
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Distributed algorithms for green IP networks2012 Proceedings IEEE INFOCOM Workshops / Bianzino, ARUNA PREM;
Chiaraviglio, Luca; Mellia, Marco. - STAMPA. - (2012), pp. 121-126. (Intervento presentato al convegno Computer
Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference on tenutosi a Orlando, FL nel 25 March
2012) [10.1109/INFCOMW.2012.6193472].

Original

Distributed algorithms for green IP networks2012 Proceedings IEEE INFOCOM Workshops

Publisher:

Published
DOI:10.1109/INFCOMW.2012.6193472

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2502285 since:

IEEE / Institute of Electrical and Electronics Engineers Incorporated:445 Hoes Lane:Piscataway, NJ 08854:

Distributed Algorithms for Green IP Networks
Aruna Prem Bianzinoa,b, Luca Chiaraviglioa,c, Marco Melliaa,c

a) Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Torino, Italy
b) Institut TELECOM, TELECOM ParisTech, Paris, France

c) Dipartimento di Elettronica, Politecnico di Torino, Torino, Italy
Email: bianzino@telecom-paristech.fr, {chiaraviglio, mellia}@polito.it

Abstract—We propose a novel distributed approach to ex-
ploit sleep mode capabilities of links in an Internet Service
Provider network. Differently from other works, neither a central
controller, nor the knowledge of the current traffic matrix is
assumed, favoring a major step towards making sleep mode
enabled networks practical in the current Internet architecture.
Our algorithms are able to automatically adapt the state of
network links to the actual traffic in the network. Moreover, the
required input parameters are intuitive and easy to set. Extensive
simulations that consider a real network and traffic demand
prove that our algorithms are able to follow the daily variation
of traffic, reducing energy consumption up to 70% during off
peak time, with little overheads and while guaranteeing Quality
of Service constraints.

I. INTRODUCTION

The power consumption of networking devices scales with
the installed capacity rather than the current load [1]. Thus,
for an Internet Service Provider (ISP) the network power
consumption is practically constant, unrespectively to traf-
fic fluctuations. However, actual traffic is subject to strong
day/night oscillations [2]. Thus, many devices are underuti-
lized during off-peak hours when traffic is low. This represents
a clear opportunity for saving energy and several projects are
aiming at enabling power adaptive technologies for network
devices [3], [4], [5].

In this context, resource consolidation is a known paradigm
for the reduction of the power consumption. It consists in
forcing a sleep state for a carefully selected subset of network
devices and use the rest to transport the offered traffic. This
is possible without disrupting the Quality of Service (QoS)
offered by the network infrastructure, since communication
networks are designed for the peak foreseen traffic request,
and with redundancy and over-provisioning in mind.

Starting from the seminal work [6], the problem of reducing
power consumption in telecommunication networks has been
widely studied in the last years (see [7] for an overview).
In [8] we proposed efficient linear programming formulations
and heuristics that can scale up to hundreds of nodes and
thousands of links. In [9] authors evaluated the possibility of
putting cables in sleep mode in bundled links; the possibility
of applying sleep mode to nodes adopting a game-theoretic
approach is proposed in [10]. Moreover, approaches ranging
from traffic engineering [11], to routing protocols [12], and
new architectures [13] have been investigated. These works
tackle the minimization of power consumption by putting

This work has been supported by the FP7 Integrated Project “Econet - low
Energy COnsumption NETworks” funded by the European Commission.

in sleep mode network elements, such as routers and links,
showing that large savings are possible. However, to the best
of our knowledge, all the previous solutions are completely
centralized or require at least the presence of a central control
node which computes the solution to be distributed. Moreover,
they either assume the perfect knowledge of the traffic matrix,
i.e., the amount of traffic sent from each node to every other
node, at each given time [8], [9], [10], [11], or ignore the
traffic flowing in the network [12]. These assumptions clearly
limit their applicability and deployment in the current Internet
architecture.

In this work, we follow a different approach: we propose
a fully distributed solution that leverages the knowledge of
current link load instead of current traffic matrix. We tackle the
reduction of power consumption in ISP networks, focussing
on links in particular, for which support for sleep states can
be more easily introduced than for nodes. Note that links
normally consume more than 40% of the total network power
consumption in an ISP [8], due to the fact that long-haul
connections are present. We aim at dynamically adapting
the working state of links (i.e., transmitters/receivers and
amplifiers in the physical layer), thus adapting the network
capacity (and power consumption) to the current traffic load,
while still guaranteeing to not overload resources.1

Our solution is designed to work at the IP layer. Nodes
leverage on a traditional Link-State routing protocol, e.g.,
OSPF [14], properly augmented to exchange information about
the link power state (i.e., on, or sleep) and current load, on
the basis of which decisions are taken.

In [8] we first faced the consolidation problem supposing
a perfect knowledge of the (i) traffic matrix and (ii) device
state. Centralized solutions similar to the one proposed in this
paper were investigated. The intuition of a distributed resource
consolidation was then investigated in [15], where we have
proposed an algorithm based on Q-learning techniques. Differ-
ently from [15], in this work we assume nodes take informed
decisions about which is the best link to target instead of taking
independent decisions as in [15]. Simulation results show
that our solution outperforms [15], being able to considerably
reduce the power consumption of ISP networks (up to 70%
of link power saving during low traffic periods, about 20-
30% on a long term average), with a negligible number of
reconfigurations. At the same time, the proposed algorithms

1Consolidation can be further extended to include higher level devices (e.g.,
routers linecards, backplanes, switching fabrics, and even entire routers), but
it is not considered in this paper.

2

include intuitive and easy to set parameters, contrary to [15].
While results show that large savings are possible, modifica-

tions to current networks devices are required to fully support
the sleep mode, which is out of scope of this paper. However,
researchers from both industries and academia are working
towards the integration of sleep mode capabilities into current
network devices [3], [4], [5], [16].

II. PROBLEM FORMULATION

The problem of finding the network configuration corre-
sponding to the minimum power consumption, under specific
traffic conditions and QoS constraints, can be formalized as an
ILP problem [8]. We consider an IP transport network, that we
represent as a directed graph G = (V,E), where V is the set
of vertices representing network nodes, (N = |V |), while E is
the set of edges representing interconnection links (L = |E|).
For every pair of vertices {s, d} ∈ V , at every given time t,
there is an aggregate traffic request to be routed from s to d,
denoted as rsd(t). The set of all the traffic requests, at a given
instant of time, is denoted as Traffic Matrix, TM(t). Traffic
slowly changes with a daily periodicity, with a pace of the
order of several minutes.2 For the sake of simplicity, in the
following we drop the dependency of time from all variables.

Given thus a time instant t, the objective of the optimization
is the minimization of network power consumption:

min
∑

(i,j)∈E

xijPij (1)

where xij ∈ {0, 1} is a binary decision variable that takes
the value of 0 if link (i, j) is in sleep state, 1 otherwise, and
Pij > 0 is the power consumption of link (i, j) when it is in
on state.

Traffic requests are routed over the network, generating a
level of flow fsdij ≥ 0 over any network link (i, j). fsdij is
related to rsd by the following set of conservation constraints:

∑
i∈V

fsdij −
∑
i∈V

fsdji =

−r
sd ∀s, d ∈ V, j = s

rsd ∀s, d ∈ V, j = d
0 ∀s, d ∈ V, j 6= s, d

(2)

To preserve the QoS in the network, maximum link utiliza-
tion is imposed, φ ∈ [0, 1] hereafter. This defines the following
additional set of constraints:

1

cij

∑
s,d∈V

fsdij = lij ≤ φ ∀(i, j) ∈ E (3)

being cij > 0 and lij the capacity and total traffic load on link
(i, j), respectively.

Finally, we consider that a link can not enter a sleep state
if its load, on both directions, is non-null. This introduces the
following set of constraints:3

2xij ≥ lij + lji ∀(i, j) ∈ E (4)

2Since we are focussing on backbone networks aggregate flows are as-
sumed.

3We assume to put into sleep mode both link (i, j) and (j, i) due to
technological constraint. Extension to have independent decisions is straight
forward.

which forces the variable xij to take the value 1 when traffic is
greater than 0, and allows the value 0 only when lij = lji = 0.

Minimizing the total power consumption (1) while satis-
fying all the previously mentioned constraints results into a
mixed integer linear program. It has been proved to be NP-
hard, and it has been shown not to scale for big networks,
unless network topology is organized in special structures
[8]. Moreover, its solution requires (i) the knowledge of the
TM(t) at each time t, and (ii) a centralized unit controlling
all the nodes. Both are technologically unfeasible hypothesis
considering current and foreseen network architectures.

III. ALGORITHM DESCRIPTION

To overcome the limits of previous proposals, we devise a
distributed solution which relies only on the knowledge of (i)
the current topology configuration {xij}, and of (ii) the traffic
load on the links {lij}. Periodic Link State Advertisements
(LSA) are broadcasted in the network, describing the state of
the links (i.e., configuration and load). LSAs are also used to
broadcast eventual critical states, e.g., presence of unreachable
destinations (lastLSACriticalState = KO in Alg. 1 and
Alg. 2). This guarantees all nodes have the same knowledge
of network status, and can take consistent decisions. Finally,
link power consumption can also be shared by means of LSAs.

Distributed choices regarding the power state of links are
made. All nodes run the same algorithm to find the link to
target. Two cases are possible, based on the critical state
information carried by the last received LSA:

Last LSA critical state OK – If the network is in a normal
working state, i.e., last LSA confirmed constraints (2) and (3)
are not violated (line 1 of Alg. 1), one link is selected to
be possibly switched off ((i, j)∗ in Alg. 1). An unambiguous
policy must be defined to select which link is target of the
sleep attempt, on the basis of the local knowledge available to
all the nodes. Possible choices may be, but not limited to, (i)
selecting the least loaded link (Distributed Least Flow - DLF -
hereafter), a choice that would have the lowest possible impact
on current traffic routing, or (ii) selecting the most power
hungry link (Distributed Most Power - DMP - hereafter), a
choice that would have the highest possible impact on the
energy saving. We suppose that a tie-breaking rule is defined
as well, e.g., using lexicographical order.

Each node maintains three FIFO queues to store the last
links that (i) entered into sleep mode but no LSA confirmed
yet that constraints are not violated – to_be_verified list;
(ii) are in sleep mode and caused no constraint violations –
sleepLinks list; (iii) caused a violation and thus should
not enter sleep mode anymore – tabu list. tabu list has a
maximum length of maxLength links.

Being E∗ = {(i, j)|x(i,j)∈E = 1 ∧ (i, j) 6∈ tabu}, the link
selection policies may be formalized as:

DLF : (i, j)∗ = arg min(i,j)∈E∗{lij} (5)

DMP : (i, j)∗ = arg max(i,j)∈E∗{Pij} (6)

Before putting link (i, j)∗ into sleep mode, all nodes check
if the network would still be connected after its removal (line
2 of Alg. 1). This operation will be referred to as connectivity

3

check, hereafter. The check is performed through a simple
graph exploration algorithm, like a Breadth-First Search. If
the connectivity check fails, then all nodes append (i, j)∗ to
the tabu list and no further action is taken.

If the connectivity check is positive, (i, j)∗ can enter into
sleep state. Nodes i and j take care of this by means of
some signaling protocol if required, and insert (i, j)∗ in the
to_be_verified list. Finally, they broadcast a new LSA
to share the new state x(i,j)∗ (lines 3-4 of Alg. 1).

Nodes i and j then wait for the first LSA after a sleep
decision. If it reports constraint violations (unreachable node
or link overload), they quickly undo the last move by popping
all links (i, j)∗ from the to_be_verified list and inserting
them into the tabu list (lines 3 to 7 of Alg. 2). Otherwise, if
the LSA does not advertise any problem, elements from the
to_be_verified list are moved to the sleepLinks list
(lines 8-9 of Alg. 2).

Last LSA critical state KO – If the last LSA before a
choice is reporting any constraint violation, nodes react by
bringing back to operational state some link which was put
into sleep state (lines 9 to 12 of Alg. 1). Also the choice of
the link to be switched on must be unambiguous with respect
to the distributed knowledge. Possible criteria may be, but
not limited to, selecting (i) the last link entering a sleep state
(LastSleep hereafter), or (ii) the closer sleeping link to the
congestion point (Distance hereafter). The LastSleep criterion
is based on the intuition that a recently made change is more
likely responsible for the current congestion state. On the other
hand, the Distance criterion is based on the intuition that the
link which is closer to the congested point may more likely
help in draining the extra traffic flow and relieve congestion.
Distance between a couple of links is defined as the number
of nodes on the shortest path between the nodes responsible
for such links, e.g., the nodes with lowest ID.

The nodes responsible for the selected link switch it on. This
mechanism allows the algorithm to react to traffic surges, and
to link failures that have to be recovered by turning on other
resources.

Implementation Issues - Our solution requires nodes to
run a link-state routing algorithm, through which eventual
link overload occurrences are signaled to all the nodes in the
network. This allows nodes to timely signal and quickly react
to eventual network congestions. Opaque LSAs supported by
OSPF [17] may allow to easily carry the additional information
in practical implementations, without any change to the link-
state protocol. Node disconnections from the rest of the net-
work are prevented through the connectivity check mechanism,
which is run before trying to put a link in sleep state, and
thus those should be very unlikely. In the rare case some node
is going to be disconnected due to incongruent information,
a recovery phase can be implemented using some signaling
protocol on links. LSA timings can be set in accordance to
OSPF specifications [14], so that on average each node has to
process N LSA messages every ∆LSA. As standard practice,
overhead can be controlled by dividing the routing domain
into different OSPF areas and running separate instances of
the algorithm on each area. Considering the link sleep entering
procedure, it can occur without any traffic losses. The link can

Distributed Choice
Input: (i, j)*, lastLSACriticalState
1 if lastLSACriticalState == OK:
2 if connectivityCheck(x(i,j)* = 0) == OK:
3 x(i,j)* = 0
4 to_be_verified.append(x(i,j)* = 0)
5 else
6 tabu.append((i, j)*)
7 if length(tabu) > maxLength:
8 removeOlder(tabu)
9 else:
10 ij = selectLink(sleepLinks)
11 xij = 1
12 sleepLinks.remove(ij)

Alg. 1: The pseudo-code of the choice event.

LSA receipt
Input: LSACriticalState
1 while length (to_be_verified) > 0:
2 ij = removeOlder(to_be_verified)
3 if LSACriticalState == KO:
4 tabu.append(ij)
5 if length(tabu) > maxLength:
6 removeOlder(tabu)
7 xij = 1
8 else:
9 sleepLinks.append(ij)

Alg. 2: The pseudo-code of the LSA critical state reception processing.

indeed enter into sleep mode after all nodes routing tables have
been properly changed, to allow a smooth traffic migration.
Finally, loose synchronization is achieved among nodes by
means of LSA messages, thus a strict synchronization is not
required. Indeed, since the goal of the algorithm is to track
the slow variation of traffic during the day, responsiveness to
traffic changes is not critical.

IV. PERFORMANCE EVALUATION

The algorithms have been implemented in a custom event-
based simulator. Events correspond to traffic changes, LSA
broadcasting events, and choice events.

LSAs are broadcasted every ∆LSA. The time interval be-
tween two consecutive choices is a random variable, tc which
is uniformly distributed between ∆LSA and ∆c seconds.
Indeed, LSA should be more frequent than choices (i.e., a
choice, and its result, are notified before a new one takes
place). The offered traffic is defined by TM(t), which remains
constant over intervals of length ∆TM , and then changes to a
new TM. Traffic is modeled as fluid and routed according to
a minimum cost path algorithm. Link weights are given.

To provide a relevant evaluation of the described algorithm,
we consider a benchmarking scenarios that we obtained from
an actual nation-wide ISPs in Italy. The considered network
is composed by 373 nodes and 718 bidirectional links. This
topology is organized in different levels of nodes, among
which some are pure transit nodes. We refer the reader to
[8] for a detailed description of the network. For this scenario,
link capacities and lengths are provided. Traffic is routed using
link weights inversely proportional to the link capacities, a

4

TABLE I: Simulation scenario characteristics.

Parameter Symbol Value
Maximum Link Load φ 50%
TM change interval ∆TM 48 min
Number of nodes N 373
Number of links L 718
Average link length E[mij] 41 km
Average link capacity E[cij] 6 Gb/s

common practice in ISP networks. Traffic matrix follows a
day/night variation as reported in [8]. A summary of the main
characteristics of the network is detailed in Tab. I.

Focussing on link power consumption, we adopt the same
power model introduced in [8], and already used in [15], since
it is representative for current actual devices. In particular, we
consider network interfaces consuming Pnic = 50 W for each
cref = 10 Gb/s of capacity. Electronic regenerators consume
Pa = 1 kW for each cref = 10 Gb/s of capacity, with a regen-
erator that is required every ma = 70 km of link length. Links
whose capacity exceeds 10 Gb/s are formed considering a
trunk of k = d cij

cref
e 10 Gb/s channels. The power consumption

Pij of link (i, j), of capacity cij and length mij results:

Pij =

⌈
cij
cref

⌉(⌊
mij

ma

⌋
Pa + 2Pnic

)
(7)

While in this paper we focus on power consumption of links
only, the algorithms can easily be extended to consider more
fine grained models, e.g., considering the power consumption
of linecards, switching fabrics and routers themselves. In the
choice procedure, these power costs can be considered to select
the best element worth trying entering sleep mode.

All simulations consider a one-week long period of time.
This allows us to obtain average performance estimation, with
negligible variations among different runs.

A. Time Evolution of the Topology Properties
Unless otherwise specified, we adopt the following set

of parameters: ∆c = 20 s, ∆LSA = 10 s, maxLength
= 70 links, which corresponds to nearly 10% of links, and
maximum link utilization φ = 50%. Note that LSA timing
matches current OSPF specifications [14].

Fig. 1a reports the power saving computed with respect
to the scenario in which all links are on. DLF-Distance and
DMP-LastOff algorithms are shown during the initial 5 days
of system evolution using dotted blu and solid red lines,
respectively. The dotted green line shows the power saving
of the MP centralized heuristic, which has been proven in
[8] to be the most effective one for this topology. The solid
black curve reports the optimal solution computed solving the
ILP problem of Sec. II for each TM4. Recall that the ILP
solution allows single traffic requests to be split over multiple
paths, which guarantees higher power savings. It has thus to
be considered as an upper bound.

Several considerations hold. First, both DLF-Distance and
DMP-LastOff are able to quickly follow traffic variation, and

4The solution has been obtained running CPLEX on a high performance
cluster hosted in our Campus [18].

 0

 10

 20

 30

 40

 50

 60

 70

 80

10:00

22:00

10:00

22:00

10:00

22:00

10:00

22:00

10:00

22:00

10:00

P
o
w

er
 S

av
in

g
 [

%
]

Time[hr](a)

OPTIMAL
MP

DMP-LastSleep
DLF-Distance

 0

 10

 20

 30

 40

 50

 60

 70

 80

10:00

22:00

10:00

22:00

10:00

22:00

10:00

22:00

10:00

22:00

10:00

L
in

k
 L

o
ad

 [
%

]

Time [hr]

DLF-Distance (Max)
DLF-Distance (Average)

DMP-LastSleep (Max)
DMP-LastSleep (Average)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10:00

22:00

10:00

22:00

10:00

22:00

10:00

22:00

10:00

22:00

10:00

R
ec

o
n
fi

g
u
ra

ti
o
n
s

P
er

 N
o
d
e

[l
in

k
s/

T
M

]

Time [hr](c)

SLEEP->ON
ON->SLEEP

Average Degree

Fig. 1: (a) Power Saving, (b) Maximum and Average link load,
(c) Average Number of Reconfigurations.

to achieve a good power saving. Since ∆c is much smaller
than the TM change frequency, transients are very quick.
Both guarantee 30-50% of saving during night-time, which
is comparable to the MP centralized heuristic, but without
the perfect knowledge of the TM. Second, constant saving
during night-time suggests that algorithms have converged to a
solution which remains stable. Third, DMP-LastOff algorithm
provides on average better performance than DLF-Distance
in terms of power saving. Intuitively, power-hungry links are
targeted by DMP which thus can achieve a better power saving
even if putting into sleep mode a smaller number of links.

Finally, note that during the day, i.e., when more capacity is
needed to meet traffic demand, both algorithms keep looking
for possible links to enter sleep mode. DMP targets the most
expensive links whose power cycling is reflected in the noisy
power saving of Fig. 1a.

Fig. 1b details the average and the maximum link load
over time. Considering the average load, we observe that
its variation is limited during the day, suggesting that the
algorithms efficiently match the current network capacity to
the actual demand. Still, an over-provisioning of capacity

5

TABLE II: Algorithm Comparison, ∆LSA = 10, ∆c = 20

Algorithm Saving [%] Unacc.
ξChoices [%]

OPTIMAL 58.56 – –
MP [8] 46.28 – –

GRiDA [15] 19.73 52 5.93e-4
DMP-Distance 32.35 20 3.23e-3
DMP-LastSleep 30.30 23 4.37e-3
DLF-Distance 25.45 17 1.63e-3
DLF-LastSleep 19.66 18 4.81e-4

is present since the average link load is smaller than 10%.
Interestingly, during night-time, also the maximum link load
is below 30%, i.e., far from the load threshold φ = 50%. This
suggests that the connectivity constraint (2) is stricter than the
maximum load constraint (3). During high traffic periods, (3)
instead becomes predominant, and some link load actually gets
close to 50%. Indeed, some violations are present, even if of
short duration and of small intensity. We will better quantify
violations in the next Section.

Finally, Fig. 1c reports the average number of SLEEP→ON
(solid red line) and ON→SLEEP (dotted green line) changes
per node per ∆TM . DLF-Distance is considered, being results
similar for other algorithms. Average node degree 2L

N = 3.85
is plotted using dotted blu line as reference. During the night
no choices occur confirming that the algorithm has converged
to a stable solution limited by connectivity check. During early
morning, the SLEEP→ON events are predominant and nodes
switch back on some links to quickly react to traffic surge
(see the inset). During the day, both events occur since the
system continuously tries to adapt the network capacity to
the actual traffic demand, but most changes are then undone
due to temporary overload. Finally, during the evening the
ON→SLEEP events become predominant due to traffic drop.
Note that the number of reconfigurations per node is always
limited to 1 per ∆TM (i.e., 48 min), and much lower on
average.

B. Average performance

We now compare the performance of different algorithms
to assess which policy performs better. We consider energy
saving, number of unaccepted choices, and network overload.
Energy saving is evaluated as the integral of link power
saving over a one week long time interval. Unaccepted choices
account the percentage of sleep choices which are undone due
to the immediate critical state indication by LSA. Percentage
is computed with respect to the total number of sleep attempts.
The network overload is defined as the fraction of traffic
exceeding the load threshold φ with respect to the total carried
traffic, i.e.:

ξ =

∫
t

∑
(i,j)∈E max(lij(t)− φ, 0)dt∫

t

∑
s,d∈V r

sd(t)dt
(8)

This is a relative indicator for the network congestion level,
averaged over the simulation period, accounting for the num-
ber of load violations, their entity, and their duration. Note
that we refer here to violations for link load overcoming the
φ threshold, i.e., 50% of the link capacity. Link load never

overcomes the full link capacity, i.e., 100%, in the considered
scenarios. Let us consider, e.g., an average of 20 violation
occurrences per hour, each one lasting 20 seconds on average,
each one corresponding to a load of 5.5 Gbps over 10 Gbps
links (i.e., l = 55%). This will correspond on the considered
network to an overload in the order of magnitude of e-3.

Tab. II reports results considering the distributed algorithms.
For comparison, we include the optimal solution, MP [8] and
GRiDA [15]. As the intuition already suggested from Fig. 1,
higher energy savings are guaranteed by the DMP policies
given that DLF policies are able to put in sleep mode links
that do not consume much power. Note that up to 32.35%
of energy saving can be reached for the considered network
scenario, which is smaller than the centralized solutions but
higher than [15].

The DMP algorithms are also more aggressive than the DLF
policies in terms of sleep attempts, thus the percentage of
unaccepted changes and network overload are higher for the
formers. This is due to the fact that DMP targets energy hungry
links, which are also the ones that carry lot of traffic being
backbone links. Putting in sleep state one of these links results
in a large amount of traffic to be re-routed over alternative
paths. This causes a larger number of violations. Note that
only less than 23% of choices results in a traffic violation.

To gauge how critical are those violations we focus our
attention to the network overload ξ. Results confirm that vio-
lations are overall very small (see Fig. 1b) . This because the
algorithms react to a critical state by immediately undoing the
last power off attempt. Since LSA are frequently exchanged,
the overload condition lasts no more than ∆LSA in the worst
case, i.e., few seconds.

Furthermore, comparing the LastSleep and Distance poli-
cies, we observe that the latter generally saves more power
while showing quicker reaction to critical situation. This is
due to the different reactions to traffic surges. Indeed, when a
link is overloaded due to an increase of some rsd, it is better
to turn on some adjacent link, rather than the last link that has
entered sleep state (being such link in any uncorrelated place
in the network).

Finally, observe that all proposed algorithms outperform
GRiDA. In particular, the number of unaccepted choices is
much higher for GRiDA which is designed to turn on/sleep
more than one link per choice, thus causing a large number
of “wrong” decisions.

C. Sensitivity to Parameter Setting

We evaluate the impact of parameter choice on the per-
formance. In particular, we consider the sensitivity to choice
interval ∆c, size of system memory maxLength, and LSA
interval ∆LSA. Parameters are varied one at a time, keeping
the others set as reported in the previous section. Average
results are computed over 7 days of simulations.

We start looking at the sensitivity of the algorithms to the
time interval at which choices about links are made (∆c).
Fig. 2 reports the variation in terms of network overload (ξ),
and percentage of unaccepted choices, for increasing values
of ∆c. Interestingly, the percentage of unaccepted changes
rapidly decreases as ∆c increases, for all the algorithms.

6

1e-05

1e-04

1e-03

1e-02

1e-01

20 40 80 120 180 240

N
et

w
o

rk
 O

v
er

lo
ad

 (
ξ)

∆c [s]
(a)

DLF-Distance
DLF-LastSleep
DMP-Distance

DMP-LastSleep
 0

 5

 10

 15

 20

 25

 30

 35

 40

20 40 80 120 180 240

A
v

er
ag

e
U

n
ac

c.
 C

h
o

ic
es

 [
%

]

∆c [s]
(b)

DLF-Distance
DLF-LastSleep
DMP-Distance

DMP-LastSleep

Fig. 2: Impact of ∆c. (a) Network Overload, (b) Unaccepted
choices.

TABLE III: Impact of maxLength on DLF-LastSleep (LS),
and DLF-Distance (Di) algorithms.

maxLength Saving Unacc. ξ
[links] [%] Choices [%]

Di LS Di LS Di LS
1 22.10 22.43 19 20 6.91e-4 1.29e-3
2 23.39 22.30 17 20 9.54e-4 1.13e-3
4 25.58 23.83 17 20 9.34e-4 1.23e-3
20 26.21 22.51 16 19 1.68e-3 8.48e-4
70 25.45 19.66 17 18 1.63e-3 4.81e-4

However, this is not beneficial for the network since the
network overload steadily increases, suggesting that the system
becomes slower in reacting to the changes of traffic. For
example, with a choice made every two minutes on average,
i.e., ∆c = 240 s, the average percentage of unaccepted choices
is steadily below 5% for DLF-Distance, but the network
overload is nearly two orders of magnitude higher than in the
∆c = 20 s case. Energy saving is 25% and 20% for ∆c = 20 s
and ∆c = 240 s, respectively, confirming that the algorithm
performance degrades for large values of ∆c.

We then investigate the impact of the tabu size on the al-
gorithm performance. Tab. III reports the metrics for different
values of maxLength, obtained by running DLF-Distance
and DLF-LastSleep on the considered scenario. Interestingly,
the size of the tabu list on this scenario has a rather limited
impact on performance. In particular, the percentage of unac-
cepted choices is decreasing as maxLength is increasing,
suggesting that, as the system exploits more memory, the
number of choices leading to negative LSA is decreased.
However, it is also crucial not to have a too big memory to
follow the traffic fluctuations. If the tabu list is too long,
indeed, links are blacklisted for long periods of time during
which they are kept on. Thus, the best savings are obtained as
the length of the buffer is set to intermediate values.

Finally, we vary the LSA frequency, considering also the
case when ∆LSA is greater than ∆c. Intuitively, a low LSA
rate may deteriorate the algorithm performance since in this
scenario node choices are based on a network status not
constantly updated so that traffic changes can cause overload
situations to which the system does not promptly react. Tab. IV
reports the variations of the performance indicators for the
considered network scenario with ∆LSA ∈ [2s, 30s]. Results
consider the DLF-Distance. Interestingly, all metrics present
just minor oscillations with respect to ∆LSA, suggesting that
the algorithm is robust even for high values of the parameter.

TABLE IV: Variation of ∆LSA.

∆LSA[s] Saving [%] Unacc. Choices [%] ξ

2 24.22 18 8.84e-04
10 25.45 17 1.63e-03
20 22.53 17 1.13e-03
30 23.33 17 8.16e-04

V. CONCLUSIONS

We have presented a set of distributed algorithms to reduce
power consumption in backbone networks. Results, obtained
over realistic case studies, show that our algorithms achieve
performance comparable to the optimal solutions and cen-
tralized heuristics, but without requiring the knowledge of
the traffic matrix nor the presence of a central control node.
We believe this makes the adoption of sleep mode policies
practical in current IP networks.

As next step, we plan to integrate strategies that exploit
sleep mode of other devices, e.g., routers linecards whose links
are all in sleep mode, then routers switching fabrics whose
linecards are all in sleep mode, etc.

REFERENCES

[1] A. Adelin, P. Owezarski, and T. Gayraud, “On the Impact of Monitoring
Router Energy Consumption for Greening the Internet,” in IEEE/ACM
International Conference on Grid Computing (Grid 2010), (Bruxelles,
Belgique), October 2010.

[2] What Europeans do at Night, “http://asert.arbornetworks.com/2009/08/
what-europeans-do-at-night/,” 2009.

[3] ECONET Project, funded by the European 7th Framework Programme,
“http://www.econet-project.eu.”

[4] GreenTouch Consortium, “http://www.greentouch.org/.”
[5] D-Link Green Products, “http://www.dlinkgreen.com/greenproducts.asp.”
[6] M. Gupta and S. Singh, “Greening of the Internet,” in ACM SIGCOMM

2003, (Karlsrhue, Germany), August 2003.
[7] A. Bianzino, C. Chaudet, D. Rossi, and J. Rougier, “A Survey of Green

Networking Research,” IEEE Communication Surveys and Tutorials,
no. 2, 2012.

[8] L. Chiaraviglio, M. Mellia, and F. Neri, “Minimizing
ISP Network Energy Cost: Formulation and Solutions,”
IEEE/ACM Transactions on Networking, to appear, 2011.
http://www.telematica.polito.it/chiaraviglio/papers/GreenTon.pdf.

[9] W. Fisher, M. Suchara, and J. Rexford, “Greening Backbone Networks:
Reducing Energy Consumption by Shutting Off Cables in Bundled
Links,” in 1st ACM SIGCOMM Workshop on Green Networking, (New
Delhi, India), August 2010.

[10] A. Bianzino, C. Chaudet, S. Moretti, D. Rossi, and J. Rougier, “The
Green-Game: Striking a Balance between QoS and Energy Saving,”
in 23rd International Teletraffic Congress (ITC 2011), (San Francisco,
USA), September 2011.

[11] N. Vasić and D. Kostić, “Energy-aware traffic engineering,” in 1st In-
ternational Conference on Energy-Efficient Computing and Networking
(e-Energy 2010), (Passau, Germany), April 2010.

[12] A. Cianfrani, V. Eramo, M. Listanti, M. Marazza, and E. Vittorini, “An
Energy Saving Routing Algorithm for a Green OSPF Protocol,” in IEEE
INFOCOM, 2010, (San Diego, USA), March 2010.

[13] K. Ho and C. Cheung, “Green distributed routing protocol for sleep coor-
dination in wired core networks,” in IEEE 6th International Conference
on Networked Computing, (Gyeongju, Korea (South)), May 2010.

[14] J. Moy, “OSPF Version 2.” RFC 2328, April 1998.
[15] A. Bianzino, L. Chiaraviglio, and M. Mellia, “GRiDA: a Green Dis-

tributed Algorithm for Backbone Networks,” in 2011 IEEE Online
Green Communications Conference (GREENCOM 2011), September
2011. http://www.telematica.polito.it/chiaraviglio/papers/GRiDA.pdf.

[16] R. Bolla, R. Bruschi, A. Cianfrani, and M. Listanti, “Enabling backbone
networks to sleep,” Network, IEEE, vol. 25, no. 2, pp. 26–31, 2011.

[17] R. Coltun, “The OSPF Opaque LSA Option.” RFC 2370, July 1998.
[18] POLITO HPC Initiative, “http://dauin-hpc.polito.it/.”

