of the workload the system has to face.

To be best of our knowledge, we are the first to provide
an analysis of Dropbox usage on the Internet. The authors
of [11] compare Dropbox, Mozy, Carbonite and CrashPlan,
but only a simplistic active experiment is provided to assess
them. In [16], the possibility of unauthorized data access

1http://www.dropbox.com/news



and the security implications of storing data in Dropbox are
analyzed. We follow a similar methodology to dissect the
Dropbox protocol, but focus on a completely different topic.
Considering storage systems in general, [8, 9] study security
and privacy implications of the deployment of data dedu-
plication – the mechanism in place in Dropbox for avoiding
the storage of duplicate data. Similarly, [1] presents a per-
formance analysis of the Amazon Web Services (AWS) in
general, but does not provide insights into personal storage.
Finally, several works characterize popular services, such as
social networks [7, 15] or YouTube [3, 6]. Our work goes in
a similar direction, shedding light on Dropbox and possibly
other related systems. Our main findings are:

• We already see a significant amount of traffic related to
Dropbox, especially on campus networks, where people with
more technical knowledge are found. We expect these sys-
tems to become popular also at home, where penetration is
already above 6%.

• We highlight that Dropbox performance is mainly driven
by the distance between clients and storage data-centers.
In addition, short data transfer sizes coupled with a per-
chunk acknowledgment mechanism impair transfer through-
put, which is as little as 530kbits/s on average. A bundling
scheme, delayed acknowledgments, or a finer placement of
storage servers could be adopted to improve performance.

• Considering home users’ behavior, four groups are clear:
7% of people only upload data; around 26% only download,
and up to 37% of people do both. The remaining 30% aban-
don their clients running, seldom exchanging files.

• Interestingly, one of the most appreciated features of
Dropbox is the simplified ability to share content: 30% of
home users have more than one linked device, and 70% share
at least one folder. At campuses, the number of shared fold-
ers increases, with 40% of users sharing more than 5 folders.
Our findings show that personal cloud storage applica-

tions are data hungry, and user behavior deeply affects their
network requirements. We believe that our results are use-
ful for both the research community and ISPs to understand
and to anticipate the impact of massive adoption of such so-
lutions. Similarly, our analysis of the Dropbox performance
is a reference for those designing protocols and provisioning
data-centers for similar services, with valuable lessons about
possible bottlenecks introduced by some design decisions.
The remainder of this paper is organized as follows: Sec. 2

provides insight into the Dropbox architecture. Sec. 3 de-
scribes our data collection and compares the popularity of
well-known cloud-based storage systems. Sec. 4 presents a
characterization of Dropbox performance. User habits and
the generated workload are presented in Sec. 5. While those
sections mostly focus on the usage of the Dropbox client
software, Sec. 6 discusses the less popular Web interface. Fi-
nally, Sec. 7 concludes this paper, and Appendix A providers
some additional characteristics of Dropbox storage traffic.

2. DROPBOX OVERVIEW

2.1 The Dropbox Client
The Dropbox native client is implemented mostly in

Python, using third-party libraries such as librsync2. The
application is available for Microsoft Windows, Apple OS X

2http://librsync.sourceforge.net/

Table 1: Domain names used by different Dropbox

services. Numeric suffixes are replaced by a X letter.

sub-domain Data-center Description
client-lb/clientX Dropbox Meta-data
notifyX Dropbox Notifications
api Dropbox API control
www Dropbox Web servers
d Dropbox Event logs
dl Amazon Direct links
dl-clientX Amazon Client storage
dl-debugX Amazon Back-traces
dl-web Amazon Web storage
api-content Amazon API Storage

and Linux3. The basic object in the system is a chunk of
data with size of up to 4MB. Files larger than that are split
into several chunks, each treated as an independent object.
Each chunk is identified by a SHA256 hash value, which is
part of meta-data descriptions of files. Dropbox reduces the
amount of exchanged data by using delta encoding when
transmitting chunks. It also keeps locally in each device a
database of meta-data information (updated via incremen-
tal updates) and compresses chunks before submitting them.
In addition, the client offers the user the ability to control
the maximum download and upload speed.

Two major components can be identified in the Dropbox
architecture: the control and the data storage servers. The
former are under direct control of Dropbox Inc., while Ama-
zon Elastic Compute Cloud (EC2) and Simple Storage Ser-
vice (S3) are used as storage servers. In both cases, sub-
domains of dropbox.com are used for identifying the differ-
ent parts of the service offering a specific functionality, as
detailed in Tab. 1. HTTPS is used to access all services,
except the notification service which runs over HTTP.

2.2 Understanding Dropbox Internals
To characterize the usage of the service from passive mea-

surements, we first gained an understanding of the Dropbox
client protocol. We performed several active experiments
to observe what information is exchanged after a particu-
lar operation. For instance, among others, we documented
the traffic generated when adding or removing files on local
folders, when downloading new files and when creating new
folders. During our data collection, Dropbox client version
1.2.52 was being distributed as the stable version4.

Since most client communications are encrypted with
TLS, and no description about the protocol is provided by
Dropbox, we set up a local testbed, in which a Linux PC
running the Dropbox client was instructed to use a Squid

proxy server under our control. On the latter, the mod-
ule SSL-bump5 was used to terminate SSL connections and
save decrypted traffic flows. The memory area where the
Dropbox application stores trusted certificate authorities
was modified at run-time to replace the original Dropbox
Inc. certificate by the self-signed one signing the proxy
server. By means of this setup, we were able to observe
and to understand the Dropbox client communication.

3Mobile device applications access Dropbox on demand us-
ing APIs; those are not considered in this work.
4http://www.dropbox.com/release_notes
5http://wiki.squid-cache.org/Features/SslBump
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Figure 1: An example of the Dropbox protocol.

For instance, Fig. 1 illustrates the messages we observed
while committing a batch of chunks. After registering with
the Dropbox control center via a clientX.dropbox.com

server, the list command retrieves meta-data updates. As
soon as new files are locally added, a commit batch com-
mand (on client-lb.dropbox.com) submits meta-data in-
formation. This can trigger store operations, performed di-
rectly with Amazon servers (on dl-clientX.dropbox.com).
Each chunk store operation is acknowledged by one OK

message. As we will see in Sec. 4, this acknowledgment
mechanism might originate performance bottlenecks. Fi-
nally, as chunks are successfully submitted, the client ex-
changes messages with the central Dropbox servers (again
on client-lb.dropbox.com) to conclude the transactions.
Note that these messages committing transactions might oc-
cur in parallel with newer store operations.
A complete description of the Dropbox protocols is outside

the scope of this paper. We, however, exploit this knowledge
to tag the passively observed TCP flows with the likely com-
mands executed by the client, even if we have no access to
the content of the (encrypted) connections. In the follow-
ing, we describe the protocols used to exchange data with
the Dropbox control servers and with the storage servers at
Amazon.

2.3 Client Control Flows
The Dropbox client exchanges control information mostly

with servers managed directly by Dropbox Inc. We iden-
tified three sub-groups of control servers: (i) Notification,
(ii) meta-data administration, and (iii) system-log servers.
System-log servers collect run-time information about the
clients, including exception back-traces (via Amazon, on
dl-debug.dropbox.com), and other event logs possibly use-
ful for system optimization (on d.dropbox.com). Since flows
to those servers are not directly related to the usage of the
system and do not carry much data, they have not been con-
sidered further. In the following we describe the key TCP
flows to the meta-data and notification servers.

2.3.1 Notification Protocol

The Dropbox client keeps continuously opened a TCP
connection to a notification server (notifyX.dropbox.com),
used for receiving information about changes performed else-
where. Contrarily to other traffic, notification connections
are not encrypted. Delayed HTTP responses are used to im-
plement a push mechanism: a notification request is sent
by the local client asking for eventual changes; the server
response is received periodically about 60 seconds later in
case of no change; after receiving it, the client immediately
sends a new request. Changes on the central storage are
instead advertised as soon as they are performed.

Each device linked to Dropbox has a unique identifier
(host int). Unique identifiers (called namespaces) are also
used for each shared folder. The client identifier is sent
in notification requests, together with the current list of
namespaces. Devices and number of shared folders can,
therefore, be identified in network traces by passively watch-
ing notification flows. Finally, different devices belong-
ing to a single user can be inferred as well, by comparing
namespace lists.

2.3.2 Meta-data Information Protocol

Authentication and file meta-data administration mes-
sages are exchanged with a separate set of servers,
(client-lb.dropbox.com and/or clientX.dropbox.com).
Typically, synchronization transactions start with messages
to meta-data servers, followed by a batch of either store

or retrieve operations through the Amazon systems. As
data chunks are successfully exchanged, the client sends mes-
sages to meta-data servers to conclude the transactions (see
Fig. 1). Due to an aggressive TCP connection timeout han-
dling, several short TLS connections to meta-data servers
can be observed during this procedure.

Server responses to client messages can include general
control parameters. For instance, our experiments in the
testbed reveal that the current version of the protocol limits
the number of chunks to be transferred to at most 100 per
transaction. That is, if more than 100 chunks need to be
exchanged, the operation is split into several batches, each
of at most 100 chunks. Such parameter shapes the traffic
produced by the client, as analysed in Sec. 4.

2.4 Data Storage Flows
As illustrated in Fig. 1, all store and retrieve operations

are handled by the Amazon systems. More than 500 distinct
domain names (dl-clientX.dropbox.com) point to Amazon
servers. A subset of those aliases are sent to clients regularly.
Clients rotate in the received lists when executing storage
operations, distributing the workload.

Typically, storage flows carry either store commands or
retrieve commands. This permits storage flows to be divided
in two groups by checking the amount of data downloaded
and uploaded in each flow. By means of the data collected in
our test environment, we documented the overhead of store
and retrieve commands and derived a method for labeling
the flows. Furthermore, we identified a direct relationship
between the number of TCP segments with the PSH flag
set in storage flows and the number of transported chunks.
Appendix A presents more details about our methodology as
well as some results validating that the models built in our
test environment represent the traffic generated by real users
satisfactorily. We use this knowledge in the next sections for
characterizing the system performance and the workload.

2.5 Web Interface and Other Protocols
Content stored in Dropbox can also be accessed through

Web interfaces. A separate set of domain names are used
to identify the different services and can thus be exploited
to distinguish the performed operations. For example,
URLs containing dl-web.dropbox.com are used when down-
loading private content from user accounts. The domain
dl.dropbox.com provides public direct links to shared files.
As shown in Sec. 6, the latter is the preferred Dropbox Web
interface.



Table 2: Datasets overview.
Name Type IP Addrs. Vol. (GB)
Campus 1 Wired 400 5,320
Campus 2 Wired/Wireless 2,528 55,054
Home 1 FTTH/ADSL 18,785 509,909
Home 2 ADSL 13,723 301,448

In addition, other protocols are available, like the LAN
Synchronization Protocol and the public APIs. However,
these protocols do not provide useful information for the
aim of this paper. They are therefore mostly ignored in the
remainder of this paper.

3. DATASETS AND POPULARITY

3.1 Methodology
We rely on passive measurements to analyze the Dropbox

traffic in operational networks. We use Tstat [5], an open
source monitoring tool developed at Politecnico di Torino, to
collect data. Tstat monitors each TCP connection, exposing
information about more than 100 metrics6, including client
and server IP addresses, amount of exchanged data, eventual
retransmitted segments, Round Trip Time (RTT) and the
number of TCP segments that had the PSH flag set [14].
Specifically targeting the analysis of Dropbox traffic, we

implemented several additional features. First, given that
Dropbox relies on HTTPS, we extracted the TLS/SSL cer-
tificates offered by the server using a classic DPI approach.
Our analysis shows that the string *.dropbox.com is used
to sign all communications with the servers. This is instru-
mental for traffic classification of the services. Second, we
augmented the exposed information by labeling server IP
addresses with the original Fully Qualified Domain Name
(FQDN) the client requested to the DNS server [2]. This
is a key feature to reveal information on the server that is
being contacted (see Tab. 1) and allows to identify each spe-
cific Dropbox related service. Third, Tstat was instructed
to expose the list of device identifiers and folder namespaces
exchanged with the notification servers.

3.2 Datasets
We installed Tstat at 4 vantage points in 2 European coun-

tries and collected data from March 24, 2012 to May 5, 2012.
This setup provided a pool of unique datasets, allowing us to
analyze the use of cloud storage in different environments,
which vary in both the access technology and the typical user
habits. Tab. 2 summarizes our datasets, showing, for each
vantage point, the access technologies present in the moni-
tored network, the number of unique client IP addresses, and
the total amount of data observed during the whole period.
The datasets labeled Home 1 and Home 2 consist of

ADSL and Fiber to the Home (FTTH) customers of a
nation-wide ISP. Customers are provided with static IP ad-
dresses, but they might use WiFi routers at home to share
the connection. Campus 1 and Campus 2 were instead col-
lected in academic environments: Campus 1 mostly moni-
tors wired workstations in research and administrative of-
fices of the Computer Science Department in a European
university. Campus 2 accounts for all traffic at the border

6See http://tstat.tlc.polito.it for details.
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Figure 2: Popularity of cloud storage in Home 1 .

routers of a second university, including campus-wide wire-
less access points and student houses. In this latter scenario,
NAT and HTTP proxy-ing are very common, and DNS traf-
fic was not exposed to the probe. For privacy reasons, our
probes export only flows and the extra information described
in the previous section. All payload data are discarded di-
rectly in the probe. To complete our analysis, a second
dataset was collected in Campus 1 in June/July 2012.

3.3 Popularity of Different Storage Providers
We present a comparison of the popularity of cloud-based

storage systems. We explicitly consider the following ser-
vices: Dropbox, Google Drive, Apple iCloud and Microsoft

SkyDrive. Other less known services (e.g., SugarSync,
Box.com and UbuntuOne) were aggregated into the Others

group. We rely on both the extracted TLS server name and
DNS FQDN to classify flows as belonging to each service.

We first study the popularity of the different services in
terms of unique clients. We use the Home 1 dataset be-
cause IP addresses are statically assigned to households and,
therefore, are a reliable estimation of the number of installa-
tions. Fig. 2(a) reports7 the number of distinct IP addresses
that contacted at least once a storage service in a given day.
iCloud is the most accessed service, with about 2,100 house-
holds (11.1%), showing the high popularity of Apple devices.
Dropbox comes second, with about 1,300 households (6.9%).
Other services are much less popular (e.g., 1.7% for Sky-
Drive). Interestingly, Google Drive appears immediately on
the day of its launch (April 24th, 2012).

Fig. 2(b) reports the total data volume for each service
in Home 1 . Dropbox tops all other services by one order
of magnitude (note the logarithmic y-scale), with more than

7A probe outage is visible on April 21, 2012.
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Table 3: Total Dropbox traffic in the datasets.

Name Flows Vol. (GB) Devices
Campus 1 167,189 146 283
Campus 2 1,902,824 1,814 6,609
Home 1 1,438,369 1,153 3,350
Home 2 693,086 506 1,313
Total 4,204,666 3,624 11,561

20GB of data exchanged every day. iCloud volume is limited
despite the higher number of devices, because the service
does not allow users to synchronize arbitrary files. SkyDrive
and Google Drive show a sudden increase in volume after
their public launch in April.
Fig. 3 compares Dropbox and YouTube share of the to-

tal traffic volume in Campus 2 . Apart from the variation
reflecting the weekly and holiday pattern, a high fraction is
seen for Dropbox daily. Note that in this network the traffic
exchanged with Dropbox is close to 100GB per working day:
that is already 4% of all traffic, or a volume equivalent to
about one third of YouTube traffic in the same day!
These findings highlight an increasing interest for cloud-

based storage systems, showing that people are eager to
make use of remote storage space. Cloud-based storage is al-
ready popular, with 6-12% of home users regularly accessing
one or more of the services. Dropbox is by far the most used
system in terms of traffic volume. Its overall traffic is sum-
marized in Tab. 3, where we can see the number of flows,
data volume, and devices linked to Dropbox in the moni-
tored networks. Our datasets account for more than 11,000
Dropbox devices, uniquely identified by their host int (see
Sec. 2.3.1). The traffic generated by the Web interface and
by public APIs is also included. In total, more than 3.5TB
were exchanged with Dropbox servers during our capture.
In the following, we restrict our attention to Dropbox only.

4. DROPBOX PERFORMANCE

4.1 Traffic Breakdown: Storage and Control
To understand the performance of the Dropbox service

and its architecture, we first study the amount of traffic
handled by the different sets of servers. Fig. 4 shows the re-
sulting traffic breakdown in terms of traffic volume and num-
ber of flows. From the figure, it emerges that the Dropbox
client application is responsible for more than 80% of the
traffic volume in all vantage points, which shows that this
application is highly preferred over the Web interfaces for
exchanging data. A significant portion of the volume (from
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7% to 10%) is generated by direct link downloads and the
main Web interface (both represented as Web in Fig. 4). In
home networks, a small but non-negligible volume is seen
to the Dropbox API (up to 4%). Finally, the data volume
caused by control messages is negligible in all datasets.

When considering the number of flows, the control servers
are the major contributors (more than 80% of the flows,
depending on the dataset). The difference on the percentage
of notification flows – around 15% in Campus 2 , Home 1

and Home 2 , and less than 3% in Campus 1 – is caused by
the difference in the typical duration of Dropbox sessions in
those networks, which will be further studied in Sec. 5.5.

4.2 Server Locations and RTT
We showed in previous sections that the Dropbox client

protocol relies on different servers to accomplish typical
tasks such as file synchronization. Dropbox distributes the
load among its servers both by rotating IP addresses in DNS
responses and by providing different lists of DNS names to
each client. In the following, we want to understand the
geographical deployment of this architecture and its conse-
quences on the perceived RTT.

4.2.1 Server Locations

Names in Tab. 1 terminated by a numerical suffix are nor-
mally resolved to a single server IP address8 and clients are
in charge of selecting which server will be used in a request.
For instance, meta-data servers are currently addressed by
a fixed pool of 10 IP addresses and notification servers by
a pool of 20 IP addresses. Storage servers are addressed
by more than 600 IP addresses from Amazon data-centers.
Fig. 5 shows the number of contacted storage servers per
day in our vantage points. The figure points out that clients
in Campus 1 and Home 2 do not reach all storage servers
daily. In both Campus 2 and Home 1 , more servers are in-
stead contacted because of the higher number of devices on
those vantage points. Routing information suggests that all
these control and storage servers are located in the U.S. Our
experiments, however, do not provide a finer granularity re-
garding physical server locations.

In order to verify the current Dropbox setup worldwide,
we performed active measurements using the PlanetLab. By
selecting nodes from 13 countries in 6 continents, we checked
which IP addresses are obtained when resolving the Dropbox
DNS names seen in our passive measurements, as well as the

8Meta-data servers are addressed in both ways, depending
on the executed command, via client-lb or clientX.
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and control flows. Note the different x-axes.

routes and RTT when contacting the servers. The experi-
ment shows that the same set of IP addresses is always sent
to clients regardless of their geographical locations. This is
valid for both control and storage domain names. Route in-
formation and RTT suggest that the same U.S. data-centers
observed in our passive measurements are the only ones
used worldwide. That is, Dropbox is, as for now, a ser-
vice centralized in the U.S. Considering that more than half
of the Dropbox clients are outside the U.S.9, and the high
amount of traffic observed in our vantage points, the traffic
exchanged between the clients and the data-centers is likely
to be already very relevant in the core network.

4.2.2 Storage and Control RTT

A deeper analysis of the RTT at our four vantage points
reveals more details of the physical implementation of the
Dropbox architecture. Sec. 4.4 will show that the RTT has
a major impact on the service performance. Fig. 6 shows,
separately for storage (left) and control flows (right), the
CDF of the minimum RTT in flows where at least 10 RTT
samples could be obtained (see [14]). The figure accounts
only for the RTT between our probes and the servers, to
filter out the impact of the access technologies (e.g., ADSL).
The RTTs to storage servers at Amazon were stable dur-

ing our measurements, meaning that no significant changes
in the network topology happened. The differences in RTTs
among the vantage points are related to the countries where
the probes are located. This constant RTT during our 42
days of measurements is a strong indication that a single
data-center was used by all users in our vantage points.
The RTTs to the control servers are less constant. In both
Campus 1 and Home 2 , the curve presents small steps (less

9http://www.dropbox.com/news
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age for the Dropbox client.

than 10ms). We assume that they are caused by changes
in the IP route, since the same behavior is not noticeable
in all probes. Also in this case, the measurements hint to a
central control server farm. Finally, it is interesting to note
the high difference in the RTT between control and stor-
age data-centers. This is probably caused by the physical
distance between them inside the U.S.

4.3 Retrieve and Store Flows

4.3.1 Flow Size

As shown in Fig. 4, most traffic is generated by storage
operations. Fig. 7 depicts the CDF of the flow size for stor-
age operations. Since SSL is used, we observe a minimum
flow size of approximately 4kB. The flows have a maximum
size of approximately 400MB because of current run-time
parameters of Dropbox: batches are limited to a maximum
of 100 chunks, each smaller than 4MB, as described in Sec. 2.

From Fig. 7 it emerges that a significant percentage of
flows (up to 40% in some cases) exchange less than 10kB,
meaning that they are composed mostly by SSL handshake
messages and a small amount of user data. A very high
percentage of flows (varying from 40% to 80%) consist of
less than 100kB. We conjecture that two factors are causing
this behavior: (i) the synchronization protocol sending and
receiving file deltas as soon as they are detected; (ii) the pri-
mary use of Dropbox for synchronization of files constantly
changed, instead of periodic (large) backups.

Comparing the CDFs for the retrieve and storage opera-
tions, we can see that retrieve flows are normally larger than
the store ones. This is particularly visible in Campus 1 ,
Campus 2 and Home 1 datasets. For instance, while 60%
of store flows in Home 1 have no more than 100kB, the per-
centage is about 40% for retrieve flows in the same network.
This can be partially explained by the first batch synchro-
nization happening when sessions are started. Besides that,
we observed a high number of devices using Dropbox only
for downloading content. This usage will be analyzed further
in the coming sections.

We also highlight a remarkably discrepancy in the CDF
for store flows in Home 2. A single device was submitting
single chunks in consecutive TCP connections during several
days in our capture. This caused the CDF to be strongly
biased toward the maximum chunk size used by Dropbox
(4MB). We could not determine whether this behavior is
due to problems in the Dropbox client manifested in this
single device, or another legitimate use of the service.
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file chunks per TCP flow.

4.3.2 Chunks per Batch

Fig. 8 depicts the CDF of the estimated number of chunks
per flow. The curves show that most batches are composed
by a small number of chunks. Storage flows have no more
than 10 chunks in more than 80% of the cases in all datasets.
Home 2 distribution diverges because of the single client be-
having abnormally described in the previous section. These
distributions reinforce our conjecture about the dominance
of deltas and small files in Dropbox usage habits: most flows
are very small and composed by few chunks. Most of the re-
maining flows have the maximum allowed number of chunks
per batch and, therefore, are strongly shaped by the protocol
design of Dropbox.

4.4 Storage Throughput
Our measurements in Sec. 4.2 indicate that Dropbox relies

on centralized data-centers for control and storage. This
raises the question on the service performance for users not
located near those data-centers.
The throughput of the storage operations is certainly one

of the key performance metrics. Fig. 9 depicts the through-
put achieved by each storage flow in Campus 2 . The figure
shows separate plots for the retrieve and store operations.
Similar plots would be obtained using Campus 1 dataset.
Home 1 and Home 2 are left out of this analysis since the
access technology (ADSL, in particular) might be a bottle-
neck for the system in those networks. The x-axis represents
the number of bytes transferred in the flow, already subtract-
ing the typical SSL overheads (see Appendix A for details),
while the y-axis shows the throughput calculated as the ratio
between transferred bytes and duration of each flow (note
the logarithmic scales). The duration was accounted as the
time between the first TCP SYN packet and the last packet
with payload in the flow, ignoring connection termination
delays. Flows are represented by different marks according
to their number of chunks.
Overall, the throughput is remarkably low. The aver-

age throughput (marked with dashed horizontal lines in
the figure) is not higher than 462kbits/s for store flows
and 797kbits/s for retrieve flows in Campus 2 (359kbits/s
and 783kbits/s in Campus 1 , respectively). In general, the
highest observed throughput (close to 10Mbits/s in both
datasets) is only achieved by flows carrying more than 1MB.
Moreover, flows achieve lower throughput as the number of
chunks increases. This can be seen by the concentration of
flows with high number of chunks in the bottom part of the
plots for any given size.
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Figure 9: Throughput of storage flows in Campus 2 .

TCP start-up times and application-layer sequential ac-
knowledgments are two major factors limiting the through-
put, affecting flows with a small amount of data and flows
with a large number of chunks, respectively. In both cases,
the high RTT between clients and data-centers amplifies the
effects. In the following, those problems are detailed.

4.4.1 TCP Start-up Effects

Flows carrying a small amount of data are limited by TCP
slow start-up times. This is particularly relevant in the
analyzed campus networks, since both data link capacity
and RTT to storage data-centers are high in these networks.
Fig. 9 shows the maximum throughput θ for completing the
transfer of a specific amount of data, assuming that flows
stayed in the TCP slow start phase. We computed the la-
tency as in [4], with initial congestion window of 3 segments
and adjusting the formula to include overheads (e.g., the 3
RTTs of SSL handshakes in the current Dropbox setup).

Fig. 9 shows that θ approximates the maximum through-
put satisfactorily. This is clear for flows with a single chunk,
which suffer less from application-layer impediments. The
bound is not tight for retrieve flows, because their latency in-
cludes at least 1 server reaction time. Note that the through-
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Figure 10: Minimum duration of flows with diverse

number of chunks in Campus 2 .

put can still be limited by other factors, such as the explicit
user selection of transfer limits, or possible network conges-
tion. However, when considering only flows with a single
chunk, more than 99% of the store flows and around 95%
of the retrieve flows in Campus 1 have no TCP retransmis-
sions. These percentages are lower in Campus 2 (88% and
75%) because of the wireless access points. Single-chunk
flows with no retransmissions experience throughput close to
the limit (e.g., -17% on average for store flows in Campus 1 ),
confirming that the TCP start-up is their main bottleneck.

4.4.2 Sequential Acknowledgments

Flows with more than 1 chunk have the sequential ac-
knowledgment scheme (Fig. 1) as a bottleneck, because the
mechanism forces clients to wait one RTT (plus the server
reaction time) between two storage operations. Naturally,
flows carrying a large number of small chunks suffer rel-
atively more from this impediment than flows with large
chunks. Fig. 8 shows that more than 40% of the flows have
at least 2 chunks and are potentially affected by that.
Flows with several chunks are also affected by the pre-

viously described factors. Besides that, the Dropbox client
keeps storage connections opened for a short interval after
transferring a chunk, waiting for new chunks. Therefore,
some flows in Fig. 9 might have a longer duration because
they were reused during this idle interval. To remove these
effects and highlight the impact of sequential acknowledg-
ments, we divide the x-axis of Fig. 9 in slots of equal sizes
(in logarithmic scale) and, for each slot, select the flow with
maximum throughput in each of the four groups shown in
the figure. Fig. 10 depicts the duration of these representa-
tive flows. Flows with more than 50 chunks, for instance, al-
ways last for more than 30s, regardless of their sizes. Consid-
ering the RTT in Campus 2 , up to one third of that (5-10s)
is wasted while application-layer acknowledgments are tran-
siting the network. The remaining duration is mainly due
to the server and the client reaction times between chunks.

Table 4: Performance in Campus 1 before and after

the deployment of a bundling mechanism.
Mar/Apr Jun/Jul

Median Average Median Average
Flow size

Store 16.28kB 3.91MB 42.36kB 4.35MB
Retrieve 42.20kB 8.57MB 70.69kB 9.36MB

Throughput (kbits/s)
Store 31.59 358.17 81.82 552.92
Retrieve 57.72 782.99 109.92 1293.72

4.5 Implications and Recommendations
Our measurements clearly indicate that the application-

layer protocol in combination with large RTT penalizes the
system performance. We identify three possible solutions to
remove the identified bottlenecks:

1. Bundling smaller chunks, increasing the amount of
data sent per storage operation. Dropbox 1.4.0, an-
nounced in April 2012, implements a bundling mecha-
nism, which is analyzed in the following;

2. Using a delayed acknowledgment scheme in storage op-
erations, pipelining chunks to remove the effects of se-
quential acknowledgments;

3. Bringing storage servers closer to customers, thus im-
proving the overall throughput.

Note that the first two countermeasures target only the
application-layer bottleneck. The third one, while valid for
any on-line service, would have the extra positive impact of
removing heavy storage traffic from the core of the Internet.

4.5.1 Improvements in Dropbox 1.4.0

The latest version of Dropbox adds two commands
(store batch and retrieve batch), allowing several chunks to
be submitted in a single operation10. Single-chunk com-
mands are still in use: the system decides at run-time
whether chunks will be grouped or not. We use extra data
captured in Campus 1 during June and July 2012 to quan-
tify the effects of this mechanism on the system performance.

Tab. 4 compares the flow size and the throughput distri-
butions before and after the deployment of Dropbox 1.4.0.
The increase in the median flow size shows that flows become
bigger, likely because more small chunks can be accommo-
dated in a single TCP connection in this version. The aver-
ages are less affected, since only smaller flows profit from the
mechanism. Both the median and the average throughput,
on the other hand, are dramatically improved. The average
throughput of retrieve flows, for instance, is around 65%
higher in the newest dataset.

Since both the new batch commands and the old single-
chunk commands are still executed sequentially, there seems
to exist room for improvements in the protocol. A complete
characterization of that is, however, out of scope of this pa-
per. Such an analysis will be performed in future work, along
with an study of the effectiveness and possible drawbacks of
each of our recommendations.

10Number of chunks and TCP segments with the PSH flag set
do not have a direct relation in this version anymore.
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Figure 11: Data volume stored and retrieved from

Dropbox in each household.

5. SERVICE WORKLOAD

5.1 Storage Volume
In this section we correlate ISP customers (IP addresses)

in home networks and the total storage volume in retrieve

and store operations. The amount of retrieved and stored
data per household is depicted in Fig. 11. Each IP address
is represented by a point and different symbols are used
to illustrate the number of devices behind the IP address.
Note that we placed all cases with less than 1kB on the
axes because of the logarithmic scales. The figure accounts
only for transfers made from the Dropbox client. Similarly
to Sec. 4.4, the typical overhead of SSL negotiations were
subtracted from the transferred amount.
Fig. 11 shows that Dropbox users tend to download more

than upload. This is visible in the density of points below the
diagonals. Overall, the total downloaded data in Campus 2

is 2.4 times higher than the total uploaded data. This ratio
is equal to 1.6 and 1.4 in Campus 1 and Home 1 , respec-
tively. Home 2 is an exception: The ratio is around 0.9 in
this network. Some customers massively uploading content
created this divergence. These customers appear on the top
right corner of Fig. 11(b). Note that one of these customers
is also responsible for the bias in the CDF depicted in Fig. 7.

In both datasets, four usage scenarios can be identified:
(i) Occasional users, which abandon their Dropbox clients,
hardly synchronizing any content (points close to the ori-
gins); (ii) upload-only users that mainly submit files (points
close to the y-axes); (iii) download-only users, executing pre-
dominantly retrieve operations (points close to the x-axes);
(iv) heavy users that both store and retrieve large amounts of
data (points along the diagonals). The proportion of users in
each group explains the overall relation between downloads
and uploads seen in Fig. 11.

Tab. 5 quantifies the groups. The IP addresses are divided
according to the following heuristics: IP addresses that have
less than 10kB in both retrieve and store operations are in-
cluded in the occasional group; IP addresses that have more
than three orders of magnitude of difference between upload
and download (e.g., 1GB versus 1MB) are included in either
download-only or upload-only ; all others are in the heavy

group. For each group, the table shows the group percent-
age of IP addresses and sessions, the total transferred data,
the average number of days in which the devices were seen
on-line, and the average number of devices per household.

The occasional group represents around 30% of the total
IP addresses in both vantage points. As expected, customers
in this group exchange a negligible amount of data and stay
on-line in Dropbox less time when compared to others. They
also have the lowest average number of devices. This group,
therefore, marginally generates any load to the system.

The upload-only group accounts for around 7% of the IP
addresses, and is responsible for a significant amount of up-
loads (21% in Home 1 and 11% in Home 2 ). Considering
their low number of devices, users in this group seem to be
interested in Dropbox for backups and for the submission
of content to third-parties or to geographically dispersed
devices. The opposite behavior can be concluded for the
download-only group. This group is, however, very signifi-
cant in both number of IP addresses (26% in Home 1 and
28% in Home 2 ) and transferred volume (25% and 28%, re-
spectively). Similarly to the upload-only group, a moderate
number of devices per IP address is seen in this group.

Finally, accounting for 37% of IP addresses in Home 1 and
33% in Home 2 , the heavy group is responsible for most of
the volume transferred by Dropbox clients. Customers in
this group have a high number of devices (above 2 on aver-
age), appeared on-line more than 60% of the days in our cap-
ture and are responsible for more than 50% of the Dropbox
sessions. The usage of Dropbox for synchronization of de-
vices in a household seems to be the typical scenario in this
group. Those are, therefore, the users causing the biggest
impact on both system workload and network utilization.

5.2 Devices
In this section we describe the distribution of the num-

ber of devices residing in the same LAN. Devices connected
to the same LAN can make use of the LAN Sync Protocol
for synchronizing files without retrieving duplicated content
from the cloud. Fig. 12 depicts the distribution of the num-
ber of devices per IP address in Home 1 and Home 2 .

In around 60% of the households using the Dropbox client,
there is only a single device linked to the service. Most of the
remaining households have up to 4 devices and, not surpris-
ingly, are part of the heavy group identified in the previous
section. By inspecting a subset of notification connections
in Home 1 , we observed that in around 60% of households



Table 5: Fraction of IP addresses and sessions, retrieved and stored data volume, average number of days

on-line, and average number of devices of the different user groups in Home 1 and Home 2 .

Group
Home 1 Home 2

Addr. Sess. Retr. Store Days Dev. Addr. Sess. Retr. Store Days Dev.
Occasional 0.31 0.15 - - 16.37 1.22 0.32 0.18 - - 15.52 1.13
Upload-only 0.06 0.06 - 84GB 19.74 1.36 0.07 0.04 - 26GB 20.42 1.37
Download-only 0.26 0.24 135GB - 21.53 1.69 0.28 0.23 57GB - 17.37 1.34
Heavy 0.37 0.54 417GB 321GB 27.54 2.65 0.33 0.55 147GB 193GB 27.10 2.16
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Figure 12: Distribution of the number of devices per

household using the Dropbox client.

with more than 1 device (around 25% of the total), at least
1 folder is shared among the devices. This further confirms
our findings about the typical use of Dropbox among heavy

users for the synchronization of devices. Since the LAN Sync
Protocol traffic does not reach our probes, we cannot quan-
tify the amount of bandwidth saved in these households by
the use of the protocol. We can conclude, however, that no
more than 25% of the households are profiting from that.
The remaining users always rely on central storage data-
centers for their data transfers.

5.3 Shared Folders
In order to measure to what extent Dropbox is being

used for content sharing or collaborative work, we analyze
namespace identifications in Home 1 and Campus 1 traf-
fic (in Home 2 and Campus 2 this information was not ex-
posed). Fig. 13 shows the distribution of the number of
namespaces per device. By analyzing Campus 1 data in dif-
ferent dates, it is possible to conclude that the number of
namespaces per device is not stationary and has a slightly
increasing trend. Fig. 13 was built considering the last ob-
served number of namespaces on each device in our datasets.
In both networks the number of users with only 1

namespace (the users’ root folder) is small: 13% in
Campus 1 and 28% in Home 1 . In general, users in
Campus 1 have more namespaces than in Home 1 . The
percentage of users having 5 or more namespaces is equal to
50% in the former, and 23% in the latter. When consider-
ing only IP addresses assigned to workstations in Campus 1 ,
each device has on average 3.86 namespaces.

5.4 Daily Usage
We characterize whether the use of the Dropbox client has

any typical seasonality. Fig. 14 shows the time series of the
number of distinct devices starting up a Dropbox session in
each vantage point per day. The time series are normalized
by the total number of devices in each dataset. Around 40%
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Figure 14: Distinct device start-ups per day – frac-

tion of the number of devices in each probe.

of all devices start at least one session every day in home
networks, including weekends11. In campus networks, on
the other hand, there is a strong weekly seasonality.

At a finer time scale (1 hour bins), we observe that the
service usage follows a clear day-night pattern. Fig. 15 de-
picts the daily usage of the Dropbox client. All plots were
produced by averaging the quantities per interval across all
working days in our datasets.

Fig. 15(a) shows the fraction of distinct devices that
start a session in each interval, while Fig. 15(b) depicts the
fraction of devices that are active (i.e., are connected to
Dropbox) per time interval. From these figures we can see
that Dropbox usage varies strongly in different locations,
following the presence of users in the environment. For in-
stance, in Campus 1 , session start-ups have a clear relation
with employees’ office hours. Session start-ups are better
distributed during the day in Campus 2 as a consequence
of the transit of students at wireless access points. In home
networks, peaks of start-ups are seen early in the morning
and during the evenings. Overall, all time series of active
devices (Fig. 15(b)) are smooth, showing that the number
of active users at any time of the day is easily predictable.

11Note the exceptions around holidays in April and May.
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Figure 15: Daily usage of Dropbox on weekdays.

Fig. 15(c) and 15(d) depict the fraction of the total num-
ber of bytes exchanged in each time interval in retrieve and
store functions, respectively. Fig. 15(c) shows that the num-
ber of bytes received in retrieve operations has a correlation
with client start-ups. This suggests that the first synchro-
nization after starting a device is dominated by the down-
load of content produced elsewhere, instead of the upload of
content produced while off-line. Although other patterns are
visible in the figures, such as the concentration of downloads
in the morning in Campus 1 and in the evening in Home 1 ,
both series are still very noisy at this level of aggregation.
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Figure 16: Distribution of session durations.

5.5 Session Duration
We analyze the session duration based on the TCP flows

to notification servers. Home 1 , Home 2 , and Campus 2

have a similar behavior in general, as shown in Fig. 16, with
an exception for the number of short-lived sessions. In both
home networks, a significant number of notification flows
are terminated in less than 1 minute. A closer inspection
reveals that most of those flows are from some few devices.
Their divergent TCP behavior suggests that network equip-
ment (e.g. NAT or firewalls – see [10]) might be terminating
notification connections abruptly. Considering the normal
operation of the Dropbox protocol, notification connections
are re-established immediately after that.

Most devices in Home 1 , Home 2 and Campus 2 stay con-
nected up to 4 hours in a single session. In Campus 1 , a sig-
nificantly higher percentage of long-lasting sessions is seen.
This can be explained by the prevalence of workstations in
a typical 8-hours work routine. Inflections at the tail of the
distributions are seen in all curves, as a consequence of the
devices kept always on-line.

5.6 Implications
The results in this section help to understand the current

usage of the Dropbox client. This is needed, for instance,
for provisioning data-centers and networks to handle cloud
storage traffic. Our analysis of typical user behaviors reveals
that users have different interests on the application. For in-
stance, although Dropbox is already installed in more than
6% of the households (see Sec. 3.3), less than 40% of these
households are fully using its functionalities, i.e., synchro-
nizing devices, sharing folders etc. Interestingly, the results
are very similar in both home networks, reinforcing our con-
clusions. The very high amount of traffic created by this
limited percentage of users motivates our expectations that
cloud storage systems will be among the top applications
producing Internet traffic soon. Geographically dispersed
sources as well as longitudinal data are, however, necessary
to check whether the conclusions of this section can be gen-
eralized, as more people adopt such solutions.

6. WEB STORAGE
In addition to the client application, Dropbox allows users

to access shared folders and files using both its main Web
interface and a direct link download mechanism. In the fol-
lowing, we analyze the usage of these interfaces. Fig. 17
presents the CDFs of the number of bytes in the storage
flows of the Dropbox main Web interface. Separate CDFs
for uploads and downloads are presented.
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Figure 18: Size of direct link downloads.

Considering the number of uploaded bytes, it becomes
clear that the main Web interface is hardly used for up-
loading content. More than 95% of the flows submitted less
than 10kB. When considering downloaded bytes, up to 80%
of flows exchanged less 10kB. These distributions are, how-
ever, strongly biased toward the SSL handshake sizes for two
reasons: (i) the Dropbox interface retrieves thumbnails from
storage servers using SSL; (ii) Web browsers open several
parallel connections when retrieving those HTTP objects.
The remaining flows have less than 10MB in more than 95%
of the cases, showing that only small files are normally re-
trieved from this Web interface.
Additionally, we analyze flows related to direct link down-

loads. Note that these flows correspond to 92% of the
Dropbox Web storage flows in Home 1 , confirming that
this mechanism is highly preferred over the main Dropbox
Web interface. Fig. 18 shows the CDF of the size of direct
link downloads12. Since these downloads are not always en-
crypted, the CDF does not have the SSL lower-bound. Inter-
estingly, only a small percentage of direct link downloads is
bigger than 10MB, suggesting that their usage is not related
to the sharing of movies or archives.

7. CONCLUSIONS
To the best of our knowledge, we are the first to analyze

the usage of Dropbox on the Internet. Our analysis assessed
the increasing interest on cloud-based storage systems. Ma-
jor players like Google, Apple and Microsoft are offering the
service. We showed that, in this landscape, Dropbox is cur-
rently the most popular provider of such a system.
By analyzing flows captured at 4 vantage points in Eu-

rope over a period of 42 consecutive days, we showed that

12Uploads are not shown since a single HTTP request is sent.
Campus 2 is not depicted due to the lack of FQDN.

Dropbox is by now responsible for a considerable traffic vol-
ume. In one of our datasets, for instance, Dropbox is already
equivalent to one third of the YouTube traffic.

We presented an extensive characterization of Dropbox,
both in terms of the system workload as well as the typical
usage. Our main findings show that the Dropbox service
performance is highly impacted by the distance between the
clients and the data-centers, which are currently located in
the U.S. The usage of per-chunk acknowledgments in the
client protocol combined with the typically small chunk sizes
deeply limits the effective throughput of the service. In this
paper, we identified two possible improvements to the pro-
tocol: (i) the usage of a chunk bundling scheme; (ii) the
introduction of delayed acknowledgments. We showed that
the recent deployment of a bundling mechanism improved
the system performance dramatically. In addition, we ex-
pect that the overall performance will be improved by the
deployment of other data-centers in different locations.

Regarding the typical workload of the Dropbox system,
our analysis showed a variety of user behaviors. For instance,
a considerable number of users take full advantage of the
Dropbox functionalities, actively storing and retrieving files
and sharing several folders. However, we also noted around
one third of users completely abandoning their clients, sel-
dom exchanging any data during 42 days of observations.

Finally, all flow measurements used in our analysis are
available in anonymized form at the online trace repository:
http://traces.simpleweb.org/dropbox/
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Figure 19: Typical flows in storage operations.

APPENDIX

A. STORAGE TRAFFIC IN DETAILS

A.1 Typical Flows
Fig. 19 shows typical storage flows observed in our testbed.

All packets exchanged during initial and final handshakes are
depicted. The data transfer phases (in gray) are shortened
for the sake of space. Key elements for our methodology,
such as TCP segments with PSH flag set and flow durations,
are highlighted. To confirm that these models are valid in
real clients, Tstat in Campus 1 was set to record statistics
about the first 10 messages delimited by TCP segments with
PSH flag set. In the following, more details of our methodol-
ogy and the results of this validation are presented.

A.2 Tagging Storage Flows
Storage flows are first identified using FQDNs and SSL

certificate names, as explained in Sec. 3.1. After that, they
are classified based on the number of bytes sent by each
endpoint of the TCP connection. The method was built
based on the assumption that a storage flow is used either
for storing chunks or for retrieving chunks, but never for
both. This assumption is supported by two factors: (i) when
both operations happen in parallel, Dropbox uses separate
connections to speed up synchronization; (ii) idle storage
connections are kept open waiting for new commands only
for a short time interval (60s).

Our assumption could be possibly violated during this idle
interval. In practice, however, this seems to be hardly the
case. Fig. 20 illustrates that by plotting the number of bytes
in storage flows in Campus 1 . Flows are concentrated near
the axes, as expected under our assumption.
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age operations per estimated number of chunks.

Flows in Fig. 20 are already divided into groups. The limit
between store and retrieve regions is determined by the func-
tion f(u) = 0.67(u− 294) + 4103, where u is the number of
uploaded bytes. This function was empirically defined us-
ing the extra information collected in Campus 1 , where the
following was observed:

• Both store and retrieve operations require at least 309
bytes of overhead from servers;

• Store and retrieve operations require at least 634 and
362 bytes of overhead from clients, respectively;

• Typically, SSL handshakes require 294 bytes from
clients and 4103 bytes from servers.

f(u) is centralized between the regions determined accord-
ing these constants. For improving visualization, SSL over-
heads are subtracted from each point in the figure.
Since client machines in Campus 1 are relatively homoge-

nous, the gap between the two groups is very clear in this
dataset. More variation in message sizes is observed at other
vantage points. SSL handshakes, in particular, are affected
by different software configurations. However, this does not
change considerably the regions of each storage operation
when compared to Campus 1 .

Finally, we quantify the possible error caused by violations
of our assumption. In all vantage points, flows tagged as
store download less 1% of the total storage volume. Since
this includes protocol overheads (e.g., HTTP OK messages

in Fig. 19), mixed flows marked as store might have only a
negligible impact in our results. Similar reasoning is valid
for retrieve flows.

A.3 Number of Chunks
The number of chunks transported in a storage flow (c) is

estimated by counting TCP segments with PSH flag set (s) in
the reverse direction of the transfer, as indicated in Fig. 19.
For retrieve flows, c = s−2

2
. For store flows c = s − 3 or

c = s− 2, depending on whether the connection is passively
closed by the server or not. This can be inferred by the
time difference between the last packet with payload from
the client and the last one from the server: when the server
closes an idle connection, the difference is expected to be
around 1 minute (otherwise, only a few seconds). Tstat
already records the timestamps of such packets by default.

We validate this relation by dividing the amount of pay-
load (without typical SSL handshakes) in the reverse direc-
tion of a transfer by c. This proportion has to be equal to
the overhead needed per storage operation. Fig. 21 shows
that for the vast majority of store flows the proportion is
about 309 bytes per chunk, as expected. In Home 2 , the
apparently misbehaving client described in Sec. 4.3 biases
the distribution: most flows from this client lack acknowl-
edgment messages. Most retrieve flows have a proportion
between 362 and 426 bytes per chunk, which are typical sizes
of the HTTP request in this command. The exceptions (3%
– 8%) might be caused by packet loss in our probes as well
as by the flows that both stored and retrieved chunks. Our
method underestimates the number of chunks in those cases.

A.4 Duration
Fig. 19 shows the duration used when computing the

throughput of a storage flow (∆t). Since initial TCP/SSL
handshakes affect users’ perception of throughput, the first
SYN packet is taken as the begin of the transfer. Termina-
tion handshakes, on the other hand, are ignored. In store

flows, the last packet with payload sent by the client is con-
sidered the end of the transfer. In retrieve flows, the last
packet with payload is normally a server alert about the
SSL termination. We compensate for that by subtracting
60s from the duration of retrieve flows whenever the differ-
ence between the last packet with payload from the server
and the one from the client is above 60s.

Because of our monitoring topology, ∆t does not include
the trip time between clients and our probes. ∆t is, there-
fore, slightly underestimated. Fig. 19 also shows that 4 or 5
RTTs are needed before the client starts to send or to receive
data. In some cases, this already accounts for about 500ms
in the flow duration. Note that the initial TCP congestion
window in place at servers was forcing a pause of 1 RTT
during the SSL handshake. This parameter has been tuned
after the release of Dropbox 1.4.0, reducing the overhead.


