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ABSTRACT: Flow of non-Newtonian fluids through porous media at high Reynolds numbers is 
often encountered in chemical, pharmaceutical and food as well as petroleum and groundwater 
engineering and in many other industrial applications. Under the majority of operating conditions 
typically explored, the dependence of pressure drops on flow rate is non-linear and the 
development of models capable of describing accurately this dependence, in conjunction with non 
trivial rheological behaviours, is of paramount importance. In this work pore-scale single-phase 
flow simulations conducted on synthetic two-dimensional porous media are performed via 
computational fluid dynamics for both Newtonian and non-Newtonian fluids, and the results are 
used for the extension and validation of the Darcy-Forchheimer law, herein proposed for shear 
thinning fluid models of Cross, Ellis and Carreau. The inertial parameter β is demonstrated to be 
independent of the viscous properties of the fluids. The results of flow simulations show the 
superposition of two contributions to pressure drops: one, strictly related to the non-Newtonian 
properties of the fluid, dominates at low Reynolds numbers, while a quadratic one, arising at 
higher Reynolds numbers, is dependent on the porous medium properties. The use of pore-scale 
flow simulations on limited portions of the porous medium is here proposed for the determination 
of the macroscale averaged parameters (permeability K, inertial coefficient β and shift factor α), 
which are required for the estimation of pressure drops via the extended Darcy-Forchheimer law. 
The method can be applied for those fluids which would lead to critical conditions (high pressures 
for low permeability media and/or high flow rates) in laboratory tests.

KEYWORDS: Darcy-Forchheimer law; shear thinning fluid; Computational  
Fluid Dynamics; pore-scale simulations; non-Newtonian flow.
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Introduction
A wide range of industrial applications involve the flow of non-Newtonian fluids 

through porous media. In particular, shear thinning solutions of biopolymers are 

often used in petroleum engineering to enhance oil recovery, thanks to their effect 

on  reducing  instabilities  of  the  displacement  front  (Sethi  2011;  Muskat  and 

Wyckoff  1937;  Auradou  et  al.  2008;  Zeinijahromi  et  al.  2012).  Also,  many 

processes in food and chemical industry involve  in-line filtration of fluids with 

complex rheological properties (e.g., milk, most liquid food, oil, blood, etc.) (Lee 

et al.  2006). Deep filtration in granular porous media is used in other specific 

applications,  like  distillation  towers  and fixed  bed reactors  (Liu  and Masliyah 

1998), biomedical separation devices (Rashidi et al. 2011) and ceramic foams for 

air  filtration  (Innocentini  et  al.  1999). Moreover,  recent  applications  in 

environmental cleanup technologies involve the use of shear thinning polymeric 

suspensions  as  carrier  fluids for  the  injection  of  iron  nanoparticles  into  the 

subsurface (Tosco and Sethi 2010; Dalla Vecchia et al. 2009; Zhong et al. 2011; 

Tosco  et  al.  2012).  In  all  abovementioned  applications,  it  is  of  paramount 

importance to correctly predict the  pressure drop resulting from non-Newtonian 

fluid flow through the porous medium. In most cases, the problem can be solved 

at  the macroscale,  using extended formulation  of  the Darcy law  (Pearson and 

Tardy 2002) or solving the transient flow using similarity solutions (Ciriello and 

Di  Federico  2012),  at  the  micro-scale,  using  pore-network  models  or  realistic 

pore-scale models (Blunt 2001), or adopting hybrid models which couple pore and 

continuum scales (Battiato et al. 2011).

The Darcy law (Darcy 1856) is the most widely used phenomenological equation 

for  describing  steady-state  flow of  Newtonian  fluids  through porous  media  at 

small Reynolds numbers, when the relationship between hydraulic gradient and 

fluid velocity can be modeled by a linear term only. However, when increasing 

the Reynolds number non-linearities arise. The origin of this non-linear behavior 

can  be  attributed  to  different  phenomena,  namely  micro-scale  drag  forces 

(Hassanizadeh  and  Gray  1987),  inertial  effects  (Levy  et  al.  1999) and  low 

Reynolds number turbulence (Dybbs and Edwards 1984), which may arise at the 

solid-liquid  interface  for  Reynolds  numbers  in  the  order  of  one  or  higher. 

Empirical laws were proposed which include  the linear term, and one or more 
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additional higher-order terms, corresponding to a series expansion of the unknown 

function expressing the dependence of pressure drop on flow rate, truncated at a 

certain order.  Among these phenomenological laws, the Darcy-Forchheimer law 

(Forchheimer  1901;  Muskat  and  Wyckoff  1937) introduces  an  additional 

quadratic term for the dependence of the hydraulic gradient on flow velocity. This 

term is  independent  of  the  viscous  properties  of  the  fluid,  and  expresses  the 

dependence of the pressure gradient  on the square of the flow rate thorough a 

parameter β, the so-called Forchheimer coefficient. As an alternative, third-order 

polynomial laws have also been proposed (Forchheimer 1930; Mei and Auriault 

1991),  as  well  as  other  equations  of  lower  order,  with  a  fractional  exponent 

typically ranging between one and two (Skjetne and Auriault 1999).

If  non-Newtonian fluids are considered,  the usual formulation of the Darcy law 

can be applied in the low flow regime, provided that all non-Newtonian effects are 

lumped  together  into  a  proper  viscosity  parameter,  called  “porous  medium 

viscosity” (Sorbie 1991; Bird et al. 1977). It is a function of both porous medium 

characteristics and “bulk” viscosity,  namely the viscosity of the fluid when not 

affected by the presence of any liquid-solid interface  (Pearson and Tardy 2002; 

Lopez et al. 2003; Sorbie et al. 1989). Consequently, the macroscale description 

of the dependence of pressure drops on flow rate requires the knowledge of the 

bulk rheological properties of the fluid, of the permeability of the porous medium, 

and  of  an  additional  parameter  α,  called  shift  factor,  which  expresses  the 

relationship  between bulk and porous medium viscosities.  The validity  of  this 

approach was demonstrated by several authors, using network modelling (Sorbie 

et al. 1989; Perrin et al. 2006; Lopez et al. 2003; Pearson and Tardy 2002) or from 

the up-scaling of the volume-averaged equation of motion (Hayes et al. 1996; Liu 

and Masliyah 1999).

When the flow rates are limited, the extended Darcy law for non-Newtonian fluid 

is  thus  sufficient  for  predicting  the  pressure  drop.  However,  in  practical 

applications higher Reynolds numbers are often encountered (Rashidi et al. 2011; 

Shenoy 1993) and,  at  this  regime,  an  apparent  increase  of  viscosity  has  been 

evidenced  by  several  authors (Zhang  et  al.  2011;  Delshad  et  al.  2008).  This 

phenomenon was often attributed to a “shear thickening” behavior, arising from 

extensional  flow of  the  polymeric  solutions  (Seright  et  al.  2010;  Sochi  2009; 

Perrin  et  al.  2006),  but  Forchheimer-like  phenomena  cannot  be  excluded.  A 
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rigorous  extension  of  Darcy-Forchheimer  law  for  non-Newtonian  fluids,  via 

volume-averaging  of  the  micro-scale  momentum  equation,  was  presented  for 

power law fluids  (Hayes  et  al.  1996). Also, a volume-averaging approach was 

adopted by Liu and Masliyah (1999), who derived a generalized macroscale flow 

equation, and validated it against the results of pore-network flow simulations for 

the  Cross  fluid.  An alternative  strategy for  the  validation  of  the  model  is  an 

heuristic  verification  of  the  macroscopic  Darcy-Forchheimer  law,  against 

experimental pressure drop data (Macini et al. 2011). However, if this is possible 

when studying gas flow, when dealing with viscous fluids,  pressure drops and 

flow  rates  in  the  inertial  region  may  be  very  high,  and  difficult  to  be  well 

controlled  in  laboratory-scale  experiments.  A  viable  alternative  is  the  use  of 

micro-scale flow simulations in reconstructed geometries, which is the approach 

adopted in this work.

The two most used approaches for the simulation of microscale flow are pore-

network and realistic pore-scale models. In pore-network models, a portion of the 

porous  medium  is  represented  by  a  set  of  pores  with  simplified  geometry 

(typically, spheres or spheroids) connected by a network of cylinders, where the 

fluid flows, and the variables (fluid velocity, pressure, or solute concentration) are 

solved providing an averaged value at  each  pore  (Vogel  2000; Piri  and Blunt 

2005;  Joekar-Niasar  et  al.  2010;  Raoof  et  al.  2010;  Blunt  2001;  Balhoff  and 

Thompson 2006). Alternative approaches, based for example on the solution of 

the  Boltzmann  equation,  such as  the  particle-based Lattice-Boltzmann  method 

(Ghassemi and Pak 2011; Zhang et al. 2000) can be used to simulate the flow. 

Conversely, in realistic pore-scale models an accurate  reconstruction of the pore 

geometry is  adopted,  and  the full  Navier-Stokes  and  continuity  equations  are 

solved  numerically  over  the  whole  pore  space,  thus  resulting  in  much  higher 

computational  costs,  but  providing  a  complete  description  of  the  pressure  (or 

velocity,  or  concentration)  field.  Different  discretization  techniques  are  used, 

namely standard finite volume (Bensaid et al. 2009; Bensaid et al. 2010; Ovaysi 

and  Piri  2011),  finite  difference  (Mostaghimi  and  Mahani  2010) and  finite 

element  (Narsilio et al. 2009; Rolle et al. 2012) methods, as well as hybrid ones 

(Zaretskiy et  al.  2010).  Usually,  the computational  grid representing the  pore-

scale  micro-model  is  obtained  from  regular  geometrical  patterns,  from 

digitalization of images of sections and polished surfaces of packed porous media 
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(Koplik et al. 1984; Philippi and Souza 1995; Liang et al. 1998), or from micro-

computed tomography (Hazlett 1995; Narsilio et al. 2009).

In this work, an extended formulation of the Darcy-Forchheimer law for shear-

thinning fluids is proposed and validated by using micro-scale flow simulations. 

Four different model domains,  characterized by different value of porosity and 

specific surface area were considered, in the typical range of natural porous media 

in aquifer systems. Flow simulations were performed on all geometries by using 

the same non-Newtonian fluids (modeled by the shear thinning Cross, Ellis and 

Carreau  fluids),  to  explore  the  impact  of  different  pore  geometries  on  the 

macroscopic  average  pressure  drop  and  effective  porosity.  The  micro-scale 

simulations are performed solving the Navier-Stokes and continuity equations for 

different  two-dimensional  (2D)  porous  media.  A  2D  geometry  was  assumed 

representative of single-phase three-dimensional  (3D) flow, as demonstrated in 

the  work  of  Chatzis  and  Dullien  (1977).  First  the  method  is  assessed  for 

Newtonian  fluids  by  considering  a  wide  range  of  operating  conditions  and 

viscosity values (ranging from 10-3 to 10 Pa s). The results of the micro-scale flow 

simulations are analyzed in terms of “macroscale” pressure drop between the inlet 

and outlet of the model domain as a function of flow rate, and the permeability 

and Forchheimer inertial coefficient are determined via least-square fitting of the 

pressure data with the Darcy-Forchheimer law. Subsequently, the validity of the 

extended  Darcy-Forchheimer  law  is  shown  for  three  shear-thinning  models, 

namely the Cross (Cross 1965), Ellis  (Reiner 1960) and Carreau (Carreau 1972) 

models. For all fluids, a broad range of flow rates was explored, both in the low 

flow and inertial flow regimes. 

Governing equations 
A linear relationship between pressure drop and specific discharge (or superficial 

velocity / flow rate) is assumed when describing creeping and laminar flow of a 

single Newtonian fluid through a fully saturated porous medium. The momentum 

conservation equation takes then the form of the Darcy law  (Darcy 1856), that, 

neglecting  gravity,  for  one-dimensional  flows  along  the  x-direction  reads  as 

follows:
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q
Kx

p µ=
∂
∂

, (1)

where p  is the pressure of the fluid [M L-1 T-2], q  is the specific discharge of the 

fluid [L T-1], K  is the permeability coefficient [L2], µ  is the fluid viscosity [M L-1 

T-1], ρ  is the fluid density [M L-3] and gravity is neglected here.

For Reynolds numbers  in the order of one or higher a purely linear relationship 

between pressure drop and flow rate can no longer be assumed (Sethi 2011; Tek 

1957; Dybbs and Edwards 1984). Forchheimer  (Forchheimer 1901) proposed an 

empirical non-linear formulation by including a quadratic term to the Darcy law: 

qqq
Kx

p β ρµ +=
∂
∂

, (2)

where β  is the so-called inertial flow parameter  [L-1]. Equation (2) reduces to (1) 

for small q .

The permeability  K  is a macroscopic parameter describing up-scaled effects of 

the  microscopic  configuration  of  the  void  space  in  the  porous  medium  (Bear 

1988) and  therefore  is  assumed  independent  on  fluid  properties.  Also  the 

parameter  β  of  the  Darcy-Forchheimer  equation  depends  only  on  the 

microstructure of the porous medium, as demonstrated by Hayes et al. (1996).

As  an  alternative,  semi-empirical  relationships  relating  the  macro-scale 

parameters of the porous medium, K  and β , to other macroscopic properties of a 

porous medium, such as the average porosity, ε , and the specific surface area, a , 

have been proposed by different authors (Bird et al. 2002). The well known Ergun 

equation was originally derived for a packed bed of homogeneous spheres, fully 

saturated in a Newtonian fluid, starting from the analogy between flow through 

pores and pipes, by combining the Blake-Kozeny equation (Blake 1922) valid for 

laminar  flow,  and  the  Burke-Plummer  equation  (Burke  and  Plummer  1928) 

developed for non-linear flow. For bed grains of a generic shape, following the 

methodology of Ergun, it is possible re-write the Ergun equation and to re-arrange 

it  for  the  direct  comparison  to  the  Darcy-Forchheimer’s  equation.  The  Ergun 

equation takes then the form:

qqaqa
x
p ρ

ε
µ

ε 33

2

24
7

6
25 +=

∂
∂ , (3)
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where a  is the specific surface of the soil grains [L-1]. By comparing Eqs. (2) and 

(3)  it  is  possible  to  relate  the  permeability  coefficient  K and  the inertial  flow 

parameter β  to the parameters a  and ε  of the Ergun equation:

2

3

25
6

a
K ε= , (4.a)

324
7

ε
β a= . (4.b)

The resulting formulation for  K  is very similar to the semi-empirical Carman-

Kozeny equation (Kozeny 1927; Carman 1937):

2

3

5
1

a
K ε= . (5)

The dependence of the flow inertial parameter  β  on porous medium properties 

was  investigated  by  several  authors,  especially  in  the  field  of  reservoir 

engineering,  using  approximated  models  for  the  pore-space  configuration,  or 

deriving  empirical  or  semi-empirical  relationships  from  experimental  data, 

(Geertsma 1974; Kalaydjian et al. 1996; Macini et al. 2011).

As far as the rheological properties of the investigated fluid are concerned, for 

Newtonian fluids the dependence of the shear stress  τ  on the shear rate  γ  is 

expressed by a linear relationship,  γµτ = , where the (constant) coefficient µ  is 

the fluid viscosity [M L-1 T-1]. However, when dealing with non-Newtonian fluids, 

this  simple  relationship  fails,  and  more  complex  formulations  are  to  be 

considered, depending on the rheological model, and the viscosity (often referred 

to as apparent  viscosity)  is  a function of the shear rate itself,  ( )γγµτ = . The 

second column of Table 1 reports four rheological models used for the description 

of shear-thinning fluids, namely the power-law, Cross, Ellis and Carreau models.

When modelling the laminar flow of non-Newtonian fluids in porous media, also 

the Darcy law has to be modified accordingly. Under steady-state flow conditions, 

the so-called generalized Newtonian fluid model can be adopted (Bird et al. 2002; 

Bird et al. 1977). The model relies on the hypothesis that the same equations used 

for Newtonian flow can be applied also to non-Newtonian fluids, provided that 

the constant  viscosity  µ  is  replaced in  the  equations  by the “porous medium 

viscosity”,  mµ , which depends on both porous medium characteristics and fluid 
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properties (Sorbie et al. 1989; Pearson and Tardy 2002; Lopez et al. 2003; Bird et 

al. 1977). 

As bulk viscosity is a function of the shear rate, also the porous medium viscosity 

is  related  to  the  so-called  “porous  medium  shear  rate”  ( mγ ),  defined  as  the 

average shear rate that the fluid experiences while flowing through the pores (Bird 

et  al.  2002;  Taylor  and Nasr-El-Din 1998).  The modified  Darcy law for  non-

Newtonian fluid is therefore:

( )
q

Kx
p mm γµ 

=
∂
∂

, (6)

where mγ  can be estimated dividing the absolute value of the specific discharge 

q  by a characteristic microscopic length of the porous medium (i.e.,  Kε ) as 

indicated by (Perrin et al. 2006; Sorbie 1991) resulting in:

ε
αγ

K
q

m = . (7)

Experimental tests confirmed that rheograms (i.e., plots of apparent viscosity as a 

function of shear rate) of the bulk fluid and those derived from injection in one-

dimensional porous medium are shifted by a constant value α , often referred to 

as shift factor. From a physical point of view, the shift factor contains information 

about the effects of the pore-scale geometry of the porous medium on the local 

fluid  velocity  and  velocity  gradients  and,  as  a  consequence,  on  the  overall 

apparent  viscosity  obtained  in  the  up-scaling  from the  pore-scale  microscopic 

domain  to  the  macroscopic  (continuous)  medium.  This  is  in  agreement  with 

experimental shifts observed between experimental rheograms in the bulk and in 

the porous media characterized by different degrees of complexity. Typical values 

of α , determined comparing experimental data of viscosity versus flow rate in the 

bulk and in porous media, are reported to be usually in the range from one to 15 

(Lopez et al. 2003). Experiments conducted in homogeneous, ordered and well 

sorted porous media evidenced values of the shift factor α  typically close to one, 

while those conducted in porous media characterized by increasing complexity 

and inhomogeneity resulted in higher  α  values  (Sorbie et al. 1989). For power-

law fluids,  it  has  been  demonstrated  (Sorbie  et  al.  1989) that,  while  flowing 

through a capillary, the shift factor is also affected by the rheological properties of 

the fluid. Also, similar results were obtained from flow simulations in network 
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models (Pearson and Tardy 2002), which evidenced the concurrent dependence of 
α  on the power-law exponent and the tortuosity of the network. Consequently, 

unlike  K  and  β ,  the shift factor  α  is not an intrinsic property of the porous 

medium,  and  consequently  it  is  to  be  determined  for  each  fluid  and  porous 

medium from laboratory flow tests or from pore-level flow simulations, which is 

the approach followed in this work.

Increasing the Reynolds number, also non-Newtonian fluids give rise to additional 

contributions to the pressure drop, characterized by a non-linear dependence on 

the specific discharge. They can be modelled by adding the Forchheimer term to 

the extended Darcy law reported in Eq. (6). Following the literature, it is possible 

to  hypothesize  that  the  non-linearities  are  due  to  inertial  phenomena,  and 

consequently do not depend on the viscous properties of the fluid  (Hayes et al. 

1996). The pressure drop can therefore be quantified with the modified Darcy-

Forchheimer equation:

( )
qqq

Kx
p mm β ρ

γµ
+=

∂
∂ 

. (8)

The purpose of this work is to verify the validity of this law also for several non-

Newtonian fluids (such as the other ones reported in Table 1). The validity of the 

approach  is  discussed  by  proving  that  Eq.  (8)  correctly  models  pore-scale 

simulated data of pressure drops versus discharge rate.

The analysis  can  be  carried  out  by  making  use  of  the  concept  of  equivalent 

viscosity,  eqµ .  This quantity is defined as the expression that must replace the 

viscosity in the Darcy law in order to result in the same pressure drop predicted by 

the Darcy-Forchheimer equation: 

K
q

xp
eq

∂∂=µ , (9) 

where  xp ∂∂  is the measured pressure drop and K  is the Darcyan permeability 

(i.e.,  the  permeability  value  obtained  at  very  low  discharge).  The  Darcy-

Forchheimer equation can therefore be re-written in a form similar to the classic 

Darcy law, with only one term expressing the (fictitious) linear dependence on the 

flow rate. 

Comparison of  Eq.  (2) with Eq.  (9)  results  in the following definition  for the 

equivalent viscosity:
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qKeq β ρµµ += , (10) 

valid in the case of Newtonian fluids. As evident from Eq. (10), the increase in the 

pressure  drops  due  to  the  non-linear  term can  be  interpreted  as  a  “fictitious” 

increase of viscosity, generated by inertial phenomena.

Similarly to Newtonian fluids, also in the case of shear-thinning fluids the Darcy-

Forchheimer  equation  can  be  re-arranged  introducing  the  equivalent  viscosity, 

resulting in the following expression:

( ) ( )eq m m m K qµ γ µ γ β ρ= +& & . (11) 

Closer observation of Eq. (11) shows that the dependence of eqµ  versus the flow 

rate  highlights  the presence  of  two terms.  The first  one  represents  the  porous 

medium viscosity, which dominates at low flow rates and depends on the fluid 

rheological  behaviour  and  on  the  characteristics  of  the  porous  medium.  The 

second term represents  instead  the  additional,  “fictitious”,  non-linear  viscosity 

generated  by  inertial  phenomena,  which  is  not  affected  by  the  rheological 

properties of the fluid, and dominates at high flow rates.

If the Cross model for the shear-thinning fluids is considered (see second row of 

Table 1), the equivalent viscosity eqµ  is obtained from Eq. (11), resulting in the 

following expression:

qK

q
K

eq β ρ

ε
λ α

µµ
µµ

χ
χ

+
















+

−
+= ∞

∞

1

0

, (12)

where the shear rate mγ  was replaced by the porous medium shear rate defined in 

Eq. (7).

As evident  from Eq.  (12) the  equivalent  viscosity  is  in  this  case due to  three 

contributions: (i) a term independent of fluid velocity (and shear rate) due to the 

second  Newtonian  plateau,  ∞µ ;  (ii)  a  non-linear  term,  that  includes  all  non-

Newtonian  effects  and  depends  on  fluid  properties  (shear-thinning  model 

parameters),  porous medium properties ( K ,  ε  and  α ) and flow rate;  (iii)  the 

Forchheimer additional term, which is here supposed not to be affected by the 

rheological properties of the fluid. Similar considerations can be inferred for the 

Ellis  and  Carreau  viscosity  models,  as  shown  in  Table  1.  When  considering 
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experimental data of equivalent viscosity, the contribute of each term in Eq. (12) 

to  the  overall  eqµ  can  be  clearly  identified  and  separated:  the  first  term is  a 

constant value,  and can be derived from the bulk rheological  properties of the 

fluid (i.e. ∞µ  is a known parameter); the second term dominates at low shear rates 

(or specific discharges), i.e. in the low-rate flow regime, and can be consequently 

quantitatively determined if considering the viscosity data obtained for Reynolds 

numbers  smaller  than  one;  the  third  term,  i.e.  the  Forchheimer  additional 

viscosity,  dominates  in  the  inertial  flow  regime,  and  consequently  can  be 

calculated when the other two are known.

The validity of the extended Darcy-Forchheimer law for non-Newtonian fluids is 

assessed in this work for shear thinning rheological models by using the pore-

scale simulations described in the next section.

Pore-scale flow simulations
The model domains  used in pore-scale simulations were obtained from scanning 

electron microscopy (SEM) images of natural unpacked sand grains,  that were 

then digitalized  and  processed in order to extract the contour of the grains. The 

contour of each grain was then processed as an independent (closed) object: grains 

were located in the model domain in order to reach the desired value of porosity 

(). The region corresponding to the pore space of the medium was then discretized 

using GAMBIT® 2.4.6. The computational grids were obtained with  an iterative 

process of grid refinement, up to a final number of quadrilateral cells ranging of 3 

to  6  x105.  In  fact,  further  refinements  did  not  result  in  significantly  different 

predictions  for  the  pressure  drops,  showing  that  with  this  discretization  the 

momentum boundary layer around the grains is fully resolved.

Four model domains (corresponding to four different computational grids) were 

used in this work, each characterized by different mean grain size and porosity. 

The porosity (ε) varied between 0.4 and 0.5 whereas the mean grain size varied in 

the range between 0.5 and 1 mm, resulting in specific surface areas ranging from 

6 × 103 to 1 × 104 m-1. A summary is reported in  Table 2 along with the labels 

(grid 1, 2, 3, 4) used in the following to identify the different grids. Each domain 

represents a small portion of porous medium (3 mm to 1 cm in length). The values 
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of grain size and porosity were selected as representative of typical porous media 

encountered  in  groundwater  engineering,  corresponding  to  shallow  permeable 

aquifer  systems.  Other  applications  (e.g.  petroleum  engineering  or  filtration 

towers in industrial processes) would require to broaden the explored range of the 

parameters.

Numerical  flow  simulations  for  Newtonian  and  non-Newtonian  fluids  in  the 

described two-dimensional domains were performed by solving the full continuity 

and  Navier-Stokes  equations  by using  the  commercial  computational  fluid 

dynamics  (CFD)  code  ANSYS  Fluent  13.0  (based  on  a  finite-volume 

discretization).  A  CFD approach was here used for describing the steady-state 

single-phase flow of  Newtonian and non-Newtonian fluids  through the pores by 

solving the continuity and Navier-Stokes equations, that written with the Einstein 

notation for an incompressible fluid read as follows:
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where iv  is the ith component of the fluid velocity in the pores [L T-1], and ijτ  is 

the shear stress tensor [M L-1 T-2].

In the case of Newtonian fluids ijτ is written as follows:
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where ijE  is the rate-of-strain tensor [T-1].

For all grids,  laminar single-phase flow simulations were first run for Newtonian 

fluids with different values of viscosity (10-3 to 10 Pa s) and specific discharge 

(approximately 5 × 10-7 – 5 m/s). The corresponding average Reynolds numbers 

for the porous media vary in the range 10-7 (lowest flow rate, highest viscosity) to 

103 (highest flow rate, lowest viscosity). Then non-Newtonian fluids, described by 

the Cross, Ellis and Carreau rheological models were simulated by replacing the 

constant  Newtonian  viscosity  with  the  apparent  viscosity  calculated   from the 

equations reported in Table 1. In this equation the shear rate is calculated as the 

second invariant of the velocity gradient tensor. The values adopted for the model 
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parameters  ( ∞µ ,  0µ ,  λ , χ  for Cross and Carreau models,  0µ ,  λ , χ  for Ellis 

model)  were  obtained  from  inverse  fitting  of  experimental  rheological 

characterization  of  shear  thinning  fluids  used  in  reservoir  and  environmental 

applications. In particular, the viscosity curve of a xanthan gum solution (3 g/l) 

was used for the rheological models of Cross and Ellis, while guar gum (5 g/l) 

was used as reference for the Carreau model. The numerical values of the curve 

parameters are reported in Table 3 whereas the corresponding viscosity curves are 

reported in . 

For all fluids a density of 998.2 kg/m3 was used.  The boundary conditions applied 

for the governing equations were of constant  mass flow inlet in the upper edge, 

where the fluid enters the domain, and of outflow in the lower edge, where the 

fluid exits the domain. Symmetric boundary conditions were instead selected for 

the two lateral edges. This implies that the fluid is moving parallel to the lateral 

edges, as no (convective or diffusive) flux is allowed in the direction normal to 

the later edges. This choice was selected among the other options (e.g., period 

boundary conditions) as the least invasive and arbitrary, and as the most sensible 

and realistic for pore-scale similations. The SIMPLE algorithm was used for the 

pressure-velocity coupling. 

For  each  simulation,  the  pressure  integral  drop  xpLp ∂∂≈∆ /  between  the 

entrance (top) and exit (bottom) of the computational domain was evaluated and 

analyzed by using the Darcy-Forchheimer equation, as discussed below.

Results and discussion
The macroscale  parameters  K  and  β  for  each  computational  grid  were  first 

calculated from the mean macro-scale properties,  namely porosity and specific 

surface area, from Eqs. (4), obtained in turn from the Ergun law (Table 2). As a 

general rule, when decreasing porosity, the permeability decreases too, whereas a 

reduction in the specific surface area causes an increase in permeability.  These 

two sets of values of K  and β  can be then compared to those obtained via least-

square fitting of pressure drop results from microscale flow simulations.

Steady-state  single-phase  Navier-Stokes  flow simulations  for  Newtonian  fluids 

were run on all four computational grids, for a range of viscosity (10-3 to 10 Pa s). 

A typical example for the contour plot of fluid velocity magnitude is shown in . 
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Comparison of contour plots from simulations carried out varying the inlet flow 

velocity (i.e., discharge or superficial velocity) and the fluid viscosity, highlights 

the  complex  interaction  within  this  confined  network  of  pores.  From  each 

simulation,  pressure  drop  and  average  flow  parameters  were  calculated.  The 

parameters  K  and  β  for each computational grid were both obtained via least-

square fitting of data. The fitted parameters corresponding to Newtonian fluids are 

detailed  in  the  fourth  column  of  Table  4.  The  quality  of  the  fitting  can  be 

evaluated  by  plotting  the  results  in  terms  of  the  normalized  pressure  drops 

( ) 2p L qρ∆  versus the normalized superficial velocity ( )qρ µ , following the 

convention usually employed for the representation of the Ergun law (Bird et al. 

2002).

Two examples are reported in  and , that show the data collected for Newtonian 

fluids of different constant viscosities, flowing under different flow rates for Grids 

3 and 4, reported in terms of these normalized quantities in log-log plots. As it is 

seen,  all  the  different  data  points  collapse  into  one  single  master  curve,  that 

accurately reproduces them, proving the excellent quality of the fitting. Moreover, 

this representation also allows an easy identification of the parameters: in the low 

flow regime, the normalized pressure drop ( ) 2p L qρ∆  is follows a straight line 

in a logarithmic plot. On the contrary, in the inertial flow regime,  ( ) 2p L qρ∆  

reaches an asymptote, corresponding to the Forchheimer coefficient β .

In the figures the data points from the micro-scale flow simulations are not only 

compared with the fitted Darcy-Forchheimer law, but also with the Ergun law and 

the Darcy law. The Darcy law accurately models  the data  points  for low and 

intermediate flow rates, up to Reynolds number approximately equal to ten. A 

further increase in the flow rate evidences the departure of the pore-scale pressure 

drop data from the straight Darcy line, and the trend is correctly captured by the 

Darcy-Forchheimer law. The Ergun law describes fairly well the first part of the 

curve but then predicts a different asymptotic value. This is reflected by the data 

reported in Table 4. When comparing K  and β  predicted by the Ergun law (third 

column) and fitted with the Darcy-Forchheimer law (fourth column), it is evident 

that the agreement between the two sets of values is satisfactory for  K  (with a 

partial  exception  of  Grid  1),  more  critical  for  β  (for  which  a  general 
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overestimation  is  observed  for  Ergun  Equation).  This  finding  suggests  that, 

especially  when  exploring  inertial  flow,  the  estimation  of  the  macro-scale 

parameters from macroscopic properties (i.e. porosity and specific surface area) 

cannot be used alone for an accurate prediction of pressure drop: flow simulations 

or flow tests are to be performed, and also other parameters, such as tortuosity, 

should be taken into account.

Flow simulations for non-Newtonian fluids were run over a wide range of specific 

discharge (approximately 5 × 10-7 – 5 m/s) for all grids. The rheological models of 

Cross, Ellis and Carreau for guar gum and xanthan gum solutions were adopted, 

corresponding to the rheologic parameters reported in Table 3 and the rheogram 

plotted  in  .  Simulation  results,  in  terms  of  steady-state  pressure drop between 

entrance and exit of the model domain, were then analyzed against flow rate to 

verfy the hypothesis that the Darcy-Forchheimer equation can be applied also to 

shear thinning fluids and that the quadratic Forchheimer term is independent of 

the rheological properties of the fluid. The permeability was assumed independent 

of the fluid properties, while the inertial coefficient β and the shift factor α were 

least-squared fitted, to prove the independence of β on fluid properties.

Contrary  to  Newtonian  fluids,  in  the  case  of  shear-thinning  fluids  it  is  more 

convenient  to  analyze  pressure  data  expressed  in  the  form of  the  generalized 

Darcy  model  reported  in  Eq.  (9),  and  referring  to  the  concept  of  equivalent 

viscosity  eqµ . For each micro-scale flow simulation, which provides a pressure 

drop  Lp /∆  between  inlet  and  outlet  of  the  domain,  a  value  of  eqµ  can  be 

calculated as LpqK // ∆⋅ , following Eq. (11). When eqµ  is reported as a function 

of the specific discharge, different trends are found for each fluid model and each 

grid (an example is shown in  for the Cross fluid). Conversely,  eqµ  can be also 

reported as a function of the porous medium shear rate, mγ , which was defined in 

Eq. (7), in order to better highlight the impact of inertial flow on pressure drops. 

In this case, all data in the low flow regime collapse onto the rheological curve of 

( )mm γµ   (see , again for the Cross model results). Conversely, data in the inertial 

flow regime, usually for shear rates in the order of 104 s-1, diverge from the bulk 

rheological  curve,  and are  aligned along a straight  line  (in  the  log-log  graph) 

which is specific of the porous medium.

15



A similar behaviour was observed in a number of empirical data of pressure drops 

due  to  the  flow of  polymeric  solutions  at  high  flow rates  in  porous  columns 

(Delshad et al. 2008; Zhang et al. 2011). For these data, the deviation from the 

rheological bulk curve at high flow rates (called shear thickening behaviour) was 

attributed to the extensional flow of the polymeric solutions: above a critical flow 

rate, polymer chains flowing through the pores are subject to periodical elongation 

and contraction, due to rapid changes in flow directions when moving along the 

tortuous paths of the flow lines. Changes in direction take place with a frequency 

higher  than  the  relaxation  time,  and  the  effect  is  then  the  observed  apparent 

increase in viscosity.  In the micro-scale simulations presented in our work the 

elastic properties of the shear thinning fluid were not included, and consequently 

the  deviation  from the  rheological  bulk curve  observed in  all  plots  cannot  be 

attributed  to  elongational  effects.  It  is  then  possible  to  hypothesize  that  the 

experimental  evidence  of  “shear  thickening”  in  porous  media  can  be  partly 

attributed  to  the  elastic  properties  of  the  real  fluid,  but  also,  under  some 

circumstances, to the inertial effects modelled by the quadratic term of the Darcy-

Forchheimer fluid.

When  non-Newtonian  flow  is  considered,  three  macroscale  parameters  are 

required for the prediction  of pressure drops,  namely the permeability  K ,  the 

inertial coefficient β , and the shift factor α . Following the procedure adopted for 

Newtonian fluids, also for the shear thinning fluids the pressure drop data from 

pore-scale flow simulations were fitted against the Darcy-Forchheimer law. The 

permeability  was here assumed  independent  of  fluid  properties:  the  K  values 

from the least-square fitting of Newtonian flow data, previously discussed, were 

adopted in the non-Newtonian flow analysis. Consequently, only β  and α  were 

determined,  for  each  grid  and  rheological  model  (Table  4).  The  least-squares 

fitted values of the shift factor α  fall in the range 1.5 to 5.5, which is consistent 

with the values expected from the literature  (Lopez et  al.  2003). The resulting 

values of β  were compared with those obtained for Newtonian fluids (). For all 

grids, the values of inertial coefficient  β  obtained for the non-Newtonian flow 

simulations  are  in  agreement  among  them,  and  with  the  values  obtained  for 

Newtonian fluids, and no evident influence of the fluid rheology is observed. This 
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finding  supports  the  initial  hypothesis  that  the  inertial  coefficient  β  is 

independent of fluid properties also in case of shear thinning fluids. 

 to   show the results of  eqµ  versus  mγ  for the three investigated shear-thinning 

models.  The  values  of  equivalent  viscosity  calculated  from  micro-scale  flow 

simulations (symbols) are compared with the least-squares fitted curves obtained 

by using Eq. (11). The contribution of the two  components, namely the porous 

medium viscosity ( )mm γµ   and the inertial term qKβ ρ  are also highlighted (solid 

and dotted lines, respectively).  For all three rheological models the figures show 

that, in the low flow regime, shear thinning effects dominate, and the data points 

of eqµ  for all grids are correctly modelled by the fluid rheological curve ( )mm γµ   

(solid  lines  in   to  ).  Conversely,  when  increasing  flow  rate,  the  additional 

contribution to the pressure drops due to inertial phenomena increases, and the 

“fictitious” viscosity term qKβ ρ  dominates (dashed lines). For all grids, the term 

becomes important for shear rates in the order of 104 s-1, and Reynolds numbers in 

the order of one to seven. The additional “non-linear” viscosity term differs from 

one grid to another (it  depends on macroscopic parameters  K  and  β ),  but is 

independent of the rheological model. Proof of this is shown in , where the data 

corresponding to Grid 3 for all rheological models are reported. As it is evident 

here, eqµ  depends only on fluid viscosity at low shear rate, while increasing shear 

rate  all  data  collapse  into  one  single  straight  line.  The  increase  of  equivalent 

viscosity  at  high  Reynolds  numbers  is  in  agreement  with  previously  reported 

experimental  data  of pressure drops  in  column flow tests  for  a  shear  thinning 

fluids (Perrin et al. 2006).

This  final  remark  strongly  suggests  that  the  Darcy-Forchheimer  law  can  be 

extended to non-Newtonian fluids, represented by models other than the simple 

power law, such as Cross, Ellis and Carreau models. This has important practical 

applications.  The Darcy-Forchheimer law can be directly applied to the design 

and the optimization of those processes involving flows of non-Newtonian fluids 

in porous media, including large-scale simulation of flow in porous media, where 

the  details  of  the  porous  structure  cannot  be  fully  described  but  are  to  be 

modelled. 
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Conclusions and practical implications
Four  geometries  along  with  the  corresponding  computational  grids  were 

constructed from real images of sand grains. First, Newtonian flow simulations at 

the micro-scale were run and results used for grid validation; the determination of 

porous  medium  permeability  K  and  inertial  coefficient  β  produced  results 

consistent with the Ergun law.  The analysis of the simulation results in terms of 

pressure drops over the entire domain as a function of flow rate showed that they 

can be accurately modeled by the Darcy-Forchheimer law over a wide range of 

flow rates.

In a second step, micro-scale flow simulations were run for non-Newtonian fluids, 

using three different rheological models for shear-thinning fluids (Cross, Ellis and 

Carreau  models).  The  analysis  of  the  pressure  drops  obtained  from  non-

Newtonian  flow  simulations  confirmed  the  applicability  of  the  Darcy-

Forchheimer law to non-Newtonian fluids other than power law fluids, for which 

the law validity was previously demonstrated. This finding opens perspectives for 

a  wide  range  of  applications,  where  the  pressure  gradients  generated  by non-

Newtonian flow at high velocity are to be predicted. 

In case of Newtonian flow the porous medium can be fully described by two 

macroscopic parameters, namely permeability  K  and inertial coefficient  β . On 

the contrary, inverse modeling of pressure drops with the Darcy-Forchheimer law 

evidenced  that, in  case  of  non-Newtonian  flow,  an  additional  parameter  is 

required, represented by the shift factor  α , which depends on the properties of 

both porous medium and fluid. Therefore, in case of non-Newtonian fluid flow, 

the estimation of the pressure drops requires three macroscale parameters. From a 

practical point of view, permeability and shift factor can be easily determined in 

the laboratory from column flow tests, performed using the non-Newtonian fluid. 

Conversely, the determination of the inertial coefficient β  from column tests with 

a highly viscous fluid may be difficult in some cases, due to the high pressures 

and flow rates involved. A possible protocol for the determination of the three 

parameters could instead couple gas and fluid flow tests: gas flow tests, which 

involve pressure drops easy to be controlled in the laboratory, can be performed 
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for  the determination  of  permeability  K  and inertial  coefficient  β ,  exploring 

both linear and non-linear flow regimes. Flow tests involving the non-Newtonian 

fluids,  limited  to  the  low  flow  regime,  can  be  then  performed  for  the 

determination of the shift factor α . As an alternative, if the pore-level structure of 

the  medium  is  known  sufficiently  in  detail  (e.g.  from  3D  micro-tomography 

imaging), all three parameters can be determined from 2D or 3D pore-scale flow 

simulations, following the approach which was adopted in this work. This method 

has the advantage of allowing exploring a (potentially) unlimited range of fluids 

(both Newtonian and non-Newtonian), as well as a wide range of flow rate and 

pressure, which may be in turn prohibitive in laboratory tests.

Future steps of this work include the extension of this two-dimensional analysis to 

the problem of particle transport and deposition (on grains) using both Eulerian 

and Lagrangian approaches for the particle-phase. The extension of the present 

analysis  (limited  to  the  flow of  Newtonian  and non-Newtonian  fluids  without 

particles) to three-dimensional porous media will also be investigated in the near 

future.
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Figures

Fig. 1 Example of the digitalization process for the construction of the model domains: SEM 
image of sand grains (a), digitalized contours (b) and computational grid (c).

Fig. 2 Model curves for the shear viscosity ( )γµ   as a function for shear rate γ  for non-
Newtonian shear-thinning fluids used in the micro-scale flow simulations: Cross model 
(continuous line), Ellis model (dashed line), Carreau model (dash-dotted line). The corresponding 
equations are reported in Table 2, the coefficients  in Table 3.
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Fig. 3 Velocity magnitude contour plots for a superficial velocity of 10-3 m/s for Grid 3.

Fig. 4 Normalized pressure drops versus normalized superficial velocity for Grid 3 for Newtonian 
viscosity equal to 1×10-3 (♦), 1×10-2 (●), 1×10-1 (▲), 1×100 (■), 1×101 (▼) Pa s. Solid lines 
represent the Darcy (dotted line) and Darcy-Forchheimer law (solid) calculated via inverse fitting 
of the simulation results. The generalized Ergun equation (dashed) is also reported.
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Fig. 5 Normalized pressure drops versus normalized superficial velocity for Grid 4 for Newtonian 
viscosity equal to 1×10-3 (♦), 1×10-2 (●), 1×10-1 (▲), 1×100 (■), 1×101 (▼) Pa s. Solid lines 
represent the Darcy (dotted line) and Darcy-Forchheimer law (solid) calculated via inverse fitting 
of the simulation results. The generalized Ergun equation (dashed) is also reported.

Fig. 6 Comparison of least-square fitted values of the Forchheimer coefficient β  reported for 
each grid and rheological model.
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Fig. 7 Data points of equivalent viscosity obtained from micro-scale flow simulations 
(μeq=K/q·ΔP/L) plotted against specific discharge for the Cross rheological model, for Grid 1 (♦), 2 
(●), 3 (▲), and 4 (■). The porous medium viscosity μm(γ˙m) (solid line) and inertial term Kβρq 
(dotted lines) are also reported, calculated using the fitted coefficients

Fig. 8 Data points of equivalent viscosity obtained from micro-scale flow simulations 
(μeq=K/q·ΔP/L) plotted against the porous medium shear rate (eq. 7) for the Cross rheological 
model, for Grid 1 (♦), 2 (●), 3 (▲), and 4 (■). The equivalent viscosity curve μeq (dashed lines) 
obtained via least square fitting of numerical results is also reported, along with its components, 
namely porous medium viscosity μm(γ˙m) (solid line) and inertial term Kβρq (dotted lines).
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Fig. 9 Data points of equivalent viscosity obtained from micro-scale flow simulations 
(μeq=K/q·ΔP/L) plotted against the porous medium shear rate (eq. 7) for the Ellis rheological 
model, for Grid 1 (♦), 2 (●), 3 (▲), and 4 (■). The equivalent viscosity curve μeq (dashed lines) 
obtained via least square fitting of numerical results is also reported, along with its components, 
namely porous medium viscosity μm(γ˙m) (solid line) and inertial term Kβρq (dotted lines).

Fig. 10 Data points of equivalent viscosity obtained from micro-scale flow simulations 
(μeq=K/q·ΔP/L) plotted against the porous medium shear rate (eq. 7) for the Carreau rheological 
model, for Grid 1 (♦), 2 (●), 3 (▲), and 4 (■).The equivalent viscosity curve μeq (dashed lines) 
obtained via least square fitting of numerical results is also reported, along with its components, 
namely porous medium viscosity μm(γ˙m) (solid line) and inertial term Kβρq (dotted lines).
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Fig 11 Data points of equivalent viscosity and least-squares fitted viscosity curves (solid lines) for 
Cross (♦), Ellis (●) and Carreau (▲) models on Grid 3. The two components of the equivalent 
viscosity are also reported, namely porous medium viscosity μm(γ˙m) (dashed lines) and inertial 
term Kβρq (dotted lines).

28



Tables
Table 1: Rheological models used for numerical flow simulations of non-Newtonian fluids.

Rheological 

model

Bulk viscosity Equivalent viscosity
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Table 2: Porosity ε, specific surface area a and grid size for all geometries investigated. Porosity is 
calculated as the ratio of the void to the total volume of the grid domain. Specific surface area is 
calculated as the ratio of the solid-liquid interface area to the volume of the solid.

Grid 

label

Grid parameters Grid size

ε
(-)

a
(m-1)

x
(m)

y
(m)

number of 
cells in pore 

space
Grid 1 0.51 5.47 × 103

0.010 0.008 1.79× 105

Grid 2 0.49 1.05 × 104
0.003 0.003 8.78× 104

Grid 3 0.41 7.78 × 103
0.007 0.006 1.75× 105

Grid 4 0.49 1.09 × 104
0.010 0.008 2.21× 105

Table 3: Values of the curve parameters for Cross, Ellis and Carreau rheological models used in 
micro-scale flow simulations.

Rheological 

model

Parameters
∞µ

(Pa s-1)

0µ

(Pa s-1)

λ
(-)

χ

(-)

Cross 1.0 × 10-3 3.52 10.1 0.62
Ellis - 3.52 10.1 0.62

Carreau 3.2 × 10-3 1.35 0.85 0.60

Table 4: Parameters K, β, α calculated for the four grids from Ergun equation (Eq. 4) and obtained 
from inverse modeling of flow simulation results with the Darcy-Forchheimer’s law (Eq. 2) for 
Newtonian and non-Newtonian fluids (Cross, Ellis and Carreau rheological models).
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Grid Parameter
Ergun 

(Newtonian 
fluids)

Darcy-Forchheimer

Newtonian 
fluids Cross fluid Ellis fluid Carreau 

fluid

1
K  (m2) 1.23 × 10-9 5.98 × 10-10 5.98 × 10-10 (not fitted)
β  (m-1) 1.12 × 104 5.28 × 105 5.94 × 105 6.59 × 105 5.40 × 105

α  (-) - - 1.60 1.70 1.75

2
K  (m2) 2.55 × 10-10 1.54 × 10-10 1.54 × 10-10 (not fitted)
β  (m-1) 2.61 × 104 7.59 × 105 6.92 × 105 9.61 × 105 8.04 × 105

α  (-) - - 2.48 2.56 2.55

3
K  (m2) 2.63 × 10-10 3.91 × 10-10 3.91 × 10-10 (not fitted)
β  (m-1) 3.42 × 104 1.67 × 105 1.18 × 105 1.20 × 105 1.37 × 105

α  (-) - - 4.17 4.18 4.09

4
K  (m2) 2.35 × 10-10 1.82 × 10-10 1.82 × 10-10 (not fitted)
β  (m-1) 2.74 × 104 1.37 × 105 1.29 × 105 1.32 × 105 1.37 × 105

α  (-) - - 5.26 4.70 4.67
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