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Summary

This thesis focuses on mobile ad-hoc networks (with pedestr vehicular mobility)
having infrastructure support. We deal with the problemsl@sign, deployment and
management of such networks.

A first issue to address concerns infrastructure itself: Ipewasive should it be
in order for the network to operate at the same time effigyeantid in a cost-effective
manner? How should the units composing it (e.g., accesdg)die placed? There
are several approaches to such questions in literaturethethesis studies and com-
pares them. Furthermore, in order to effectively designitifrastructure, we need to
understand how and how much it will be used. As an examplet ishiae relationship
between infrastructure-to-node and node-to-node comeation? How far away, in
time and space, do data travel before its destination ishegbt

A common assumption made when dealing with such problerhaigerfect knowl-
edge about the current and future node mobility is availdbléhis thesis, we also deal
with the problem of assessing the impact that an imperfenttdd knowledge has on
network performance.

As far as the management of the network is concerned, thésstheesents a variant
of the paradigm known as publish-and-subscribe. With regpehe original paradigm,
our goal was to ensure a high probability of finding the retpeesontent, even in pres-
ence of selfish, uncooperative nodes, or even nodes whosieggoal is harming the
system. Each node is allowed to get from the network an amoaiuabntent which
corresponds to the amount of content provided to other nddedes with caching ca-
pabilities are assisted in using their cache in order to awpthe amount of offered
content.
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Chapter 1

Introduction

Ad hoc wireless networks have emerged several decades agpramising paradigm,
with plenty of interesting theoretical aspects and po&tiactical applications. Over
time, only some specific kinds of ad hoc networks have reaenedghcritical mass
to be actually deployed. With the partial (yet significangeption of sensor networks,
most ad hoc networks existing today (and, conceivably, fuiste ones) havenfras-
tructure support. As far as applications are concerned, ad hoc nietvi@ve proved to
be an effective way to assist users that warsttaresome contents, either self-produced
or downloaded from the Internet.

Content sharing in mobile networks with infrastructure gag is the topic of this
thesis. We consider the two distinct, yet strictly linkedpacts ofplanning i.e., how
infrastructure should be deployed, andnagement.e., how the network should work.

Deploying the infrastructure means, first and foremostgipathe units compos-
ing it (e.g., access points) in a way that maximizes the dlpbegormance — i.e., the
throughput. This problem is addressed in Chapter 2.

Our solution is able to process any mobility trace, eithat o synthetic, without
making restrictive hypotheses on connectivity (e.g., anlithk between node distance
and network rate). Furthermore, we are able to compare timalpAP placement with
the one resulting from other, straightforward and/or papuheuristics (e.g., placing
APs in the most crowded locations).

The key idea of our approach is to describe the positions dfilmaodes and can-
didate AP locations through a graph. Vertices corresponddbile nodes and AP lo-
cations, and edges describe the connection opportunimes@them. Vertices, edges
and their properties (e.g., the rate associated to edgaspehover time; we are able
to capture such changes through a node-splitting techr{ique for each node in the
physical network, we create several vertices in the gra@imce the graph is built, we
can use well-known algorithms and tools to find the AP depleynthat guarantees the
maximum throughput (i.e., the maximum flow on the graph) themrmore, it is easy to
force a different, suboptimal AP deployment in order to gttiee maximum flow such
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1 — Introduction

a deployment can yield (and how far from the optimum it is).

In Chapter 3, we further extend our work to take into accob@tncertainty affect-
ing the available knowledge of user mobility. When a (pdtphtelay node passes by
the coverage area of an AP, the latter has to decide whichiflatay, should be sent to
the first. This decision is based on the knowledge (or thecms® of the downloaders
(i.e., nodes interested in actually downloading data) éheyrwill meet during the re-
mainder of its trip. Wrong or inaccurate predictions cardlema waste of bandwidth.
Our model represents the prediction inaccuracy using dnbetsynthetic parameters,
sufficient to distinguish the different existing predictitechniques, and to study their
effectiveness.

In Chapter 4, we switch to a non-cooperative scenario, irckvthe AP deployment
is not decided in a centralized way, but is the result of theoa®f several competing
operators. We study the case of a road segment with asynerwetricular flows, and
two AP locations at its extremes. Counter-intuitively eglouwhich position is best (in
terms of successfully transmitted traffic) depends in a tnotal way upon the relation
between the vehicular flows, as well as the size of the cobing transferred.

Chapter 5 deals with thmanagemenof the network, i.e., how contents are dis-
covered and exchanged among users. Specifically, we prasdrdanalyze a content
discovery solution, based on a variant of the paradigm krasyublish-and-subscribe.
Mobile users (Agents) produce and exchange content itetrike wne or more Brokers,
accessible through the infrastructure, join demand aret,afeciding each time which
Agent has to provide the requested content. Unlike the hadtish-and-subscribe
paradigm, users cannot refuse to provide a content whei &gkie Broker.

In order to ensure a prompt content discovery, we 1) makenkeaient for rational
(i.e., self-interested) users to cooperate when requiyetthd Broker; 2) counter those
Agents whose sole purpose is disrupting the system; 3)aserthe availability of con-
tents, allowing Agents to use their cache. More exactly, sspeaiate to each Agent a
balance, reflecting the difference between the serviceigedvto the network and the
service obtained from it. We show, using a game-theoreficageh, that this system
yields a Nash equilibrium where all (rational) Agents fallthe Broker’s indications,
and such an equilibrium is also Pareto-optimal. We also defifeedback mechanism,
allowing us to identify those Agents (free-riders) that @b provide the announced ser-
vices. Finally, in order to increase the availability of thast common contents, Brokers
can suggest Agents to copy such contents in their cache. rEaeye the load on the
Agents following their suggestions, thus incentivizingtinto do so.

Chapter 6 presents the conclusions we draw from this work.

During the research stay at the University of Californiajrie, a different type of
network with infrastructure has been dealt with — cellukatworks. These networks are
challenged by the phenomenon known as flash-crowd: a lang@g@uof users, often
geographically close to each other, trying to fetch (althoshtemporarily the same
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1 — Introduction

content, which gained a sudden popularity through socialorks (e.g., thdike button
of Facebook).

The spread of interest has been extensively studied in tliedfesociology, and
there are several models able to forecast, given the “fsleipd network, which users
are more likely to request a certain content in the next &utéxploiting such a knowl-
edge, network operators can push the content to such begnethey request it. The
global effect is making the bandwidth consumption more l@gover time. Since cel-
lular networks are provisioned for the peak (non the averargéfic, major economic
saving for operators would follow. The main challengesiags§rom this proactive
seedingechnique are related to privacy (users may not want toasedheir friendship
network) and to prediction models (accurate as they mayhleg,dre still prone to false
positives, which may jeopardize the bandwidth saving) aBtige seeding is presented
in Appendix A.



Chapter 2

Optimal infrastructure planning

2.1 Introduction

Our case study for infrastructure planning is a vehiculdwoek, where mobile users
need to download some content during their trip. Examplegppfications of vehicular
communication abound, and range from the updating of rogosn@the retrieval of
nearby points of interest, from the instant learning offttafonditions to the download
of touristic information and media-rich data files.

Within such a context, previous works on content downlogdimvehicular net-
works have dealt with individual aspects of the processh sagthe deployment of
roadside Access Points (APs) [1-3], the performance etratuaf 12V communica-
tion [4], or the exploitation of specific V2V transfer pargdis [5, 6]. None of them,
however, has tackled the problem as a whole, trying to gfyathie actual potential of
an 12V/V2V-based content downloading. In this chapter, denitify the downloading
performance limits achievable through DSRC-based [2V/\é@munication.

To this end, we assume ideal conditions from a system engigeeiewpoint, i.e.,
the availability of preemptive knowledge of vehicular &éetories and perfect scheduling
of data transmissions, and we cast the downloading prooeasrtixed integer linear
programming (MILP) max-flow problem. The solution of suchralgem yields the
optimal AP deployment over a given road layout, and the ogiticombination of any
possible 12V and V2V data transfer paradigm. It thus represthe theoretical upper
bound to the downloading throughput, under the aforemeati@ssumptions.

While it is true that the resulting problem is NP-completes show that, with a
careful design of the model, it can be solved in presencealiste vehicle mobility
in a real-world road topology. In addition, we propose a damgpgbased technique
that efficiently yields a solution even for large-scale amgtes. Although the problem
formulation and the performance figures we derive are isterg per-se, we also exploit
our optimal solution to discuss the impact of key factordisas AP deployment, transfer
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2 — Optimal infrastructure planning

paradigms and technology penetration rate.

As a final remark, we stress that our model, the first of its typeur knowledge,
targets the general case of users interested in best-dthantloading ofdifferentdata
content. As a consequence, the goal is not to study infoomalissemination or coop-
erative caching, but to investigate the performance oferdrdownloading.

The remainder of the chapter is organized as follows. S@cdi8cusses previous
work, while Sec. 2.3 describes the network scenario andlfectves of our work. In
Sec. 2.4, we build the graph modeling the vehicular netwatkle we formulate the
max-flow problem in Sec. 2.5. There, we also propose a sagipkised technique to
deal with large instances of the problem. Results, derivetthé scenarios described
in Sec. 2.6, are presented in Sec. 2.7. In Sec. 2.8, we egdhm@tmpact of our as-
sumptions on the physical and MAC layers through ns-3 sitiara. Finally, Sec. 2.9
summarizes our major findings and points out directionsuture research.

2.2 Related work

Our work relates to infrastructure deployment and contetivery in mobile environ-
ments, as well as to delay tolerant networks. Below, we vette studies that are most
relevant to ours, highlighting the novelty of our approach.

Infrastructure deployment. Earlier studies [7,8] focus on the feasibility of using IEEE
802.11 APs to inject data into vehicular networks, as welbhashe connectivity chal-
lenges posed by such an environment. In [9], the authors #rathva& random distribution
of APs over the street layout can help routing data withiraariehicular ad hoc net-
works. In [10], the impact of several AP deployments on detdgrant routing among
vehicles is studied. More precisely, each AP is employedstat&c cache for content
items that have to be transferred between vehicles visitiegAP at different times.
Other than in the scope, the works in [9, 10] differ from ousdecause they do not
provide theoretical justification of the AP placements thaypose.

AP deployment is formulated as an optimization problem ih, [P], where, how-
ever, the objective is not content downloading but the dmgsation of information to
vehicles in the shortest possible time. The study in [13taad, estimates the mini-
mum number of infrastructure nodes to be deployed alongagbtrroad segment so as
to provide delay guarantees to the data traffic that vehiwes to deliver to the infras-
tructure, possibly with the help of relays. A similar prablés addressed in [14], with
the aim to support information dissemination. The différebjectives of the above
studies lead to completely different formulations, thusdsults not comparable with
the ones we present.

In [1, 2], infrastructure placement strategies are progdisat maximize the amount
of time a vehicle is within radio range of an AP. Although lengeriods of time under
coverage can undoubtedly favor the download of contentshycular users, important
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2 — Optimal infrastructure planning

differences with our work exist. First, our analysis is notited to direct transfers from
APs to vehicles, but includes traffic relaying. Second, aile problem formulation
in [1] guarantees a minimum coverage requirement and therofld maximizes the
minimum-contact opportunity, we optimize the actual tlgloput, accounting for the
airtime conflicts deriving from the contemporary presentaroarbitrary number of
vehicles. Third, instead of studying a predefined set ofgpatier a given topology we
process complete mobility traces.

An AP deployment strategy designed to favor content dowshtbeough relaying in
vehicular networks is introduced in [3]. The proposed optation problem, however,
aims at maximizing a metric reflecting the amount of vehictriffic that enables V2V
communication, and not the actual throughput. Moreoverh suformulation cannot
capture the mutual interference among concurrent tra#icsfiers.

Content downloading and dissemination With regard to content downloading in ve-
hicular networks, the study in [15], unlike ours, focusestmaccess to Web search and
presents a system that makes such a service highly efficyeexdoiting prefetching.
Experimental and analytical results show the contribubtibv2V and 12V communica-
tions to the system performance. The works in [5,16] addtesbenefits of prefetching
jointly with traffic scheduling techniques. In particultre objective of [16] is to maxi-
mize the amount of data downloaded by vehicles through Afgtddhm a wireless mesh
network, given the AP deployment and an (imprecise) knogaeaf the vehicles trajec-
tory and of their connectivity with the APs. However, no nfudp data transfer are
investigated. In [5], both 12V and V2V communications ar@sidered and the perfor-
mance evaluation is carried out through simulation and theéelson a circular campus
bus route. Furthermore, a comparison against the soluti@arax-flow problem is
presented, but (i) it is limited to a simplified, highwaydikcenario featuring one AP
and one downloader and (ii) it assumes atomic contacts leetwetwork nodes, hence
neglecting interference and channel contention.

Our study also relates to cooperative downloading in veéaicoetworks. In this
context, the work in [17, 18] introduces a vehicular peep¢er file sharing protocol,
which allows vehicles to share a content of common inter€xir study on content
download, instead, works in the more generic case wherewessttan be interested in
a different file. System assumptions similar to the ones nrafle/7, 18] are behind the
works in [19, 20], about which, as a consequence, the sansdsyations hold.

Delay tolerant networks (DTNs). The vehicular cooperation paradigm that we con-
sider relates our work to DTNSs. In particular, in [21] bottpermental results from a
real testbed and an asymptotic analysis are carried oustsashe benefit to content
dissemination of adding varying numbers of base statioeshnmodes and relay nodes
toa DTN.

A DTN time-invariant graph, which is similar to the time-expded graph used in
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our study, was presented in [22]. With respect to this work,de@ not assume the con-
tacts between mobile nodes to be atomic but allow them to &dvigrary duration, and

we build the network graph so as to account for the presenceadkide infrastructure

and channel contention. The representation of a time-wgrgetwork topology as a
time-expanded graph can be found in [23, 24], where the forsnen earlier version of

this work. As for the latter, such a representation is usedeatify the nodes whose
limited storage may impair the network performance, andtmfilate a max-flow prob-

lem whose solution leads to an optimal, distributed rouing storage policy. In our

work, we address the performance limits of content downtgadnd the problem of

AP deployment, for which no distributed solution is needed.

2.3 Network System and Goals

We envision a network composed of fixed roadside APs and wukniusers, where
some of the latter (hereinafter namgolwnloaderyare interested in downloading best-
effort traffic from the Internet through the APs. We consitler general case in which
every downloader may be interested in different contenerdoaders can either exploit
direct connectivity with the APs, if available, or be assikby other vehicles acting as
intermediate relays. Specifically, we account for all polesdatatransfer paradigms
that can be implemented through 12V/V2V communication:

e direct transfer, resulting from a direct communication between an AP and a
downloader. This represents the typical way mobile useesant with the infras-
tructure in today’s wireless networks;

e connected forwarding i.e., traffic relaying through one or more vehicles that
create a multi-hop path between an AP and a downloader, veatidiee links of
the connected path exist at the time of the transfer. Thigisraditional approach
to traffic delivery in ad hoc networks;

e carry-and-forward , i.e., traffic relaying through one or more vehicles thatesto
and carry the data, eventually delivering them either totéinget downloader or
to another relay deemed to meet the downloader sooner.

We stress that connected forwarding and carry-and-fonaaedinherently multi-hop
paradigms. We assume that vehicular users are rationateht@ey can be engaged
in relaying traffic for others only if they are not currentlgtneving the content for
themselves. Furthermore, since our goal is to derive anrdppend to the system per-
formance, we assume the availability of preemptive knogdeaf vehicular trajectories
and perfect scheduling of data transmissions.

From the viewpoint of the network system, we consider theheede (a vehicle or
an AP) has one radio interface only. This is a common assomfir vehicular nodes,

7
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while the extension to the case where APs have more than teréaice is straightfor-
ward. Any two nodes in the network can communicate at a givee instant, i.e., they
are neighbors, if their distance is below or equal to theirimam radio range. Also,
we assume that the maximum radio range is common to all netmamtes and is equal
to the node interference ranlgeWe consider that V2V communication occurs on the
same frequency channel, which is different from the channskd for 12V commu-
nicatiorf. APs with overlapping coverage areas operate on separatmels as well.
When under AP coverage, a vehicle can always choose eitier|22V communica-
tion. The nodes share the channel bandwidth allocated feiceeapplications using an
IEEE 802.11-based MAC protocol.

Our objective is to design the content downloading systerasstb maximize the
aggregate throughput. To this aim, we have to jointly solve problems: (i) given a
set of candidate locations and a number of APs to be activatedieed to identify the
deployment yielding the maximum throughput; (ii) given thailability of different
data transfer paradigms, possibly involving relays, weeh@avdetermine how to use
them in order to maximize the data flow from the infrastruetto the downloaders.
Our approach consists in processing a road layout and aniassbvehicular mobility
trace, so as to build a graph that represents the temporabrieevolution (Sec. 2.4).
By using this graph, we formulate a max-flow problem whoseitsmh matches our
goals (Sec. 2.5).

2.4 Dynamic Network Topology Graph

We generate a time-expanded graph [25], hereinafter dynaetwork topology graph
(DNTG), from a vehicular mobility trace. To build the grapike consider that on the
road layout corresponding to the mobility trace there atea get of A candidate lo-
cations ¢;, « = 1,...,A) where APs could be placed, (ii) a set &f vehicles ¢;,
1 =1,...,V) transiting over the road layout and participating in thenwek, and (iii) a
subset ofD vehicles that wish to download data from the infrastructure

The aim of the DNTG is to model all possible opportunitie®tigh which data can
flow from the APs to the downloaders, possibly via relays.e@ithe mobility trace, we
therefore identify theontact eventbetween any pair of nodes (i.e., two vehicles, or an
AP and a vehicle). Each contact event is characterized by:
(i) the quality level of the link between the two nodes. Severalrits could be con-
sidered; here, we specifically take as link quality metrie data rate achievable at the
network layer;

1Although simplistic, the impact of such an assumption onsystem performance is negligible, as
shown by the comparison between analytical and simulaésalts in Sec. 2.8.

2Single-radio multichannel management is foreseen by ntistandardization activities on vehicular
communication systems, e.g., IEEE 1609.4.
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(a) Space-time representation of the contact eventgb) DNTG resulting from the contact events

Figure 2.1. A sample set of contact events (a) and the camelipg DNTG (b), in
presence of one candidate AP location and three vehiclesfirgt of which ¢1) is a
downloader while the othera{,v3) can act as relays. In (a), shadowed areas repre-
senthalvedtransmission ranges, so that links exist when two shadowessdouch or
overlap, and break when such areas become disjoint. Thestseallow to fragment
the time into frames of duration!, ... 78 (for simplicity, here the link quality is as-
sumed constant). The network connectivity during each ér@érepresented by a row
of vertices in the DNTG. In the graph, we highlight paths thaia representative of the
carry-and-forward (A), connected forwarding (B), and dirgC) transfer paradigms

(i) the contact starting time, i.e., the time instant at whiah lihk between the two

nodes is established or the quality level of an already &stedul link takes on a new
value;

(i) the contact ending time, i.e., the time instant at which thk ils removed, or its

guality level has changed.

We stress that, by associating a time duration to the coetamtits, instead of consid-
ering them as atomic, we can model critical aspects of realdcommunication, such
as channel contention.

The time interval between any two successive contact euetite network is called
frame Within a frame the network is static, i.e., no link is creht® removed and
the link quality levels do not change. We denote Bythe number of frames in the
considered trace, and by the duration of the generic frame(l < k£ < F); also, alll
on-going contact events during frarhere said to bactivein that frame.

Each vehicley; participating in the network at framke is represented by a vertex
vF (1 < i < V) inthe DNTG, whereas every candidate AP locatigris mapped
within each framek onto a vertexa? (1 < i < A). We denote by* and A* the set
of vertices representing, respectively, the vehicles amtliclate AP locations in the
DNTG at time framek, while we denote bp* C V* the subset of vertices representing
the downloaders that exist in the network at fratneAll non-downloader vehicles in

9
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RF = VF\ D* can act as relays, according to the data transfer paradigtinseml above.

Within each framék, a directed edgév),v}) exists from vertex) € R to vertex
v € V| if a contact between the non- downloader vehigland another vehicle; is
actlve during that frame. Each edge of this type is assatiatth a weightw (v ’“)
equal to the rate of that contact event. The set including gdges is deflned a&‘“
Similarly, a directed edgésf v¥) exists from vertex:! € A* to vertexv? € V*, if a
contact between the candldate AP locatipand the vehicle; is active dunng framé.
Again, these edges are associated with weigr@tzé“,vf), corresponding to the contact
event rate, and their set is definedsfs

A directed edggv’,vF™) is also drawn from any vertex’ € R* to any vertex

vt e RF for 1 < k < F. While the edges irC* and £* represent transmission
opportunltles those of the for* v*™) model the possibility that a non-downloader
vehiclev; physically carries some data during its movement in the imerval from
framek to framek + 1. Accordingly, these edges are associated with a weigherepr
senting the vehicle memory capabilities, since they do mgily any rate-limited data
transfer over the wireless medium. However, dealing withidar nodes as opposed
to resource-constrained hand-held devices, we assumesigatvof such edges to take
on an infinite value. A directed edge’,a**') of infinite weight is also drawn between
any two vertices representing the same candidate AP locatitovo consecutive frames,
i.e., froma® € AFtoaf™ € AF! (1 < k < F). We will refer to the edges of the kind
(vF, v’““) or( k aF™) as intra-nodal.

Finally, in order to formulate a max-flow problem over the DBl Twe introduce
two virtual vertices,a andw, respectively representing the source and destination of
the total flow over the graph. Then, the graph is completet wmfinite-weight edges
(av,a}), from « to any vertexa} € A!, and (vF,w), from any vertexo? € D* to w,
1<EkELZF.

The DNTG is therefore a weighted directed graph, represgitie temporal evo-
lution of the network topology. An example of its derivatiangiven in Fig. 2.1, in
presence of one AP location and three vehielgs,,vs, with v; being a downloader
andwv,,v3 possibly acting as relays. Fig. 2.1(a) depicts the spatapbral evolution of
node positions: there, contact events are highlightedititrohe times at which links are
established or lost. For simplicity, in this example we assuhe achievable network-
layer ratew to be constant during the entire lifetime of a link. The dimas$ of the
frames, within which the network connectivity is unchanga@ denoted by!, ... 5.

In Fig. 2.1(b), frames correspond to rows of vertices in ti¢T, where intra-nodal
edges connect vertices representing the same vehicle didea® AP location over
time. Note that the graph allows us to capture all the datestes paradigms previously
discussed. It is thus possible to identify paths in the gthphcorrespond to (i) direct
download from the candidate AP to the downloader, as pati)Coanected forwarding
through 3-hops (frame 2) and 2-hops (frame 5), as path B, iapdafry-and-forward

10
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through the movement in time of the relay, as path A.

2.5 The Max-Flow Problem

Given the DNTG, our next step is the formulation of an optitian problem whose
goal is to maximize the flow frona to w, i.e., the total amount of downloaded data.
Denoting byz(-,-) the traffic flow over an edge connecting two generic vertices,
objective can be expressed as:

F
maxz Z r(vFw). (2.1)

k=1 UfeDk

The max-flow problem needs to be solved taking into accowaraéconstraints, listed
below.

2.5.1 Constraints

Non-negative flow. The flow on every existing edge must be greater than or equal to
zero.

Flow conservation. For any vertex in the DNTG, the amount of incoming flow must
equal the amount of outgoing flow. This constraint is exprdgsa slightly different
form, depending on whether the vertex represents a dowetpadelay, or a candidate
AP location. For the generic vertex representing a dowrdnafl € D*, and any frame

k, this maps onto:

> algh)+ Y w(fef) =a(fw). (2.2)
a?EAk: v;"GRk:
(a;?,vf)eﬁ(’ﬁ (vf,vf)eﬁﬁ

For any framek and potential relay vertex! € R*:

ST ekl 3 awhel) + T el el

a?eAk: v;@eRk:
(a?,viﬁ“)eﬁ(’g (U?,’U?)EE@
_ k .k k , k+1
- E x(vf v5) + ]l[(vaviﬁl)]x(vi ) (2.3)
UI;EVIC:
(Ui’7v;§)€£§

where the indicator function is equal to 1 if the specifiedeedgists, and it is O other-
wise.
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For each vertex representing a candidate&R; A*:

Lp—yz(oual) + Lpsqa(af ) =

Lperz(afaf™) + > w(dfof) (2.4)
v?GVk:
(af,vf)eﬁ(lﬁ

where the indicator functions are equal to 1 if the specifmaddion holds, and O oth-
erwise. Note that, for a vertex representing a candidateo&&tilon, ingoing flows may
come from a vertical edge or from, while outgoing flows may be over a vertical edge,
or over edges toward vehicle vertices.
Finally, we impose that the total flow exiting equals the total flow entering:
1y _ “F k
aleAl z(ova;) = 4 vaebk z(vf ).
Channel accessAs mentioned, we deal with unicast transmissions and asthahe
nodes use a 802.11-based MAC scheme; also, V2V and |2V coroatioms occur on
different channels. Then, given a tagged vehicle, we censigt none of the following
events can take place simultaneously, and the time sparcbffeme must be shared
among them:

1. the vehicle transmits to a neighboring vehicle;
2. aneighboring vehicle receives from any relay;
the vehicle receives from a neighboring relay;

a neighboring relay transmits to any vehicle;

a &

the vehicle receives from a neighboring AP.

Recall that we do not model the scheduling of the single pgatkensmitted within each
frame. Rather, we consider the total amount of data carryeeldch flow. Also, in 2)
a neighboring vehicle receiving data is accounted for; @spnce of hidden terminals,
this still holds if the RTS/CTS handshake is used. Considgthat: 1) is a subcase of 2)
and 3) is a subcase of 4), for the generic vertex V* and for any framé:, we have:

w(vf vl x(af vf) N
> 1[<v¢mvf>n<v§w5>]m+ > WST (2.5)

m
v?ERk,vﬁnevk a?GAk:
(v ol )eck (ak o) eck

S

where the indicator functions are defined as before.
In addition, for each candidate AP, we have that its totaldnaission time during
the generic framé cannot exceed the frame duration. Thus, for amﬁdaf c Ak, we

12



2 — Optimal infrastructure planning

have:
x(ak vF)
w(as,vy)
vi.cEVk:
(a;?,vf)ellg

The previous constraints allow a vehicle under coveragendii to use 12V and
V2V communications within the same frame. Next, we consttercase where a ve-
hicle under the coverage of (at least) one AP is not configtmeoperate in ad hoc
mode, i.e., it cannot communicate with other vehicles. THen any framek and
v¥ e RF wf € V¥ such thal(v},v},) € LF, the following constraint holds:

z(vf k) < [ 1= max {yi} | w? ok )k (2.7)

3o = abe Ak, 3
(af v )Il(a i )ELE

wherey;, i« = 1,...,A, are Boolean variables, whose value is 1 if an AP is placed
at candidate location and 0 otherwise. If there is at least an AP within the vehicle
range the first term of the product becondethus imposing that the flow on all edges
(vFok) € LFis.

Overlapping AP coverages.Recall that, when a vehicle falls within coverage of two
or more APs, we assume that, during a frame, it communicatésone AP only, and
that the APs operate on different frequency channels. Wefibre introduce a second
set of Boolean variablaﬁj 1<i<A1<j5<V,1<k<F)whosevalueis1lif
the candidate AR; communicates with the vehiclg during framek and O otherwise.
Then, for every candidate AP vertex € A*, vehicle vertex)} € V*, and framek, we
impose that

e {01} ; Zt’“gl (b W) < w(ab wh)rheh

Maximum number of APs. The last set of constraints imposes that no more than
candidate AP locations are selected, through the variaghld$en, for anyi, we write:

A
yi €401} 5 Y wi <A w(aa)) < My,

whereM € R is an arbitrarily large positive constant.
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2.5.2 Modeling the transfer paradigms

We now describe how the different transfer paradigms intced in Sec. 2.3 are mod-
eled in our formulation.

The traffic transferred through the direct paradigm comeslg to the amount of data
that, at any framé, flows from one candidate AP verteX; € A", tov} € D*. As for
the traffic transferred through connected forwarding, igigpresented as the amount of
data that, at any frami, flows from one relay vertex® € R* to a downloader vertex,
with one or more edges connectinjto the vertex representing the AP that originated
the data. Such a situation indeed corresponds to the case aimaulti-hop connected
path between an AP and a downloader exists. The data treedfidarough carry-and-
forward, instead, correspond to the flow associated with(afiy¥) edge at frame:
(with v} € R* v} € D), such that the relay verteX' is no longer connected (either
directly or through multiple edges) to the vertex represgnthe AP that originated the
flow.

Furthermore, while deriving the results, we consider ttpessible cases. In the
unlimited case, no limitation is imposed to the maximum number of laged to
deliver traffic to a downloader. This is modeled simply usihg constraints listed in
Sec. 2.5.1. In th@-hop limitcase, at most one relay can be employed. This is studied
by imposing that transmissions between relays cannot oi:eu,rx(vf,vf) = 0 for
1 <k < Fandvvf € RF, suchthav},v¥) € L. In thel-hop limitcase, only 1-hop
transfers from an AP to a downloader are allowed; we reptébencase by imposing
thaf: z(vf,vf) =0

for anyk andv; € R* ¥ € V¥ such that(vf v}) € L},

2.5.3 Sampling-based solution

The problem falls in the category of mixed integer linearggeanming (MILP) prob-
lems. We solve the problem through the Gurobi solver, whistsua variant of the
branch-and-cut algorithm.

However, due to the large number of constraints involvinglBan variables, solv-
ing the MILP on the full DNTG is impractical for large instaex(e.g., large geograph-
ical areas, high number of vehicles participating in theteohdownloading, or large
number of candidate AP locations). To be able to analyze sashs, we resort to a
graph sampling approach. More specifically, we take thewig steps:

1) we sample the DNTG obtaining a small, yet representativie,graph, which includes
all relevant candidate AP locations (as detailed below);
2) we find the optimal AP deployment using such a sub-graph;

3The flow conservation constraints ensure that no positive diists from a candidate AP vertex to a
relay vehicle vertex.
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3) we apply the obtained deployment to the full graph andnoige the flows, a linear
programming (LP) problem that can be easily solved as it ca¢snvolve Boolean
variables.

In order to accomplish the first step, the selected sub-gmayst include they and
w vertices, and reflect the characteristics of the originapgr(e.g., the relevance of
the candidate AP locations). Since we have to collect not armepresentative set of
the graph vertices, but eonnectedsample, uniform vertex sampling is not a viable
option. Thus, we resort to a random walk-based approach §®] devise a tailored
variant of it. Such a variant is needed to effectively copénhe following challenging
peculiarities that our DNTG exhibits with respect to ordingraphs.

First, not only is the DNTG directed, but the flow goes frarto w, while the edges
are specifically directed from candidate AP location vegito vehicle vertices, as well
as from lower to higher values of the frame indexThis implies that it is not possible
to make an arbitrarily long walk on the DNTG; thus, we needdmbine vertices and
edges that are sampled over subsequent multiple short.walks

Second, while walking fromx to w would be a natural choice in ordinary graphs, in
our case this would turn into sampling relay vehicle veditteat may not be connected
with downloaders, hence with (see top Fig. 2.2). To avoid the unnecessary sampling
of these vertices, we let the walks go framo «, crossing each edge along its opposite
direction. Each walk therefore goes framto one or more vertices representing one
downloader, then possibly to relay vertices, to one candid® location and finally to
a (see bottom Fig. 2.2). An example is shown in Fig. 2.2(d). eNibiat, by adopting
such a strategy, we obtain a fairly small subgraph, yet coinigvertices representing
several vehicles (including relays and downloaders), dkaseandidate AP locations.

Another desirable effect of the above strategy is that thelicate AP locations
and the relays are sampled with a frequency that is prop@itio the number of paths
betweena andw passing through them, while the downloaders are sampldd avit
frequency that is proportional to their trip duration. Weppart such a statement by
looking at the correlation between the relevance of candid# locations for content
downloading, and the number of walks including each candid&® location. The
relevance is expressed as the amount of data per secondngubigom each candidate
AP location under the max-flow solution in the full DNTG, iretecenario in Fig. 2.4(a)
with A = 60. As is clear from Fig. 2.3(b), there is a strong correlatidrewwalks start
from w; conversely, with the standard sampling (i.e., for wallestgig fromc) there is
no evident correlation (Fig. 2.3(a)).

The performance obtained by solving the max-flow over thgdg@adDNTG is com-
pared to that attained by using the full graph in Sec. 2.7.1.
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Figure 2.2. Example of a DNTG sampling when walks cross edgh along its direc-
tion (a) or its opposite direction (c). Resulting samplealbdrare in (b) e (d), respectively.
Arrows refer to the walk direction (left figures) and to theyedlirection (right figures)

2.6 Reference scenarios

We consider real-world road topologies representing difieenvironments, namely the
urban area of Zurich, the village area of Schlieren and therdan area of Wallisellen,
in Switzerland. Each road topology covers an area of 28, kine vehicular mobility in
the region has been synthetically generated at ETH Zuri¢h [Phe macroscopic- and
microscopic-level models employed to produce the movertranés allow a realistic
representation of the vehicular mobility, in terms of badige-scale traffic flows and
small-scale V2V interactions. Although our model can acemdate any frame dura-
tion, so as to reflect, e.qg., faster variations of the linkliggagiven the 1-second time
granularity of the trace, we considef > 1s(k =1,...,F).
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Figure 2.3. Number of times that a vertex corresponding taraliclate AP location
is sampled, vs. the amount of data per second downloadedgthttat AP in the full
DNTG. Walks start fromy in (a) and fromw in (b)

Since we use a realistic mobility model, in each road topplbg vehicular traffic
intensity varies depending on the road segment and timeeofldly. In Figs. 2.4(a)—
2.4(c), we report the road layout of the urban, village arlsligiian environments, high-
lighting the different traffic volumes observed over eachdr'segment: thicker, darker
segments identify the roads characterized by higher viridensity. As far as ve-
hicular traffic variations over time are concerned, we ad&sbnly time periods cor-
responding to medium-high vehicle density. In the urbalage and suburban traces,
each lasting about 5 hours, this leads to an average den&@y 62.5 and 33.5 veh/km,
respectively.

We consider different values of the technology penetratain, i.e., the fraction
of vehicles equipped with a communication interface andinglto participate in the
content downloading process; we denote such a parameter Also, the percentage
of such communication-enabled vehicles that concurreatiyest content, i.e., that act
as downloaders, is denoted #yUnless otherwise specified, we will consides 0.01
(i.e., 1% of the vehicles participating in the network) — asenable value as observed
in wired networks [28].

The value of the achievable network-layer rate between anynibdes is adjusted
according to the distance between them. To this end, weteethe 802.11a experimen-
tal results in [4] to derive the values shown in Fig. 2.4(d)d ave use them as samples of
the achievable network-layer rate. Note that we limit theim@am node transmission
range to 200 m, since, as stated in [4], this distance allbevestablishment of a reliable
communication in 80% of the cases.

Given the above settings and thaAPs have to be deployed, in the next section we
present the performance obtained by solving the max-flowlpro on the full DNTG,
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Figure 2.4. Road layout in the urban (a), village (b) and oo (c) scenarios,
and characterization of the achievable network-layeraata function of distance,
based on experimental data (d)

or on its sampled version. We thus attain the optimal AP dapént as well as the val-
ues of the flow variables corresponding to the amount of datedownloaders receive.
Using the flow values, we can then compute: (i) the per-useutihput, as the ratio
of the amount of received data to the downloader trip dunaifio) the fraction of traf-
fic delivered through the direct, connected forwarding,amgand-forward paradigm;
(i) the Jain’s fairness index, computed on the averageutinput obtained by each
downloader; (iv) the average packet delivery delay from éEdwnloader, accounting
for both 12V and V2V communication.

Our problem formulation can also accommodate any specifidéfloyment by
fixing the values of the binary variables. The system throughput is then obtained
as the output of the max-flow problem given the selected ARtionsy;. Solving the
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max-flow problem implies the optimization of the traffic sdbéng, i.e., the values
taken by the V2V and 12V flow variables at any frarhe(z(v¥ v}), z(a¥,vf)). The
results thus represent the best performance achievabkr timel chosen deployment
and the assumptions made in Sec. 2.3.

We leverage the capability of our framework to model diffeér&P deployments and
explore the following strategies:
Random: A locations are randomly selected among the candidate ocesding to a
uniform distribution;
Crowded: A locations are picked, whose coverage area exhibits, aver, the highest
vehicular density;
Contact: A locations are selected, which maximize the sum of the confgmrtunities
between vehicles and APs. Inspired by the metric adopted]jrfdr each vehicle we
express the contact opportunity as the fraction of the reapment lengths traveled
while under coverage of at least one AP.

2.7 Performance evaluation

In this section, we evaluate the performance of content ttmading in vehicular net-
works, by assessing the impact of different settings onybtes.

Specifically, in Sec. 2.7.1, we evaluate the impact that #mepration rate of the
vehicular communication technology, has on the content downloading performance.
Our results reveal the existence of two regimes, separatitigl deployment stages
(characterized by < 20%) from a mature technology (i.e2,> 30%).

These two working regimes are analysed in detail in Sec2aid Sec. 2.7.3, re-
spectively. For each regime, we discuss the impact of the &ftogment strategies,
transfer paradigms and the road environment on the dowmggerformance. For the
high-penetration regime, we also investigate the systémaner as the percentage of
concurrent downloaders varies and in presence of overigpiP coverages.

2.7.1 Impact of vehicular communication technology adoptin

As afirst step in the evaluation of vehicular content dowding, we look at the impact
that the diffusion of 12V and V2V communication technolagjleas on the system per-
formance. To that end, we consider different values a§ well as different extensions
of the roadside AP deployment. For clarity, we focus on theanrscenario depicted in
Fig. 2.4 and we consider the AP deployment obtained by spli¥ia max-flow problem
on the full and the sampled DNTG. Also, we study non-overiag@\P coverages and
constrain V2V relaying to 2 hops from APs; these assumptiahbe relaxed later on.
Fig. 2.5 portrays the evolution of the key performance mstwhen the technology
penetration ratep, varies between 5% and 80%. The curves refer instead taehife
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Figure 2.5. Max-flow strategy: Average per-downloader ulgiput (a), de-
lay (b), fairness (c), and V2V downloading fraction (d) ys.for different AP
deployment extensions

extensions of the roadside infrastructure, ranging febra: 15 to A = 60 APs. Note
that the latter value essentially corresponds to a compteterage of the road topology
by the APs. The results obtained using full and sampled DNfecdanoted by thick
and thin lines, respectively.

Throughput. The average per-downloader throughput, in Fig. 2.5(ayery sat-
isfying in all conditions, scoring well above 10 Mb/s evenldmw-p, low-A scenarios,
and more than 20 Mb/s in presence of a wide 12V and V2V techgyoémloption. When
separating the effects af andp, the availability of a more pervasive (although non over-
lapping) infrastructure coverage helps at both low and {pghetration rates, although
its impact is lower than one could expect. Indeed, a pereg&d+AP deployment only
results in a constant 3-Mb/s gain over a simple 15-AP depéwmHigher improve-
ments can be instead obtained from the spread of in-car comeation interfaces, with
an average throughput increase of 8 Mb/g gsows from 5% to 80%. We remark that
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the steepest throughput growth lies between 5% and 20%rnatinatrate.

Delay. Delays, in Fig. 2.5(b), are in the order of tens of secondeal result when
considering the delay-tolerant nature of most V2V trarsf&e can observe different
behaviors for low and high values pf Forp < 20%, an increase in availability of
relays leads to more frequent V2V transfers, hence highaygdeWherp > 30%, the
already pervasive presence of relays makes the impact ofregber penetration rates
negligible. Also, a denser AP deployment helps reducingdélay, although such a
gain is significant only wher is low.

Fairness To get an insight on how the system throughput is actuablyesthamong
the downloaders, Fig. 2.5(c) shows the Jain’s fairnessxindé@e increase in penetra-
tion rate has a major impact since it implies a growing nunub&f2V communication
opportunities. Indeed, for low values pfdownloaders travelling over secondary roads
have fewer chances to benefit from traffic relay than dowrdoatravelling on main
(typically, more crowded) roads. It follows that some urnass arises for low penetra-
tion rates, while the system becomes fair for medium-highesofp. Also, the larger
the 4, the higher the level of fairness, as both main and secornrdads can be covered.

Transfer paradigm. The above observations on the fundamental role of V2V traf-
fic relaying is confirmed by the results in Fig. 2.5(d), deppigtthe fraction of con-
tent downloaded through relay vehicles. Indeed, most ofcth@ent is received by
downloaders from relays (through either connected forimgrdr carry-and-forward).
Clearly, the importance of V2V communication tends to groihwhe penetration rate
p, since the availability of additional relays allows a manéehsive utilization of the
wireless resources. More surprisingly, the presence atiaddl APs only marginally
reduces the utilization of V2V communication, and, at highues ofp, more than 80%
of the data is downloaded through relays even when the whale surface is covered
by APs. We will further comment on this phenomenon later ia fection.

Problem solution. Fig. 2.5 highlights the effectiveness of the samplingellaech-
nique introduced in Sec. 2.5.3, when compared against tiiaption solution on the
full DNTG. The performance results obtained with the lagter shown in all the plots as
thick grey curves, while the thinner lines represent theoute of the sampling-based
solution. The throughput and delay loss induced by the sagpte negligible, and the
fraction of V2V downloading is identical in the two cases.eTdnly noticeable differ-
ence can be observed in terms of fairness, since, by santpknggertices representing
the candidate AP locations with higher weight, APs on seapndoads are seldom
activated in the max-flow solution, thus reducing the le¥éaoness.

We remark that sampling the DNTG allows to solve significamtlore complex
instances of the max-flow problem. As an example, in the pbtsig. 2.5, memory
requirements become too demanding for the solution of timeptete problem when
more than 20% of the vehicles are part of the network.
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Figure 2.6. Low-penetration regime: Average per-downéodbroughput (a) and delay
(b), vs. A, for different AP deployment strategies

Summary. The performance metrics are consistent in revealing tiieadrimpor-
tance of the penetration rgteand the lower impact of the roadside infrastructure exten-
sion. Accordingly, we can separate two regimes. The firserwh< 20%, i.e., at early
stages of the technology adoption, characterized by Ioweughput and higher delay,
a stronger dependency on direct 12V communication and lal@emloading fairness.
The second, fop > 30%, i.e., in presence of a quite mature technology, featunng
stead higher throughput and lower delay, massive use of \@wheunication and high
fairness. As the impact of the system settings is differatitimvthese two regimes, in
the following we will study them separately. According tetresults above, we will
employ the max-flow problem solution on the complete and erstimpled graph in the
low- and high-penetration regime, respectively.

2.7.2 Low-penetration regime

As case study of the low-penetration regime, we congiderl0%. The default settings
include the urban scenario, non-overlapping AP coverag&%p fraction of download-
ers and a 2-hop limit in V2V relaying.

AP deployment Fig. 2.6 shows the average per-downloader throughput alay d
for the different deployment strategies, as the number tif@APs A varies. Overall,
the performance at early deployment stages is satisfacidrg plots confirm that in-
creasingA positively affects the downloading performance. Howeiteis also clear
that the extension of the infrastructure deployment is neateal when the number of
active APs is low. Indeed, activating 20 APs yields a 8-Mhfeughput and 35-second
delay gain over a 5-AP deployment, while the activation afiadnal 40 APs only leads
to mere 3-Mb/s throughput and 15-second delay improvement.
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Figure 2.7. Low-penetration regime: Fairness (a) and CDFRhef per-downloader
throughput whem = 15 (b), for different AP deployment strategies

The figure also highlights the impact of different AP depl@nhtechniques in the
low-penetration regime. As one can expect, the AP placemietdted by the Max-
flow strategy guarantees the best performance in terms bfthodughput and delay,
while a Random deployment of APs yields the worst result. Adegments based on
the Crowded and Contact approaches fall in between. If tifeqmeance ranking of the
deployment strategies is constant throughout all valued,ahe same is not true for
the relative gain. Indeed, when a few APs are activated, bplained deployment can
result in a 200% throughput gain over a random placementhédastmber of deployed
APs grows, such an advantage is progressively reduced:rticydar, when APs cover
more than 50% of the road topology (i.el,> 30), using non-optimal approaches to
AP deployment makes the performance quickly close in tosvdrdse achieved with a
random placement. Finally, as the active APs tend to covemtole region, optimal
and non-optimal strategies yield similar performance.

Fairness As shown in Fig. 2.7(a), the system favors downloaderstliag on the
main roads when is low, while user experience tends to be leveled as more amd m
APs are activated. The Max-flow deployment results in a diyghirer system, while
no significant difference can be appreciated among nomabflacement strategies.

The reason for the unfairness for small AP deployments estigated in Fig. 2.7(b),
for A = 15. The plot reports the CDF of the per-downloader throughgud, shows a
large heterogeneity in the amount of content obtained kieréift users. On the one
hand, a significant percentage of downloaders, between 20%@%0 depending on the
deployment strategy, experiences zero throughput. Onttier,dhe luckiest 10% of
downloaders enjoys a throughput ranging between 16 and 28.Mb
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Although fairness in content downloading is not an objext¥the max-flow prob-
lem*, we point out that such unfairness is only marginally due wo formulation.
Rather, it can be attributed to the very different condgiorcurred in by downloaders in
a realistic mobility trace, such as various traffic inteysit the roads they travel on, or
different time intervals spent within coverage of the AP#hiair trip. This is confirmed
by the limit curve in Fig. 2.7(b), which presents the CDF of thaximum achievable
throughput, i.e., the throughput that each of the downlmantethe trace would experi-
ence if it were the only downloader in the network, with al@arces and relays at its
disposal. Not even in such ideal conditions one can guagdaimess among all users,
given their different trips. More pervasive AP coveragesg.(2.7(a)) or additional re-
laying opportunities (Fig. 2.5(c)) can help to reduce digjges, by providing transfer
paths to downloaders travelling on secondary routes.

Transfer paradigm. The fraction of content downloaded through vehicularygia
shown in Fig. 2.8(a). Across almost all AP deployment stiat® the V2V downloading
fraction is around 0.8 when a low number of APs is activated|, #tien decreases as
A grows, i.e., as a direct access to the infrastructure besonwee pervasive. This
is a rather intuitive behavior that, however, yields anreséing result when coupled
with the average per-downloader throughput, as in Figb2.8(here, we can observe
that the fraction of content downloaded through V2V relagyis somewhat constant,
contributing approximately 5 Mb/s to the overall throughpeagardless of the number
of deployed APs. Also, the dominant relay paradigm is camg-forward.

4We remark that, in an attempt to provide the downloaders faitier performance, we have consid-
ered a max-min formulation instead of the max-flow one. Havedue to the diversity in the downloader
conditions highlighted next, no minimum positive throughpould be guaranteed.
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A quite surprising result is that, even when APs fully coves toad topology (for
A = 60), V2V relaying is still widely employed in the downloadingaeess. The
reason behind such a phenomenon is unveiled in Fig. 2.%ayory the average per-
downloader throughput as a function of the downloader degtdrom the closest AP, for
the Max-flow and Crowded (i.e., the most performing) strieeg The plot highlights
the portions of traffic transferred through the differentgadgms. As one would ex-
pect, direct 12V transfers can only occur within the AP trarmssion range, and a 2-hop
connected forwarding reaches at most twice such a dist®@aey-and-forward is not
distance-bounded, hence it can reach downloaders thaepréar from APs.

However, a key observation is that V2V relaying frequentgurs within range of
APs. In fact, at a distance of 100 m, i.e., half of the maximuamgmission range of
the AP, communication largely takes place through relay& réason is that our model
realistically accounts for the network-layer rate deceeagth distance, hence making
the use of high-rate multi-hop paths preferable to low-ditect transfers. This explains
why, even in presence of a pervasive AP coverage, relayiegnoyed to improve the
wireless resource utilization and, thus, the overall tigiqaut.

Unlimited relaying. All previous results assumed a 2-hop limit in data trarssfer
basically constraining V2V relaying to one hop at most. Wevmelax this assump-
tion and compare three different scenarios, where (i) omgctl 12V communication is
allowed, (ii) the 2-hop limit is enforced, and (iii) unlineidl relaying is allowed.

Fig. 2.10(a) depicts the average throughput achieved inhitee cases, when the
APs are deployed according to the Max-flow strategy. It isuckhat, in absence of
relaying through vehicles, downloaders can only leverageeticontacts with the APs,
which leads to a significantly lower throughput. Allowingiage relay between APs
and downloaders yields a throughput gain between 150% a%g @8pending on the
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Figure 2.10. Low-penetration regime: Average per-dowadwathroughput (a) and
transfer paradigm split-up (b), when APs are deployed aiagrto the Max-flow strat-
egy. In the latter plot, the number of relay hops in uncoirstch

coverage provided by the infrastructure. Even more intergly, considering transfers
over 3-hop long or more yields almost no advantage over the wéiere a 2-hop limit
is enforced.

In order to explain the latter effect, we fragment the dowadiog throughput mea-
sured in the former scenario, according to the number of h@gpeled by packets to
reach their destination. Fig. 2.10(b) shows how, even wimdimited hops are allowed,
a large majority of the relayed data traffic arrives at dedtom in just two hops. There
is a small probability of going through 3 hops, while 4 hopsmare are almost never
employed. Indeed, when comparing Fig. 2.10(b) to Fig. 3,8(ks clear that the avail-
ability of additional hops, which grants more flexibility tbe max-flow problem so-
lution, only leads to minor adjustments that have a nedkgitmpact on the overall
downloading performance.

Road environment The average per-downloader throughput recorded in tlee thr
road topologies presented in Sec. 2.6 is portrayed in FidL(d), when the APs are
deployed as dictated by the Max-flow strategy.

The overall performance trend in the new environments is#me as already ob-
served in the urban scenario, thus our considerations ombact of the AP deploy-
ment also hold for the village and suburban environments.

However, we can observe that the relative result in subudmahvillage environ-
ments differs from that measured in the urban case. On thbame, the throughput in
the village scenario is lower than in the urban one, with aificantly reduced utiliza-
tion of V2V relaying. On the other, the suburban scenaritdgi@igher V2V download
fraction and per-downloader throughput.

The reason for these different behaviors is found in therdez@ature of vehicular
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Figure 2.11. Low-penetration regime: Average per-dowtéwathroughput (a) and
fraction of data downloaded through V2V (b) vsi, in different road environments.
APs are deployed according to the Max-flow strategy

traffic in the tree regions. By looking at Fig. 2.4(b), it igal that fewer vehicles circu-
late in the village environment than in the urban one: thaisafgivenp, fewer vehicles
participate in the content downloading as relays. Moredtertraffic is distributed over
the road topology quite evenly, which makes it difficult todfian AP deployment that
well covers most of the vehicular traffic. As a result, dovaders in the village scenario
are penalized in terms of throughput.

In the suburban scenario, the car traffic volume is closeabdhserved in the urban
environment, which means that the number of available sdalathe two cases is similar.
However, the suburban region is characterized by a few tragffie thoroughfares and
many low-traffic secondary roads. As the vehicular traffedsoncentrated, it is easier
to deploy a few APs in the right locations; also, downloaderge higher chances of
meeting many relays on their way. Thus, drivers in the sudnudnvironment typically
enjoy a higher throughput.

Summary. In the low-penetration regime, the early infrastructugpldyment stages
are critical. When just a few APs are activated, the polioysamn for their placement
has a major impact on the user experience, as optimal deplagnead to a through-
put twice or three times higher than that observed with easeplacements. Moreover,
the activation of a few more (or less) APs dramatically afebe throughput, delay
and fairness of the system. Since the downloading perfacmdaring early adoption
phases will play an important role in attracting new usédrs, AP deployment should
be carefully studied when introducing the technology. Gusely, the placement of too
many APs may have a small impact on the downloading perfoceanhile signifi-
cantly increasing the deployment and maintenance costs.
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Figure 2.12.  High-penetration regime: Throughput (a)agéb), fairness (c), and V2V
downloading fraction (d) vsA4, for different AP deployment strategies

One should not expect the system to be fair, or to have sipégormance in dif-
ferent road environments, since the diversity in the rotreageled on by drivers lead to
intrinsic differences in their download experience.

As a final remark, our results suggest that the complexityesighing multi-hop
relaying protocols can be safely avoided, by limiting thegass to one relay, without
incurring in performance penalties. This confirms recertifigs on bus networks [15,
21], which thus apply also to a more general vehicular doadtilog context.

2.7.3 High-penetration regime

In the high-penetration regime, we consiger 50% and the max-flow problem is
solved on the sampled DNTG. Once more, the default settimgade the urban sce-
nario, non-overlapping AP coverages, a 1% fraction of doadérs and a 2-hop limit
in V2V relaying.
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AP deployment The overall performance is outlined in Fig. 2.12, for diéfiet
extensions and strategies of the roadside infrastructepéogment. When comparing
the results to those obtained in the low-penetration regiwes observe a significant
improvement in the absolute value of the throughput, in Big2(a), that now reaches
more than 20 Mb/s — a clear effect of the increased avaitgloitirelays. The throughput
growth is much faster as additional APs are deployed, withlg@ptimal performance
attained with as few as 15 active APs. This is due to the faat tblays can now
easily compensate for undersized infrastructure, as aswdstrated by the extremely
frequent utilization of V2V communication, in Fig. 2.12(é@mployed in 80% to 98%
of the transfers.

As far as delay is concerned, Fig. 2.12(b) exhibits a pecbkdavior. Given the
high number of users, several downloaders happen to travekoondary roads. For
a very low number of APs, such roads are scarcely covered¢ehenumber of down-
loaders experience zero throughput. Their delay is notuateal for, and the dominant
contribution is limited to the few lucky fast downloaderss the deployment becomes
more widespread and increases, more downloaders experience non-zero coverage
time, including those on secondary roads where the chanaesity on the download
are few and far between. For even denser deployments, slagfs@ee mitigated by the
availability of more APs.

Finally, the massive presence of relays helps to reducetfagrness, in Fig. 2.12(c),
as downloaders have high chances to meet relays, regaodlibgsroute they take.

Concurrent downloaders In presence of a wide diffusion of 12V and V2V com-
munications, the downloading activity by users partidiggain the system is likely to
grow. Thus, in the high-penetration regime, it is importantévaluate the impact of the
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amount of concurrent downloaders, i.e., users requesbimg £ontent during the same
time interval.

In Fig. 2.13, we observe the impact of the concurrent donwddo#&actiond on the
system performance. We consideranging between 0.01 and 0.2, the latter represent-
ing a highly-loaded system, in which one out of five users isrdoading some content
at any time instant.

As one could expect, when the system load grows, increabmguumber of APs
comes in handy, and can noticeably improve throughput Ei(a)) and system fair-
ness (Fig. 2.13(b)). Also, increasing the demand (espgciat d > 0.1) reduces the
per-user throughput, due to the augmented contentionédirthited wireless resources.
Less intuitively, fairness degrades@grows: when the number of simultaneous down-
loaders increases, vehicles travelling on secondary respisrience less channel con-
tention, hence higher throughput than vehicles travethimghain (more crowded) roads.
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Figure 2.14. High-penetration regime: Throughput (a) aadtfon of data downloaded
through V2V (b) vs.A, whend = 0.05. The case of overlapping and non-overlapping
AP coverages are compared, under the Max-flow strategy

Overlapping AP coverages Given the beneficial effect of additional APs when

p is high, we study the impact of a further infrastructure azten by allowing AP
coverages to overlap. Fig. 2.14 compares the throughpuva@wddownload fraction
obtained when non-overlapping and overlapping AP coverageallowed. The results
have been obtained for a relatively high downloading demaanchely,d = 0.05. When
overlapping among AP coverages is not allowed, only 60 chdilocations can be
considered. Conversely, such a number grows to 90 when tlezange of any two can-
didate APs can overlap. Observe that, for a fixed number of fiegpossibility to have
overlapping coverages leads to a marginal improvementipén-downloader through-
put. As shown by Fig. 2.14(b), the reason for this behavianise more that the V2V
traffic relaying tends to compensate for the lack of flexipibf the non-overlapping
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Figure 2.15. High-penetration regime: Average per-doadés throughput (a), and
fraction of data downloaded through V2V (b) 4, in different road environments. APs
are deployed according to the Max-flow strategy

deployment.

Road environment Fig. 2.15 shows the throughput and V2V download fraction in
the urban, suburban and village scenarios. As already wixdén the low-penetration
regime, also in presence of highthe road topology has a major impact on the down-
loading process. However, the relative performance oftireetscenarios are different
with respect to those in Fig. 2.11. The highest throughpoois achieved in the urban
scenario, while drivers in the suburban and village envitents experience similarly
worse performance.

The reason lies in the increased contention for resouroésiced by the higher
participation of vehicles in the network. In the urban secenanany vehicles travel
over different roads, which basically allows a spatial eeathe wireless medium. The
village scenario is similar to the urban one, in that velactraffic is quite evenly spread
over the road topology; however, the lower number of vekickgluces the availability
of relays, as also evident from Fig. 2.15(b). In the suburb@nario, instead, a high
vehicular density is concentrated on a few roads: the cargsggchannel congestion
yields reduced per-downloader throughput.

Summary. The analysis in the high-penetration regime significaiffgrs from the
early technology adoption phase. When the technology isiraa&nd spread enough,
the infrastructure deployment will play a minor role, andeavf randomly deployed
APs will suffice to achieve near-optimal downloading parfance. Indeed, V2V com-
munication will be able to sustain the system, no matter tigetying AP placement.
Pervasive non-overlapping APs will be needed only in casetéchnology attains a
level of success such that the number of concurrent dowatsagtows well above the
percentages today’s recorded in wired networks. In thig,casannel contention will
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Figure 2.16. High-penetration regime: Average per-doaddo throughput (a)
and delay (b) obtained through model and simulation, astineber of APs and
the deployment strategy vary

become the primary constraint to the downloading perfoceawith 12V and V2V
transfers contending for air time across the whole roadlogyo As such, redundant
coverages will not yield a significant throughput gain anavadimaders travelling on
more crowded roads will experience worse performance.

2.8 Impact of MAC and physical layer modeling

The max-flow problem we formulate relies on a simplified maxfelhannel access and
RF signal propagation. Since our goal is to derive an uppent@o the performance
achievable in a real-world deployment, these assumptiomsi@t especially limiting.
However, one may wonder about the impact that more reaM€ and physical layer
representations have on the system, i.e., how much thailizdéion contributes to shift
the upper bound away from the actual performance.

Including complex models of signal propagation and laygré&ocols in the opti-
mization problem is unfeasible, thus we rely on simulatiorevaluate these aspects.
More precisely, we employ ns-3, due to its remarkable aoyuiramodeling both the
physical and MAC layers, including the SINR and the bit emaiie computation. At
the physical layer, we adopt a log-distance propagatios hesdel with exponeri.o;
the transmit output power is set to 16 dBm. At the MAC layer,use IEEE 802.11a
with the AARF rate adaptation algorithm [29]. For each scenave feed the optimal
scheduling to the simulator, and observe the performaneadit downloader.

Fig. 2.16 depicts the average throughput and delay in the abkigh-penetration
regime. We report the results of the max-flow problem on thhepted DNTG and those
obtained under the Crowded strategy. The optimizationlprolbesults are compared to
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ns-3 simulations. It is evident that the difference in battotughput and delay is limited

in all cases, which demonstrates the reduced impact that BJphysical layers have
on the overall performance. Indeed, it is the optimalityra scheduling that plays the
most important role in determining the downloading expeseeof the users, rather than
the local channel access coordination of individual trassions.

Similar results have been obtained for the less critica¢ cdghe low-penetration
regime.

Moreover, we stress that plots are limited to 30 APs alongxthgis, since larger
simulations would have required an exceedingly long cowrtpartal time. This fur-
ther underscores the usefulness of our formulation, whigkes much more extensive
evaluations of the downloading system feasible.

2.9 Conclusions

We proposed a novel framework based on time-expanded gfaptise study of con-
tent downloading in vehicular networks. Our approach adléavcapture the space and
time network dynamics, and to formulate a max-flow problenoséhsolution provides
an upper bound to the system performance. Through a grapplisg technique, we
solved the problem in presence of realistic, large-scalees, and we analysed the im-
pact of several key factors on the performance limits. Satoh results showed that
the physical- and MAC-layer assumptions on which the fraprewelies have a minor
impact, leading to a tight upper bound.

The major findings in our analysis are as follows.
(i) Two separate regimes, characterized by different perémce and impact of the sys-
tem settings, emerge at different technology penetrattesr In a typical urban sce-
nario, the watershed arises when 20-30% of the vehiclexpate in the network.
(i) The strategy and the extension of the AP deployment playajor role in the low-
penetration regime, with well-planned deployments legdm a throughput twice or
three times higher than that observed under a carelessydateln the high-penetration
regime, instead, even a random AP deployment works welllam@ervasiveness of the
APs becomes important only in presence of high downloadamgahd.
(iif) The contribution to performance of V2V traffic relaygnis of fundamental im-
portance. It can compensate for reduced coverage as wetir as rion-optimal AP
placement, with such an effect becoming more and more evedathe technology pen-
etration rate increases. Interestingly, the contribuabW2V communications remains
relevant even under a pervasive AP deployment and in botktgion regimes, as
optimal scheduling tends to favor high-rate V2V transfarsrdow-rate 12V communi-
cations.
(iv) Knowledge of user mobility is critical to the system fm@mance, since most of
the V2V traffic relaying takes place through the carry-aoowiard paradigm. However,
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the complexity of multi-hop protocols can be limited to oméay, as the contribution
of transfers over a higher number of hops is negligible. Ateriesting direction for
future research is therefore the design of protocols thahkroadside infrastructure
acquire accurate estimates of the vehicles encounter typptdes, and the definition of
a scheduling algorithm that effectively leverages sucbrmition. We remark that, by
using edges with probabilistic instead of deterministicghes, our graph-based model
could be extended to account for the uncertainty in the niglaistimates, and to eval-
uate its impact on the system performance.

(v) The structure of the road topology and the route folloviegdvehicles determine
the downloading performance experienced by the users. , Tdnesshould adapt the
system configuration to the characteristics of the roadrenment. In any case, some
unfairness should be expected unless there is a pervasisemue of APs and relays,
and the number of downloaders is not overwhelming.
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Chapter 3

Dealing with uncertainty

3.1 Introduction

In the previous chapter, we have has established that, ir dodefficiently support
content downloading, (i) RSU deployment should target tlieasexpected to be most
crowded by vehicles and (ii) 12V content transfer should b@plemented by V2V data
relaying.

A part of the picture is still missing, though. Given the @bpito delivery infor-
mation to passing by vehicles through a carefully plannadRSU deployment, what
exactly should be delivered to them? A spotty coverage cmelet expectations only on
condition that the short time under coverage is fruitful:URShould prefetch the con-
tent so as to have it promptly available for passing-by MeBicequesting it. Matching
between storage at RSUs and demands by vehicles is, howesssr said than done.
One possibility is that RSUs have access to the content deawaah to predictions of
mobility patterns, and exploit them to take prefetchingisieas, as in [16]. Addition-
ally, to make V2V transfers more effective, RSUs can leveragimilar approach for
I2V communication toward relay vehicles deemed to meet doaders later on.

In order to relieve the cellular network from the contentivily task, our work is
the first to jointly study the problems of content prefetchat RSUs, scheduling of
I2V transmissions and management of V2V relay transfergrésence of inaccurate
mobility prediction.

To do so, we model the uncertainty affecting the mobilitydicgon through dog-
of-war probabilistic representation of the inter-node conta8tgh a model can provide
an abstraction of any prediction technique and allows usdwa@onclusions of general
validity (Sec. 3.3). The output of the fog-of-war model idgo build a time-expanded
graph with probabilistic weights, representing the evolubf the inter-node contacts
(Sec. 3.4.1). We exploit the graph to formulate an optinnbreproblem, to be solved at
each RSU, that jointly addresses content prefetching aneldsding (Sec. 3.4.2). The
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data scheduled by RSUs toward relays are then deliveredtoldaders, according to
different schemes, namely, a greedy strategy exploitinmpdpnistic encounters and a
RSU-driven scheduling of relay-to-downloader transnoissi(Sec. 3.5). In our perfor-
mance evaluation, we compare the offloading efficiency ofsiretem outlined above
against benchmark solutions. Furthermore, we accounh®mbpact of the social be-
havior of vehicular users on relay-based content transheid assess its benefits on the
capability of ITS to relieve the cellular network (Sec. 3.6)

3.2 System model

We consider a DSRC-based vehicular network composed oflenabers and fixed
roadside units (RSUs), deployed over a road topology theisis covered by a cellular
infrastructure. As depicted in Fig. 3.1, RSUs provide a pbut high-throughput,
inexpensive connectivity to vehicles, whereas the cellddwork guarantees seamless
coverage, which however comes at some connection cost.

Users of the vehicular network may becowi@wvnloadersi.e., they may wish to
retrieve different types of data from the fixed network (etloe Internet). Assuming that
vehicles have both a DSRC and a cellular radio interfacetipieitransfer paradigms for
content delivery are possible. More precisely, downloadan exploit the ITS network
to performdirect transfers from the RSUs, or to be assisted by other vehiclesgaas
relays In the latter case, we consider connected forwardingtradfic relaying through
a connected multi-hop path, as well as carry-and-forwaed, traffic relaying through
vehicles that store and carry the data before deliveringntteethe target downloader.
Alternatively, downloaders can resortdellular transfers, in order to retrieve the desired
content from the fixed network.

We model the downloaders’ demand by considevimgitthey request andowthey
get it, as follows. As far as thehatis concerned, we account for the fact that users
may belong to social groups, characterized by, e.g., plgnreatching mobility patterns
or long-lived contacts. Vehicular users of a same groupesitcontents with the same
probability distribution, so as to reflect the correlatia@tieen a user’s social group and
the information it requests [30]. Regarding tien, downloaders try at first to obtain the
data through inexpensive opportunistic exchanges with$&d relay vehicles. If the
desired content cannot be fully retrieved within a time diead", the downloaders will
pay to fetch the remaining portion via a cellular transfeoté\that this model provides
an incentive for users to offload the cellular network thioUGS.

Next, we detail the operations that the network and the usaidsrtake during the
content downloading process.

A user wishing to retrieve a content generates a request bot@amet-based query
management system, via either an RSU or the cellular netji@k Such a manage-
ment system forwards the pending request to the RSUs ind¢laendrere the downloader
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Figure 3.1. Network system

is traveling. RSUs are then in charge of (i) fetching porsioh the content from some
server storing it, and (ii) delivering the data to the tardetvnloader directly, or to a
relay vehicle deemed to meet the downloader later on.

Itis clear that, in order to efficiently use the network reseg over the backbone and
the airtime on the wireless medium, RSUs must take contefefmhing and scheduling
decisions by foreseeing future direct or relay transferoofymities that involve down-
loader vehicles [31, 32]. To that end, we assume that a fetedahe future 12V and
V2V contacts is periodically issued by a traffic manager ® R8Us, as in emerging
real-time traffic monitoring systems [33]. Such informatiaso includes the identity
and pending queries of downloaders that are in the netwothkeatime of the issued
forecast; we stress that the traffic manager is instead usaféuture content requests.

Based on such contact information and taking into accowntdteB at which data
can be retrieved from the server, the RSUs make locally @tdecisions on which
data to prefetch and toward which vehicles (either relaydawnloaders) they should
be transmitted. If RSUs delegate portions of content toysgland these are in range
of, or subsequently meet, a downloader interested in suabnteist, V2V transfers
occur. Multi-hop data transmissions, be they of the coretefrwarding or carry-and-
forward type, are limited to two hops from the RSU, since #hisady allows for nearly
optimal performance [23]. We also remark that all vehiclesassumed to be available
to relay traffic whenever they are not receiving data from &URFinally, given the
storage capabilities of today’s communication nodes, tamory capacity at RSUs and
vehicles is not considered to be an issue.
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3.3 The traffic manager prediction

We assume that the traffic manager predicts the node molilitytime granularityo;

in the following, we refer to the interval of durationas time step. The prediction is
updated every{ steps, upon the reception of new information on vehicletprs. We
also consider thal/ is the time horizon over which the prediction is made.

Based on the predicted positions of vehicles, the trafficaganconsiders that two
nodes (either mobile users or RSUs) are neighbors if thetadce is below or equal
to their maximum radio range. Then, by defining a wirelesk hared by a pair of
neighboring nodes asantact it forecasts the contacts existing at each of the iéxt
time steps. A contact may extend over multiple steps andaiis ite can be related to
the node distance and propagation conditions (see, eegdetbcription in Sec. 3.6.1).

To model the limited accuracy in the prediction of the cotgamnd their character-
istics, as compiled by the traffic manager, we adopt a prieditechnique-independent
approach. Rather than considering one specific predictiethodology (e.g., among
those cited in Sec. 3.7), we propostg-of-war modelwhich provides an accurate ab-
straction of virtually any prediction technique and acdsuar different precision levels
of the forecast [34].

More specifically, letP(u,H ) be a contact prediction generated by the traffic man-
ager at step for the nextH steps. Given that the prediction accuracy may be affected
by several sources of error, we assume actual V2V and 12\actsbccurring between
the present timey, and the prediction horizom,+ H — 1, to be affected by a Gaussian-
distributed noise with zero mean and varianc¢e More formally, for each contact
between a generic node pair starting at gtep[u,u + H ), we extract a realization of
the noise. Ifiy| < 1, we associate a probability— |»| to the contact, which expresses
the likelihood with which the traffic manager expects thetaohto take place. Oth-
erwise, the contact is evicted and a nepuriousone is created and associated with a
probability equal tanin{|~| — 1,1}. The nodes sharing the spurious contact are chosen
randomly among the network nodes and inherit the durati@hdata link rate of the
true contact that it has replaced. This simple model allosviwcapture the possibility
that prediction techniques underestimate actual confgpbrunities, wherjy| < 1,
and wrongly forecast future contacts, when> 1.

The variancer? models the accuracy of the prediction, since the larger éne-z
mean noise variance, the less precise the estimation obtireectivity. We express the

variance ag? = o2(k — u) for V2V contacts andr? = ‘;—3(k — u) for 12V contacts.
Indeed, due to the mobility of both link end-points, we expé2V contacts to be af-
fected by a variance that is twice that of 12V contacts. Alse,leto? grow linearly

with £ — u, which accounts for the fact that predicting contacts farth time becomes
increasingly harder. As a result, spurious contacts, appeaith the same frequency

with which actual contacts are evicted, are more frequettteifprediction accuracy is
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low (i.e., higho?) and the estimation is pushed far ahead in time (i.e., largey).

For each contact predicted by the traffic manager (be it cooe not), we also
account for possible errors in the estimation of the duratind the time evolution of
the link data rate. Specifically, we add to the current valuthe contact duration a
random number of steps uniformly distributed betwgen |, and we evict the contact
if the obtained value is not positive. Likewise, we extract® for the whole contact
duration a random value uniformly distributed[inp,p] and we add it to the link data
rate computed at each step. Then, we ensure that the rgseddune is neither negative
nor greater than the maximum data rate. We remark that, bydating some errors on
the prediction of contact duration and data rate, our fegraf model also accounts for
wrong estimates of the number of contacts by the traffic manag

Finally, we point out that, since our fog-of-war model is defi by the values of?,

T andp, by varying them, we can match the output of different preairctechniques. To
verify that, we applied a Markovian prediction techniquete first and second order to
the reference scenario that we use later in our performarataaion (see Sec. 3.6.1).
We found a very good agreement whej¥1.68,7=23.92 ang=8.75, for the first-order
model, and whew§=1.22,7=18.32, and=7.92, for the second-order model. Details
on such an experiment can be found in [34].

3.4 Pre-fetching and scheduling at RSUs

Upon compiling the predictioP(u,H ), the traffic manager forwards it to each RSU
which, inturn, updates it with the contacts with passingelels it actually sees (whether
they were predicted in advance or not). Such contacts aignassa probability equal
to 1, while wrongly predicted 12V contacts involving the R8¢ assigned a zero prob-
ability. Thus, each RSUW; has its own predictio®;(u,H) and updates it as the time
elapses. The prediction is used to generate a directedexpa&nded graph with prob-
abilistic weights (TEG-WP), on which the RSU formulatesreelir programming (LP)
problem that jointly optimizes prefetching and scheduling

3.4.1 Building the TEG-WP

The predictionP;(u,H) allows an RSUr; to model the time evolution of the contacts
between network nodes through a time-expanded graph. 8iegerediction is based
on discrete time steps of durationthe same granularity is used in the construction of
the graph.

In the graph, each vehicle appearing in the predictioB; (u,H ) at stepk € [u,u +
H) is associated to a verte, whereas each RSk) is mapped at each stéponto a
vertexr¥. We denote by* andR* the sets of vertices representing, respectively, the
vehicles and the RSUs at stép At everyk, a directed edge connecting two vertices
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represents the predicted contact between the corresgppédinof nodes. Such edges
are referred to as intra-step and correspond either to IRsJii.e., of the typért vf),

or to V2V links, i.e., of the typéuv),v* ). We denote the set of 12V edges during skep
by £%, and that of V2V edges bg*. Every intra-step edge ifi* and£* is associated
to a finite weight, representing the predicted data rate ®ttrresponding link at step
k. As previously outlined, at the generice [u,u + H), each contact irP;(u,H) is
characterized by a probability of occurrence and an eséidh@ata rate. We thus include
these two aspects in the weight of an intra-step edge. As am@e, consider a V2V
contact between vehicl%andvm at stepk. We associate to the edge’v*) a weight
w(vFwk) = puf k) - buk k), wherep(vl, k) is the estimated contact probability
between the two vehicles atandb(vF,vF ) is the estimated maximum amount of data
that can flow over the link during that time step. An identidislcussion applies to 12V
contacts.

Also, directed edges, of the tydef vf*!) or (rf7¥*1), are drawn between ver-
tices representing the same node at two consecutlve stepibe te edges i€* and
EF represent anticipated transmission opportunities, tiedses, referred to as intra-
nodal, model the same node over time. They thus represepbtsbility that vehicles
physically carry data during their movement. Since we asstvat the vehicle memory
capabilities are unlimited, all intra-nodal edges are eisged to an infinite weight. Note
that accounting for the contact duration, instead of carsig them as atomic, allows
to model critical aspects of the real-world communicatiteg channel contention and
the presence of hidden nodes.

Finally, the server(s) (from which RSUs retrieve the data)raodeled as a vertex
nameda. The graph is completed witB-weight edgega,r¥), from a to any vertex
ke RE.

3.4.2 Making optimal decisions

At each stepk, RSUr; needs to take its prefetching and scheduling decisionscifSpe
ically, each RSU determines: (i) which data, among thosealvetdy stored, have to
be prefetched, in order to be transmitted to the vehicleso{atting for the limited rate
at which data can be retrieved from the server); (ii) whictagdready availableat the
RSU have to be delivered via 12V contacts actually seen gtistee., to downloaders
through direct transfers as well to candidate relays deeimeaeet downloaders later
on.

RSUs take decisions with the aim to maximize the user satisfa Given our sce-
nario, where users first try to use the vehicular network &wed ffall back to cellular
connectivity, we can assume that users satisfaction depamd(i) the content deliv-
ery delay; (ii) the fraction of the content they retrievedingh the vehicular network

1Data cached at RSUs are modelled by the flow on intra-nodaisedg
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(i.e., within a timeT" since their request). Thus, each RSU formulates an optiioiza
problem based on its TEG-WP as detailed next.

Let C be the content set,; . the step at which the generic downloadeisends a
request for content, andgbﬁc the fraction of the content that a user downloads at ktep
through the ITS network. Then, each RSU maximizes the follgwAggregate Objec-
tive Function (AOF) over all contentand downloaders;:

ty +T ty +T
PRI DS g he | (3.1)
l ceC k:tl,c k= t ,c

where the first sum within parenthesis is the total fractiboantent downloaded by
the user from the vehicular network and the second sum is txeedelivery delays
(normalized to the time deadlir¥e) experienced by the content fractions.

The quantitygbffC can be computed by evaluating the amount of data that can be
transferred at step (i.e., the flow) over the edges of the typé o) and(r¥ vF), with
v, andr; being, respectively, a relay and an RSU storing at stpart of, or all, content
c requested by,. More specifically, for each, we define the expected flow for content
cthatis carried over the link associated to a V2V (resp. 128tact asf.(v¥ vF) (resp.
f(rF vk)). From our definitions in Sec. 3.4.1, we have

felvmr) < w(vpf),  fo(rfvp) < w(rfwp). (3.2)

By leveraging the flow definition above, we can write:

R ED SN AC RPN SRR IR

(vk, wF)eek (rivf)egk

wheres, is the content size.

The evaluation of the expected flows must account for theradaontention among
network nodes as well as among flows related to differenesudntansfers. Thus, beside
ensuring non-negative flows in the TEG-WP, we need to inttedhe constraints listed
below.

Flow conservation. For each vertex in the TEG-WP, we impose that the total flow for
a content on outgoing edges, scaled by the probability tteatbrresponding contacts
occur, is equal to the total incoming flow for the same conté&ng., in the case of a
relay vertex, we have:

fC( m)
P AG TS N S Ay AR A (3:3)
k o,k k k k p(vl Um)
(r7vf)eek (vF Wk )&l
As an example, consider the 2-step evolution in Fig. 3.2,revlg is a downloader
for contentc. Note that the transmissions fromto v; and fromu; to v,, take place
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Figure 3.2. Flow conservation: an example

at different steps, thus channel access has no effect hataitively, we can try to
transfer 10 Mbit fromr; to v,,,, and we will succeed with probability.7 - 0.3 = 0.21.
Then, the overall expected flow delivered to the downloaglér2l - 10 = 2.1 Mbit.
However, if only the constraints in (3.2) were applied onheat the two intra-step
edges, the expected flow should not excédiines the edge probability. Hence, we
could incorrectly conclude that the expected flow fropto v, is min{0.7 - 10,0.3 -
10} = 3 Mbit Instead, imposing (3 3) for vertice;é‘1 andvf, it correctly results that
fo(rF ) = fo(vF k) /p(vF k), ie., f.(vfvk) = 2.1, which is consistent with
our |ntumon.

Flow causality. In order for a node (be it a vehicle or an RSU) to transmit sdate
(of any content) at step, such data must have been already downloaded from some
other node at step < k. In other words, we need to introduceausalityconstraint,
imposing that, at each stép the data downloaded by nodg from nodev; until k& (as
opposed to “during steppalone”) is no more than the dataobtained untik from other
nodes. Thus, for any edge of type’ v* ) and content, we have that:

k

k
> ! ff“vk DN D SR AT ERD S AGRTY

h=1 h=1 | vheVi\vl, rherh

Channel accessWe assume that the nodes access the channel using an IEEHR-802.
based scheme with RTS/CTS handshake. Thus, wheansmits tav,,, all neighbors

of v; andv,, must be silent. Also, recall that we assume V2V and 12V traifit to
interfere. Then, the channel access constraint foraaystepk is:

Z ]l[” ”l] v"“vk + Z [vh.0f] (1_1[”’57”50'

(vﬁ,v’é)eé‘{f (v v’g)ESk
ceC ceC

k .k k .k
c v 7Uo C Tz‘ 7”0
J;((v: vk)) t2 T jl;((rk vk)) =
prro (rf,v’é)eé‘ff i770

ceC
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where the indicator function is equal to 1 if the specifiediees either are neighbors
or coincide, and it is 0 otherwise. The three sums on the &ftlside of the inequality
account for the fact that the following events cannot taleglat the same time: (@)
or a vehicle within range of; transmit, (ii)v; or a vehicle within range of; receive,
(i) an RSU that is a neighbor af, transmits.

As far as RSUs are concerned, we still have to impose that b/REan transmit
for longer than one step:

k ,,k
> Y
(rf,vf)egf ceC il
In conclusion, at each time step, each R§Uormulates an optimization prob-
lem aimed at maximizing (3.1) under the above constrainke Jolution of the prob-
lem yields the optimal prefetching and scheduling decsidrased on the prediction
P;(u,H). Since all constraints are linear expressions with resjeetite control vari-
ablesf.’s, the problem falls in the LP category, hence it can be effity solved in
real-time.

3.5 Content delivery through V2V relaying

When the solution of the LP problem leads an RSU to schedaesnissions to relays,
the latter are in charge of delivering the data to the dowddoss We envision two
different approaches to manage V2V data relaying, as éetaixt.

RSU-driven relaying. The solution to the optimization problem formulated bylreac
RSU, as described in Sec. 3.4.2, implicitly schedules rdagownloader data transfers
in addition to RSU-to-downloader and RSU-to-relay oneshSuscheduling is optimal
with respect to the contact prediction available at each B&dlthe requests it is aware
of, and it can be easily leveraged to drive V2V transfers.hbt énd, it is sufficient that,
based on the contacts they foresee, RSUs provide the relaglegwith the identity of
the downloaders the data are intended for, as well as the®geontact times. Relays
will then use this information to decide on when to estabisii?VV connection with a
given downloader.

Since this approach is equivalent to employing the LP proldelution computed
by each RSU to take decisions not only on 12V transfers, &d ah V2V transmis-
sions, we expect its performance to be highly dependent emptédiction accuracy.
More precisely, uncertainty in the contact estimation eadleither to failure in deliv-
ering the data, if a foreseen V2V link turns out not to be di&héd, or to a waste of
opportunities, if an exploitable V2V contact is not predatt Additionally, the schedul-
ing computed by different RSUs may result to be incompatsitece they are generated
from different TEG-WPs: this leads to unexpected channetertiion and consequent
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Figure 3.3. Greedy relaying example. In phase 1, downlsaggandv,, have incom-
plete contents 1, 4 and 3, respectively, and announce trengidata. In phase 2, relay
vy, storing all missing data, allocates its airtime to satibfy requests by,, andv,,
adopting a water-filling approach

delays, or impossibility to deliver all data. Note also ttte scheduling at RSUs does
not account for content requests issued after the last epdatived from the traffic
manager.

Greedy relaying. A dual approach to the RSU-driven relaying consists inngtv/2V
transfers take place in a greedy fashion, by exploiting gogoctunity to make in-
complete downloads progress. In this case, the LP problemlysemployed to take
prefetching and 12V transfer decisions at the RSUs, whikeyseand downloaders au-
tonomously manage V2V transfers. The greedy relaying podtave adopt involves
three phases and is repeated periodically.

In the first phase, each downloader advertises the list deobsiit is currently down-
loading, detailing, for each of them, the amount of dataédssto complete the transfer.
As shownin Fig. 3.3, a generic downloadegrwill thus announce, at stépand for each

incomplete content, the quantityijw =5S.-(1— Zf;;n’c ?ﬁ,c . The missing data
information broadcast by downloaders is received by rehéttsn range. Note that this
phase requires loose synchronization (with accuracy afttier of 1 ms) among nearby
vehicles, which can be easily obtained through, e.g., GR&isalready foreseen in the

current standards for vehicular networks.

In the second phase, each relay filters the missing datasteseeeived from down-
loaders in its neighborhood, only retaining those for cotget actually stores. Then,
based on the SNR computed on the received broadcast tramsmig estimates the
link data rateb, hence the time needed to complete each of the retaineddrangor
instance, in Fig. 3.3, the time computed by relayo complete the transfer to down-
loaderuv,,, of a contentis T\ . = M}, ./b(vf v}).
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A relay then decides how to serve the requests, by formglaim solving a max-
min fairness problem. The rationale behind such a choideaisat max-min fair alloca-
tion of the airtime allows downloads to progress evenly,fagoring large downloads
over small ones or vice-versa, yet guaranteeing that theumed fully exploited.

Denoting the total airtime to be used for data transferMyythe relay assigns a
portion of time0 < tﬁw < A to each downloader, such that the resulting allocation
T = {t}, .} solves the problem:

max mﬂin (1[t4‘;zc<Tr’§; C]tﬁ%,c> ,  S.t. Z tﬁm < A. (3.4)

tk, €T

A water-filling approach is employed to efficiently solve4B.Once the locally-optimal
allocation is obtained, in the third phase (of duration ¢étmua\) relays start to transmit
their data to target downloaders. If multiple relays arghbors, or hidden terminals to
each other, their allocations will have to share the mediooco®ling to the constraints
on channel access defined earlier in this section.

3.6 Results

Here, we detail the mobility and communication scenario aketas a reference and
present the impact of the parameters of the fog-of-war modéhe contact prediction.
The results on content downloading in the reference scef@low.

3.6.1 Reference scenario

We consider a real-world road topology representing<8 &m? section of the urban
area of Turin, Italy, portrayed in Fig. 3.4. We focus on 30 at@s of consistently
fluid traffic conditions [35], such that, at any instant, tleersario includes about one
thousand vehicles simultaneously traveling over the amddaking part in the ITS. The
vehicular mobility has been synthetically generated usihegSUMO simulator. The
time granularity of the resulting mobility trace is 1 s, hemee set the granularity of the
traffic manager prediction and the periodicity of the exexuof the V2V data relaying
protocolto 1 s.

Fig. 3.4 also depicts the default deployment that we assominé ITS infrastruc-
ture, with 10 RSUs located at the most crowded intersectrepsesented by green dots.
Based on the findings in [23], such a placement strategy all®®-based downloading
to perform close to the optimum.

With regard to the communication technology, we assume likatvehicles, RSUs
have one DSRC interface only: the extension to the case wiheydiave more than one
interface is straightforward. At the physical layer, RSie@te on the same frequency
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Figure 3.4. Road topology (left) and achievable netwostetaate (right)

channel used for V2V communications. At the MAC layer, thaikable bandwidth in

the ITS is shared by the nodes using an 802.11-based prptoitblRTS/CTS hand-

shake. We assume that rate adaptation is employed, hengaltigeof the achievable
network-layer rate between any two nodes is set accordititgiodistance. In particu-
lar, we refer to the 802.11a experimental results in [4, Bjdo derive the values shown
in Fig. 3.4, and we use them as samples of the achievable retayeer rate. Also,

we limit the maximum radio range of any node to 200 m, sincestated in [4], this

distance allows the establishment of a reliable commuioican 80% of the cases.

As for the cellular network, we assume that full cellular emge of the area is
available. A user can always complete its download throbagtcellular infrastructure
if it could not retrieve the whole content through the ITShuit7T seconds. Unless
otherwise specified, we sét120 s.

Users’ content demand is modeled by assuming|thatL00 items are available and
have the same size=10 MBytes. The per-user request rate is Poisson distidhwiin
rate A = 0.005. When social groups are considered, we represent them a&silaeh
flows, reflecting, e.g., the case of users traveling towarndsinless district and wishing
to download financial news clips or market updates. In ordedentify the vehicular
flows, at every time step we run themeans clustering algorithm on the mobility trace.
Then, we consider clusters, detected in consecutive stegpsaving the closest cen-
troids, to be snapshots of the same flow. In particular, we:uses so as to track the 5
largest social groups over time (each group turns out taidecht least 10 vehicles).

Finally, we assume that the traffic manager generates itighi@ns every 30 sec-
onds, forecasting the next 30 seconds of contacts. Srits, this implies?=30 in the
following.
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Figure 3.5. Left: contact flip probability vs. the predictitime-span, forr = 0 and
varyingo2. Dots represent the average probability value. Right: remobcontacts for
each vehicle in the mobility trace, fof = 0 and varyingr

3.6.2 Behavior of the fog-of-war model

The impact of the fog-of-war model parameters, in the abaference scenario, is
shown in Fig. 3.5.

The left plot presents the probability of contact flip, i#at an actual contact is
removed and a spurious one is created, as a function of tleelt@fore the contact is
scheduled to begin (i.ek—u, u being the step at which the prediction is compiled). The
curves are obtained far= p = 0 and different values aof?, with o5 = 0 corresponding
to a flawless prediction. As expected, the larger ¢fethe higher the probability to
predict spurious contacts. Also, the time spanu has a significant impact, as contacts
established farther in the future become less predictatal@ee affected by a higher flip
probability.

In the plot, the dots on the curves represent the flip proialmbmputed over all
actual contacts observed within the prediction horizon.teNbat fore? > 0.5 the
majority of predicted contacts are spurious, whiledgr= 0.1 we have a quite reliable
prediction (about 4 out of 5 actual contacts are correctigdast). This is due to the
fact that contacts already existing at siepre associated with a null distance in time,
hence they are always correctly predicted.

The right plot shows instead the impactofwhens? = p = 0. More precisely,
we report the total number of contacts per vehicle, over ttecle’s trip, asr varies;
clearly,7 = 0 corresponds to the actual contact duration statistics. h@rxtaxis, the
vehicles are ordered according to the increasing numbectafhcontacts they have.
Note that the larger the, the higher the probability that contacts are evicted andato
appear in the prediction at all. The impactofs especially evident for the vehicles
with a total number of contacts below 60, for which the shortantacts that tend to be
evicted represent a significant percentage.
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Results showing the impact pfon the data rate at which nodes communicate are
omitted because of both lack of space and the marginal intipatcthis parameter turned
out to have on the system performance (see Sec. 3.6.3).

3.6.3 Performance of content downloading

We evaluate the effectiveness of offloading content dowhfoam cellular to ITS net-
works, in the reference scenario previously described.

We first assume (i) a content demand process where each tatequested by
vehicles with equal probability, (ii) unlimited time valtg for contents, and (iii))B =
100 Mbit/s, i.e., high-bandwidth links connecting the RSUshnilhe content servers.
Note that this essentially implies ideal ITS operation, &JR need to download con-
tents only once, thanks to their unlimited cache size andritigite content validity.
We refer to this scenario as obaselinesystem configuration, and employ it to study
the impact on the download performance of: forecast acguxé2V relaying strategy,
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Figure 3.6. Content download performance in presence bflaehetwork offloading
via ITS-based communication, under the baseline systeffigcwation
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deadline for the ITS data retrieval and ITS infrastructuraaehsioning. The rationale
is that the baseline scenario allows us to evaluate the ipeafece of the wireless por-
tion of the system, while avoiding biases due to the demasidilolition or to backbone
limitations.

As a second step, we relax the assumptions on the RSU coataaval operation,
content demand and validity, and investigate: (jamstrainedsystem configuration,
where the content validity is limited in time and the RSU Hamke bandwidth is re-
duced; (ii) asocial system configuration, where the content requested by \e=hisl
influenced by the traffic flow they belong to. The latter configion also allows us
to compare the offloading performance obtained with a corgesdiction with that
achieved by a forecast-agnostic, push-based schedulegecbased on content popu-
larity.

Baseline scenario The performance of the offloading process in the baseliess® is
presented in Fig. 3.6(a), which portrays the average tacif requested content that a
vehicle can successfully download through the ITS befoeeeitpiration of the deadline
T. The results have been obtainedsgsvaries, under the greedy relaying scheme and
forr=p=0.

The offload fraction is broken down into content retrievekdily from RSUs and
content obtained from relays through V2V communicatiorg &rs compared against
the ideal offload performance. The latter is derived by sgj\the optimization problem
for 02 = 0, a very large prediction horizon (namely, = 300) and assuming that future
user requests are known a priori; this enables perfect |12€duling.

Firstly, we observe that ITS can relieve the cellular nelair70-80% of the cost
associated to content download. Secondly, a great parteofirit goes to V2V re-
laying, bearing between 30 and 60% of the content transfertgivhich confirms that
opportunistic transfers are highly beneficial in the offlpadcess. Thirdly, the overall
performance is not too far from the ideal one, which wouldwld 90% offload.

The impact of the accuracy of the contact prediction is shbymaryingo?. Quite
surprisingly, very accurate predictions (low values ontlagis) result in a performance
that is just slightly better than that scored by almost ramdontact estimations (high
02’s). Inaccurate predictions lead however to a reduced itrion of V2V with re-
spect to 12V transfers, as the former drops from more than @biss than 40% of the
overall offloaded fraction.

The actual cost of an imprecise contact prediction is redeby Fig. 3.6(b), which
shows the offload efficiency, i.e., the ratio of the amountathddelivered to a down-
loader to that transmitted by the RSUs (to either downlcaderrelays). A low effi-
ciency implies a waste of wireless resources at the RSUd¢e athiigh efficiency means
that only useful ITS-based transfers are performed. Theiafity can be higher than
one, since a relay can download some content (or part of d)than provide it to
multiple downloaders. The plot clearly shows that, in orttemaintain high offload
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fractions, the less precise the information on future atsiahe larger the amount of
data the RSUs have to transfer to relays.

Another interesting fact underscored by Fig. 3.6(b) is R&tJ-driven relaying is
outperformed by the greedy approach. The reason for sudhewioe is that the amount
of data transmitted by the RSUs is the same in the two casethdtormer is unable
to exploit data transfers to future downloaders (of whictUR@re unaware). This is an
important contribution to the performance, unlike the mptied RSU-driven schedul-
ing that is beneficial only in the rare case of multiple, sit@anéous relay-downloader
transfers. As a consequence, the greedy approach is to feerpdeand we will focus
only on it in the following.

Fig. 3.6(c) further details the offload performance, shayire cumulative distribu-
tion function (CDF) of the fraction of content that each déwader can retrieve through
the ITS. Results are shown for quite accurateé£ 0.1) and rather impreciserf = 1)
predictions, and benchmarked against the ideal case. Thes CRarly identify two
larger classes of downloaders: those that can get a veryl peralentage (possibly
zero) of the data they request, and those (over 50% of thB wadt@ can obtain almost
all (80% or more) of the data through ITS. Interestingly, taer category does not
seem to be affected g, as the curves are very close for high values on the x axis. On
the contrary, the percentage of downloaders unable to gedata is sensibly reduced
as the contact estimation precision grows. We can thus gdadhat an accurate pre-
diction is most useful to offload downloads for users thatare to reach, e.g., because
traveling on secondary roads.

Finally, Fig. 3.6(d) portrays the CDF of the delay in the IB&sed content delivery.
A large portion of the data, amounting to 70% of the contez, Sk typically obtained
within a short timespan (approximately 20 s). The resulessamilar in presence of
ideal and precise contact predictions, although in thel idase the higher fraction of
downloaded contents leads to an increased latency for asarsfavorable routes. An
inaccurate contact prediction, instead, yields quite @iglelays.
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Next, we evaluate the impact of the prediction parameteasd p, wheno? = 0.
The left plot in Fig. 3.7 highlights that the larger thethe less V2V transfers can be
exploited. Indeed, for high values ofthe number of predicted contacts decreases, as
shown in Fig. 3.5; additionally, the number of contacts vahort predicted duration,
which tend not to be used, increases. The impagt isfinstead marginal, as evident
from the right plot in Fig. 3.7. The results thus suggest thatimportant to accurately
predict the contacts and their duration, but not their date. rin the following, we set
T=p=0.

Tab. 3.1 shows the offload fraction for varyiag and number of deployed RSUs.
As expected, increasing the number of RSUs favors the I'B8¢affloading process.
However, improving future contacts estimation can comaenfor a less pervasive ITS
coverage. Indeed, by cross-checking similar offload foastiover different columns,
we note that an accurate prediction requires between 20 @%dl8ss RSUs, while
maintaining similar performance.

The benefits of an accurate prediction are also shown in Tab.vaich reports
the offload fraction for different values eff and T (the time after which users start
retrieving data from the cellular network). Indeed, theheigtheT, the larger the
amount of data downloaded through the ITS, however imppthe forecast reliability
pays significantly more than delaying the use of the cellnéwork.

Summary:Our results show that ITS is a viable alternative, or completary so-
lution, to cellular networks for content downloading by mietusers. In particular, if
a relatively reliable mobility prediction is available etloffload of the cellular infras-
tructure can be achieved by sparing wireless resourcetgr Isetrving downloaders on
secondary roads, reducing the download latency, and logée ITS deployment cost.
Constrained scenario Here, we focus on the case of RSU backbone links with band-
width limited to B = 10 Mbps and contents expiring after an exponentially distedu
time with mean equal to 200 s. We remark that the latter cadibrces, upon expira-
tion of a content, both RSUs and downloaders to discard artjopaf the content they
previously obtained, and restart the download from scratch

The offload fraction obtained in such a constrained configuras presented in
Fig. 3.8, where it is compared with our baseline. More pedgjghe left plot shows the
average offloading fractions a§ varies, while the right one details the per-downloader
CDF of the offload fraction. The first plot clearly evidenckattthe introduction of the

Table 3.1. Offload fraction as the number of RSUs apdary

JNORSUS o b g 10 | 12 | 14 | 16
%9
0.1 0.55] 0.67] 0.76] 0.79 | 0.92 | 0.94
1 048] 057 0.66| 0.71| 0.82| 0.84
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Figure 3.8. ITS-based download performance in the comgttaconfiguration

constraints leads to an unchanged trend with respect totitaat prediction accuracy,
at the cost of a remarkable performance reduction. Iniaegdgt the performance drop
mainly concerns the download via V2V relaying, since, upgpiration of the content,
relays have to discard the data and cannot help in theiratgligany longer. In the
second plot, we can once more observe how less performimgriebperations affect
downloaders on unfavorable routes (e.g., traveling onrseny roads).
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Figure 3.9. Impact of social groups on ITS-based downloafbpaance and compar-

ison against a content popularity-based approach

Social scenario We now evaluate the offload performance in presence of bstwag-
ing to social groups. Such users request contents accammdgipf’s distribution with

Table 3.2. Offload fraction as the deadlifiands? vary

2
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exponent equal to 2; distributions related to differentup®are shifted by 20 contents
with respect to each other. Vehicles not belonging to anygmquest contents with
equal probability.

Fig. 3.9 shows that, in presence of social groups, the anaiudta the download-
ers can retrieve through the ITS significantly increasesstipalue to V2V relaying.
Indeed, thanks to the tighter correlation between the Vetiicoutes and the content
they request, it is likely that the desired information igasbed from nearby vehicles.
This also explains the very high efficiency of relayed trafiithe right plot of Fig. 3.9.

The plots also portray the performance of an approach basedrdent popularity
that does not exploit the mobility forecast but assumes kedge of the content pop-
ularity distribution. Specifically, it lets RSUs select tta@ntent to be pushed towards a
relay, with a probability proportional to the square rootlod content popularity [36].
For fair comparison, we force the amount of data sent by thgsR6 match what is
observed in our prediction-based scheme with social groups

The results show that predicting the contacts allows fonifigantly better perfor-
mance than the knowledge on the content popularity. Thisiéstd the high mobility
of our scenario: either the content is delivered to the rggial group, or retrieving
the content from a vehicle carrying the data becomes very. Fauch an observation
is confirmed by the curve referring to relayed traffic in th¢ pot, which is signifi-
cantly lower for the square root approach than in the preditiased scheme. As a last
remark, the offload fraction in the square root case grows thié increase of2, since
more data are injected in the network to match the amountreddén the social case.
Nevertheless, such an increase in the delivered data ddesake up for the higher
radio resource consumption, thus leading to a lower effagien

3.7 Related work

A few works have studied scenarios where ITS and cellulamelogies coexist so
as to allow vehicular users to download contents from thedvimetwork. However,
their scope and methodology differ from ours. In particular[16], only 12V direct

transfers are considered, and the focus is on the prefgtchicontents at RSUs, which
are assumed to have high-latency, low-bandwidth links &oltiernet. The objective
is then to optimize the usage of such links, by leveragingneges of the amount of
traffic the vehicles will be able to download from each RSU.r&twer, although the
system in [16] comprises cellular coverage, its use is &ahito signaling purposes.
Conversely, the works in [37, 38] investigate to which extB®RC-based vehicular
contacts can help to offload the cellular network, in a sderthiat does not include
RSUs and where the same content must be disseminated toesadl wghin a delay
threshold. The problem is then to determine how many cogdiéseocontent shall be
injected in the network and which vehicles are most suitébleeceive them. Note
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that, unlike previous works, we study content downloadimgTiS accounting for all
communication methodologies, i.e., 12V, V2V, and cellthaised, at a time. This allows
us to jointly investigate the problems of content prefetgrat RSUs, scheduling of 12V
transfers, and management of opportunistic V2V transfers.

The approach we adopt relates our work to the problem of tnegsson scheduling
in wireless networks, which has been widely studied. Howewv®st works address
the case of connected multi-hop networks, e.g., [39], orasdelay-tolerant networks,
e.g., [40]. The vehicular environment mixes elements ohptitus solutions that as-
sume full reachability or contacts periodicity [41] in theder of hours or days do not
apply to our context. A scheduling and prefetching schemedntent downloading
explicitly designed for vehicular networks is presented4]. This work, however,
employs simple road topologies and simplistic mobility raisgd and does not consider
the presence of a cellular infrastructure. As further addd to the literature on trans-
mission scheduling to vehicles, we take into account, ferfitst time, the role that
mobility-based communities have in the generation of atrdemand, and evaluate the
impact of uncertainty in the estimation of future 12V and V2dvhtacts.

Concerning the latter aspect, there are several ongoiag®tin inferring future ve-
hicular contacts, given the current position and past egedtories [31,32,43]. Thanks
to our fog-of-war model, our system can use any of these tquks, including future,
more accurate ones, as an input.

Finally, the representation of a time-varying network agreetexpanded graph has
also been employed in [23, 24]. Besides the different scibygetime-expanded graphs
we propose differs from the above representations as wedinte probabilistic edge
weights, in order to model uncertainty in the predictionrdgér-node contacts.

3.8 Conclusion

Congestion of cellular infrastructure caused by growingdiaffic can be addressed ei-
ther by investing in backhaul provisioning or by finding afi&tive solutions for content
delivery to mobile users. In our work, we investigated theleapproach for the support
of content downloading in a vehicular environment. The @ssticontent prefetching
and data transmissions scheduling from roadside units malgzed in the realistic case
of finite-horizon, inaccurate mobility prediction. We shexhthat if the prediction error
is not overwhelming, vehicles can be effectively servedhsy/ ITS, either through di-
rect download from RSUs or by relaying, thus relieving thibut&r networks from the
download traffic. The offload efficiency we obtained was clsan ideal case and sig-
nificantly better than that of a content popularity-basddtgm. Further benefits can be
garnered in presence of identifiable social groups amonigwiah users, whose interest
affinity can be leveraged to deliver the right content to tightruser through nearby
vehicles.
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Chapter 4

Infrastructure deployment in a
non-cooperative setting

4.1 Introduction

Unlike previous chapters and most works in literature [@522], where the RSU infras-
tructure is owned by a single operator, in this chapter weatistudying the dynamics
of scenarios where different operators may competitivelploy their RSUs to attract
the largest number of customers.

Without purporting to provide a comprehensive solutiopw@ set the problem of
RSU deployment that maximizes the revenue for a contentiggowithin the frame-
work of game theory; (ii) we derive preliminary results,ttban be extended for a more
general approach to the problem and (iii) we verify the ufidf our approach through
simulation.

4.2 Reference Scenario Description

We consider a scenario with two operat@’s and O, which would like to deploy
Road Side Units (RSUs) for distributing content along atstref road of lengthD.
Each operator can deploy its RSUs at a subset of a set of edadsites/. Each
RSU is characterized by a coverage ramjavhich defines its service area, and by an
application-level goodput for content delivery. The goodput depends on the wireless
technology the RSU is equipped with and on the communicairatocols used for
content delivery. Furthermore, in practice the goodputhinlze affected by physical
layer impairments, interference, and collision with ottnansmissions to/from the same
or different RSUSs.

We account for such impairments in the form of inter-RSU riigieence. In the
considered model the inter-RSU interference is a functfdhedistancel between the
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interfering RSUs, and it determines the goodput that theviddal RSUs can achieve.
We express the goodput of each RSU at distahae
C

c(d) = Tw(d)’

where the interference functian(d) is a monotone non-increasing functiondfThe
interference function is bounde®,= w(0) > w(d) > w(D) > 0for0 < d < D. The
assumption of monotone non-increasingness is rathermabky since the interference
level usually does not increase when interferers move atmagthermore, we consider
the relevant case when > 1. As an example, if two RSUs are deployed at the same
candidate location then they could use a MAC protocol toestiae physical medium,
and their total capacity would bé% <c.

There is a bidirectional flow of vehicles on the considereéeteh of road;\ 4 is the
intensity of the flow of vehicles from left to right, and; is the intensity from right to
left. The vehicles move at some constant speed's]. Each vehicle aims to retrieve
some content with an average sizedjbits], Depending on the content size, multiple
MAC layer frames may be required to accomplish the conteminttuad. Content re-
trieval is attempted from the first met RSU along the road wqmonpletion of a standard
association procedure. In case multiple RSUs (from diffeoperators) are available
simultaneously, the RSU association is done at random. Aeabmlownload is suc-
cessful if the vehicle manages to retrieve the content bd&aving the coverage area
of the RSU. If the content retrieval is unsuccesful, the gehattempts to download
the content via the next RSU encountered along the road. Vireedthe offered load
asps = M\aS andpg = AgS in the two directions, respectively. This definition of
load does not consider factors such as the number of velictas coverage area, the
content size, or the ratio of successful content retrieuals it is appropriate for our
purposes. We consider that the revenue of an operator inlaytegnt is proportional
to the traffic load it serves, that is, to the number of velsithat successfully get service
through the operator's RSU. Figure 4.1 shows a scenario twithcandidate sites for
RSU deploymentJ = { A,B}) at the two extremes of a stretch of road.

(4.1)

4.3 RSU Deployment Optimization

We start off by considering a scenario where one operatdogegjis fixed RSU at the
beginning (left side) of the stretch of road. The goal of tiieeo operator is then to
install its non-fixed RSU at a distandec [0,D] such as to maximize its own utility.
Without loss of generality, we assume that the offered lead> pgz. Our goal is to
characterize the best response of the second operatpttheeoptimal distance to
deploy the RSU.

The utility function of the non-fixed RSU depends on the ateftoads in the two
directions, on the RSUs’ goodput as a functiondpind on the spillover traffic of the
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Figure 4.1. Reference scenario with two candidate sitelseatvto extremes
of the stretch of road.

fixed RSU. The spillovep® (d) is the part of the offered load that exceeds the capacity of

the fixed RSU, and hence is not served. Thapti&]) = max(0,p4 — 1+Tc(d))' Clearly,

if pa < {5 then there is no spillover. Otherwise, there is a distaficeetween the
RSUs such that foil < d, the spillover is strictly positive/ (d) > 0), and ford > d;
there is no spilloverf*(d) = 0). At distanced, the interference-limited capacity of the

fixed RSU,c (d;), is equal to the offered loagdl,. Therefore, we have:
c@zw4<£~—g, (4.2)

wherew™!(-) is the inverse function of the interference function.

In order to analyze the utility function of the second operate consider two func-
tions. Thetraffic function t(d) = p*(d) + pg, expresses the traffic offered to the non-
fixed RSU, and is a monotone non-increasing functioth dMote that the spilloves®(d)
makest(d) depend on distancé In particular:

paten ifd=0
PB if d> dg

The capacity functionc(d), is defined in (4.1). It is a monotone non-decreasing
function of d and represents the maximum goodput (thus, utility) the finced RSU
can achieve. The utility functiofi (p4,pp,d) of the non-fixed RSU is the minimum of
the two functions. Fig. 4.2 illustrates the three functiforsa scenario wherd, < D,
and hence the utility is constant fér> d,.

According to the value of the total traffic load + p5, we can identify three oper-
ating regimes of the system.
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Figure 4.2. Analytic scenario.

High load

In this scenario the offered load exceeds the total maximapaadty of the RSUSs.
Therefore, the best choice is to place the RSUs at the maxidistance { = D)
where there is no interference which could decrease the Rfpdcity (v(D) = 0).
This happens whep, + pp > 2c.

Low load

In this scenario the offered load is so low that the interfieeseffect can be neglected,
namely, the traffic is less than the goodput of colocated RS&lacep, > pg, the
non-fixed RSU achieves higher utility if it is colocated amduesp, + pg. When itis

not colocated, it can only seryg;. This happens when, + pg < ffg

Traffic stealing

In this scenario the interference effect cannot be neglediat rather, the non-fixed
RSU can exploit it to increase its utility. Indeed, by moviigser to the fixed RSU, it
can increase the spillover at the fixed RSU and serve moffectrai other words, the
non-fixed RSU has unused capacity and accepts to reducéné Higher interference
allows it to steal some load from the fixed RSU.

It is interesting to investigate the best distadtevhere the utility function of the
second operator is maximized. Due to the monotonicity otridiéic and capacity func-
tions the distancé* that maximizes the utility is the distance at which the twoves
intersect ind* € (0,D). The two possible intersection points are

2
d’{:w1< < —1) ord;:w1<i—1>.
PA+ PB PB
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However, since the interference functio() is monotone non-increasing apd >
pB, We have:

2
C 1> f1>5
pPA+ pB PB PA

)

thus

1 2c 1 ( c 1 c
w —1) <w — —1)<w — 1.
pA+pB PB PA

This means that the only intersection point, and thus theimrmam utility value, is
d* = di. The optimal distancé" is no greater thad,, the distance at which the spillover

traffic p° becomes zero. Clearly, the exact vallie= w—! (L — 1) depends on the

pAatpB
interference and the used technology.
Finally, we investigate under what conditions the optimatahced* is in (0,D).

Sincew(d) is monotonew(0) = €, andw(D) = 0, imposingd* = w™* (prch - 1)
to lie in the interval(0,D) implies:

2c
pPA+ pB

0< -1<Q. (4.4)

Therefore, we have that the optimal distadtés in (0,D) when Qle <pa+tpp <

2¢. The interval abovedy + pp > 2c¢) describes theéligh Loadscenario and the interval

below (p4 + pp < 92f1) describes theow Loadscenario. No other case exists.

4.4 RSU Deployment Games

Consider now that both operator can choose where to depblyR5Us. Since both
players aim to maximize their utilities, the problem of RSEptbyment can be best
modeled as a non-cooperative game. We consider the simpéeafawo candidate
locations at the two extremes of the stretch of road, as showiig. 4.1. To sim-
plify notation, we consider that the inter-candidate sigtahce is large enough so that
the interference between RSUs deployed at different catelisites is negligible, i.e.,
w(D) = 0. Our results can be easily generalized to non-zero intanta.

Operatori (i € {1,2}) can deploy a single RSU at one of the candidate locatibns
andB. The goal of each operator is to maximize its own revenue. Aswil see, even
the simple case of two locations gives rise to a rich set aftswis.

Clearly, the deployment choice of operatdr influences the revenue of operator
O,, and vice versa, and the operators’ choices influence whébpaof the offered
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traffic will be served. Let us denote by (p}%) the unserved traffic offered by ve-
hicles traveling from left to right (right to left). If the twRSUs are colocated then
the operators share a total revenuenofz|ps + pB,li—cﬂ], and the unserved traffic is
p% = ply = mazx(0,(pa + pp — 12%)/2]. Consider now that the RSUs are not colocated,
and denote by?, (p%) the spill-over offered traffic after passing the first RSddton.

Then we can write

ph = mazx 0(%)@4], (4.5)
Py = maw[O,(%)pB], (4.6)
ph = maslo (P00 (@.7)
Py = maw[O,(%)pSB], (4.8)

wherep' ( p%) is computed considering that the unserved traffic is thik-egper traffic

of location A(B) which is not served by locatioB(A). Furthermore, we havg) =

0 <= pjp =0andp} =0 < p% = 0. We can consequently define the socially
optimal RSU deployment as the deployment that minimizesstiva of the unserved
traffic, i.e.,p% + p%.

4.4.1 Simultaneous Deployment

Let us consider first that the two operators make their depét choices simultane-
ously, based on the traffic loags andpz. We can model the problem as a strategic
game and we are interested in the efficiency of the Nash bgail[NE) of the game,
which is quantified by the Price of Anarchy (PoA), i.e., theaaf the total revenue in
social optimum and the smallest total revenue in any NE. Ik@icase of simultaneous
deployment we can state the following.

Proposition 4.4.1.For the RSU deployment game the price of anarchyisA < 1+1Q.

Proof. In the simple case when the traffic intensity is symmeiric= pg, the equilib-
ria are easy to obtain. Iﬁ% > pa + pp then any deploymentis a NE, while colocation
is not an equilibrium otherwise. Furthermore, all equillare socially optimal, hence
PoA =1.

Under asymmetric traffic the number and efficiency of the ldajia depend on the
relationship between the offered traffig, pz, and the RSU capacity For the analysis
we can assume without loss of generality that> pgp. For convenience, let us divide
the (pa,pp)-space in three partitions, as shown in Fig. 4.3: A1)+ pp < ﬁr—cg (2)

pa + ps > 2¢, and (3) 1109 < pa + pp < 2c. Partition (3) can further be divided
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2c

C

2¢/(1+Q)

c/(1+Q)

c/(1+Q) 2¢/(1+Q) ¢ 2¢

Figure 4.3. (pa,pp)-Space partition.

into three partitions. In the following, we analyze the ditpuia for the resulting five
partitions shown in Fig. 4.3.

Colocation Underload (Partition 1)

The total capacity of the RSUs is higher than the total otfaraffic even under colo-
cated deployment, i.e=< 1+Q > pa + pp. The NE is(A,A), and the operators have equal
revenues. Note that in the equilibrium there is no unsenatia (o}, = 0, p% = 0),
hence the NE is socially optimal.

Overload (Partition 2)

The offered traffic is higher than the combined RSU capaicéy2c < pa + pg. In this
case for any2 > 0 there are two NE(A,B) and(B,A). To see why, note that in both
NE p% > 0 andp’ > 0. Since both RSUs are fully utilized no player could beneditrir
colocation. Furthermore, both NE are socially optimal liseaeach operator obtains a
revenue, which is greater thar=; with colocation.

Colocation Overload (Partition 3.a)

The total offered traffic exceeds the capacity of colocat8U& a colocated RSU can
serve one flow entirely, whereas the other flow requires thaaty of a non-colocated
RSU, i.e..pa < ¢, pp < 15g, pa+pp > 1+Q’ In this casg A,A) is the unique NE.
Observe that under colocatron both operators would obtginrevenue, while under
non-colocation one operator would obtain < 1 (because? = 0). In this case the
NE is not socially optimal, as non-colocation, which is ndtE, gives a higher revenue,
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pa + pr. The price of anarchy is

(pa+pB)(1+9Q)
2c

PoA = <14 9Q,

the inequality holds ag4 + pg < ¢+ o < 2c

Colocation Overload (Partition 3.b)

The offered traffic from both directions exceeds the capaaitcolocated RSUs but
both flows can be served by non-colocated RSUs, thatis, < pg,pa < c. In this
case there are two NEA,B) and(B,A). In both NE all traffic is served, hence the NE
are socially optimal an®oA = 1.

Asymmetric Overload (Partition 3.c)

The traffic from left to right exceeds the RSU capacity but tibtal offered traffic is
less than the total RSU capacity, i.e4 > c andps + pp < 2c¢. Table 4.1 shows the
operators’ revenues for this case.

Table 4.1. Revenue matrix for the case of asymmetric oveér{8a in Fig. 4.3)

Operator 2 RSU location
A | B
. patpB € . pAFtpB ¢
Operator1 | min(= g Mt g) N C’pf‘+pB_c N ;
RSU location| B pa+pp —cc min( 24 5 e 7 _;_ Q)'mm([}A 5 & 7 ;_ q)

The game admits different equilibria depending on the \&alieo 4, pp, and(.
Following similar arguments as for the previous cases westae the following.

Lemma 4.4.2.1n the case of asymmetric overload the NE are

_ {44} if (pa,pB) € Region |
NE = { {(A,B),(B,A)} if Jiﬁi,ﬁi) € Region Il (4.9)

Figure 4.4 illustrates the NE and shows the revenues forvibeoperators at the
equilibrium in partition (3.c). The NEA,B) and(B,A) are socially optimal, so for the
price of anarchy we can state the following.

Lemma 4.4.3.1n the case of asymmetric overload the price of anarchy is

PoA — W if (pa,p5) € Region | (4.10)
1 if (pa,pB) € Region Il
Sincep + pp < 2c we havePoA < 1 + Q, which concludes the proof. O
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c+c/(1+Q)
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Figure 4.4. NE for the case 3.c: Asymmetric Overload

4.4.2 Leader/Follower Deployment

Let us now consider the scenario where one of the two oparaédhe market leader
and has the first-move advantage. We can model the problemeagensive-form game
and we are interested in its sub-game perfect NE.

The NE derived in Section 4.4.1 for partitions 1, 2, and 3.&igh 4.3 can be easily
shown to be sub-game perfect. Nevertheless, not all NE ititipas 3.b and 3.c are
sub-game perfect.

Colocation Overload (Partition 3.b)

From the two NE(A,B) and(B,A) only (A,B) is sub-game perfect. Indeed, the two
NE have revenue® ,pp) and(pg,pa), respectively. Sincess > pp, operatorO; will
deploy its RSU inA, thus, the best choice for operatos will be to chooseB, and
hence the revenue for the first-mowey is greater than itiB,A).

Asymmetric Overload (Partition 3.c)

Referring back to Table 4.1 and Fig. 4.4, it is easy to vetfyfollowing.
Lemma 4.4.4.1n the case of asymmetric overload the sub-game perfect BIE ar

_J {(AA)} if(pa,pB) € Region|
N = { (B} 1f (onom) € Region (4.11)

Finally, we note that the price of anarchy in the case of |Id&mlwer deployment

equals that of the simultaneous deployment. This can bé/essn by comparing the
set of NE to the set of sub-game perfect NE.
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4.5 Performance Evaluation

In this section, we validate the analytical model throughdating scenarios where two
RSUs are either deployed simultaneously, or according &addr-follower strategy.
In the latter case, we consider the cases where RSUs arelpladdferent locations
or are colocated. We designed the tests following the reéerescenario outlined in
Section 4.2, and implemented them in the ns-3 simulator. véfiicles travel at the
constant speed &0 m/s. After reaching the opposite end of the road, each wehicl
is removed from the simulation. We make the conservativarapson that vehicles
OBUs communicate with RSUs using the IEEE 802.11 MAC prdtatthe basic rate
of 6 Mb/s, regardless of the distance from the RSU, and tlfeattiverage area of an
RSU is 200 m. We use the default 802.11a implementation irbasdd on Orthogonal
Frequency Division Multiplexing (OFDM). At 6 Mb/s rate, Bany Phase Shift Keying
(BPSK) is employed using 1/2 convolutional coding (100%wurethncy). The physical
layer model is as defined in YANS (Yet Another Network simaig#é4] which has a
channel model with a delay equal to the speed of light, arslbased on a log-distance
model (46.6777 dB at 1m). The medium access layer in the mmgi¢ation uses the
Distributed Coordination Function (DCF) in 802.11a. Thehitity model is chosen to
be the constant velocity model within ns3.

Upon transiting under the coverage of RSUs, an OBU firstrisfer their beacon
(transmitted every second), then tries to associate wighobthem (picked randomly if
more than one beacon is received). Finally, if succesgsfstarts uploading its content
to the selected RSU by using MAC frames that can carry 1 kB pliegation data. If the
transfer completes before the vehicles leaves the RSU ageethe transfer is marked
as successful. Otherwise, it counts as a failure, and the @BlUry to repeat the
procedure upon coming under the coverage of another RSudy(f a

It is worth pointing out that, although the complexity (aealism) of the simulation
scenario is at odds with the simplifications introduced bygame-theoretic approach,
the purpose of our evaluation is to show that analysis stélitatively captures the main
trends observed in simulation.
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Figure 4.5. Successful content transmissions as a funefitre distance between RSUs
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In the first set of results, we investigate the revenues ofdperators who simul-
taneously deploy their RSUs, by plotting the successfutardriransfers as a function
of the distance between each operators’ RSU. We assume 3t Rse the same fre-
guency channel, which results in interference if the coyeeas overlap. The content
size is fixed at 100 kB for each vehicle (translating into 108QAlayer frames that one
vehicle must upload to an RSU for a transfer to be successful)

In Fig. 4.5, we plot the successful content transmissionthbynon-fixed RSU as
a function of its distance from the fixed one. Different l&ftright traffic intensities
are considered, while the right-to-left traffic is kept cams. High and low\ 4, corre-
sponding to the high and low traffic regimes described iniSeet.2 confirm the choice
of, respectively, maximum RSU separation and colocatiaimadest strategies. In the
“traffic stealing” case, corresponding 66 < A4 < 1.5, choosing a location where
RSU coverages overlaps plays into the hands of the non-figd, Rihich can collect
left-to-right spillover traffic in addition to serving altdffic in the opposite direction.
Note that the dip at the 40-m RSU distance is caused by faitetsters to one RSU
(the fixed one) that could not be completed on the non-fixed R8bler. Indeed, left-
to-right traffic associated to the fixed RSU starts a new wuptoahe non-fixed one only
when fixed-RSU beacons are no longer received (200 m awayiffjorowever, after
an additional 40 m, the non-fixed RSU is out of range too. Swetabior is peculiar
of the simulation scenario, and, thus, is not captured byhberetical analysis. Simi-
larly, the random ordering of successful transfer countfégreént traffi intensities in the
colocation case (RSU distance = 0) is a result of vehicledaanty selecting the RSU
to which they associate, as stated above.

In the second set of results, we quantify the revenues of @aetator in case one of
them is the market leader and the other does not have theloet-advantage. We con-
sider two coverage scenarialocatedanddisjoint The colocated setup refers to both
RSUs occupying the same candidate site (either A or B) amstnéting on the same
channel, while the disjoint (non-colocated) deploymernhesone depicted in Fig. 4.1,
where the candidate sites are 600 m apart. For each plot,avestveral curves: “loc.
A, alone” (resp. “loc. B, alone”) representing the perfono@ recorded by the RSU
in location A (resp. B) in the disjoint deployment; “coloedt representing the perfor-
mance of one RSU in the colocated deployment; “tot. disjqnetsp. “tot. colocated”)
compounding the performance of the two RSUs in the disjoegy. colocated) case.

We initially study the case where a fixed ratio exists betwe#rto-right and right-
to-left vehicle arrival rates (i.e),/\, = 10). In Fig. 4.6 we plot the number of suc-
cessfully transmitted contents (whose size is fixed at 50@kBach vehicle).

It is interesting to observe that, with these settings, whpeccupies location A first
has the upper hand at low to medium traffic intensities. Tgadr number of vehicles
flowing from left to right is turned into higher revenues fbetoperator in location A
in the disjoint case. A new operator can hope to match themibemt’s revenues by
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colocating if the RSUs are underloaded, (<0.6 veh/s). These results match the model
predictions for theColocation Underloadase.

If the vehicle arrival rate increases, colocation is not adyohoice for the new-
comer, who fares better on its own, i.e., non-colocatiorobexs the NE as predicted
in the Overloadcase. Interestingly, the disjoint solution provides anaaudage for the
incumbent who selected location A only up t0y(<1.5 veh/s): at higher rates, its RSU
cannot serve all vehicles and the spillover benefits lonaBiowhich again matches the
performance of its competitor.

250 T

loc. A, alone -
loc. B, alone —©—
colocated —%—
200 tot., disjoint —— 7
/B\EK ot., colocated
150 ZH% X
100 KN\
50 M ;
0 0.5 1 15 2
An [vehicles/s]

Contents transmitted

Figure 4.6. Constant arrival imbalance: successful tréssons as a function of left—
to-right vehicle flow intensity

We next consider the case where the imbalance between treiflapposite direc-
tions varies (i.e.)\, is kept constant at 0.05 veh/s), while results in Fig. 4.7pdoéed
for values of)\, ranging between 0.1 and 2 veh/s. The content size is agathdb&00
kB for each vehicle.

It can be seen that, as the rate of the left-to-right flow iases with respect to
the opposite direction, location A becomes preferable. fidw@comer’s best choice is
location B while ), is below 0.5 veh/s (which matches t@®location Overload (3.b)
case). However, for higher rates, colocation becomes naiglte for the newcomer, as
it guarantees more successful transmissions, as predigtdte Colocation Overload
(3.a) case. We also remark that, as expected, this NE is not sgojptimal, as can be
seen by the much higher combined revenues in the disjoiet cas

Our final set of tests addresses the case of variable congentvghich results in
variable load offered to the RSUs. The arrival rates are fateq =0.5 and), =0.05
veh/s. Recall that if an OBU does not complete the transféasrbdeaving the RSU
coverage, it will try afresh at the next RSU. This is shown iig. B.8, where a sudden
surge in offered traffic at location B can be detected for eonsizes in excess of 300
kB.

A final look at Fig. 4.9 reveals that, for the chosen arrivé¢sathe content size in-
crease does not affect the equilibria, but merely closegdpdetween revenues achiev-
able at disjoint locations.
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Figure 4.7. Variable arrival imbalance: successful trassions as a function of left—
to-right vehicle flow intensity
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Figure 4.8. Variable content size: number of offered castas a function of the content size
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Figure 4.9. Variable content size: number of successftdlgamitted contents as
a function of the content size

4.6 Conclusions

In this chapter we looked at the problem of infrastructurelofgment in VANETS
through the lenses of game theory. We considered both simedus as well as leader-
follower deployment, and quantified the inefficiency of diduium deployments com-
pared to the social optimum. We then verified through sinmutgtthat, notwithstanding
the necessary simplifications, our model correctly predi¢che reachable equilibria as
a function of traffic intensity and content size.
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Chapter 5

Content sharing through the
match-making paradigm

5.1 Introduction

Once the network is deployed, we need to devise an efficiepttavenanage it, i.e., to
make users able to quickly and effectively fetch the conteey need.

The network dynamics in a wireless environment, howeverdéferent from their
wireline counterpart. Node churning, for example, is a canrhurdle in peer-to-peer
systems for wireline networks: mobility and variable chanoonditions in wireless
networks only exacerbate it. Thus, itis of paramount imguaee that the content carried
by mobile users is easily, promptly “discoverable” and itsatarriers are reliable when
it comes to providing the content to others.

To this end, an efficient content discovery paradigm for neobétworks is needed.
One possible candidate is the publish/subscribe (pubjsatgdigm, which provides
for an asynchronous content exchange between publishengdprs) and subscribers
(consumers). Content attributes are specified by pubbstred, through filtering tech-
niques, subscribers are delivered content whose attslmétch constraints defined by
them. However, in pub/sub systems the implication is ugubHt content is delivered
to subscribers as soon as it becomes available through omerer publishers. Given
the fleeting connectivity they experience, this behavioy impaickly lead to bandwidth
waste and low hit probability. An alternative is represenby quorum-based replica-
tion schemes, where content update and request operateaaraed out in interacting
subsets of nodes, called read quorum and write quorum. Aghhrough specifically
designed for distributed systems, quorum schemes areyregthod choice in mobile
networks, mainly due to the overhead they generate and thelegity in controlling
the topology.

In this work we take a different approach. We present a caomlisaovery solution,
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called Figaro, where mobile users are supported by an itnfictare — a scenario that
finds wide application in the real world. In Figaro, mobilets named Agents, request
content items of their interest and, in their turn, make eobitems available to others.
To ease the information sharing, users advertise, i.@rnminfrastructure nodes, named
Brokers, about which content they are willing to provided &rokers assist requesting
Agents in the content discovery process. To distinguislaféigrom standard pub/sub
systems, we refer to its paradigm amtch-making highlighting its capability to let
demand and offer meathen the need arisesvhile arbitrating the information flow
between providers and consumers to account for the speb#i@cteristics of mobile
networks. Also notice that, in contrast with the pub/sukadagm, the Agents selected
as providers do not have the possibility to (legitimatedfuse to provide a content. In
Figaro, the underlying assumption is that the Broker “knteger”, i.e., it has a most
reliable knowledge of whether an Agent has to provide a servi

One of the most important performance metrics we consideumsystem is the
guery success probability, that is, the probability thabatent query is matched with
an Agent that owns the desired content and is willing to gtevut. To ensure high
success probability for content queries as well as a faatiment to users, we act as
follows:

e We associate to each Agentceedit balance which increases when the Agent
provides a requested content and decreases when it conawoetent. The same
concept has been previously exploited to favour trafficinguih ad hoc networks
[45]. We revise this approach and apply it to content dispgwv&owing that it
can make content provisioning a rational choice for saliested Agents, hence
it can discourage rational Agents from acting as free riddfarthermore, by
letting the Agents’ balance increase/decrease dependitigesize and popularity
level of the provided/requested content, we can guaraate®ets in spite of the
different characteristics of the information advertisedemuested by the Agents.

¢ We define a feedback mechanism that allows Brokers to igeatifl ban those
Agents that do not provide the content they advertise. Theybe either rational
Agents acting as free riders or malicious users that aimsatigiing the system.
We will refer to the latter adisruptors since, regardless of whether they generate
content requests or not, their main goal is to disrupt theess probability of
gueries issued by others. The feedback mechanism is dessgnthat Brokers
can detect and discard those negative feedbacks that afg ltk be part of a
bad-mouthing attack, and, as discussed later in the chatpieonly marginally
vulnerable to other kinds of attacks.

e To guarantee a fair treatment to Agents providing conterh& with different
characteristics, as well as to evenly distribute the loazbotent provisioning, we
exploit Agents’ caching capabilities. We formulate cachas an optimization

69



5 — Content sharing through the match-making paradigm

problem that aims at maximizing the system fairness andeifiy, and design a
heuristic that closely approximates the optimal solutidnle&vaccounting for the
system dynamics.

The rest of the chapter is organized as follows. Sec. 5.2we/previous work, high-
lighting the novelty of our contribution. Sec. 5.3 descsiber content discovery scheme
Sec. 5.4 introduces the credit, feedback and banning methanwhose effectiveness
is analysed in Sec. 5.5 through game theory. The resilieh€garo to different attacks
is discussed in Sec. 5.6, and confirmed by the results wengatan Sec. 5.7. Sec. 5.8
introduces our caching strategy, while Sec. 5.9 showsfest®@feness in providing high
guery success probability and fairness, and it compareseatiermance of Figaro with
some existing solutions. Finally, Sec. 5.10 concludes tapter.

5.2 Related Work

Our match-making paradigm draws from the pub/sub paradignich has been exten-
sively studied in the literature. However, most works foonswired scenarios, or on
wireless ad hoc networks without any infrastructure. Theasjunities offered by the
presence of an infrastructure in a wireless environmeninaestigated in [46], which,
however, does not address fairness, cooperation, or @achin

Associating network nodes with a balance is an idea that as bften exploited
to enforce cooperation among self-interested nodes inessead hoc networks, either
for traffic routing [45, 47] or for channel access [48]. Nobtewever, that the semi-
nal work in [45] requires the nodes to be equipped with a tamg&stant hardware
(i.e., a security module manufactured by a limited numbetrusgted manufacturers),
in order to prevent attacks. The study in [47], instead, dugsdeal with attackers
at all. More recent works, e.g., [49, 50], still rely on thes@asption that a security
module is available, and propose a distributed incentieéogol for multi-hop routing
in mobile networks. We point out that in Figaro nodes are Bquired to embed any
tamper-resistant device; indeed, through a balance- aalthéek-based mechanism, the
scheme itself ensures resilience to both free riders aadiasts.

With regard to feedback-based schemes, of particularaetavis the pioneering
work in [51], which introduces a reputation mechanism taoecd cooperation among
rational nodes of a mobile ad hoc network. Many later studase focused on coop-
erative routing in ad hoc networks [52] and in overlay nekgof53]. Note that the
proposed solutions refer to a different type of cooperaivith respect to Figaro, i.e.,
message forwarding instead of content transfer. Consdgiure attack they consider
is packet dropping, while in Figaro we address the problenodes that do not provide
an advertised content when requested by the Broker. Funtirer in Figaro there is no
need for sophisticate misbehavior detection and identidicaschemes of misbehaving
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nodes, as the Agents know exactly when they are victim oteihfree rider or a dis-
ruptor, and can notify the Broker of the identity of the akiarc(i.e., the Agent who did
not to provide them with a content).

At the application layer, solutions for content provisiogihave been presented
in [54], where a reputation-based scheme is used to redededld over a 3G network.
Monetary penalties and incentives are given to non-codiperand caching nodes, re-
spectively, while the choice of the content to cache is ethe Agents and modeled as
a market sharing game. We point out that, unlike previoukwair approach is simple,
lightweight and it does not assume that Agents are assddiagebilling account: in Fi-
garo incentives and penalties are circumscribed to Figsetf and, since Agents do not
directly choose which peer they will retrieve content frafigaro has high resiliency to
reputation attacks.

As for caching, again most schemes designed for wirelesgoniet, e.g., [55, 56],
focus on distributed, infrastructure-less scenarios. Aesalt, they imply a complexity
level that is exceedingly high for Figaro, whose aim is teelage the presence of Bro-
kers and their centrality in the system architecture to §ifgnfhe network management.

Finally, we mention BubbleStorm [57], a well-known schemedontent replication
and provisioning, which is based on a probabilistic exhaesearch paradigm in wired
overlay networks. Unlike Figaro, BubbleStorm assumes dues to be always willing
to store a copy of the content. As soon as it is generated, IB8bdrm propagates the
content on a random graph defined on the overlay network. ebbqueries are prop-
agated following the same strategy, and they succeed ibat tme copy of the query
reaches a node that stores a copy of the content. In Sec, W@will use BubbleStorm
as a benchmark for the performance of Figaro.

An early version of this work, sketching the match-makingapiagm for content
discovery, can be found in [58].

5.3 The Figaro System

We envision Figaro as an overlay network that operates doupto the match-making
paradigm. At alogical level, Figaro features two main types of nodes: Agents and
Brokers. Agents store, advertise and consume content itehike it is the Brokers’
task to let demand and offer meet. Agents store either setfyzed content (e.g., a
set of pictures one wants to share) or content they have afispeterest to spread
(e.g., information on a film festival one is interested in)on@nt items are assumed
to be relatively static, i.e., they are updated at intertlaég are much longer than an
interaction between Agent and Broker, e.g., once a day.

At a physicallevel, Agents are mobile (possibly hand-held) devices)evBrokers
are middle-end devices, integrated in an infrastructuceistierconnected via a reliable
backbone. From the viewpoint of network connectivity, wasider each Broker to be
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Figure 5.1. Basic message exchange between Agents andrBroke

colocated with a router and to be associated to an IP submeto©more IEEE 802.11
Access Points (APs) are attached to the same router ingeaifadt provide wireless con-
nectivity to mobile nodes within the area. Thus, the mobddes are hosts of the router
subnet to which the Broker is associated.

An Agent becomes part of the Figaro system when the mobiled@ambedding
it associates to an AP and discovers the Broker that control$ie Agent can choose
to register with this Broker, advertising the content it igling to share with others.
The Broker maintains a content-based matching table, whsteres the following in-
formation for each Agent: 1) a unique Agent identifier; 2)IRsaddress; 3) the MAC
addresses of any interface (e.g., 802.11, Bluetooth) tHalewoode carries; 4) the con-
tent it makes available to others. The set of Agents regdtér the same Broker is
calledColonyand it corresponds to the hosts of the subnet associated Brdtker (i.e.,
at the IP layer, all Agents of a Colony have the same subnes libeBroker).

A registered Agent can ask the Broker to identify anothermgarrying the con-
tent it needs, through a Service REQuest (SREQ) message.Brbker queries its
own content-based matching table to identify a candidatenfthat can provide such
content. As detailed in Sec. 5.4, these Agents are selestedralidate according to
Colony-wise policies, aimed at pursuing specific objedif@g., high success proba-
bility and even load distribution on Agents). Next, the Beokhecks that the candidate
provider Agent is still reachable by@ ng at the IP address with the Colony subnet
ID, otherwise it selects another candidate provider froerttatching tabfe To avoid
unpredictable iterations, the selection does not accamiofver-layer metrics, such
as the SNR on the links between Agents and AP, which can onsstablished upon

!Deregistration of an Agent is autonomously enforced by &Brafter the Agent is found unrespon-
sive to a certain number of consecutive attempts at pinging i
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checking the provider Agent’s reachability.

If a candidate provider Agent is found, the Broker returngh® querying Agent a
Service REPIly (SREP) message carrying the IP address aMiBeaddress(es) of the
candidate provider Agent. A transport-layer connectiamvien the two Agents for the
purpose of content transfer is subsequently establishech & connection runs within
the coverage area of the APs connected to the router ingerfac

If, instead, no candidate provider is found or if none of threplies to thei ng, the
search is relayed to a higher hierarchical level. To this emdntroduce an architectural
entity, called Proxy, which is connected to all Brokers Via backbone. When a Broker
receives a request for a content that is unavailable in iter@pit forwards the request
to the Proxy, which in turn queries the other Brokers. Alshewan Agent moves to a
different Colony, the new Broker informs the previous onéhefAgent’s migration. For
scalability reasons, a hierarchy of Proxies can be deplaldtbugh we leave it out of
the scope of this chapter. The request is successful if theenbis found in any of the
Colonies composing Figaro. In this case, the connectiowdsat Agents runs through
the routers colocated with the Brokers that control the Agien

Agents report to their Broker the outcome of successful amsliccessful content
transfers with Agents identified as candidate providerg diitcome is notified through
a feedbackmessage, which the requesting Agent sends to the Brokertb&eontent
transfer.

5.4 Matching Demands and Offers

We consider a mobile system where Agents are rational atalvfdhe same behavior
in terms of querying activity. Lef be the number of content items that exist in a
Figaro system composed oy Colonies; the items may differ by size and popularity.
Let A be the per-Agent query generation rate. Upon a query geoeyan Agent
selects the item to ask for according to its popularity Ieiel, with probabilityr(j,t),
1<ji<I (Z;le(j,t) = 1). Consequently, at timewithin Colony k, each content
j is requested with rat&(j,¢), which is equal to\7(j,t) multiplied by the number of
Agents in Colonyk at timet. We also denote by (j,t) the number of Agents (either
under or out of coverage) advertising itgmat timet in Colony k.

We design our match-making system in order to achieve theWolg goals:

¢ high query success probability, in spite of the rationaldwédr of users and the
different characteristics of the requested content Gieg and popularity level);

o fair treatment of the Agents, i.e., the amount of servicg fivevide is comparable
to the amount of service they obtain;
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e resilience to Agents who do not provide the content they didbee(either free
riders or disruptors).

To meet these objectives, we associate to each cop@r@olony-wise value, de-
noted byGy(j,t), which is expressed in credits and may vary in time: an Adgeat t
provides (receives) a content item earns (spends) an arobargdits equal to the con-
tent value. For each Agentwe can therefore define a balari¢ét), expressed again
in credits, which reflects the difference between the vafite@content the Agent has
provided and the value of the content it has obtained. Naettie exact, up-to-date
value of each Agent’s balance is only known by the Brokeh(algh the Agents can
compute their own rough estimate).

We defineGy(j,t) so as to take into account both the different size and popular
level of the content items. More specifically, for each Cglénwve introduce theontent
burdenmetric, B, (j,t), which is the ratio of the query rate associated to contevithin
the Colony to the numbe?,(j,t) of Agents providing it at time, i.e.,

Note that, in definingB.(j,t), we consider the query rate for contgntoming from
other Colonies to be negligible. Also, the burden takesiavglues for popular content
(characterized by high values &f(j,t)) and for rare content (for which(j.t) is low),
while it is smaller for content with low popularity or thatrcde easily found in the
Colony. By denoting withs(j) the size of the file representing conteghtwe define
Gr(5,t) = (g + Bx(j,t))s(y), wheregs(j) represents the baseline value of the content.
It follows that large-sized, highly-popular content iteras well as rare items, will all
be highly valuable. Also, we associate a valugyatredits to each feedback message
that an Agent belonging to Colortysends to the Broker at tintgo notify the outcome
of the transfer of the requested content.

For the sake of clarity, let us first consider the case whezeethre no malicious
Agents, and assume that Agents start with a zero balance.bdlaaceb(i,t) of the
generic Agent, belonging to Colony, is updated as described below.

e When Agenti requests a contentby sending an SREQ to the Broker and the
Broker finds a candidate provider:
(i) b(i,t) is decreased b& . (j,t) + g;
(i1) if Agent i sends a feedback to the Broker, related to the transfer m&od a
requested conteni(i,t) is increased by;
(i) if Agent 7 is not satisfied by the transaction (e.g., the transferfaié®mplete
or does not occur at all), it sends a negative feedback; itiled to request the
same content again (provided that the new query is madendlgiven time
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window) without further decreasing its balafce

e When Agent is selected as provider for a content query issued in Colghy-
k):
(i) b(i,t) is increased by, (j,t);
(i) if a negative feedback about the data transfer is rexcbly the Brokerb(i,t)
is decreased b, (j,t).

Note that feedback messages play a very important role iar&gcredit scheme
and are therefore awarded additional credits: by doingammal Agents will always
provide a feedback if they can. Also, Agents have no incentivprovide a falsely
negative feedback, as this would not restore their balanaeonly give them the op-
portunity to request the same content again — which woulddetess if the content
has already been successfully received. In case no feedbaekeived for a content
transfer, the transfer is assumed to be successful (ieecaihdidate provider is awarded
Gy (y,t) credits). The rationale is the following: since requestggnts always have an
interest in sending a feedback, connectivity problemdyikeevented the Broker from
receiving a feedback. If this were the case, the same canitgproblems would be the
cause of the transfer failure (if any), and taking actionsiagt the candidate provider
would be unnecessary.

Given the above credit scheme, the Broker can exploit theevaf the Agents’
balance to ensure Agents’ cooperation in providing contergarticular, the Broker can
determine whether a requesting Agent is entitled to receisteer service and which
Agent should be selected as candidate provider, accorditigetfollowing rules:

e upon receiving an SREQ from Agentthe Broker discards the SREQbifi,t) <
T,, whereT, is a negative threshold value (i.e., the requesting Agesitda low
a balance to request a content);

e otherwise, a candidate provider is selected and the Brglmoiats the Agent that
has the lowest balance among the Agents advertising thesesgicontent.

The credit system described above makes cooperatiomrogiding a content when
requested by the Broker, necessary for the Agents in ordeetable to obtain the
content they need later on. The higher thie the higher the amount of cooperation
required. When all Agents are rational, game-theoretichouoit can be used [47] to
assess the value fdr. that yields optimal performance. However, in Figaro we also
take into account the presence of malicious Agents, whobkepampose is to disrupt
the system performance. To counter them, we introduce aitigunmechanism, which
changes the nature of the problem and, as a positive sidetedilso represents a further
incentive for rational Agents to cooperate.

2Subsequent feedbacks related to the same content do ngtmyrfurther increase in the balance of
the issuing Agent.
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5.4.1 The banning mechanism

Figaro uses banning to keep malicious Agents out of the Gradaial, thus, impair their
actions. Every time the Broker receives a negative feedbelaked to an Agent (and it
deems it credible, as described below), that Agent is baforexdcertain period of time.
While banned, the SREQs transmitted by the Agent are droppelde Broker and the
Agent cannot be selected as a candidate provider. We slrasstien a banned Agent
issues a SREQ, its balance is decreased anyway by the vallbe mquested content.
Recall that Agents are not aware of their balance. To premertgent from foreseeing
the ban periods and avoiding to request content items wRilegthanned, ban periods
start after a random time since banning is triggered.

The ban duration grows exponentially: on thxh time that an Agent is banned, the
duration is computed &&,(n) = Tya™ !, witha > 1,n > 1. Ty is set small enough so
as not to excessively penalize those Agents that occasidadlto provide a content,
anda large enough so as to rapidly and effectively exclude mali€iAgents from the
Colony. The actual choice df, anda depends on the application and, as shown later
in the chapter, on the system status; also, the counterdiegothe number of bans for
each Agent can be periodically reset.

We point out that the ban mechanism not only allows Brokersotmnteract mali-
cious Agents but it also serves as further incentive fooreti Agents to provide the
requested content when selected as candidate provideismBkes our study signifi-
cantly different from the one in [47]. Furthermore, Figasammune to the adverse im-
pact that mobility may have on the effectiveness of repoetind ban schemes: banned
Agents may try to move to a different Colony to nullify theiarning, or newly ar-
rived Agents may be unable to figure out the trustworthinésisair neighbors. Indeed,
in Figaro (i) Brokers can exploit the backbone to exchandgerimation about banned
Agents or about the balance of Agents that move from one @dlmanother, and (ii)
newcomers (like all other Agents) rely on Brokers for theesBbn of the candidate
provider.

5.4.2 Feedback credibility

As is evident from the description above, feedbacks areiofgry importance for both
balance update and ban. Thus, in Figaro bad-mouthing atteckhich attackers assign
falsely negative feedbacks to the Agents that provide th@mavwontent, would cause
a serious malfunctioning. To ensure robustness to badinmguattacks, each Broker
implements a simple, yet effective, credibility filter, lkdson the notion ohegative
feedback ratio

We begin by introducing some definitions. Given Agentndv, the negative feed-
back ratiov;(u,v) is the fraction of negative feedbacks issued by Agemin Agent
v's behavior. We then define the following Colony-wise averaglues: v;(u) =
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Niu >, vi(u,v), i.e., the ratio of negative feedbacks issued:averaged over the num-
ber (V,) of nodes that have served as candidate providers famd belonging to the
same Colony as; vg(v) = NL > . vr(uw), i.e., the ratio of negative feedbacks re-
ceived byv averaged over all Agents belonging to the same Colonyasd for which
v has acted as candidate provider.

Then, let us consider that the Broker receives from Agenteedback on the content
providerv, and bothu andv belong to the Broker's Colony. The Broker deems the

feedback to be not credible if both the conditions below hold

1. the ratio of negative feedbacks issued by Agent;(u), is higher than the aver-
age value computed over all Agents belonging to the samengalsu (i.e., the
issuer’s view of the Colony is more negative than the avecag?;

2. the ratio of negative feedbacks givenbio v is higher than the average negative
feedback ratio received by. v;(u,v) > vg(v) (i.e., the issuer’s view of the
provider Agent is more negative than the average one).

If, instead, the candidate provideand the Agent: issuing the feedback belong to dif-
ferent colonies, typically;(u,v) is not statistically meaningful due to a small number
of occurrences. Hence, the Broker of Agenonly evaluates the first condition and
notifies the outcome to the Broker of AgaentBased on this condition only, the Broker
of Agentv assesses the feedback credibility. Notice that, when d&etds considered
not credible, it does not trigger the banning of the can@igeibvider and no action is
taken against its issuer. The rationale of the latter chisitieat, once the bad-mouthing
Agent is identified and made harmless, the Colony can stilébefrom its presence, as
long as it correctly provides its content when asked. Alsgerits found to issue unreli-
ably negative feedbacks are not necessarily attackessnibg simply be Agents whose
ability to receive content items is impaired by some extermgason (e.g., connectivity
issues): banning them would be unfair.

In the following, we highlight the ability of the presenteckdit scheme and candi-
date provider selection policy to ensure a high query swqoesbability, and we discuss
the robustness of Figaro to the possible attacks by maBoigents.

5.5 Ensuring Cooperation in Figaro: A Game-theoretic
Analysis

We now adopt a game-theoretic approach to show that ourt@eueme, jointly with

the banning mechanism, make cooperation (i.e., providiege¢quested content when

selected by the Broker as a candidate provider) the bestelai a rational Agent. We
therefore focus on rational Agents and assume that noneof ith malicious.

77



5 — Content sharing through the match-making paradigm

We model the system dynamics as a game, where, when selgcted Broker as
candidate provider, an Agent can play two possible movegrawide or not to pro-
vide the content. We first compute the payoffs corresponttirigese moves. Then, we
derive the strategic form of the game and show, by iteratedinince, the condition
under which there is a unique Nash equilibrium, in which &lyprs cooperate. Fi-
nally, we show that such an equilibrium is Pareto-optimal also attains the maximum
efficiency.

5.5.1 Payoffs and game solution

We first assume homogeneous conditions, that is, indep#dpdéthe considered Colony,
all content items are represented by a file of the same sizbarelthe same popular-
ity level, and for each content there is an equal number ofégystoring the content.
Hence,Gi(j,t) = G(t),Vk,j. We will then extend the analysis to the inhomogeneous
case where content items have different characteristics.

We consider a generic Agenbelonging to Colonyt and assume that, at a generic
time ¢, it is selected as a candidate provider. L&t,t) be the utility that Agent
can expect to obtain, i.e., the amount of service it will beedb receive in the future
(not considering the possibility to be subsequently setbess a candidate provider). In
Figaro, this corresponds to havingi,t) = b(i,t), i.e., the Agent’s current balance.
We denote withV*(i,t) and V' ~(i,t) the new utilities of Agent in case it chooses,
respectively, to cooperate and not to cooperate at tim&lso, letc(j) be the cost of
providing contentj. The costc(j) is assumed to directly reflect the sizgj) of the
file representing content e.g.,c(j) = Ks(j), whereK is a constant positive value.
However, due to the assumption of homogeneous contgnt= ¢ = Ks,Vj.

Now, if Agent: decides to cooperate, it pays a cosvr providing the content, and
its utility V*(4,¢) will change due to the increase of its balancety). Its payoff will
be:

Ud(ijt) = —c+ V(i) = —c+ [G(t) + b(it)] . (5.2)

Conversely, if Agent decides not to cooperate, it will not pay any cost. However,
its utility V'~ (4,t) will reflect the fact that not only will its balandgi.t) not increase,
but the Agent will also be banned for a time interval, whoseatian depends on the
number of bans already received. Let us assume that the Agsmiready been banned
(n—1) times; considering that, during the ban period, it will issun average of7,(n)
SREQ messages, and a decrement of its balance will corrédpagach of them, its
payoff becomes

Upe(ist) = V= (it) = max{ [b(i,t) — ATy(n)G(1)] ,o}. (5.3)
Note that, obviously, an Agent cannot retrieve less thaams thus\/~ (i,t) > 0.
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Observe that this is a rather peculiar game, as each plgyeytit solely depends
on its own move, and not on the opponent’s one. As far as thiéilegum is concerned,
the game can be easily solved by iterated dominance [59]:

o if Ud(ist) > U,.(i,t) Vi,t, (Cooperate, Cooperate) is the sole Nash equilibrium;

o if Ud(ijt) < Uy,.(i)t) Vit, (Not cooperate, Not cooperate) is the sole Nash equi-
librium;
o if Ud(i,t) = Upe(i,t) Vi t, there is no unique Nash equilibrium.
In order for (Cooperate, Cooperate) to be a Nash equilibriwe needU.(i,t) >
Une(i,t) Vi,t. From (5.2) and (5.3), we obtain the following condition:
c—G(t)

T > =&

Vt.n. (5.4)

In other words, if the condition in (5.4) is met, the game walach an equilibrium in
which all rational Agents always cooperate, i.e., they mevhe content the Broker
asks of them. Condition (5.4) must hold for any time instaand for everyn; thus,
considering the expressions ond G(t), a possible choice fdf; is given by: T >

(K — g)/Ag. Such an expression can be read as follows: the higher thesecpte\,
the more severe the penalty that banned Agents receivegdinerban period and, thus,
the smaller the value df, needed to make cooperation a convenient strategy. Cléarly,
K < g, banning is not necessary to make cooperation a ration&efar the Agents.

5.5.2 Optimality and efficiency of the operational equilibium

When the condition in (5.4) holds, the strategy profile (Gzrape, Cooperate) is a Nash
equilibrium and, sincé/.(i,t) > U,.(i,t) for every Agent, it is also Pareto optimal,
i.e., cooperation is the best strategy that an Agent caoviolithout making someone
else worse off.

In order to assess the efficiency of this equilibrium, we aetee the price of an-
archy (PoA), which is defined as the ratio of the payoffs atgdiby the players when
the Nash equilibrium holds, to the payoffs obtained by theyeis if a globally op-
timal solution is enforced [59]. In the latter case (in whiggents are not free to
chose whether they want to cooperate or not), an Agent thsg¢lected as a candi-
date provider again pays the caswhile its balance is increased ly(¢). Thus,
Uopt (i,t) = —c + [G(t) + b(i,t)] = U.(i,t), i.e., POA= 1. In other words, not only
is the equilibrium (reached when all Agents cooperate)dan Pareto-optimal, but it
yields the very same efficient behavior as the globally ogtisolution. Intuitively, this
IS not surprising, since cooperation means that Agentsviothe suggestions of the
Broker, which is in an excellent position to determine théropl strategy.
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5.5.3 The inhomogeneous case

We generalize the previous analysis to the case where itanesdifferent size, popu-
larity level and availability, and popularity and availktyimay depend on the Colony.
Thus, we now consider a codtj) = Ks(j) and a content valué',(j,¢t) (1 < k < C,
1<j<I).

In this setting, the payoffs for a cooperating and not coafreg Agenti, which
belongs to a generic Colorkyand is requested to provide contgrdt timet, are given

by:

Uk, git) = —c(j) +VT(it) = —c(j) + Gr(j,t) + b(it) (5.5)
Une(k,git) = V7(ijt) =

I
max{ — ATy(n Zﬂ' (h,t)G( ht] 0} (5.6)
h=1

where we assumed thahas already received — 1 bans. In order for the Agents to
cooperate, the conditiobl.(k,j,i,t) > Up,.(k,j,i,t) has to hold for any:,j,i and time
instantt, i.e.,

max; [¢(j) — Gr(J.t)]
A 7(ht)Gr(hit)
Then, considering the expressions:0f) andGy(j,t), a possible choice fdrf,, so that
the condition in (5.7) is always satisfied, is given by:

Ty(n) > Vi,n. (5.7)

(K_g) max; S(]) (58)

Ty >
0 Agmin; s(7)

5.6 Resilience to Attacks

Malicious Agents may try to break Figaro’s balance mecharby performing several
types of attacks. In particular, they may behave as disraptith the sole purpose of
degrading the system performance. Figaro counteractbdhavior through the ban
mechanism, which leaves out of the system an Agent for a gieeind of time, as soon
as it receives a credible negative feedback. The effe@s®f banning is shown in
Sec. 5.7.2, through ns-3 simulation.

Below, instead, we discuss the resilience of Figaro to tipeca attacks that may
be launched (independently or in a collusive manner) imenilading communities or,
more in general, in reputation-based systems.

Ballot stuffing: a group of Agents collude to give each othesifive feedbacks, in
order to get an incorrectly high balancén Figaro, Agents cannot freely choose whom
they ask for the content they need, since the selection fenoeaince by the Broker.
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Therefore, while it is possible to indiscriminately give@lader a positive feedback, a
large number of colluders is needed to make this attack &iéild., by increasing the
likelihood that one of my colluders is selected as providedrthermore, an Agent has
no practical way to artificially increase the number of feseks it is entitled to issue
regarding its own colluders, since the number of requestnitissue is limited b¥’,.

Bad-mouthing: a group of Agents collude to give negativdlfaeks to others, so as to
incorrectly lower their balance, and having them repeaydathnned Again, the effec-
tiveness of this attack is dampened by the Broker likely sivapa different provider
for every request.

Negative/positive discrimination: an Agent provides tbguested content only to a
selection of other Agents, neglecting those it “does n@&’likThis behavior will draw
bans upon the Agent and is hardly effective in the long run.

Sybil attack: an Agent uses a large number of pseudonyms gdining a dispropor-
tionately large influence on its own reputation scores, al agthe other peers’How-
ever, Agents are identified via their IEEE 802.11 MAC address attacker could
modify its MAC address to assume a new identity, but in thiy v& former identity
would become unreachable and would be automatically dstezgd from the colony,
i.e., an Agent cannot have multiptentemporarydentities, unless relatively complex
hardware and software are used.

Whitewashing: an Agent misbehaves until it is banned anad #ssumes a new, clean
identity. Whitewashing is normally impervious to detection attempifie only pro-
tection that Figaro can deploy is by not letting Agents knbwytare banned (hence
not letting the attacker know explicitly when it is time tosasne a new identity). Still,
Figaro is vulnerable to whitewashing by knowledgeablecattes who are aware that a
negative feedback will get them banned: they can stay inykem until they are first
requested to provide a content, ignore it and then assuneaa aentity. Thus, in the
case of applications for which resilience to whitewashiagd Sybil) attacks is highly
critical, Agents may be required to perform a una-tantunh-lwased registration (pos-
sibly with a CAPTCHA [60]) before they can register to a coloRurthermore, Agents
could be required to have a private key and sign the messaggsénd.

5.7 Performance Evaluation

We provide an evaluation of Figaro’s features describedasdy using ns-3 simula-

tions: firstly, by looking at its resilience against seveygles of attacks, and then by
establishing to which extent it can actually enforce coapen and fairness among the
Agents.
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5.7.1 Network scenario

Our investigation focuses on a pedestrian scenario, wioerepioints of interest (POI)
are placed at the corners of a 100860 n? rectangular area. In correspondence to
each POl there is an 802.11 AP, integrating a Broker, all eoted through a backbone.
Agents, whose number is fixed to 100 unless otherwise spacére equipped with an
802.11 interface and roam among the APs. Their movemermiislthe Random Trip
mobility model, with an average pause time of 100 s and aragecspeed of 1.8 m/s.
The Two-ray Ground model is used to represent the channpblpgaiion conditions,
and the transmission data rate between Agents and APs i®tiedthrough the AARF
technique [29], so as to adapt to the perceived channel tonsli

The content items are divided into four classes with difiepopularity and size. We
consider two possible levels of content popularity, as agliwo possible content sizes.
Both the content sizes and the popularity levels differ bgadr2. Specifically, class
1 items have size of 200 kB and popularity level equal t8, class 2 items have size
of 100 kB and popularity level /3, class 3 items have size of 200 kB and popularity
level 1/6, and class 4 items have size of 100 kB and popularity léyél For the
sake of clarity while presenting the results, we consibler 4, i.e., one content per
class, and assume that each Agent advertises exactly otentgchosen with equal
probability among the possible four), so as to associate &gent to the class of content
it provides. We stress, however, that simulations with gdanumber of content items
yielded qualitatively similar results.

An Agent “becomes interested” in a content according to &$wi process with
rate equal to\ = 0.02 req/s. The requested contgns chosen, among those not stored
by the Agent, with probability proportional to the contepplarity levelr(j,t). The
Agent then issues an SREQ message for that content, whiarizdically refreshed
until an SREP is returned, or until a timeout (set to 30 s) @i If no reply ensues
before the timeout, the Agent considers the query as fallestead, if a positive reply
is received from the Broker, the requesting Agent asks tliging Agent for the
content. Data is exchanged through a well-known UDP porterAg are not required
to implement any routing protocol, as the content is eitharlable in the same Colony
(i.e., subnet) or via the backbone.

As for the other parameters, we séf. = 60 s,a = 3, K = 1, g = 0.5. Finally, all
plots shown in the following have been obtained by averaghgimulation runs.

5.7.2 Counteracting disruptors, bad-mouthers and liars

When our credit-based scheme is implemented, we have pthaédll rational users

have interest in cooperating, hence they will provide theteot when they are asked
for. Here, we are therefore interested in evaluating to twvbitent Figaro can (1) protect
well-behaving Agents from disruptors; (2) detect and did¢alsely negative feedbacks,
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i.e., the ones issued by Agents taking part in a bad-mouthitagk; (3) make it disad-
vantageous for Agents to lie about the content they shardeerCblony. Note that the
plots presented here do not show the class of the contentgleté provide, as this is
not significant for the aspects being taken into account.
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Figure 5.2. Resilience to disruptors: (a) time evolutiortre success probability for
well-behaving Agents and disruptors, with/without bapitb) success probability vs.
balance for well-behaving Agents and disruptors, with lr@genabled.

We start by considering a scenario in which 50% Agents arkngito cooperate
while the rest are disruptors. In our simulations, we cosrsidat disruptors also issue
content requests and that their behavior is unaffecteddgrédit and ban mechanisms,
and we sefl, = —5 (the impact off,. will be evaluated later).

First, to show the effectiveness of our banning mechanisg,F2(a) presents the
time evolution of the query success probability of well-aehg rational Agents and
of disruptors, with and without banning. In absence of bagnwell-behaving Agents
and disruptors experience about the same success proyathie success probability
decreases over time till a saturation value (namely, abd)t @hich is determined by
the presence of a large percentage of disrupt@snversely, with banning, the Broker
can tell apart well-behaving nodes and disruptors in a veliglsle manner, and the
gap in performance between the two types of Agents widertiedd, with the passing
of time, more and more disruptors are discovered and barette made harmless.
Consequently, over time the probability that a disrupt@iécted as candidate provider
decreases while the success probability of well-behaviggms grows. However, the
success probability of well-behaving Agents does not rdaad, similarly, the success
probability of disruptors does not drop to 0. This is due ®ftillowing reasons: (i) the
ban period of disruptors is limited, thus, at any time insthare may be still disruptors
active in the Colony (although they will be detected and leahagain); (ii) as studied
in the next section, the balance of the Agents providing tevedue items (classes 3-4)

3The more the disruptors, the fewer the Agents providing aredited content, hence the lower the
success probability.
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may drop below the thresholf. (i.e., they cannot gain as many credits as they would
need to obtain the desired content).
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Figure 5.3. Resilience to bad-mouthing: (a) time evolutibthe success probability of
well-behaving Agents, with/without bad-mouthing. Theeswith and without feedback
credibility check are shown; (b) query success probahiktybalance, for well-behaving,
bad-mouthing and disruptor Agents, and with feedback bikigti check.

Fig. 5.2(b) shows that, when the banning is enabled, disragtave lower query
success probabilitgnd lower balance (most of the times bel@y) than well-behaving
Agents. Indeed, requests that come from banned Agents scarded by the Broker
but do trigger a balance decrease.

Next, we consider an even more challenging scenario, wha¥e Rgents are dis-
ruptors and other 20% take part in a bad-mouthing attack. %=RBjshows the time
evolution of the query success probability for well-belmgvAgents in presence of bad-
mouthing attackers, in both the cases where the feedbadibdity check (described
in Sec. 5.4) is enabled and disabled. Results are compaeadvah the case where no
Agent takes part in the bad-mouthing attack. We first obst#raewhen the credibil-
ity check on negative feedbacks is disabled, bad-mouthigenés slowly but steadily
erode into the query success probability of well-behavisgrs, having them repeat-
edly banned. Conversely, enabling the credibility chetdwad well-behaving Agents to
achieve the same performance as in the case where no badingpattack is launched.
This behavior highlights two important facts: not only dakes credibility check neu-
tralize bad-mouthing (i.e., it has very few false negafivésit it also has very few
false positives, i.e., it does not erroneously discard/tnélgative feedbacks. Indeed, if
the feedbacks against real disruptors were discarded, reagecin the well-behaving
Agents’ performance would occur, similarly to what is shawifrig. 5.2(a).

These observations are confirmed by the results in Fig. 5.@étailing the success
probability of well-behaving, bad-mouthing and disrupfgyents, versus their balance
values. Disruptors still have a lower balance and queryessprobability than the
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Agents (either bad-mouthing or well-behaving) that do pdewthe content they adver-
tise. Recall that, as explained in Sec. 5.4.1, no actionkisntagainst bad-mouthing
Agents, once they are discovered and made harmless.

In addition to disruption and bad-mouthing, there is a fertubtle, unfair behavior
that Agents may follow: they omit, at registration time, &cthre to the Broker which
content they wish to share within the Colony, i.e., they gmdtthey have none. The
Broker has no way to find out which content Agents have in threimory, thus these
lying Agents will never be selected to provide a contentoAtsnce there is no evidence
of unfair behavior, they will not be banned. However, Figaftectively tackles this
issue: lying Agents do not provide any content and, thust baance will soon reach
T,.. From then on, they cannot obtain any service, which is timeesaffect banning
would obtain. A similar effect occurs if Agents declare fewentent items than they
have.
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Figure 5.4. Resilience to lying Agents: (@) success prdibaldor well-
behaving and liars, fdf,. = —20, — 5; (b) success probability vs. balance for
well-behaving and liars, fof, = —5.

The benefit of settind. to a slightly negative value (namekly), as opposed to us-
ing a larger negative threshold (nameh20) is evident from Fig. 5.4. Wheh, = —20,
lying Agents achieve almost the same success probabilityedisbehaving Agents.
Conversely, whel,, = —5, the balance and success probability of liars severely de-
grades, i.e., lying about the stored content is not a gooateHor rational users.

As a conclusion, a small negative value fgrmakes Figaro highly resilient to both
disruption and lying about one’s ability to contribute te tGolony.

5.7.3 Cooperation and fairness

We assess the performance of Figaro in terms of fairnes®dugsing on the query suc-
cess probability obtained by the Agents providing the d#ife types of content items,
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as listed in Sec. 5.7.1. In particular, we aim at investigathe relationship between
balance and query success probability, and how the thr@&halffects both.

Table 5.1.
Class

Query success probability for different contdasses and values ©f.
Requester success probability  Provider success probability
T,=—20]|T,=-5]T,=-1|T,=-20[T,=-5[T, = -1

1 0.910 0.801 0.431 0.937 0.935 0.882
2 0.912 0.820 0.522 0.935 0.922 0.661
3 0.959 0.826 0.532 0.919 0.899 0.441
4 0.966 0.925 0.655 0.904 0.695 0.260

Table 5.1 presents, for each of the four classes of contemtsuccess probability
of a query issued by an Agent requesting that content as weleasuccess probabil-
ity experienced by an Agent that advertises that contenpaonides it upon Broker’s
request. The results refer to three different settings efrdguest threshold, namely
T, = —1, — 5, — 20. Recall that the higher the content value (i.e., its popiyldéevel
and/or size), the higher the number of credits needed testdhe content. It follows
that the lower thd., the more likely it is that an Agent has enough credits to estja
content, even if highly valuable, hence the higher its sseq@eobability. Consistently,
providing a content that is either popular or large-sizedults in a higher gain, hence
in better performance for the Agent storing that content.

Next, Fig. 5.5 shows how changiri. impacts on the relationship between the
amount of service (expressed in credits) that Agents peoaral obtain from the system.
The different markers denote Agents that provide contelioigeng to different classes.
From a fairness viewpoint, we make the following obsernraioFirst, in each plot,
points lying on the bisectriy = x correspond to Agents enjoying as much service as
the amount they give to the Colony, while points above andvéhe bisectrix represent
Agents that, respectively, obtain and provide more than wiey should. Secondly, we
would like all Agents to experience the same quality of seyi.e., they can access the
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Figure 5.5. Amount of service (in credits) given and obtdifiy Agents providing
different classes of content, when @)= —1, (b) 7, = —5 and (c)T,. = —20.
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same amount of content, independently of what they store.

Looking at the figure, we note that the closérto 0, the more points lie on the
bisectrix. However, considering the results in Table &.1s tlear that query success
probability and fairness are diverging objectives and gnaperly selecting’,. helps in
establishing a tradeoff between the two trends. Spec¥icall = —5 appears to be a
good choice, as it both provides high success probabilitiyearsures that each Agent
receives about the same amount of service it obtains fronsyeeem. However, the
content sharing system by itself cannot solve the secone isdated to fairness: as is
evident from Fig. 5.5, Agents storing low-value items (edjass 4) both provide and
enjoy little amount of service, with respect to Agents afigrmore valuable items. We
address this problem as described next.

5.8 Exploiting Caching Capabilities

To lessen the effect noted in Fig. 5.5 and increase the cbateaiiability in the system
(i.e., the query success probability), we enhance our mataking paradigm by letting
Agents have caching capabilities, i.e., the possibilitgttire content items they are not
directly interested in, with the sole purpose of helping@wtony (and get a reward for
that). They may use such capabilities following the Brokelitections. In other words,
some of the Agents that obtain a content can be asked by tlkeBi@retain it in their
cache. Those Agents will then be able to provide the cachetkobto others.

Below, we formulate our problem and devise a solution thatytes caching Colony-
wise. For clarity, we presently leave disruptors and otltac&ers out of the picture.

5.8.1 Problem formulation

Without loss of generality, we assume that if an Agent habkicgocapabilities, its cache
size is equal ter. We focus on Colony: and denote byz,(j,t) the number of Agents
in the Colony that advertised contentvhen they registered, and ldy,(j,t) the number
of Agents that are caching contehat timet within the Colony, because asked to do
so by the Broker. Note that the latter did not advertise aunteduring registration,
but acquired it in response to a query. Since the two belaei@ mutually exclusive,
Pk(jat) = Rk(]vt) + Lk(]at)

Let us first compute the query success probability condtibto the fact that an
Agent issuing the query has enough budget to request a desintent. By restricting
our attention to well-behaving Agents, this is given by thie{ probability of the fol-
lowing events: (i) neither SREQ nor SREP are lost; (ii) in@wony there is at least one
Agent under coverage advertising the requested contente $i can be assumed that
these events are independent and the number of Agents iathged content does not
vary during an SREQ/SREP exchange, the success probaiiilihe query generated
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by the generic Agent, for conteptin Colonyk, is given by
Sk(jit) = (L= q)* [1 = (1 = p)GO+HEGO] (5.9)

In (5.9), we assumed that SREQ and SREP transfers fail withlggobabilityg, while
pi ng packets (which are very short) are always successfullyel@d;p is the proba-
bility that a generic Agent in the network is under the netancoverage.

The following Lemma shows that increasisg(j,t) corresponds to increasing the
number of Agents providing contenin Colony k.

Lemma 1. The expression in (5.9) increases monotonicallyia$;,t) + Li(j,t) in-
creases.
The proof is omitted.

However, just increasing the number of Agents providing eagtent leads to a
waste of caching resources. Our caching strategy, instesstls to adapt the number
of copies of the content to the query rate associated to ithiBoend, we resort to the
content burden metric introduced in (5.1) and defiaét) as the number of Agents in
the Colony that have caching capabilities (i.e., they cahedome content according to
the Broker’s directions). Assuming thd(¢) is known by the Broker and that content
popularity is negligibly affected by the change in numbepuadviders due to caching,
we are in a position to formulate our goal as minimizing thrgéat content burden, or,
equivalently, as

1

max mjin BeGid) (5.10)
s.t. Lk(],t) S Ak(t) - Rk(j,t) \V/j (5101)
> s k(i) < o - A(t) (5.10.2)
Li(5,t) e N ¥y (5.10.3)

Note that such a formulation is an ILP (Integer Linear Pragrang) problem with

I decision variablesl{(j,t), j = 1,...,I). Constraint (5.10.1) forces the number of
cached copies for contepto be not greater than the number of caching-capable Agents
not advertising that content, while Constraint (5.10.3was that the total number of
cached items does not exceed the cache capacity availatile system. Constraint
(5.10.3) forces the decision variables to take non-negatieger values. Unfortunately,
a polynomial or pseudo-polynomial time solution to the abpwoblem does not exist
[61]. Additionally, the system dynamics require the problt® be solved every time
Agents enter/leave the system, or they are banned/unb@fpéd:) changes), or if the
content of an Agent’s cache is modifiet,( j,t) changes). Thus, we devise a heuristic
to handle the problem solution, and evaluate its performamSec. 5.9.1.
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5.8.2 A heuristic caching strategy

Our heuristic is implemented at the Brokers, which are in adgposition to classify
content based on its rarity and popularity, since they kr@witumber of providers and
have a running estimate of the query rate for any contentinvitieir Colony. Also,
using SREP messages, they can ask the Agents that areirgfr@ezontent item to add
it to their cache. Feedback packets can be used by Agentiotanithe Broker whether
they followed its directions and which content, if any, theigcarded to make room
for the new content. In this way Brokers complement theinidedge of the number
Ry (4,t) of initial providers advertising the content, with that betnumberZ,(j,t) of
caching Agents.

The Broker considers that a conten worth to be cached (hereinafter referred to
ascacheworthyif the content burdeni3y(j,t), outweighs the average value (computed
over all content items available in the Colony) by a factor 1. As an Agent in the
Colony issues a query for a cacheworthy content, the Brasles ehe Agent to cache it
if its balance is smaller or equal to the average. Also, iineg to the Agent the burden
of the content items, in order to provide a discard prioritiy different items in case of
cache overflow (i.e., content associated to lower burderoreikely to be discarded).

From the Agent’s viewpoint, we define the benefit/cost ratiproviding a content
jas G’;(J?')’t) = 9+Bl’g(j’t). This metric represents how much an Agent’s balance ineseas
per unit of effort (i.e., for a unitary amount of transferrgata). Then, we prove that
rational Agents will follow the Broker’s suggestion to cach content, whenever such a

content is cacheworthy.

Theorem 5.8.1.Given a rational Agent currently storing the set of contéatissS, the
Agent always finds it convenient to cache a new contenpon Broker’s suggestion.

Proof. The proof is omitted. O

Based on the above theorem, we conclude that the proposedtleecan be suc-
cessfully implemented: rational Agents will follow the Ber’s suggestions, as it allows
them to become providers of a content with higher benefitiai® and, thus, increase
their expected reward.

5.9 Evaluating Figaro with Caching

We now evaluate the effectiveness of Figaro’s caching nm@shain improving the
Agents’ query success probability and mitigating the unfsés among Agents provid-
ing items with different characteristics. We also compéae performance of Figaro
against other existing solutions.
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Figure 5.6. (a) Query success probability and (b) numberoiied copies for the dif-
ferent content classes and as the percentage of Agentsaeiting capability varies; (c)
CDF of the balance for Agents able/unable to cache.

5.9.1 Simulation Results

We now consider that a certain percentage of Agents havengachpabilities, and, for
clarity of presentation, that there are no disruptors. Watwa address the following
guestions:

e is caching effective in improving Figaro’s performance?
e how many caching-capable Agents are needed for cachingrd?wo

e how does caching impact on the balance distribution in tHerg®@

To this end, we sef, = —5, 0 = 200 kB, and¢ = 1.5, and show the performance
of the proposed heuristic caching strategy as the percemtagcaching-capable Agents
varies.

Figs. 5.6(a) and 5.6(b) show, respectively, the query sscpeobability and the
number of copies cached in the system, for the differenterdrilasses. As expected,
as the number of caching-capable Agents increases, thessupcobability increases
as well. However, a query for highly popular, large-sizedteat (class 1) has lower
chances to succeed than others, unless all Agents can caghier@al content items.
Indeed, less requested or smaller items are less valuabter(ns of credits), hence
they are easier to obtain. Nevertheless, Figaro significaatluces the query success
probability gap between the different content classesadly with 40% caching-capable
Agents. Interestingly, Fig. 5.6(b) shows that what matters content to be cachewor-
thy is mostly its popularity level: most of the cached cohitams are the popular ones
(i.e., classes 1 and 2). However, as the popular items bewvodedy available in the
system, room can be devoted to less requested items, dipéutalarge-sized ones
(i.e., class 3).

Next, we fix the percentage of caching-capable Ageni§¥and presentin Fig. 5.6(c)
the balance cumulative distribution function (CDF), fockeng-capable and not caching-
capable Agents. Caching-capable Agents have a signifycaigther balance, due to the
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Figure 5.7. (a) Service given and obtained by Agents and €hjistic caching strat-
egy vs. optimal solution, fo50% caching-capable Agents; (c) Backbone usage as the
percentage of caching-capable Agents varies.

higher burden (hence value) of the content they provide.o Aftice that with ex-
tremely high probability caching-capable Agents have atzé greater thah,, show-
ing that caching has also the positive effect of distribgitimore evenly the load among
Agents.

This is confirmed by Fig. 5.7(a): caching improves not onb/dgiuery success prob-
ability, but also the system fairness. In contrast to Fi§bbthe amount of service
provided and obtained by Agents does not depend any longéeaass of the content
Agents originally advertisedall Agents receive from the Colony a level of service that
is close to the one they provided very likely, they have a balance greater than the
thresholdT,.. In other words, caching is an effective way to achibe¢h a very high
success probability and fairness guarantees among theg\gen

Next, for the different content classes, we compare the murobcopies cached
in the system as obtained through our heuristic (implenteimeimulation), with the
solution to the optimization problem in (5.10). The lat®computed by assuming that:
(i) conditions are stationary (i.e., Agents are static \pitbbability p = 0.75 to be under
coverage, which is in agreement with the network scenardeustudy), and (ii) the
Broker has knowledge of the number of caching-capable Agentvell as of the status
of all Agent caches. The agreement between the results,rshiofaig. 5.7(b), proves
the good performance of Figaro, even compared to the casewyhabal knowledge is
assumed at the Broker.

Finally, caching also has the positive effect of reducirg ukage of the backbone.
Indeed, caching increases the content availability infideColony and, consequently,
reduces the need to search for it outside (i.e., asking theyRrFig. 5.7(c) confirms this
statement, and suggests that, when used, the backbonenly miployed to retrieve
popular content. This is of particular importance when taeldbone is not wired but
implemented with cellular technologies such as 3G. In tleases, reducing its usage
results in significant monetary savings, and may repressinbag motivation to deploy
a peer-to-peer content discovery system like Figaro.
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5.9.2 Benchmarking Figaro

We finally evaluate Figaro by comparing it with other schemesrms of query success
probability and overhead. In Figaro, we assume #&t of the Agents have caching
capabilities. Since the results above showed that Figatoagiching greatly mitigates
the differences in performance among Agents advertisimgeca items with different
characteristics, we now show results averaged over thereliff content classes.

Figaro is compared with a simple content-retrieval mecranireferred to as Flat
Flooding, and the BubbleStorm scheme, adapted to our w8aleenario from its wire-
line version [57].

Flat Flooding hinges on a flat peer-to-peer exchange in adnimde connectiv-
ity (i.e., without infrastructure). The query propagatiamge is spatially limited by a
Time To Live value (set to 10 hops), and the rebroadcastiragreédy solved queries is
avoided by means of a query lag time (setto 1 s): if an Agemadgtesponses to a query
it has just received, it refrains from forwarding it any fugt. In this infrastructure-less
scenario, Agents implement a routing protocol for ad hoevoets (we chose OLSR)
and act as relay nodes when needed.

As mentioned in Sec. 5.2, BubbleStorm [57] is based on a |ibsEc exhaustive
search paradigm in a overlay network. In our scenario, givemopological constraints,
the random graph structure used by BubbleStorm to propagatatent is built as a
subset of the tree already provided by the infrastructurdso Aour implementation of
BubbleStorm provides for nodes to replicate, broadcastanlde content in such a way
that the average fraction of Agents storing a content in Befform is equal to the one
set up for Figaro.

Notice that, while deriving the results, in Figaro Agents assumed to be rational,
i.e., to cooperate only if it is beneficial to them; in the cakthe other schemes, instead,
an ideal behavior is assumed, i.e., Agents are always gilbrcooperate.

The query success probability is reported in Fig. 5.8(athasnumber of Agents
varies. We note that Figaro outperforms the other solutiesgecially when the num-
ber of Agents is low. While the comparison against Flat Flogqwhich does not ex-
ploit any infrastructure) is not surprising, the improverneith respect to BubbleStorm
is less obvious. Indeed, in the wireless scenario undersiubbleStorm performs
slightly worse than its wireline version, whose succes$abdity exceeds 0.99. Fi-
garo, instead, is more suitable for wireless, dynamic seemndue to the match-making
capabilities of the Brokers. The role of the Broker in aidititng content sharing within a
Colony also explains why the performance of Figaro does etartrate as the number
of Agents grows, as instead happens when BubbleStormistgtat matching is used.

An area where Figaro provides performance unmatched byIB8hirm is message
overhead. Fig. 5.8(b) shows that Figaro exhibits an ovetlileat is nearly inversely
proportional to the query success probability, as a highecess probability implies
that very likely (i) a query is satisfied within the Colony whet has been generated
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Figure 5.8. (a) Success probability averaged over therdiiteitems and (b) message
overhead, as functions of the number of Agents.

and (ii) fewer SREQs are issued. In particular, it is showat the Figaro overhead
stabilizes belows0% of the total traffic. BubbleStorm instead exhibits a sigifitty
higher overhead, due to its proactive content (and queppagation over the network.
Finally, with Flat Flooding the overhead increases as thbr of Agents grows, due
to the increased network congestion: large numbers of Ageigger an overwhelming
number of replies to a single query.

5.10 Conclusions

We presented Figaro, a match-making content discoveryisoltor wireless networks
with infrastructure. In Figaro, mobile users (a.k.a. Agg@mirovide and request content
items, while fixed Brokers help Agents in identifying who asva desired content. A
balance system ensures that Agents are treated in a faif.@ayhe amount of service
they receive is comparable to the amount of service theyigeovContributing to the
effectiveness of Figaro is its feedback mechanism, thatvallBrokers to zero in on
free riders as well as attackers, and ban them to limit thegative impact. Also, Fi-
garo complements its design with a caching scheme in whizBtbkers suggest to the
Agents what content to cache, in order to increase the quegess probability (global
and Agent’s) and ensure fairness among Agents. Finally,raeepl that it is rationally
convenient for Agents to cooperate and to follow the Brakedching advice. Simula-
tion results showed the resilience of Figaro against difietypes of attacks, as well as
its effectiveness, also with respect to other existingtsmhs.
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Chapter 6

Conclusions and future work

In this thesis, we discussed the planning and managemenbbilemetworks with
infrastructure.

We started by addressing the problem of infrastructurenpten Assuming a per-
fect knowledge of vehicular mobility, we developed a grapbded able to capture the
evolution of the network topology, as well as to account foarmnel access issues. By
solving a set of max-flow problems over such a graph, we wele talconclude that
popular placement heuristics such as placing the APs in thet anowded locations are
significantly suboptimal. Furthermore, we could obsena thost data flow through
vehicle-to-vehicle links, but only a negligible fractiomvel more than two hops. This
in turn suggests that the effort of building a complex mhtip protocol can be avoided
in certain scenarios. Finally, we found that data can traver significant distances
through carry-and-forward.

We extended the scope of our work in order to account for tbetfeat out knowl-
edge of vehicular mobility is affected by several kinds aberWe enhanced our graph
model in order to include probabilistic edge weights, andiigtd the effect of predic-
tion inaccuracy over the network performance. We foundtti@most significant effect
of prediction inaccuracy is not a lower throughput, but eata higher amount of data
unnecessarily sent from APs to vehicles they uncorrectig\mto be potential relays.
We also addressed the case in which contents are locatemfispfinding that such a
scenario is more sensible to the effects of prediction inaary. As a complement to
our modeling effort, we verified that a simple, second-oiMarkovian prediction tech-
nique can be accurately described by our model, which cactefely be used to study
its performance.

Then, we switched to a non-cooperative scenario, in whiehAR deployment is
not decided in a centralized way, but is the result of theoactf several competing
operators. For simplicity, we restricted our attention 8canario with two possible AP
locations, and two operators playing a leader-follower gaviie found that whether the
follower choses to place its AP in the same location of thédedepends in a non-trivial
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way upon the vehicular flows being dealt with, as well as theteat size. Finally, if
the follower can freely decide the distance between its AdPtha leader’s one, it will
choose a distance that makes the coverage areas partiatipov

As far as network management is cncerned, we presentedentahscoovery solu-
tion based on a variant of the publish-and-subscribe pgnadBy combining a balance
system and a feedback and banishment mechanism, we wette ableure that rational
(i.e., self-interested) users always provide the contdrgnwequested by the Broker,
while malicious users are effectively detected and isdlaiy allowing those Agents
with caching capabilities to use them following the Brokestiggestions, we were also
able to increase the availability of popular and/or rareteots.

Future work will focus on two trends. On one hand, we will istigate the potential
benefit of including parked vehicles in the content delivergcess. On the other, we
will look at how our graph-based model can be integrated int jspectrum and AP
location auctions.
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Appendix A

Proactive Seeding for Information
Cascades Iin Cellular Networks

A.1 Introduction

Cellular traffic is growing exponentially, tripling evergsr, with a share of video traffic
increasing from 50% now to an expected 66% by 2015 [67]. Cr@disse reported
in [66] that 23% of base stations globally have utilizatiatess of more than 80 to 85%
in busy hours, up from 20% last year.This dramatic increasiemand is generating se-
rious problems for 3G networks and these problems are likalgmain in 4G networks
as well. Another aggravating fact for the operators is thatdellular network traffic
greatly fluctuates throughout the day, following strondydand weekly patterns, as we
show in Fig. A.4(c). Since the cellular network is proviseaifor peak traffi¢ any ca-
pability that can distribute the network load more evenlgravme would significantly
address the current as well as future capacity shortconfimgise operator.

At the same time, in today’s Internet, online social netvggi®SNs) are becoming
an increasingly important way in which users are informedualzontent. This is not
surprising: people tend to value highly the content reconaed by friends or people
with similar interests (e.g., members of the same groups) aae also likely to recom-
mend it further to others.

The growth of cellular traffic and of OSN'’s importance aredrdntly related. In-
deed, mobile devices are quickly becoming the primary meaactess OSNs. For
example, one third of all Facebook users regularly accessetvice from their mobile
devices and they generate twice as much activity than ndmitenasers [62]. Con-
sequently, the interest diffusion over OSNs translatesctly into increased cellular

1By OSNs here we refer to online social networks such as Fatetod Twitter, websites with so-
cial networking features such as Digg.com, blogs, emailroamication, and other online networks that
exploit social ties for interest diffusion.
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traffic.

Cellular operators may try to exploit the knowledge of suaterest diffusion to
alleviate the peak demand in cellular traffic. One approstbdelaysome of the traffic,
e.g., by limiting the diffusion of interest [63] or by usingdhniques that trade-off user
delay for traffic load [64, 65].

We take a different approach and aim at servmgatientusers, i.e., users that ex-
pect the content right after they demand it and do not tadeatje delays and jitters.
Our key observation is that given the vast information oféenilable to the cellular
operator (e.g., address books, session logs, locatioorpigiartnerships with OSNs,
etc.), the network can detect information cascades andagbtée future demand. Con-
sider, for example, the case of Youtube videos: Google tegdhat up to 200 million
Youtube videos per day were delivered to mobile devices t0g67]. Many views of
these videos are due to the spread of their URLs over vari@NsO The evolution of
such cascades of forwarded URLs depends on the structune @$N, similarity of
users and other relevant features. With this informatiois,possible to model and pre-
dict the diffusion of interest [68, 69]. For example, in [7@je authors apply machine
learning techniques to Twitter traces, and predict more badf of URL-based cascades
of tweets with only a 15% false positive rate.

In this chapter, we propose Proactive Seeding, a techniqueducing the peak load
in cellular networks, while providing users with low (or e@access latency. Proactive
Seeding exploits the predictability of future demand bygatvely pushing (“seeding”)
the content to users before, and no later than, they requeBhis allows us to move
some cellular traffic from the busiest hours to times withdowoad and thus to reduce
its peaks, as illustrated in Fig. A.1. Proactive Seedingptsnaal in the offline setting
(i.e., assuming perfect knowledge of all information ca®&s, in the sense that it min-
imizes the peak load while delivering the content to a uselater than she requests
it. In our simulation driven by traces from Twitter and cédliunetworks, Proactive
Seeding leads to 20%-50% reduction in the cellular peak. ldadhe case of imper-
fect prediction, where the gains are naturally reduced, hesvsthat the conservative
approach of underestimating the future demand still guaesnpositive gains. Finally,
we show how Proactive Seeding can be combined with techsigue 72] that exploit
the local device-to-device (D2D) connectivity (over WiKiRBluetooth), and that such a
combination performs better than each technique sepwratel

The structure of the rest of the chapter is as follows. IniSe@&.2, we provide the
formal problem statement. In Section A.3, we present tha®iee Seeding solutions
under the assumption that demand can be perfectly predict&ection A.4, we modify
our framework to allow for imperfect, probabilistic estitia of the prediction. In
Section A.5, we present our evaluations results. We owerthe related literature in
Section A.6, then conclude the chapter with Section A.7.
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(a) without Proactive Seeding
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Figure A.1. lllustration of Proactive Seeding in a systenthwiivo types of contents

C = {c1,c2} disseminated among 9 usdis = {u;...ug}, in presence of the back-
ground load\*. (a) The diffusion of interest between the users in conign(bright
gray) ande, (dark gray). For exampleys € w§2 means that user; becomes interested

in contente, at timek = 2. Without Proactive Seeding, users request and pull the con-
tent through cellular right when they get interested irhif & w’), which results in an
uneven total cellular load (the total height of bard)) Proactive Seeding serves some
users before they actually become interested in the co(®ftC H”). The total load
becomes more even in time and its peaks decrease (here bigsB uni

A.2 Problem statement

We distinguish between two components of cellular traffig:b&ckground load and
(ii) predictable traffic.

A.2.1 Background cellular load

We refer as background (cellular) load to all traffic whicloig of our control: its con-
tent cannot be predicted (at least not with a reasonableawguand/or served before
the actual request occurs. For example, phone conversatimhother types of real-time
traffic contribute to background load. We denoteXsythe total amount of background
load at time framé;, 0 <k < K.

We illustrate\* by white bars in Fig. A.1; note that because the content ceingo
it cannot be predicted or served earligt,remains unchanged in Fig. A.1(b).
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A.2.2 Predictable cellular traffic

In contrast, the predictable cellular traffic is all the fiafhat can somehow be predicted
and thus proactively served. Denote biythe set of all users, and by the set of all
existing pieces of predictable content. We assume thanndting a single piece € C

of content to a single user € U takes exactly a single unit of cellular trafficNow,
denote byw” C U the set of users that demand (“want”) the contert C exactly
at time framek. In other words,w” describes the diffusion of interest in content
(typically over OSNSs). Let

Wi=Jw WcU) (A.1)

be the cumulative version ab*, i.e., the set of all users that have requestadhtil
framek. Finally, we denote by:(u,c) the time when uset. demands content, i.e.,
such that, € wf ™.

In the example in Fig. A.1(aw?2 = {us,us} and, consequentlyt(us,c,) = k(ug,c1) =
2.

A.2.3 Transmission schedule

In this chapter, we decouple the diffusion of interest in¢batent (i.e., demand) from
the actual delivery process. To this end, we denotdby- U the set of users that get
(“have”) contentc over cellular network exactly at franie Its cumulative version

H!=|Jnr (H!CU)

is the set of all users that haveat framek. In the other wordsh” is a schedulethat
determines when the cellular operator sends conrtemtvhich users.
For example, in Fig. A.1(bY! = {us,us} andh! = {us}.

A.2.4 User Impatience

In this work, we consider the case where all usersrapatient a user, € U wants to
enjoy content € C right after she becomes interested in it. This meansutisdiould

2In practice, the content spread over OSNs may greatly vasjziex a ten-minutes-long Youtube
movie is orders of magnitude bigger than a photograph. Adléquations can be easily modified to
reflect heterogeneous content size, at the cost of notdtaityc
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receivec at timel not larger thark(u,c), i.e.,u € h! such that < k(u,c). This is
achieved by guaranteeing that

WF C H* foreveryk andc. (A.2)

For example, in Fig. A.1(b), we push contento userus attimek =0 < k(us,c;) =
2, which is allowed by (A.2). In contrast, sending it at tithe- 2 = k(us,c;) would
violate the constraint in (A.2).

A.2.5 Objective

Using the notation above, thetal cellular traffic/loadat timek can be decomposed as
the sum of background cellular load and total predictalaffits, i.e.,

total cellular load = A+ [Rf|. (A.3)
ceC

Our objective is to minimize the peak of total cellular load,,

minimize Jmax </\ + C; |hc|> (A.4)
subject to the user impatience constraint in (A.2).

Note that because we have no control over the diffusion @&fréstw?”, we can
affect (A.4) only by choosing the schediig. We give an example of such an optimized
schedule in Fig. A.1(b). In particular, we (i.e., the cedlubperator) predict which users
will be interested in content, and proactivelyseedsome of them withc when the
cellular load is relatively small, e.g., during the presaught. This allows us to reshape
the cellular traffic and reduce its peaks, but not the todfitr.

A.3 Proactive Seeding Algorithms

In this section, we focus on thafline case, where we have perfect knowledge of the
future diffusion of interest, i.e., we know” for all time framesk and pieces of con-
tentc. The offline case serves as a baseline for understandingakiemam achievable
gains. It also serves as a building block for the more raalistline scenario, where
prediction of the future is imperfect, described in Sec..A.4

A.3.1 Special Case: single content, no background load

Let us first consider the simplest, yet intuitive case: thenly a single conteni{ =
{c}) and no background load\{ = 0). An example of the demand curve correspond-
ing to such a cascade (e.g., a single content flash-crowdjosrsin Fig. A.2: the
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(a) Instantaneous (b) Cumulative

without PS,jw*|—| |

with PS, |k 1 |

without PS,|Wk| — |
with PS,| HT*|

optimal|h?|
optimal|h?|

0 timek -10 timek

Figure A.2. Geometric interpretation of optimal ProactBeeding (PS) under a single
content cascaded = {c}), with no background cellular load\f = 0), as described
in Sec. A.3.1. The curve represents a typical cascade onattebBok social graph (see
Sec. A.5.3). We minimize the peak instantaneous cellukt In(a) while satisfying the
impatience constraint (A.2), by proactively seeding thersigt a constant rate, until the
cascade passes. The optimal seeding|tdtecan be found by studying the cumulative
version(b) of the time evolution, where a line anchored at point (-1,8) &angential
to [Wk|, crosses the y-axis at point (BY)).

total number of users interested in the content increastisreaches a peak and then
decreases.

In this special case, objective (A.4) is equivalent to miimg max, (|h*|) subject
to the user impatience constraint (A.2). Intuitively, tieistails delivering the content
more evenly over time. Ideally, we would like to send the eantvith a constargeed-
ing rate |h*| and thus at linearH *|.This rate should be the lowest possible, while still
satisfying (A.2). Becaus€ = {c}, (A.2) is satisfied iff W*| < |H¥| for everyk.
Consequently,H*| should be linear and never smaller t{3#*|. This leads to an in-
tuitive geometric solution: Draw a straight line that ceespoint (-1,0) and is tangential
to |W}|. The optimal service ratg’| is determined by the point where the line crosses
the y-axis. We show an example in Fig. A.2.

It is also easy to see that this optimal raké| is also provided by the following

formula
WO o Hl
|hF| = mingxM . (A.5)
1=k [+1

A.3.2 General Case: multiple contents, background traffic

The simple geometric solution from Sec. A.3.1 does not tiyexxtend to the general
case, i.e., in presence of arbitrary background cellulad )¢ > 0 and multiple con-
tents|C| > 1. For example, (A.5) would not necessarily satisfy the usgratience
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Algorithm 1 Proactive Seeding
Require: w” Ve,k, M\ Vk future demand and load
1. hY <0 Vek
L+
for all (u,c) such that: € WX do
L+ LU{(u,)}
end for
sort L by increasing:(u,c)
for all (u,c)in L do water-filling
k* < argming<i<pu,e (A + 22, [he)
hY «— hY U {u}
. end for
creturn hE Ve k optimal

N>R RN

el
= O

constraint (A.2) for each of thg”'| > 1 contents separately.

To address these problems, we propose the Proactive Seddorghm, shown in
Alg. 1. We construct the seeding schedhfgiteratively, starting from an empty set
(line 1). Inlines 2-6, we create a listof existing user-content pai(s,c), sorted accord-
ing to the growing want timek(u,c). Note that user. may appear i, multiple times,

i.e., exactly once for each contanshe is interested in. Lines 7-9 implement a water-
filling type of algorithm, where for each pair,c) we find the time frame&* < k(u,c)
with the smallest total cellular loak¥” +>" _|h!"|. We then schedule this pdjt,c) at
time £* by addingu to k%" (line 9). Finally, once all existing pairs:,c) are scheduled,
Proactive Seeding returns the seeding scheldfifer all contents: and time frames.

We illustrate the output of Proactive Seeding in the exanoplEig. A.1(b). The
sorted listZ resulting after line 6 id. = [(uy,¢1),(u2,c1),(us,c1),(us,c1),(ug,c1),(usz,c2),(us,c1),
(U5,CQ),(Ul,CQ),(U4,CQ),(Ug,Cl),(UQ,CQ),(U7,CQ),(U8,CQ)]. For pail’(ul,cl), we han{f(Ul,Cl) =
0, and therefore lines 8-9 resultiri = 0 andh? = {u,}, respectively. When process-
ing the second element iy (uz,c1), we have\'+>"_|hl| = 2 for bothl = 0 andl = 1.

We arbitrarily break this tie by settirfgr = 0, which results irh?, = {u,,u,}. The third
pair (ug,c1) has now a uniqué* = 1, and is scheduled therein. The process continues
until L is exhausted.

This scheduld:” returned by Proactive Seeding is optimal:

Theorem A.3.1(Optimality of Proactive Seeding)'he seeding scheduté’ ek, cre-
ated by Proactive Seeding minimizes the peak load (obgerti(A.4)), while satisfying
the user impatience constraint (A.2) for each contesgparately.

Proof. First, note that the framg&* chosen for uset in line 8 is not greater than the
time k(u,c) whenu actually wants the content. Therefore, by constructioastthedule
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created by Proactive Seeding always satisfies the userignpatconstraint (A.2) for
every content separately.

We now have to prove that the objective (A.4) is met by Proac8eeding. Denote
by L(j) the set of all pairgu,c) such thatk(u,c) = j and byL(i,j) = ! _, L(m).
Denote byh(j) the transmission schedule constructed by Proactive Sg@ah after
processing the pairk(j) in lines 7-9. In other wordsh(j) schedules all contents for
all users that want it not later than at timie Consequentlyh(K’) denotes the entire
scheduleh(K) = U, hk. We prove the optimality of Proactive Seeding by induction
on 7, as follows.

Initialization (; = 0): For every pair(u,c) € L(0), line 8 automatically sets* = 0.
Consequentlyh(0) schedules all pairg,(0) at time slot 0. This is the only feasible
solution, thus the optimal one.

Induction step:Assume that(j) is optimal for all pairsZ(0,j). We now must prove
thath(j + 1) is optimal for all pairsL(0,5+1).

Denote bymax(h(j)) the peak total cellular load resulting froky(j). Either an
optimal allocation will increase the peak ratgjat 1, or keep it constant. Thus we can
distinguish two cases, as follows:

Case 1: It is possible to schedule the paig + 1) such thatmax(h(j + 1)) =
max(h(7)). In this case, lines 7-9 guarantee that this equality hofd&eu Proactive
Seeding, by iteratively choosing the least loaded timessibiow, becausewax(h(j))
is optimal, it is the smallest value that does not violateithgatience constraint (A.2).
Soh(j + 1) cannot be lower thamax(h(;)) without violating (A.2). Consequently,
max(h(j + 1)) = max(h(j)) implies the optimality ofa(j + 1).

Case 2: It isnot possible to schedule the paifg;j + 1) such thatmax(h(j + 1)) =
max(h(7)). We can now distinguish two sub-cases, depending of thegbackd load
attimeyj + 1:

Case 2.1: linax(h(j+1)) = M ' is achievable, then lines 7-9 of Proactive Seeding
will achieve that by iteratively choosing the least loadedet slots. In this case, the
peak load is equal to the background lodd!. Such a peak load is optimal, because,
by definition, background load cannot be changed.

Case 2.2: Ifnax(h(j + 1)) = MT!is not achievable, then lines 7-9 guarantee that
max(h(j+1))—min(h(j+1)) < 1, wheremin(h()) denotes the minimal total cellular
load resulting fromh (). Consequentlynax(h(j+1)) cannot be decreased ah(j+1)
is thus optimal. O

Note: Although optimal in the sense of objective (A.4), ProacBeeding does not
guarantee that the users will be served in the order theyestghe content; it may
schedule uset before userw, even ifk(u,c) > k(w,c). For example, in Fig. A.1
userus wants content; before usetns, but is scheduled to receive it afteg, as we
show in Fig. A.1(b). However, it is easy to see that an adadgistep that reshuffles
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the users to enforce the “first-want-first-serve” (i.e. actulogical) order, preserves the
optimality and feasibility of the resulting schedé.

A.3.3 Extension: D2D-aware Proactive Seeding

In addition to their cellular connections, it is often thesedahat some users are within
physical proximity of each other and can establish direcia#eto-device (or D2D [73])
connections between them, e.g., via ad-hoc 802.11 or Bitketolf these users are
interested in the same content, they can exploit their D2inheotivity, and thus offload
the cellular network. Several variants of this idea havenlstadied in the past, e.qg.,
in [71,72,74,75]. What makes this particularly promisimgpur context, is the fact
that there is a correlation between geographical proxi@uiy proximity on the social
graph [76]. We show below (and later, in simulations) thasth techniques can be
combined with Proactive Seeding, and address two compl@measpects: using the
D2D connections helps to offload the total aggregated elllalad, while Proactive
Seeding helps to smooth the load over time.

The D2D connectivity graph changes over time. We denote\dyu) all D2D
neighbors of uset at timek. Consider timé:(u,c) when usern becomes interested in
contentc. We will assume that each mobile user behaves as follows:

1. If uw has been seeded wittbhefore, no action is needed.

2. Otherwisey attempts to pult from its current local neighbo® (%) (v,). This is
possible only if at least one of these neighborshas., if N*) (y) N HEF ") £
0.

3. Otherwisey fetchesc through the cellular network.

Depending on the extent to which the operator is aware of D@ihectivity, different
optimizations are possible:

D2D-unaware Proactive Seeding

In this simplest scenario, the operator does not have irdbom about the location
of users and thus performs Proactive Seeding without tagrgimity into account.
Consequently, user can benefit from D2D, in an opportunistic way, i.e., only.ihas

not been seeded earlier (i.e.uife hr™ N wF™), which results in

hY <« RE\ {ue hEnwh . N*9(u)n BN £ 0}

In the example of Fig. A.1, user, will pull contentc, from its D2D neighborgV3(uy)
attimek = 3 if at least one of them is ifuy,uz,us} = HZ, (i.e., already has,).
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D2D-aware Proactive Seeding

In this scenario, the operator has information about locadind thus proximity of usets
and takes it into account while seeding. In particular, legs Proactive Seeding but
avoids seeding userif « will be able to get the content from its neighbors. This can be
achieved by the following refinement of schedhle

hY « RE\ {uehf: N*9)n HN) £} .

In the example of Fig. A.1, we will seed useywith contentc, at timek = 1. If we
know thatus € N3(u,), i.e., thatu; andus will form a D2D connection at timé = 3
(i.e., whenu; wantsc;) then then we can excludg from hgg.

A.4 Dealing with Uncertainty

In Sec. A.3, we developed an optimal seeding strategy ghvefull and precise knowl-
edge of the future (i) cellular background load, and (ii)jiceable traffic pattern. Clearly,
the performance of Proactive Seeding will strongly depemdhe quality of our esti-
mation of the predictable traffiw®. Many prediction techniques have been proposed in
the literature and developing new ones is out of the scopa®thapter. Instead, in this
section, we review some existing techniques, and we showteycan be incorporated

in Proactive Seeding.

A.4.1 Interest diffusion on OSNs

In this chapter, we are interested in the content that besgopular through social
ties? One can exploit the structure of the social network and mfitfon about interest
diffusion, in order to predict information cascades. Sughetliction can then serve as
input (instead of the offline knowledge) to our predictivediag algorithms.

There is a rich literature on predicting the diffusion ofargst in social networks,
see e.g., [68,69]. In our context, predicting the futuregpess of a cascade related to
contente, can be modeled as finding the probability

P (w; ™ wi | wgwi ™ Loner) (A.6)

3This information can be obtained either directly from théutar network or can be contributed by
the user e.g., via applications on OSNs (such as FourSqgtacepbook Places) or on a smartphone, in
exchange for the service.

4An alternative approach to leatn* could be by studying the download patterns of individuatsise
For example, assume that usaregularly visitsmw. bbc. co. uk (or checks out her Facebook updates)
everyday in the morning. We can then seedith some heavier content (graphics, videos) over night. A
machine learning approach could help us choose whom to sekdith what content.
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wherew”® w*~1 ... w? is the observed history at the current timand/,;,., represents

any other available piece of information. Below, we commemthow some of the
existing approaches translate into the (A.6) probabditie

The threshold model

In the threshold model [68], each uselis associated with a threshold< 6, < 1.

u becomes interested in the content at tifne 1 if at least a (weighted) fraction of
0, of her neighbors are interested in it at tithe This model is deterministic, i.e., the
probabilities in (A.6) are eitheror 1.

The cascade model

In the cascade model [68, 69], each edgav) of the social graph is associated with
an activation probability, ,,. If useru gets interested in the content at timethen the
edge(u,w) is used exactly once to determine whether usevill become interested in
the content at framé + 1, which happens with probability, .,. In other words, given
the activation probabilitieg, ,, (i-e., I,ne-) @and the historyw* w*~1,... w?, the cascade
model gives us the following probabilities, concerning tiegt time frame:

P (wi | wfawht ™ awl, Lher) (A7)

which is a special case of (A.6).

Machine learning

Another line of research focuses on machine learning tectasithat make use of all the
available information. For example, in [70], the authomsédxd on the observed history,
manage to accurately predict more than half of future restevéof URL links) with
15% false positives.

A.4.2 From probabilities to Proactive Seeding

Given the knowledge of probabilities in (A.6), we follow theocedure presented in Fig. A.3.
First, at the current timé, we use (A.6) to calculate the most likely futuié* (Fig. A.3(a)).
Next, we plugw’>* into Proactive Seeding (Fig. A.3(b)), which returns us tbleesl-
ule k¥ for the current time frame. Finally, we implemehit and collect the actual evolu-
tion of demandv’ that is used to refine our calculations in the next time fraffig @A.3(c)).
This means that our schemeaidaptive— at every iteration it updates the history by the
current state of the network and recalculdigs

Our prediction includes all timdsbetween the current timeand timeK. K is the
latest time for which at least one realization of the inted#fusion process has at least
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Figure A.3. Adaptive Proactive Seeding. (top) High-leveeriew. (bot-
tom) The “Prediction” block.

one user interested in content.e., w§| > 1. For instance, for the cascade influence
model, K is trivially upper-bounded by the total number of users, i€ < |U|.

In Fig. A.3(bottom), we show in more detail the “Predictidsidock from Fig. A.3.
Given the knowledge of (A.6), we are, in principle, able ttcakate exactly the expected
future demandt|[w'>*]. In practice, however, the solution space is too big (esfigci
if the number|U| of users or the final timé< are large) to do it precisely. Instead,
we run an MCMC (Monte Carlo Markov Chain) simulation, i.eg wse (A.6) to gen-
erate a number of realizations”*(r), r € R. This step is illustrated by the middle
block in Fig. A.3(bottom). Next, we average over [@l| realizations (right-most block
in Fig. A.3, bottom), as follows.

First, we estimate theumber of user$ﬁ7f | that eventually become interested the
content, by the average over all the realizations:

—~ 1
Wi = @-ZIWCK(T)I-
reR

Next, we decidevhich userswill become interested in the content, by takih@\’f\
users with the highest observed probabilitis, € W) = \_713\ {reR:ue
WE(r)}| to request it. Finally, we interpret @$u,c) the time that is the most frequent

across the realizations iR:

u,c) = arg max. Hr € R:ucwh(r)}

The above process provides an estimafeof the future demand, which we use as input
to Proactive Seeding, as in Fig. A.3(b).
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A.5 Evaluation

In this section, we evaluate the performance of Proactieglfag through simulation.

A.5.1 Performance Metric

Without Proactive Seeding, userfetches the content over cellular when she wants
it, which yieldsh* = w’ and the peak cellular load equahtoux;, (\F+3", |w”|). In
contrast, with Proactive Seeding, the peak cellular loapsitomax;, (\*+3"_ |hF]).
Our main performance metric is the relatiyainin peak cellular load, defined as

Cmaxg (M + X, [wh]) — maxg (A + 30, [RE)
T max; (A\* + >, [wh]) '

Clearly, the larger the amount of the predictable traffie kigger gainy we can
expect. We therefore denote pythe ratio of the unpredictable traffic (aggregate over
all contents) over the aggregate predictable traffic, i.e.,

)\k
_aggregated unpredictable traffic Z

k
= . A.
aggregated predictable traffic E:Z |w§| (A.8)
k c

A.5.2 Offline Scenario (using Twitter, Cellular and D2D traces)

First, we consider the offline case, with large-scale sitiuia fed by real traces of
(a) interest diffusion process in Twitter [70], (b) backgnal traffic from a US cellular
operator [77], and (c) mobility [78]. This allows us to evale Proactive Seeding in
presence of cellular background load and techniques tipdoie02D connectivity. We
assume a priori knowledge of (a), (b), (c), and we evaluaternach gainy is achieved
by Proactive Seeding.

Description of Datasets

(a) Predictable trafficr®: We use the Twitter trace from [70], where the authors col-
lected the tweets that carry a URL (which defines our contengr a period of 300
hours (12.5 days). For our simulations, we kept only thetiveets” (indicated by an
RT tag), which allows us to directly follow the cascades of iests in valuable (non-
spam) content on Twitter (see also RT-cascades in [70]}hEtmore, in order to be able
to observe the full evolution of such cascades, we exclud®fRLs that appear in the
first three or the last three hours of the trace. This leavegthsaround 2.5M of tweets
from 554K different users, sharing about 9000 contents (§)RUNn Fig. A.4(a), we
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(a) Individual cascades, c, k
i k ’wCQ

(b) Predictable traffic

! ! ! ! ! !

! ! ! ! ! !

0 2 4 6 8 10 12

Time [days]

Figure A.4. Traces used in offline simulation(g) Example of two individual Twitter

cascadegb) All 9000 Twitter cascades together [70§) Background cellular load from
a US operator [77]. For the sake of readability, all figuresrasrmalized with respect to
the peak value of the data they represent (i.e., they do metthe same scale).

show the evolution of two typical cascades from that tradee Tcascade” behavior is
easy to see: the URL's popularity quickly increases oveetiraaches a peak, and then
declines. However, when we aggregate all the 9000 cascaglether in Fig. A.4(b), the
individual cascade shapes are not visible anymore; insteadaggregated predictable
traffic 7" clearly follows the daily patterp.

(b) Background cellular load”: As background load*, we take a cellular traffic trace
coming from a major operator in one US state [YBecause this trace covers one full
week (at a resolution of 1 hour), we replicate it, concatenatd shift to match the 12.5
days of the Twitter trace. The result is presented in Fig(&.4Similarly to Twitter, the
cellular background load follows weekly and daily patterns

(c) D2D connectivity:We use the Infocom06 contact trace [78] to simulate the @evic
to-device (D2D) connectivity. The trace logs the D2D cotdametween 78 devices

SRecall, however, that our constraint (A.2) is defined foreaantent, not for the aggregated traffic.

6Strictly speaking, the trace [77] represents the totautalltraffic. For simplicity of presentation
(e.g., independence gf), we interpret this trace as the background cellular la&d We have also
considered in simulations this trace as the total load,raatihg 7 to get the background load. The
results in both cases are very similar.
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Figure A.5. Offline simulations driven by traces of (i) Twittcascades (predictable
traffic), (i) background cellular load, and (iii) mobility (a) Per hour time evolution
of the total cellular load\* + 7% under various scenarios, for traffic ratio pf= 2.
(b) Aggregated cellular traffic as a function @f (c) Gain~ as a function of.

(iMotes) distributed to the attendees, over a period ofetlolays.

For each content, we randomly map the usef$X (i.e., eventually requesting to
the users in the trace. Because of the limited size and duarafithe trace, we replicate
these users whed | > 78, and we repeat the connectivity pattern when the diffusion
of interest in content lasts for more than 3 days. Finally, usereindw are defined
neighbors in our connectivity graph at hauri.e.,w € N*(u) andu € N*(w), if u
andw encounter each other within this hour (according to thedofo06 trace).

The above mapping matches us&fswith nodes in the mobility trace in a purely
random way. We also experimented with D2D connectivity beathat reflect vari-
ous levels of correlations between physical proximity amehfdship. The results were
similar and are omitted for lack of space.

Results

In Fig. A.5(a) we focus on a case when= 2, i.e., the background load is twice the
predictable traffic, and depict the time evolution of thetdbad on the 3G network in
the following cases:

e no seeding: All users get the content they are interestedraough the cellular
network (i.e.,h* = w* Ve, k).

e Proactive Seeding: Proactive Seeding algorithm is usedhedsle predictable
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traffic. D2D is disabled.

e D2D: Users exploit the D2D connectivity as explained in 2e8.3, but Proactive
Seeding is disabled.

e Proactive Seeding + D2D: predictable traffic is schedul@sguBroactive Seeding
andusers exploit D2D links if available.

The no-seeding scenario results in a cellular load thatrisweeven over time, with
high peaks and periods of very low usage. Under D2D, we obseslight reduction in
the network load, with the peaks almost unchanged. In cemtiRroactive Seeding ef-
fectively reshapes the total cellular traffic, reducingplkeaks by exploiting the less busy
periods. Note that the peak load (around @agorresponds to a peak in thackground
load, which confirms that Proactive Seeding is optimal wibpect to objective (A.4)
(as we proved in Theorem A.3.1). Finally, when we combineaPtivse Seeding and
D2D, we observe a further reduction in the network load.

Fig. A.5(b) and Fig. A.5(c) show how the aggregated (i.eeralie whole trace dura-
tion) load and the gaitn depend on the ratipbetween predictable and background load.
Unsurprisingly, the highep, the less beneficial Proactive Seeding becomes. Proactive
Seeding effectively reduces the peak load (Fig. A.5(c)},Has no impact on the ag-
gregated load (Fig. A.5(b)). The effect of D2D is quite theogite. Applying both
Proactive Seeding and D2D, we get the best of both worlds:a significant reduction
in both the peak and the aggregated load.

A.5.3 The Online Case (using Diffusion Models on OSNSs)

Sec. A.5.2 assumed full knowledge of the entire traces. ik1glction, we consider
the case where the future can be predicted only with some @mintdwncertainty, as
described in Sec. A.4. For ease of explanation, we assumaci@iound load and a
single content and we focus on evaluating the effect of uncertainty on thalts.

Social Graphs (Datasets)
We use datasets from two different graphs, each capturinffeaeiht type of social tie.

e Facebook The New Orleans network of the Facebook social graph [7&)- c
sisting of 63K vertices and 816K edges. The rationale fongi¢his data set is
that friends in Facebook share links and thus participagpiaading information
about content.

e Email: a trace of e-mail contacts, consisting of 1133 nodes an@ &d§es. The
rationale behind using this datasets is that emails oftetago links that propa-
gate in a viral way, leading to information cascades.
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Social Influence (Models)

Using each of the previous graphs, we simulate interesatgidgh through the cascade
model [68, 69] described in Sec. A.4.1. We assume that 5% afuae interested in
the content at timé& = 0. The activation probability for each eddge,w) is set to
quw = 0.1. (We have also tried a range of parameters, omitted for lacpace, and
results were qualitatively similar.)

Uncertainty about the model and its parameters

Although the cascade model provides us with a probabil@tiput, there are several
other major sources of uncertainty about the future, whathimrally lead to errors in the
prediction. In particular, in practice, (i) we can never wnexactly the model driving
the spread of information and (ii) we can never know pregid®at parameters of such a
model. We capture these two effects in our simulations bychicing a multiplicative
noisevr to the probabilities (A.6), i.e., we s&() < min(1,vP()). For exampley =
1.2 results in a systematic overestimation of the future dentgnd0%, andv = 0.8
underestimates it by 20%.

1 1
um‘)plimlzed —_ unoplimlzed —_
Proactive Seeding: offline Proactive Seeding: offline
0.9 Proactive v=0.8 ! Proactive v=0.8
Yos Seeding: online ~ v=1.0 X Yo. Seeding: online v=1.0 X
- v=1.2 Y, v=1.2
08 Yz Yo 08 Vio
/\
0.7 oo \
0.6 0.6

R et =T =
o \
Ny X

Time [frames] Time [frames]

Figure A.6. Online simulations on the Facebook (left) andaitifnight) graphs.

In Fig. A.6, we present results for the Facebook (left) andakiright) graphs.
Although the two networks are very different in size and e, they exhibit the
same qualitative behavior, with a clear cascade evoluflére way Proactive Seeding
works is easy to observe: the users known (or assumed) tesethe content during
the peak time are served during earlier frames, thus redubapeak load.
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For both networks, we compare the ideal (i.e., offline) pannce with the adaptive
(i.e., online) case, in which the demand is not known a priorthe latter, we consider
three values of the noise If our prediction is not systematically biased £ 1), the
online performance of Proactive Seeding is close to thar@t{offline). In contrast,
systematically overestimating (> 1) or underestimating/( < 1) the future demand
leads to less gain, but with qualitatively different effectOverestimatinghe demand
means serving users that will never need the content, theinganetwork and user
resources. In the extreme case, it may even lead to a neggiinei.e., a peak load
maxy, || greater than the peak demandx;, |w¥|. On the other handinderestimating
the demand is conservative, as moves towards the no-seeaseg The gain can
decrease, but is still above zero. Therefore, as a pra¢ikalaway from our online
evaluation, we can recommend to tune the prediction passisbd as to underestimate
rather than overestimation the demand.

Fig. A.6 also allows us to see how the adaptiveness, i.efatitghat at each time
frame k we feed the actual s8¥* of users interested in the content back to the pre-
diction algorithm, allows us to recover from predictionas. If v > 1, we tend to
overestimate the number of users interested in the contéhé degin of the cascade.
However, as we observe the actual number of interested,userare able to correct
the error, and schedule fewer users in the subsequent frédoasersely, itV < 1, we
start seeding fewer users than we should, and we make it upifoerror later. Notice
however that both such cases imply a peak load that is highaarthe ideal (i.e., offline)
one.

A.6 Related work

Proactive Seeding touches upon several research areanw\Veview the closest ones
and how they relate to our work.

Opportunistic communicatioWhen several users are interested in the same content
and they are in proximity of each other, some of them may be &blse device-to-
device connections, e.g., through WiFi or Bluetooth, totgetcontent, instead of their
cellular connection. This opportunistic communicatiosulés in offloading the cellular
network. In [64], device-to-device and cellular connecticare used to disseminate
dynamic content, so as to maximize the “freshness™ of theteat. The connectivity
of nodes are taken into account in order to select the rightsu® act as relays. As
an example, a node with many neighbors is more likely to becsedl as a relay. The
work in [74] considers a similar scenario and assumes tlaalsties among the users
are strongly correlated with their physical proximity amahigar interests. [65] offloads
the cellular network through proximity connections, wtstdl meeting strict deadlines.
With respect to these works, we have a different goal — deargahepeakload on the
cellular network — and a stronger constraint, i.e., the umpatience.
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Socially-aware forwarding Another body of work [55, 80—84] exploits the princi-
ple that social ties affect the mobility, and eventually pneximity, of users. Evidence
has been provided, for example in [76], which shows thatetlie®l significant corre-
lation between similar interests and geographical prayinior four different OSNs
(BrightKite, FourSquare, LiveJournal and Twitter). THere, knowledge about social
ties, can be taken into account to optimize routing for condelivery.

[80] presents Bubble rap — a routing protocol for DTNs. Desidetect the cen-
trality of the community the user belongs to, based on thguieacy of contact. This
is then used for routing decisions. [81, 82] use social mfation to optimize content
discovery in a publish/subscribe setting: the more sosalsiare given a special role
in the delivery process. [55, 83, 84] exploit social infotroa to route queries and to
decide which items should be cached or duplicated.

In our work, we exploit social ties for a different purposemrely predicting the
content requests in order to proactively serve them. Furtbee, we limit the amount
of information that users disclose to their peers (e.grsude not broadcast their whole
list of topics of interest, as in [55]).

Interest diffusion in social network3here is a large body of literature on diffusion
in networks, including but not limited to technological wetks. The classic work
in [85] reviews several influence models and proposes amitigofor selecting which
nodes to seed so as to maximize the diffusion, given thelsinigture. This is different
from our objective in this chapter (to minimize the peak & dascade) as well as in the
fact that seeding is done only once in the beginning, whilexdeptively seed at every
time slot.

Such influence models are motivated by the many studies ofnirdtion diffusion
on actual social networks. For example, [30] identifies atudlies several cascades
on the Flickr social network. [86] analyzes 1.5 million Yaibe videos, showing that
not all popular videos are “social” and that highly socialeos rise to, and fall from,
their peak popularity more quickly than less social vide8®mewhat related to our
work, [63] considers information cascades caused by smflaence and shows which
links to select and limit this influence, so as to delay thekpeahe load caused on the
cellular network.

Predicting content popularitycorecasting the popularity of content, with or without
taking into account network effects, is another activeassdearea. [87] presents meth-
ods for predicting the popularity of items given historiaatess data, but without taking
into account the network effect, for the YouTube and Diggalowetworks. [70] collects
a dataset of 22M tweets, containing 15M URLs and presentsthaaelogy (based on
influence models) which predicts more than half of the twaethe dataset with only
15% false positives.

In this chapter, we use the dataset collected in [70] for fatmans of the offline
scenario. More generally, we rely on prediction models agragf our machinery, but
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we do not develop one ourselves.

A.7 Conclusion

We presented proactive seeding for information cascadesdral media - as a new
technique to reduce the peak demand in cellular networkshdrspecial case of sin-
gle content with no background load, the optimal soluticat thinimizes the peak load
turns out to have an intuitive interpretation. In the geheese of multiple contents
with known background traffic, we provide a greedy algorittumal prove its optimality,
in the offline case. In the online case, we investigated tihpeance of the proposed
solutions by replacing the actual future demand by the ptedidemand. Our evalu-
ation showed robustness, especially when underestimétengptal demand. We also
extended our algorithm to take into account D2D commuracatwhen this is avail-
able, thus offloading the total cellular traffic, in additimreducing the peak load. Our
evaluation over real traces indicate that proactive sgedampredicting social cascades
significantly reduces the peak load as much as 50%.
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