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Nonlinear model predictive control from data: a set
membership approach
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1Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24–10129 Torino, Italy
2Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA

SUMMARY

A new approach to design a Nonlinear Model Predictive Control law that employs an approximate model,
derived directly from data, is introduced. The main advantage of using such models lies in the possibility to
obtain a finite computable bound on the worst-case model error. Such a bound can be exploited to analyze
the robust convergence of the system trajectories to a neighborhood of the origin. The effectiveness of the
proposed approach, named Set Membership Predictive Control, is shown in a vehicle lateral stability control
problem, through numerical simulations of harsh maneuvers. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In Nonlinear Model Predictive Control (NMPC), the current control action is computed by solving
online a constrained Finite Horizon Optimal Control Problem (FHOCP) according to the Receding
Horizon (RH) strategy, see for example [1]. A nonlinear model of the system to be controlled is
employed in the FHOCP to predict the future state behavior, starting from the state value xt at time
step t . In most cases, such a model is based on first-principle laws, yielding a physical model; in
other cases, it is a black-box model in the form of a nonlinear parametric function (e.g., a neural
network), whose parameters are identified from measured process data. However, since such mod-
els only approximate the dynamic behavior of the system under control, to guarantee stability of the
controlled system, robustness issues should be taken into account in the design procedure. Robust
stability analysis and robust design of predictive controllers in the presence of modeling uncertainty
are a very active field of research, and different approaches have been considered in this context.
A first contribution has been given in [2], where the contraction principle has been used to derive
necessary and sufficient conditions for robust stability. In [3], a sufficient condition has been intro-
duced by means of the computation of suitable weights in the cost functions, whereas in [4], robust
stability has been achieved by enforcing a robust state contraction constraint. A min–max approach
has been employed for the case of linear time varying systems in the presence of polytopic and
parametric uncertainties in [5] and [6], respectively. A robust design that adopts constraint tight-
ening techniques has been introduced in [7]. All the aforementioned contributions were developed
for linear systems. More recently, the attention moved to nonlinear systems. In this context, several
interesting results have been obtained within the framework of Input-to-State Stability (ISS). In par-
ticular, in [8], an ISS approach has been employed to analyze the robustness of NMPC schemes;



in [9], a suboptimal NMPC law with ISS guarantees has been derived, whereas in [10], the problem
of robust NMPC design has been solved in the presence of state-dependent uncertainties and addi-
tive bounded perturbations. Finally, in [11], a combined MPC and integral sliding mode strategy
has been introduced whose robust stability properties are proved through an ISS regional analysis.
Besides, the theory of invariant sets has been employed in [12] and [13] to obtain robust stability
through the use of interval arithmetic methodologies and a tube-based approach, respectively. As
witnessed by the aforementioned review, several contributions have been introduced for the robust
analysis and design of nonlinear model-based predictive controllers. A common feature of the such
approaches is that the analysis/design procedures of the robust MPC controller have been performed
by using a nominal nonlinear state space model and describing the uncertainty through additive
bounded disturbances whose characteristics, in general, do not depend on the nominal model, and
they do not guarantee that the real plant belongs to such a description. This issue stems from the dif-
ficulty to derive a useful description of the model uncertainty in nonlinear parametric models, whose
parameters are usually obtained via physical modeling or identified from input/output data, and in
such modeling procedures, it is not trivial to derive also some uncertainty estimate. In order to deal
with the previously described issue, this paper investigates the robustness of a new NMPC scheme
in which a nonparametric model, identified directly from measured input–output data, is used in the
FHOCP. Such a model is derived via a Nonlinear Set Membership (NSM) methodology (see [14]
for details); thus, the proposed approach will be referred to as Set Membership Predictive Control
(SMPC). As a matter of fact, SM identification methods were employed in [6] and [15] to derive
parametric and nonparametric uncertain linear models, respectively. Indeed, in this paper, a different
SM setting is considered because a nonparametric approach and a nonlinear model are considered.
In the NSM approach, an additive uncertainty model is derived together with the model of the plant
dynamics, and an upper bound on such uncertainty can be computed. Then, by using the NSM model
in the design of a SMPC control law, many techniques for robustness analysis and robust design can
be suitably used. In particular, in this paper, a nominal (i.e., assuming zero uncertainty) controller
design is carried out using the identified model. Then, by exploiting the upper bound of the mod-
eling error provided by the NSM approach, a theoretical result is introduced, which allows us to
perform an a posteriori analysis of the robust stability properties of the controlled system. In partic-
ular, such a result defines a relationship between the bound on the modeling error and the asymptotic
regulation accuracy of the closed-loop system. The effectiveness of the approach is tested on a vehi-
cle stability control case study. The paper is organized as follows. A summary of NMPC and of
the NSM modeling approach is given in Sections 2.1 and 2.2, respectively. The design of a SMPC
law using a NSM model and the related robust stability analysis are presented in Section 2.3. An
automotive case study is treated in Section 3, and conclusions are included in Section 4.

2. NONLINEAR MODEL PREDICTIVE CONTROL USING NONLINEAR
APPROXIMATE MODELS

2.1. Nonlinear Model Predictive Control

Consider the following nonlinear discrete-time state space model:

xtC1 D f
M .xt ,ut /, t 2 Z (1)

where f M WRmC1!Rm is a nonlinear function and ut 2R and xt 2Rm are the system input and
state, respectively.

Assume that the problem is to regulate the system state to the origin under some input and state
constraints. By defining the prediction horizon Np and the control horizon Nc 6 Np , it is possible
to define a cost function Jt .U , xt jt / of the form

Jt .U , xt jt /D
Np�1X
jD0

L
�
xtCj jt ,utCj jt

�
C‰

�
xtCNpjt

�
(2)



The per-stage cost function L.�/ and the terminal state cost ‰.�/ are suitably chosen and tuned
according to the desired control performance. L.�/ is typically continuous and convex in its argu-
ments. The cost function Jt .�/ is evaluated on the basis of the predicted state values xtCj jt ,
j 2 Œ1,Np� obtained using the model (1), the input sequence Ut D Œut jt : : : utCNc�1jt �, and the
initial state xt jt D xt . The sequence Ut is a decision variable in the problem, whereas the remain-
ing input values ŒutCNc jt , : : : ,utCNp�1jt � can be fixed according to different strategies [1, 16]. The
NMPC control is computed according to the RH strategy:

(i) At time instant t , obtain the state xt jt
.
D xt .

(ii) Solve the optimization problem

min
U

Jt .U , xt jt /

subject to
(3a)

xtCjC1jt D f
M .xtCj jt ,utCj jt /, j 2 Œ0,Np � 1� (3b)

xtCj jt 2X, j 2 Œ1,Np� (3c)

utCkjt 2U , k 2 Œ0,Np � 1� (3d)

stabilizing constraints (3e)

where the input and state constraints are represented by a set X � Rm and a compact set

U � R, both containing the origin in their interiors; denote with U �t D
h
u�
t jt
: : : u�

tCNc�1jt

i
the minimizer of (3).

(iii) Apply the first element of U �t as the actual control action ut D u�t jt .
(iv) Repeat the whole procedure at the next sampling time t C 1.

Possible additional stabilizing constraints (e.g., state contraction and terminal set) can be included
in (3e) to ensure stability of the controlled system.

A model derived from physical laws is usually employed as model of plant (1) to be controlled.
In this work, instead, an approximate model derived from data by means of the NSM methodology
is used. In the sequel, a brief overview of the NSM technique is presented.

2.2. Nonlinear Set Membership identification

Suppose that the plant to be controlled P is a nonlinear discrete-time dynamic system described by
the following regression:

ytC1 D P.yt , ut /, t 2 Z (4)

yt D Œyt , : : : ,yt�ny �

ut D Œut , : : : ,ut�nu �

where ut ,yt 2R, P WRn!R, and nD ny C nuC 2.
Suppose that P is not known, but a set of noise-corrupted measurements is available

.eyt ,eut / t 2 T .
D ¹��C 1,��C 2, : : : , 0º (5)

Measurements (5) can be collected in an initial experiment on the plant to be controlled. Note that
such measurements are needed also in the case of physical models, to tune the model parameters.
Lete't .

D Œeyt Ieut �, whereeyt D Œeyt , : : : ,eyt�ny � andeut D Œeut , : : : ,eut�nu �.
Then, (4) can be rewritten as

eytC1 D P.e't /C dt , t 2 T (6)

where the term dt accounts for the fact that yt and 't
.
D Œyt Iut � are not exactly know



The aim is to derive a model M of P from the available measurements .eyt ,eut /. The esti-
mate M should be chosen to give small (possibly minimal) Lp error jjP � M jjp , where the

p-norm of a given function F.'/ is defined as kF kp
.
D
hR
� jF .'/j

p d'
i 1
p

,p 2 Œ1,1� , where

kF k1
.
D ess sup

'2ˆ

jF.'/j, j � j denotes the Euclidean norm, and ˆ is a bounded set in Rn.

Whatever estimate is chosen, no information on the identification error can be derived, unless
some assumptions are made on the function P and on the noise d .

Assumption 1

� P 2 F.�/

F.�/ .
D ¹F 2 C 0 W jF .'/�F . N'/ j6 � j' � N'j 8', N' 2ˆ�Rnº

� jdt j6 " <1, t 2 T .

Thus, F.�/ is the set of Lipschitz continuous functions on ˆ with Lipschitz constant � . It is
assumed thatˆ is a compact set. Assumption 1 represents the only restriction imposed on the model
structure in this approach.

A key role in the SM framework is played by the Feasible System Set (FSS), often called
unfalsified systems set, that is, the set of all systems consistent with prior assumptions and
measured data.

Definition 1
Feasible System Set:

FSS
.
D ¹F 2 F.�/ W jeyt �F .e't /j6 ", t 2 T º (7)

If Assumption 1 is true , then P 2 FSS.
For a given estimate M ' P , the related Lp error kP �Mkp cannot be exactly computed, but

its tightest bound is given by

kP �Mkp 6 sup
F 2FSS

kF �Mkp

This motivates the following definition of worst-case identification error.

Definition 2
The worst-case identification error of the estimate M is

E.M/
.
D sup
F 2FSS

kF �Mk1

Looking for estimates that minimize the worst-case identification error leads to the following
optimality concept.

Definition 3
An estimate F � is optimal if

E
�
F �
�
D inf

M
E .M/DRI

The quantity RI , called radius of information, gives the minimal worst-case identification error
that can be guaranteed by any estimate on the basis of the available information.



Let us define the following functions:

F .'/
.
Dmin

t2T

�
ht C � j' �e't j�

F .'/
.
Dmax

t2T
.ht � � j' �e't j/

ht
.
Deyt C "

ht
.
Deyt � " (8)

The next theorem shows that the estimate

Mc
.
D
1

2

�
F CF

�
(9)

is optimal for any Lp norm.

Theorem 1 (Theorem 7 in [14].)
For any Lp norm, with p 2 Œ1,1�:

� Mc 2 FSS
� The estimate Mc D

1
2

�
F CF

�
is optimal

� The worst-case identification error E.Mc/ is given by

E .Mc/D
1

2

��F �F ��
1

(10)

Model Mc (9) can be written as a nonlinear regression:

ytC1 DMc.yt , : : : ,yt�ny ,ut , : : : ,ut�nu/, t 2 Z (11)

where Mc is a Lipschitz continuous function with Lipschitz constant � (see [14] for more details).
The next section focuses on the proposed SMPC. In such a methodology, a nonlinear predictive

controller is designed using model (11) to predict the state behavior in the FHOCP, whereas the
worst-case error E.Mc/ (10) is employed to perform an a posteriori robust stability analysis of the
SMPC closed-loop system.

2.3. Set Membership Predictive Control

In order to employ an NSM model within the context of NMPC, the plant P (4) and the model Mc

(11) are rewritten here in state space form, by using ut as input variable and xt as pseudo-state,

xt
.
D Œyt : : : yt�nyut�1 : : : ut�nu �

D
h
x
.1/
t � � � x

.nyC1/
t x

.nyC2/
t � � � x

.nyCnuC1/
t

i
2Rn�1 (12)

The state space equation of plant (4) results to be

xtC1 D f
P .xt ,ut / (13)

where f P WRn!Rn�1 is defined as

f P .xt ,ut /
.
D

26666666666664

P
�
x
.1/
t , : : : , x.nyC1/t ,ut , x

.nyC2/
t , : : : , x.nyCnuC1/t

�
x
.1/
t
...

x
.ny/
t

ut
...

x
.nyCnu/
t

37777777777775
(14)

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:123–139
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Note that, since P.�/ is assumed to be Lipschitz continuous with constant � , function f P .�/

in (14) results to be Lipschitz continuous too, with constant LP D
p
1C �2:

jjf P .x1,u1/� f
P .x2,u2/jj

2
2 D

D jjP.�/�P.�/jj22C jjx
.1/
1 � x

.1/
2 jj

2
2C � � � C jju1 � u2jj

2
2C � � � C jjx

.nuCny/
1 � x

.nuCny/
2 jj22 D

6 .1C �2/
�
jjx

.1/
1 � x

.1/
2 jj

2
2C � � � C jju1 � u2jj

2
2C � � � C jjx

.nuCny/
1 � x

.nuCny/
2 jj22

�
D

D .1C �2/
�
jjx1 � x2jj

2
2C jju1 � u2jj

2
2

�
D L2P

�
jjx1 � x2jj

2
2C jju1 � u2jj

2
2

�
(15)

Applying the same procedure to the model Mc (11) leads to the state space description

xtC1 D f
Mc .xt ,ut / (16)

where

f Mc .xt ,ut /
.
D

2666666666666664

Mc

�
x
.1/
t , : : : , x.nyC1/t ,ut , x

.nyC2/
t , : : : , x.nyCnuC1/t

�
x
.1/
t

...

x
.ny/
t

ut
...

x
.nyCnu/
t

3777777777777775
(17)

By construction, taking into account Theorem 1, function f Mc .�/ in (17) is also Lipschitz
continuous with constant LM D

p
1C �2 (i.e., LM D LP ).

Moreover, it can be shown that the estimation error is upper bounded by RI :

kf P � f Mck1 6RI (18)

The SMPC law is derived according to the RH strategy described in Section 2.1, by using model
(11). The resulting controller is a static function of the pseudo-state xt , that is, ut D �.xt /,
defined on a compact set X of values of x where the optimization problem is feasible. Note that
X �Rn�1 is a subset ofˆ�Rn. Now, from (18), the following bound on the model uncertainty can
be obtained:

sup
x2X
kf P � f Mck2 6RI (19)

Note that bound (19) can be derived as only the first components of the model equations (14) and
(17) are different, so that the 2-norm of the difference f P .x/�f Mc .x/ is equivalent to the absolute
value of the difference P.�/�Mc.�/.

When the predictive controller ut D �.xt / is applied to systems (13) and (16), the following
autonomous systems are obtained:

xtC1 D f
P .xt , �.xt //D F

P .xt / (20)



xtC1 D f
Mc .xt , �.xt //D F

Mc .xt / (21)

Now, notations �P.t , x0/DF
P.F P.: : : F P„ ƒ‚ …

t times

.x0/ : : :// and �Mc .t , x0/D F
Mc.FMc.: : : FMc„ ƒ‚ …

t times

.x0/ : : ://

denote the state trajectories of systems (20) and (21), respectively.
Moreover, the following assumptions are made:

Assumption 2
The control law ut D �.xt / is continuous over X .

Assumption 3
The autonomous system (21) is uniformly asymptotically stable at the origin for any initial condition
x0 2 X , that is, it is stable and

8� > 0,8� > 0 9 	 2N subject to jj�M .t C 	 , x0/jj2 < �, 8t > 0,8x0 2 X W jjx0jj2 6 � (22)

Assumption 2 is related to the structure of the optimization problem (i.e., the regularity of model
(18) and employed cost function and constraint sets, see e.g., [17–19]). According to the optimal
control theory (see e.g., [20]), the higher is the weight on the control input, the smoother is the
derived control law. On the contrary, if such a weight is not introduced, the control law could be
discontinuous. An example of this phenomenon is given in [21], where a numerical example is
reported, in which the absence of weights on the input leads to discontinuities in the controller,
whereas an even small quadratic cost on the input makes the control law continuous again. Another
well-known condition for the continuity of the control law is the joint convexity of cost and con-
straints as a function of both the state and the input [22], yet this condition is also hard to check,
except for cases such as linear quadratic MPC. Assumption 3 can be satisfied with a suitable choice
of the cost function Jt (2) and of the stabilizing constraints (3e) (see e.g., [1–16]).

Define the closed-loop one step prediction error as

e.xt /
.
D xPtC1 � x

Mc
tC1 D

D f P .xt , �.xt //� f
Mc .xt , �.xt // (23)

As a consequence of (19), prediction error (23) results to be bounded:

ke.xt /k2 6RI D 
 (24)

According to Assumption 2, compactness of X implies that function � is uniformly continuous over
X , so that there exists a class-K1 function ˛� such that (see e.g., [23])

j�.x1/� �.x2/j6 ˛�.kx1 � x2k/, 8x1, x2 2 X (25)

Recall that a class-K1 function ˛ W Œ0,C1/ ! Œ0,C1/ is a monotonically increasing function
such that ˛.0/D 0 and lim

d!1
˛.d/DC1.

Moreover, the function FMc .x/ also results to be uniformly continuous over the compact set X ,
being the composition of a Lipschitz continuous function with a continuous one. Therefore, there
exists a corresponding class-K1 function ˛FMc with properties analogous to (25):

kFMc .x1/�FMc .x2/k2 6 ˛FMc
�
kx1 � x2k2

�
, 8x1, x2 2 X (26)

2.4. Set Membership Predictive Control robustness analysis

In this section, a theorem showing that the trajectory �P of system (20) converges to a neighborhood
of the origin, whose size depends on the accuracy of the model f Mc in (21), will be introduced.



Before stating the theorem, the following candidate Lyapunov function V W X !RC for system
(21) is defined:

V.x/
.
D

bT�1X
jD0

k�Mc .j , x/k2 (27)

where bT > T and T D inf
x2X

�
T 2N W k�Mc .t C T , x/k2 < kxk2, 8t > 0

�
.

V.x/ is given by the sum of a finite number of compositions of function FMc . Because the latter
is uniformly continuous over the compact X , V.x/ is also uniformly continuous over X ; hence,
there exists a class-K1 function ˛V such that

jV.x1/� V.x2/j6 ˛V
�
kx1 � x2k

�
, 8x1, x2 2 X (28)

Moreover, because of bound (24), the following inequality holds:

8x 2 X , 8e W .FMc .x/C e/ 2 X

V
�
FMc .x/C e

�
6 V

�
FMc .x/

�
C ˛V .e/6 V

�
FMc .x/

�
C ˛V .
/ (29)

Furthermore,

kxk2 6 V.x/6 sup
x2X

V.x/

kxk2
kxk2 D b kxk2, 8x 2 X (30)

V.FMc .x//� V.x/D�V.x/D�
kxk2 � k�

Mc .bT , x/k2
kxk2

kxk2 6 �Kkxk2, 8x 2 X (31)

where

b D sup
x2X

V.x/

kxk2
(32)

and

K D inf
x2X

kxk2 � k�
Mc .bT , x/k2
kxk2

, 0 < K < 1 (33)

Note that b in (32) exists finite by the definition of V.x/.
Therefore, V.x/ is a Lyapunov function for system (21) over X .

Theorem 2
Suppose that Assumptions 2 and 3 hold, then 8x0 2 X such that �P .t , x0/ 2 X ,8t > 0 :

(i) the trajectory distance d.t , x0/D k�P .t , x0/� �Mc .t , x0/k2 is bounded by � which increases
monotonically with the bound 
 introduced in (24), i.e.

k�P .t , x0/� �
Mc .t , x0/k2 6�D�.
/

(ii) the trajectory �P asymptotically converges to a neighborhood of the origin whose size grows
monotonically with the value of 
 introduced in (24) (i.e. the worst-case accuracy of the model
f Mc )

lim
t!1
k�P .t , x0/k2 6 q.
/I , q.0/D 0I 
1 > 
2 ” q.
1/ > q.
2/



Proof

(i) Choose any x0 2 X as initial condition for system (20) and model (21). On the basis of (24)
and of the uniform continuity of f Mc , it can be noted that

d.1, x0/D k�
P .1, x0/� �

Mc .1, x0/k2 6 

d.2, x0/D k�

P .2, x0/� �
Mc .2, x0/k2 D

D kF P .F P .x0, �.x0///�F
Mc .FMc .x0, �.x0///k2 6

6 kFMc .F P .x0//C e �FMc .FMc .x0//k2 6
6 kFMc .F P .x0//�FMc .FMc .x0//k2Ckek2 6
6 ˛FMc .kF P .x0/�FMc .x0/k/C
6
6 ˛FMc .
/C


d.3, x0/D k�
P .3, x0/� �

Mc .3, x0/k2 D

D kF P .F P .F P .x0///�F
Mc .FMc .FMc .x0///k2 6

6 � � �6 ˛2
FMc

.
/C ˛FMc .
/C


d.t , x0/D k�
P .t , x0/� �

Mc .t , x0/k2 6
t�1X
kD0

˛k
FMc

.
/

with the convention that ˛0
FMc

.
/D 
 and ˛k
FMc

.
/D ˛FMc .˛FMc .: : : .
/ : : ://„ ƒ‚ …
ktimes

.

Thus, the following upper bound of the distance between trajectories �P .t , x0/ and �Mc .t , x0/
is obtained:

d.t , x0/6
t�1X
kD0

˛k
FMc

.
/D�1.t ,
/ , 8x0 8t > 1 (34)

The quantity
t�1P
kD0

˛k
FMc

.
/ D �1.t ,
/ is generally not bounded as t ! 1, so it cannot be

proved, on the basis of inequality (34) alone, that the trajectory distance d.t , x0/ is bounded.
However, by means of the properties of Lyapunov function (27), a second upper bound�2.t ,
/
of d.t , x0/ can be computed. In fact, through (29) and (31), the following inequality holds:

V.FMc .x/C e/6 V.x/�Kkxk2C ˛V .
/ (35)

then, on the basis of (30) and (35), the state trajectory �P .t , x0/ is such that

k�P .t , x0/k2 6 V
�
�P .t , x0/

�
D V

�
F P .�P .t � 1, x0//

�
D

D V.FMc .�P .t � 1, x0//C e.�
P .t � 1, x0///6

6 V.�P .t � 1, x0//�Kk�
P .t � 1, x0/k2C ˛V .
/6

6 V.�P .t � 1, x0//�
K

b
V.�P .t � 1, x0//C ˛V .
/D

D

�
1�

K

b

�
V.�P .t � 1, x0//C ˛V .
/D

D �V.�P .t � 1, x0//C ˛V .
/6

6 �tV.x0/C
t�1X
jD0

�j˛V .
/6

6 �tV.x0/C
˛V .
/

1� �
(36)



with �D
�
1� K

b

�
< 1. Thus, the following result is obtained:

k�P .t , x0/k2 6 �tV.x0/C
b

K
˛V .
/ (37)

k�Mc .t , x0/k2 6 �tV.x0/ (38)

By means of inequalities (37) and (38), an upper bound �2.t ,
/ can be computed as

d.t , x0/D k�
P .t , x0/� �

Mc .t , x0/k2 6
6 k�P .t , x0/k2Ck�Mc .t , x0/k2 6

6 2 �tV.x0/C
b

K
˛V .
/6

6 2 �t sup
x02X

V.x0/C
b

K
˛V .
/D

D�2.t ,
/ , 8x0 8t > 0 (39)

Note that, since 
 <1 and X is compact,

�2.t ,
/ <1, 8t > 0

lim
t!1

�2.t ,
/D
b

K
˛V .
/D q.
/

q < �2.t ,
/ <1, 8t > 0

Thus, as t increases towards1, the bound �2.t ,
/ (39) decreases monotonically from a finite
positive value equal to 2 sup

x02X
V.x0/C

b
K
˛V .
/ towards a finite positive value q.
/, whereas

the bound �1.t ,
/ (34) generally increases monotonically from 0 to1. Therefore, for a fixed
value of 
, there exists a finite discrete-time instantbt > 0 such that �1.bt ,
/ > �2.bt ,
/. As
a consequence, by considering the lowest bound between �1.t ,
/ and �2.t ,
/ for any t > 0,
the following bound �.
/ of d.t , x/, which depends only on 
, is obtained:

�.
/D sup
t>0

min.�1.t ,
/,�2.t ,
//

q.
/6�.
/ <1
k�P .t , x0/� �

Mc .t , x0/k2 6�.
/, 8x0 2 X 8t > 0

As both �1.t ,
/ and �2.t ,
/ increase monotonically with 
, also their pointwise minimum
with respect to t does.

(ii) On the basis of (37), it can be noted that

lim
t!1
k�P .t , x0/k2 6 lim

t!1
�tbkx0k2C

b

K
˛V .
/

D
b

K
˛V .
/D q.
/, 8x0 2 X . (40)

The claim follows by the properties of the class-K1 function ˛V .

�

Remark 1
In the proof of Theorem 2, the case of diverging bound �1.
/ has been considered. Depending on

the properties of function ˛FMc and on the value of 
, in principle, the quantity
t�1P
kD0

˛k
FMc

.
/ D



�1.t ,
/ can also converge, as t ! 1, to some finite quantity q1.
/. The latter would still be
monotonically strictly increasing with 
 and such that q1.0/ D 0. In this case, all the results of
the theorem would still hold true; eventually, the bound q.
/ D b

K
˛V .
/ would be replaced by

q1.
/D lim
t!1

t�1P
kD0

˛k
FMc

.
/, whichever is smaller.

In the sequel, the following notation will be used:

B.A, r/D
[
x2A

B.x, r/ A�Rn

where B.x, r/
.
D ¹� 2Rn W kx � �k2 6 rº.

Proposition 1
Suppose there exists a positively invariant set G � X such that

(i) �Mc .t , x0/ 2 G, 8x0 2 G,8t > 0
(ii) B.G,�/� X

then points (i) and (ii) of Theorem 2 hold 8x0 2 G.

The main consequence of Proposition 1 is that for any initial condition x0 2 G, it is guaranteed
that the state trajectory is kept inside the set X and converges to the set B.0, q/, whose size depends
on the accuracy of the model f Mc . Theorem 2 is to be intended mainly as a qualitative result that
establishes local robust attractivity of the origin of the closed-loop system. The difficulty of using
this result also for quantitative analysis lies in the practical computation of the involved quantities
and in the related conservativeness. On the other hand, to find nonconservative and practically useful
results for nonlinear systems is quite a hard task, unless some more restrictive assumptions on the
structure of the system and of the problem are made.

Remark 2
If the control law � is Lipschitz continuous with constant L� (i.e., if stronger regularity properties
than those of Assumption 2 are assumed), the results of Theorem 2 can be refined into linear rela-
tionships between the trajectory bounds and the worst-case modeling error 
. More specifically, in

this case, function FMc is also Lipschitz continuous, with constant LMCL D
q
.1CL2�/.1CL

2
M /

so is the Lyapunov function V , with constant LV D
bT�1P
jD0

.LMCL/
j . Then, the bounds involved in

Theorem 2 become

�1.t ,
/D

 
t�1X
kD0

.LMCL/
k

!



�2.t ,
/D 2 �
t sup
x02X

V.x0/C
b

K
LV 


q.
/D
b

K
LV 


Lipschitz continuity is indeed a strong assumption in the case of general nonlinear systems. In some
cases, numerical inspection procedures can be used to check whether such condition holds.

3. APPLICATION TO VEHICLE YAW CONTROL

In order to show the effectiveness of the proposed SMPC methodology, an application to a vehicle
yaw stability control system is presented here.



3.1. Control requirements

Yaw stability control systems have been introduced to significantly enhance safety and handling
properties of vehicles (see e.g., [24] and [25]) by modifying their passive dynamic behavior using
suitable control structures and actuation devices. In particular, in this paper, a vehicle equipped with
a front steer-by-wire actuator, based on a classical rack and pinion steering system (see e.g., [26]),
is considered.

The control objective is the tracking of a reference yaw rate value P ref.t/, whose course is
designed to improve the vehicle maneuverability and to assist the driver in keeping directional sta-
bility under different driving conditions. In the considered situation, the vehicle front steering angle
ı represents the control input, whereas the yaw rate P is the controlled output.

A feedback control law receives as input the reference yaw rate value, together with the measured
yaw rate P , and computes a suitable command current for the steer-by-wire device that imposes
accordingly the pinion angle and, consequently, the steering angle ı of the front wheels. The desired
vehicle behavior is taken into account in the control design by a suitable choice of the reference
signal P ref. Details on the computation of the P ref can be found in [25]. The tracking of P ref can be
taken into account by minimizing the amount of the tracking error e, defined as

e D P ref � P 

The value of the front steering angle ı, generated by the employed active device, is subject to its
physical limits. In particular, the range of allowed front steering angles that can be mechanically
generated is ˙ 35ı; thus, saturation of the control input (i.e., the angle ı) has to be taken into
account in the control design.

3.2. Vehicle model identification and Set Membership Predictive Control design

A set of measured values of QP t and Qıt are collected to identify NSM vehicle model Mc (11).
The number of output and input regressors, ny and nu, have to be chosen to achieve a suitable

tradeoff between model complexity and accuracy, whereas the values of the Lipschitz constant �
and of the noise bound " are estimated from the data to achieve a nonempty FSS (for more details
on the regressor choice and on the computation of � and ", the interested reader is referred to [14]).

According to (12), the pseudo-state results to be

xt D
	
P t : : : P t�ny ıt�1 : : : ıt�nu



2Rn�1 (41)

The control move is obtained, according to the RH strategy (Section 2.1), by optimizing the
following cost function:

min
U

NpX
jD1

Qe2tCjC1jt CR ı
2
tCj jt (42)

subject to

xtCjC1jt D f
M
c

�
xtCj jt , ıtCj jt

�
, j 2 Œ0,Np � 1� (43)

U 2U D
®
ıtCj jt W jıtCj jt j6 Nı, j 2 Œ1,Nc �

¯
(44)

etCNpjt D 0 (45)

utCNc jt , : : : ,utCNp�1jt D utCNc�1jt (46)

where Q, R 2RC are suitable weights, etCj jk is the j th step ahead prediction of the tracking error
obtained as

etCj jt
.
D P ref,t � P tCj jt



Terminal state (45) equality constraint induces asymptotic closed-loop stability of the nominal
model as required by Assumption 3, since in the presence of this constraint, the optimal cost func-
tion turns out to be a Lyapunov function for the tracking error’s dynamics. Please refer to [27] for
more details.

The saturation value Nı is the maximum steering angle that can be mechanically generated, that is,
Nı D ˙35ı. The values of Q, R, Np , Nc are design parameters suitably chosen to achieve a good
compromise between closed-loop stability and performance (see e.g., [1]).

3.3. Simulation results

In order to evaluate the effectiveness of the proposed approach in a realistic way, a detailed
14-degree of freedom (dof) Simulink® vehicle model is employed. Such a model gives an accurate
description of the vehicle dynamics as compared with the actual measurements and includes non-
linear suspension, steer, and tire characteristics, obtained on the basis of measurements on the real
vehicle (see [25] for a detailed description of such a model). The 14-dof model has been employed

at first stance to generate QP t and Qıt data with sampling time Ts D 0.01 s, by simulating a series of
standard maneuvers. Then, such data have been divided into two subsets: that is, the identification
and the validation data. The identification data have been employed to derive NSM vehicle model
(11), whereas the validation ones to evaluate its accuracy and to tune the values of nu, ny , � , and
". In particular, after a series of trial-and-error iterations, the values ny D 1, nu D 3, � D 3 and
" D 0.02 rad/s have been chosen. The SMPC law has then been designed using the parameters
Np D 30, Nc D 3, QD 10, and RD 5.

The performance of the proposed SMPC approach have been compared with the one of an NMPC
controller designed using the nonlinear single-track vehicle model described by state equation (47)
(see [24] and Figure 1 for more details):

mv.t/ P̌.t/Cmv.t/ P .t/D Fyf .t/CFyr.t/

J´ R .t/D aFyf .t/� bFyr.t/ (47)

where m is the vehicle mass, J´ is the moment of inertia around the vertical axis, ˇ is the sideslip
angle,  is the yaw angle, v is the vehicle speed, and a and b are the distances between the center
of gravity and the front and rear axles, respectively.

The nominal parameter values used are m D 1715 kg, J´ D 2700 kgm2, a D 1.07 m, and
b D 1.47 m. The sampling time Ts D 0.01 s is used to discretize the model by means the

Figure 1. Single track model schematic.
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Figure 2. Results of the 50ı handwheel step test with nominal parameters. Uncontrolled vehicle yaw rate
(dotted), reference yaw rate (thin solid line), and yaw rate are obtained with the Set Membership Predictive
Control (solid) and Nonlinear Model Predictive Control based on a physical model (dashed) control laws.
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Figure 3. Results of the 50ı handwheel step test with increased mass. Uncontrolled vehicle yaw rate
(dotted), reference yaw rate (thin solid line), and yaw rate are obtained with the Set Membership Predictive
Control (solid) and Nonlinear Model Predictive Control based on a physical model (dashed) control laws.

forward difference approximation. Fyf and Fyr are the front and rear tire lateral forces, which
can be expressed as nonlinear functions of the state, the input and of the vehicle speed (see [25] and
[28] for more details):

Fyf D Fyf .ˇ, P , v, ı/

Fyr D Fyr.ˇ, P , v, ı/ (48)

At first, the NMPC parameters Q, R, Np , and Nc were set to be the same of the SMPC ones. In
such a way, the performance of the NMPC controller was significantly worse than that of the SMPC.
After that, to make a fair comparison, the NMPC parameters have been tuned via a trial-and-error
procedure to improve the performance. The final choice wasQD 2,RD 10,Np D 80, andNc D 2.

In both cases, the control move computation has been performed using the MatLab® optimization
function fmincon.
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Figure 4. Results of the 50ı handwheel step test when a blust of wind occurs at 1 s. Uncontrolled vehicle
yaw rate (dotted), reference yaw rate (thin solid line), and yaw rate obtained with the Set Membership
Predictive Control (solid) and Nonlinear Model Predictive Control based on a physical model (dashed)

control laws.

Assumptions 1–3 have been checked through numerical inspection by using an approach similar
to the estimation of the Lipschitz constant proposed in [14] and [29].

An open loop (i.e., without driver’s feedback) maneuver has been chosen to test the control effec-
tiveness and to compare the two approaches. In particular, a 50ı handwheel step at 100 km/h, with
a handwheel speed of 400ı/s, has been performed in different conditions:

� With nominal vehicle parameters
� With increased vehicle mass, +100 kg, with consequent variations of the other involved inertial

and geometrical characteristics
� With a lateral wind gust, which exerts on the vehicle a lateral force and a moment of 800 N and

500 Nm, respectively, for a period of 1 s

Such tests aimed at evaluating both the transient and steady state performance of the controlled
vehicle.

The obtained results in nominal conditions (i.e., when the parameters of the 14-dof model match
with those of physical model (47)) are reported in Figure 2. It can be noted that the NMPC law
based on the physical model achieves a steady-state regulation error of about 3%. This is due to
the neglected dynamics and undermodeling of the physical model. On the other hand, the SMPC
approach, by employing a model identified directly from data, achieves better regulation precision
with 0.9% steady-state tracking error. The advantages of the SMPC technique are also evident in
an handwheel step test with increased vehicle mass. The result of this test is shown in Figure 3:
whereas the SMPC law is able to keep a nearly zero tracking error (0.9%), the NMPC law based
on the physical model achieves a slightly higher steady-state tracking error (1.9%) with respect to
the SMPC law. Further, Figure 4 shows that the SMPC controller is more robust with respect to the
NMPC controller when an external disturbance occurs (0.9% versus 3.8%).

Thus, the presented simulation results highlight that the proposed SMPC methodology improves
both robustness and regulation precision of the closed-loop system with respect to the NMPC one,
on the basis of physical modeling of the system.

4. CONCLUSION

The paper presented a novel approach, denoted as SMPC, to design a predictive control law. The
proposed SMPC technique relies on a model derived using a NSM identification method and



input/output data collected during preliminary tests. The NSM approach is able to provide a model
with a bounded model uncertainty; by exploiting this feature, a theoretical result that allows an a
posteriori analysis of the robust stability of the closed-loop system has been introduced. The effec-
tiveness of the proposed approach has been shown through a vehicle lateral stability control problem.
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23. Freeman RA, Kokotović PV. Robust nonlinear control design: state-space and Lyapunov techniques. Birkhäuser:

Boston, 2008.
24. Rajamani R. Vehicle Dynamics and Control. Springer Verlag: New York, 2005.
25. Canale M, Fagiano L, Milanese M, Borodani P. Robust vehicle yaw control using an active differential and imc

techniques. Control Engineering Practice 2007; 15:923–941.



26. Yih P, Gerdes C. Modification of vehicle handling characteristics via steer-by-wire. IEEE Transactions on Control
Systems Technology 2005; 13(6):965–976.

27. Grüne L, Pannek J. Nonlinear Model Predictive Control: Theory and Algorithms. Springer: London, 2011.
28. Bakker E, Pacejka H, Lidner L. A new tire model with an application in vehicle dynamics studies. SAE Technical

Paper 890087, 1989. DOI: 10.4271/890087.
29. Canale M, Fagiano L, Milanese M. Set membership approximation theory for fast implementation of model

predictive control laws. Automatica 2009; 45(1):45–54. DOI: 10.1016/j.automatica.2008.06.015.


