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CONTENTS 1

Quieto s’asside ciascheduno al suo posto: il sol Tersite di gracchiar non si resta, e fa

tumulto parlator petulante. Avea costui di scurrili indigeste dicere pieno il cerebro, e

fuor di tempo, e senza o ritegno o pudor le vomitava contro i re tutti; e quanto a destar

riso infra gli Achivi gli venia sul labbro, tanto il protervo beffator dicea.

from Iliad, Homerus (Italian translation by Vincenzo Monti)
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Preludio

This Doctor of Philosophy Dissertation in Matematica per le Scienze dell’Ingegneria is

composed by two distinct parts having in common the study of the interactions be-

tween cells and extracellular-matrix. This is the result of a three year working project

supervised by professors Davide Ambrosi (Politecnico di Milano) and Luigi Preziosi (Po-

litecnico di Torino). In the spirit of the aims and scopes of the Doctoral degree, both

modelling and applications of analytical/numerical methods constitute the backbone of

such a work; in fact, the first part emphasizes the latter aspect whilst the second part is

more focused on the former. Specifically:

1. Part I deals with the mathematical aspects of Force Traction Microscopy. This is an

inversion method that allows to reconstruct the stress field acting on a substratum

knowing the displacement of the substrate itself, measured at some points. The

formulation of this problem in the Inverse/Optimal Control framework together

with its analytical and numerical study constitutes the real aim of this part of

dissertation. Remarkably, some contents of this part had been submitted [70].

2. Part II deals with the mathematical modeling of cell-tissue adhesion. Such an

adhesive property of living tissue seems to be of importance in the developing

of biological process. Moreover, quite a huge amount of experimental data can

be found in the specialistic literature. A Continuum Mechanics point of view

is adopted to describe adhesion and the outcome of our model is qualitatively

compared with experiments. Remarkably, some contents of this part had been

published [59].

Last, the relevant symbols used in this work are collected at the end for reader conve-

nience.
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Part I

Mathematical Methods in Force

Traction Microscopy
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Chapter 1

Motivations

Many living cells have the ability to migrate, in both physiological and pathological

conditions; examples include wound healing, embryonic morphogenesis and the formation

of new vessels in tumours. The motility of a cell is driven by the reorganization of its

inner structure, the cytoskeleton, according to a complex machinery. The net effect

of this process is that a cell is able to apply a stress on the environment, pulling the

surrounding material mainly in the direction of the movement. The biophysical details

of the internal engine of a cell are far from being fully understood or rephrased in terms of

a mathematical model; nevertheless its inverse counterpart, that is the determination of

forces on the basis of measured displacement, is quite a popular problem in the biophysical

community.

The early idea to study the force applied by cells in their migration as an inverse

problem dates back to the work of Harris and coworkers in the eighties [30]. They

consider the action of fibroblasts (cells with a high degree of contractility) laying on

a flat poliethylene sheet. They argue that the wrinkles produced by the cells on the

substrate are a good indicator of the stress exerted by the cells on the surface itself:

direction, height and length of the buckles correlate with the direction and intensity of

the force, respectively.

After several efforts, the correct methodology to translate such a qualitative argument

above into a quantitative procedure was formulated by Dembo and Wang in a seminal

paper about twenty years later [24, 23]. Their technique was new, both in a technological

and in a methodological sense. The use of a soft poliacrilamide substrate avoids the

emergence of wrinkles, that are typically produced in a nonlinear elasticity range. Thus

restricting to a linear elastic regime, the displacement of fluorescent beads dispersed

in the elastic material can be evaluated from different images. Finally, they solve the

direct problem in terms of Green elasticity functions and then minimize the error under

regularization by a discrete Tichonov method. This method has become a standard in

biophysics.

An alternative approach addressing the same issue can be stated in a continuous

variational framework [2]. Again, the starting point is a Tichonov functional defined as

the error norm plus a penalization of the magnitude of the force. If a variation of the

cost functional is operated at a continuous level, the definition of an adjoint problem for

the unknown force naturally arises. This way, two elliptic partial differential equations

9
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coupled by the (linear) source terms are obtained and their approximate solution can

be addressed, for instance, by a finite element discretization. The adjoint method has

been applied to evaluate the surface traction generated by different cell lines, solving a

two–dimensional depth–averaged elasticity set of equations.

Although the optimal control approach is less popular than the standard inverse

method based on Green functions, it has some attractive features that make it worth to

investigate further.

The first reason is of numerical type: a variational formulation, based on forward and

adjoint problem to be solved jointly, can be addressed by a finite element code where lo-

cal approximating polinomials might be computationally more efficient than convolution

of global Green functions plus a decoupled minimizing algorithm.

The second, more relevant, issue is that Green functions of the elasticity problem are

known explicitly only in few simple geometrical configurations, including the infinite

half–space. As a matter of fact, the typical biological domain where cells apply stress in

their three dimensional migration is geometrically complex and Green functions are not

known a priori. Legant et al. [39] actually calculate those Green functions in approx-

imated form by finite elements and then minimize the Tichonov penalty functional to

find the optimal traction.

Last but not least, the optimum control theory offers a framework for a natural general-

ization of the forward model to a number of important physical characterizations of the

substrate, in particular nonlinear elastic materials, possibly including non–homogeneities

and anisotropy due to fibres embedded in the material itself.

One goal of this work is of strictly mathematical nature. The rigorous theory of in-

version of force traction microscopy is, at our knowledge, still lacking and this work aims

to fill this gap. The availability of pointwise observations makes it impossible to state

the well posedness of the problem using Hilbert spaces only, and we resort to the theory

developed by Casas [18], [19], [20]. Existence and uniqueness of the solution is proved

in a general context encompassing distributed and boundary control in two and three

dimensions.

The second goal of this part of the dissertation is to extend the issue of the numerical

reconstruction of boundary cell traction in a three dimensional environment. To the best

of our knowledge, these calculations has up to now been tackled only in [39] using the

Green function approach. Conversely to [39], the strategy we implement leads to the

numerical approximation of a three dimensional elasticity problem with boundary con-

trol and mixed boundary conditions. This problem leads to a set of two coupled elliptic

differential equations, namely the forward and the adjoint problem. The latter system

can be implemented quite straightforwardly using a finite element code. An important

applicative issue is to ascertain the degree of confidence that one can have in the results

of a numerical inversion of the 3D data generated by a cell encapsulated in a soft gel. We

have implemented a Finite Element discretization of the forward and adjoint equations.

The numerical code has been therefore applied to a test case that reproduces in silico

most of the relevant dynamical aspects of a living cell migrating in a three dimensional

environment: the cavity in the gel, representing the space occupied by the embedded cell,

has a size of 10-20 microns and the surrounding material has the typical elastic moduli

of poliacriamide gel. We first apply a zero–average traction at the surface of such a hole,

which is here the ”true” force per unit surface to be captured at best by the inversion
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algorithm. The displacement in the gel produced by the applied traction evaluated in

some nodes of the finite element grid then becomes our data, the starting point to chase

algorithmically the value of the stress exerted by the virtual cell.

Producing a large number of numerical simulations, we are able to evaluate the error,

defined as the absolute value of the difference between the ”true” traction and the re-

constructed one for different values of the physical and numerical parameters. Possible

different configurations include the number and location of the observation points (the

“fluorescent beads” in an experimental setting), the regularization parameters and the

number of nodes of the finite element mesh. This way we are able to check at what

extent the inversion procedure is sensitive to variations of the parameters and, working

in a test case very near to the real biophysical conditions, fix the optimal parameters

configuration to be adopted for experimental data.





Chapter 2

Background

In this Chapter we resume some basic results in Elasticity, Functional Analysis and

Inverse Problem.

In Section 1, an outline of Continuum Mechanics is exposed in order to introduce

the Linear Theory of Elasticity. The latter constitutes the mathematical model of the

behavior of the gel used in the experimental setup of Force Traction Microscopy. The

treatment is based on a configurational approach, which allows to find the fundamental

balance law and invariance requirement via a virtual power argument [29].

Section 2 contains some definitions and theorems of Mathematical Analysis that will

be instrumental to study the equations we are interested in, i.e those arising from the

problem of traction reconstruction.

Section 3 contains an informal introduction to Inverse, Ill–Posed and Optimal Control

problems and tries to emphasize the links among them. Those notions are crucial when

facing the estimate of quantities from information provided by experimental measures.

2.1 Basic Continuum Mechanics of Elastic Media

In this Section we introduce the few notions of Continuum Mechanics necessary to intro-

duce the Theory of Linearized Elasticity. This Section will also be helpful when reading

the second Part of this dissertation, that faces the Continuum Mixture theory.

2.1.1 Kinematics and Balance Equations

Consider the ambient space as a n−dimensional affine space (n ≤ 3), say A and a time

line [0, T ) ⊆ R. The space A is endowed with a translation space, the vector space

V. Consider a body in a compatible reference configuration as a smooth n−dimensional

manifold B ⊂ A ∗.

The motion χ is a smooth one parameter group which maps the reference configura-

tion into the actual one Bt (i.e. the configuration of the body at the time t):

χ(·, t) : B ⊆ A → Bt ⊆ A (2.1)

∗The notion of a reference configuration can be avoided in the development of the mechanics as well
as the request of compatibility [50]. However we follow this approach because is generally simpler and
does not affects the fundamental aim of the work

13



14 CHAPTER 2. BACKGROUND

The material gradient of the motion map (performed on B) is the celebrated Deformation

Gradient :

F(X, t) := ∇χ(·, t)(X) ∈ Lin(TXB,V) (2.2)

In this Section we follow a virtual work approach to deduce balance equations of a

continuum medium [29]. We define the external power expended on a sub-body P ⊆ Bt

provided by a surface and a bulk force fields, c : Bt 7→ V and b : Bt 7→ V respectively:

wext(P,v) :=
∫
P
b · v +

∫
∂P

c · v, (2.3)

where v : Bt → V has the role of arbitrary test velocity field. To define an inner power

expenditure, we have to introduce the Cauchy Stress Tensor field T : Bt 7→ LinV and the

stress vector field s : Bt 7→ V:

wint(P,v) :=
∫
P
s · v +T · ∇v (2.4)

Following [29], we require:

Axiom 2.1. The Internal Power expenditure is Frame Indifferent † , i.e.:

wint(P,v) = wint ∗(P,v∗)

for any v : Bt → V and sub-body P ⊆ Bt.

The previous axiom in action give us the frame invariance of (2.4), which leads to

the following well known results:

• the inconsistency of a non trivial valued s:

s = 0 (2.5)

• the objectivity of T:

T∗ = QTQT ∀Q ∈ Ort(V) (2.6)

• the symmetry of T:

T = TT (2.7)

The other fundamental axiom involving the virtual power is:

Axiom 2.2. The Internal Power expenditure equals the power exerted by outer actions,

i.e.:

wint(P,v) = wext(P,v)

for all test fields v : Bt → V and material sub-body P ⊆ Bt.

†We intend as a change of frame a list ([Q, o, c] , τ) : [[0, T ) → Ort(V)×A× V] × R such that the
motion and the time measured in the new frame (labeled with a superposed star ’∗’) can be written as
[42]: {

χ∗ = o+ c+Q(χ− o)

t∗ = t+ τ
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From the previous Axiom 2.2 one finds the equivalence between (2.3) and (2.4):∫
P
T · ∇v =

∫
P
b · v +

∫
∂P

c · v (2.8)

that can be localized using the standard procedure:{
−divT = b, in Bt

Tn = c, on ∂Bt

(2.9)

where div denotes the divergence operator on the actual configuration Bt.

2.1.2 Constitutive Theory for an Elastic Material

Equations (2.9) and (2.7) are not sufficient to determine the actual motion χ of the

body (the only unknown in this purely mechanical theory) unless the stress tensor T

is related with kinematical quantities by the so called constitutive map. The latter is

the mathematical statement that rigorously introduces the intuitive notion of material

response and writes as:

T(X, t) = T̂(χ;Bt) (2.10)

To reduce the possible forms of the constitutive functional in the above equation, some

additional hypothesis have to be introduced. First, the principle of objectivity for con-

stitutive mappings which states the correct transformation of (2.10) under a change of

frame (see the footnote at page 14). Second, since we are interested in elastic behavior,

we rule out the dependence on the history of the motion and long range effects from the

map T̂. Under these conditions, the following representation theorem holds (see [42] for

the rationale behind such a vulgata):

T(X, t) = FŜ(C(X, t);X)FT (2.11)

where C := FTF is the right Cauchy Green Tensor and Ŝ : LinV × B → LinV is a

smooth constitutive map. Another restriction on constitutive maps is imposed by Ther-

modynamics. If we follow the rules of exploitation of the Second Principle of Thermo-

dynamics stated by Coleman and Noll [29], a free energy depending on the motion (say

ψ = ψ̂(F;X)) should be postulated. Then one has the following relationship when con-

sidering the material homogeneous (i.e. leaving aside the explicit dependence on X) for

sake of simplicity:

T = ψ̂′(F) (2.12)

where the prime (′) means differentiation.

2.1.3 Linearized Elasticity

Suppose we are dealing with small deformations, i.e |F| ≪ 1 everywhere at any time

(| · | is a norm on LinV). Then, by easy calculations: C = symF + o(|F − 1|). In the

latter equation 1 is the identity on LinV, sym is the projection on the space of symmetric

tensor Sym and the ’o’ is the usual Landau symbol (that is any function such that

lim
|z|→0

o(z)

|z|
= 0).
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Introducing the displacement vector u(X, t) = χ(X, t) − X then the deformation

gradient writes as F = ∇u+ 1 and the Cauchy Green tensor becomes

C = sym
(
∇u+ 1

)
+ o(|∇u|).

If the constitutive map in (2.11) is sufficiently regular, dealing with small deformation

and dropping the explicit dependence on X, one can write:

Ŝ(C) = Ŝ (1+ sym∇u+ o(|∇u|))
= Ŝ(1) + Ŝ′(1) [sym∇u] + o(|∇u|)

If the reference configuration is relaxed (i.e Ŝ(1) = 0) then, at the first order of approx-

imation:

T = C [sym∇u] (2.13)

where C := Ŝ′(1) ∈ Lin(Lin(V)) is a linear isomorphism on Lin(V) and it is called the

Hooke Linear Elasticity Tensor.

Remarkably, when dealing with small deformation, B ≈ Bt. It is thus meaningless in this

regime to distinguish spatial and material description.

Note also that, in the linearized case, ψ = H ∈ Lin(V) 7→ 1
2H · CH ∈ R thanks to the

(2.12). The latter implies ψ′′(1) = C. Following [21, 47], we claim that C satisfies the

following conditions:

C[S] = C[ST ], ∀S ∈ Lin(V), (2.14)

S · C[S] ≥ αS · S, α > 0,∀S ∈ Sym(V), (2.15)

S · C[H] = H · C[S], ∀H,S ∈ Sym(V). (2.16)

The condition (2.14) accounts for objectivity in the linearized case. The symmetry

property (2.16) reflects torque balance: it descents from the Eqns. (2.7) and (2.13). The

inequality (2.15) is, instead, postulated: it is a requirement of stability since it forces the

convexity of the energy functional ψ. The latter inequality will be fundamental when

study the analytical well–posedness of the equations characterizing the linear elastic

regime.
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2.2 A Brief Review of Selected Analysis Tools

We now give some technical results useful for the following.

2.2.1 Functional spaces

The theory of linear elliptic equations is classically based on the definition and properties

of some suitable functional spaces. We sketch here below the main notions to be used in

this work; more details can be found, for instance, in [1] and [49] ‡.

Definition 2.3. Given Ω an open set in Rn, we set the following Sobolev spaces:

• Lp(Ω) := {u : Ω → Rm |
∫
Ω
|u|p <∞};

• W k,p(Ω) := {u ∈ Lp(Ω) | ∇iu ∈ Lp(Ω), ∀i ∈ {1, . . . , k}}.

where ∇i is the i-th gradient and ∇0 := 1 is the identity tensor.

Non integer indexed Sobolev spaces (i.e. when k ∈ R) can be also defined, see [1],

and they will turn useful in the following. Relevant examples of Sobolev spaces are the

following Hilbert spaces:

• L2(Ω) with the scalar product (u|v)L2(Ω) :=
∫
Ω
u · v;

• Hk(Ω) :=W k,2(Ω) with the scalar product (u|v)Hk(Ω) :=
∑k

i=0

∫
Ω
∇iu · ∇iv.

The following inequality is a milestone for the Lp spaces [49].

Theorem 2.4. (Hölder inequality) Let u ∈ Ls(Ω), v ∈ Ls′(Ω) with s′ conjugate to s

(i.e. 1
s + 1

s′ = 1). It holds:

∫
Ω

u · v ≤ s

√∫
Ω

|u|s s′

√∫
Ω

|v|s′ .

The trace operator T∂Ω is defined as the restriction of a function defined on Ω ⊂ Rn

over its boundary ∂Ω, having dimension n− 1. Traces are characterized by [1]:

Theorem 2.5. (Trace Theorem) Let Ω ∈ Rn be an open bounded set with boundary ∂Ω.

The trace T∂Ω is a linear and continuous functional such that:

• it injects W 1,p(Ω) in Lp(∂Ω) if p < n;

• if u ∈ Hk(Ω) then T (∇iu) ∈ Hk−1/2(∂Ω).

Using traces, we can define subspaces of Sobolev spaces that allow us to treat bound-

ary conditions. Let us define the space of fields inH1(Ω) satisfying homogeneous Dirichlet

boundary condition on ΓD:

H1
0,ΓD

(Ω) := H1(Ω) ∩ ker(TΓD
).

‡In this work I tacitly assume that we are dealing with domains enjoying some special properties.
The interested reader may find in [1, 49] the hypothesis needed to develop the theory. In the following,
sections, we will stick us with a bounded C2−regular boundary, which is enough to prove the results
shown here.
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A similar construction allows us to define, more generally, the space W 1,s
0,ΓD

(s > 0),

see [1, 49]. It is worth noting that (thanks to Poincare Lemma [62]) H1
0,ΓD

(Ω) can be

equipped with the scalar product (u|v)H1
0,ΓD

(Ω) :=
∫
Ω
∇u·∇v equivalent to the one given

above.

The following special case of Sobolev Embedding theorem [1] holds:

Theorem 2.6. Let Ω ⊂ Rn an open bounded domain n = 2, 3. Then:

• W 1,p(Ω) ↪→ C0(clΩ), p > n;

• H2(Ω) ↪→W 1,p(Ω), p ∈ [1, 2n
n−2 ];

• W 1,p(Ω) ↪→ L2(Ω), p ≥ 2n
n+2 ;

where ↪→ means that the inclusion is continuous and the symbol cl denote the closure of

a set.

2.2.2 Convex Functionals

A functional J is a (not necessarily linear) map from a possibly infinite dimensional

linear space to the set of real numbers. In symbols J : F → R. For simplicity the theory

outlined below is restricted to the situation in which F is an Hilbert space. Our interest

will be focused on the properties that guarantee both existence and uniqueness of the

minimum point for the aforementioned functionals, since their range is a totally ordered

set. In order to pursue such an issue, the study of convex functionals is fundamental:

Definition 2.7. A functional J : F → R is called convex in F if, for every t ∈ [0, 1] and

f ,g ∈ F, J (tf +(1− t)g) ≤ tJ (f)+ (1− t)J (g). The latter is said strictly convex if the

last equation holds with the strict inequality sign.

Another important notion arises when looking for extremum points:

Definition 2.8. A functional J : F → R is called coercive if, given a sequence (fn)n∈N
such that limn→∞ ∥fn∥F = +∞, then limn→∞ J (fn) → +∞.

We are ready to recall a classical theorem [40]:

Theorem 2.9. Let J : F → R be a continuous, coercive and strictly convex functional.

Let F0 be a closed subspace of F. Then a unique minimum point of J in F0 exists.

An important operation that can be extended quite easily from finite to infinite

dimensional spaces is the differentiation:

Definition 2.10. Let J : F → R a functional. Its (Frechet–)differential in f ∈ F is

defined (if meaningful) as the unique linear map J ′(f) ∈ F∗ such that:

J (f + h)− J (f) = J ′(f)h+ o
(
∥h∥F

)
. ∀h ∈ F (2.17)

Under suitable hypothesis, the minimum of such a functional (say f ∈ F) can be

characterized by the Euler equation J ′(f) = 0. It can be shown that:

Theorem 2.11. Let J : F → R be a differentiable, coercive and strictly convex func-

tional. If F0 is a closed subspace of F, then the unique minimum point of J in F0 is also

the unique solution of PJ ′(f) = 0 and viceversa, being P : F → F0 ⊂ F the orthogonal

projection onto F0.
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2.2.3 Linear Elliptic Differential Equation

Consider a n−dimensional affine space, A, having as a translation space the vector space

V and being endowed with a metric structure (thanks to the scalar product ’·’ on V).
It was noted in Section 2.1 that such a mathematical structure is a good model for the

classical physical space which is, of course, essential to build up a mechanical theory.

We now define the notion of differential operator acting on fields attached on affine

spaces:

Definition 2.12. A Linear Second Order Differential Operator on A that acts on the

field u : A → U (where U is any finite dimensional linear space) can be written as:[
u : A → U

]
7→
[
divA [∇u] + D [∇u] + Fu : (A → U)

]
where A : A → Lin(Lin(V,U)), D : A → Lin(Lin(V,U),U) and F : A → Lin(U).

We recall that div is the divergence operator (see [51] for the details) which associates

to a field with range in Lin(V,U) another field that takes value in U .
In the following we consider the latter coefficient smooth enough to apply the theorems of

interest, for example we assume A,D,F ∈ C∞(A) or even constant on A. The following

definition characterizes an important class of differential operators:

Definition 2.13. The Linear Differential Operator above is called strongly elliptic if an

α > 0 exists such that, for almost all x ∈ A:

S · A(x)S ≥ αS · S (2.18)

for all S ∈ Lin(V,U). Here the centered dot ’·’ is the scalar product in Lin(V,U).

Actually, a weakened definition of ellipticity holds for the tensor A, the so called

Baker–Ericksen type inequality (or Rank One ellipticity):

(s⊗ r) · A[s⊗ r] ≥ α(s · s)(r · r)

for all r ∈ U , s ∈ V. In this case, roughly speaking, A is ’elliptic only on the dyads’. This

mollified definition is actually sufficient to prove the theorems of our interest (see [21, 47]

for a deeper discussion).

A Linear Elliptic Differential Equation is thus an equality involving the Linear Elliptic

Differential operator introduced above, formally:{
divA [∇u] + D [∇u] + Fu = y in Ω,

Bu = z in ∂Ω

where x : Ω ⊂ A → U is the unknown field and y : Ω ⊂ A → U and z : ∂Ω ⊂ A are given

data and W is a suitable linear space. When the above equality is defined over a proper

open subset Ω ( A, additional conditions must be given in order to solve the equation

properly. These additional informations are given at the boundary ∂Ω, namely boundary

conditions, and are expressed by the operator B : (Ω ⊂ A → U) → (∂Ω ⊂ A → W).

The Differential Equation literature deals almost exclusively with fields defined on

Rn. The results obtained could be in principle extended to our affine A and vector
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spaces U ,V,W using a suitable homeomorphism.

The Differential Equation theory has gained some striking development in the last cen-

tury when formalized in the Sobolev Space setting. Here, we deal exclusively with such a

theory, which also fits well with the Virtual Power framework introduced in the previous

section at page 14.

Linear Elliptic Differential Equations usually come up from real world applications;

the one of our interest is an outcome of the Linear Theory of Elasticity sketched in the

previous Section. From the first of (2.9), the (2.13) and the hypothesis (2.15) we can

easily find that the Linear Elasticity equations can be expressed by means of an elliptic

differential operator. Moreover the second of the (2.9) introduce a condition must be

fulfilled at the boundary of Ω.

In what follows, consistently with the Differential Equation literature, we consider the

continuous body introduced in the Section as a suitable open set Ω ⊂ R3. In addition

we treat the force and displacement fields as maps R3 → R3.

Under such hypothesis, the Linear Elasticity equations can be obtained incorporating

the Eqn. (2.13) in the Eqn. (2.9):
−divC[∇u] = b, in Ω,

C[∇u]n = f , on ΓN ,

u = 0, on ΓD.

(2.19)

where the boundaries ΓD,ΓN ⊂ ∂Ω are such that in(ΓN )∩ in(ΓD) = ∅, cl(ΓN ∩ΓD) = ∂Ω.

A known traction is prescribed on ΓN and a null displacement on ΓD. These are the so

called mixed Dirichlet–Neumann boundary conditions, usually general enough to treat a

lot of cases of practical interest.

The variational form of (2.19), under the hypothesis of a linear elastic behavior, can be

directly obtained from (2.8) and the (2.13):∫
Ω

C[∇u] · ∇v =

∫
Ω

b · v +

∫
ΓN

c · v, (2.20)

for all suitable test fields v : R3 → R3. The problem (2.19) (or, equivalently (2.20)) has

been studied in great detail, [21, 47]. Several results for well posedness and regularity are

known and we resume here only the strictly needed ones for our purposes. The notion

of solution we adopt here is the classical Hadamard one [62]; another mollified notion of

solution will be introduced in the following. First of all, it holds:

Theorem 2.14. (Lax–Milgram Lemma) Given the problem in (2.20) with b ∈ L2(Ω), c ∈
L2(ΓN ), Ω a bounded open set with Lipschitz boundary and ΓD ̸= ∅. Let the coefficient

C satisfy the conditions in (2.15),(2.16). Then, Eqn. (2.20) admits a unique solution in

H1
0,ΓD

(Ω) which depends continuously on the data.

From here to the end of this work, we assume to work with a bounded, open domain

Ω with smooth enough boundary ∂Ω (C2−regularity is enough). The weak solution of

an elliptic problem possesses remarkable regularity properties [21], [48]:

Theorem 2.15. Let the problem (2.20) be given with b ∈ L2(Ω), c ∈ H
1
2 (ΓN ) and let Ω

be a bounded open set such that its boundary ∂Ω is C2−regular. If ΓD ̸= ∅ and ΓN = ∅
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or cl(ΓN ) ∩ cl(ΓD) = ∅ then the solution u of (2.20) belongs to H1
0,ΓD

(Ω) ∩H2(Ω) and

depends continuously on the data.

According to Theorems 2.6 and 2.15, the solution of an elliptic problem is continuous

when the above hypothesis of regularity holds.

For reasons that will be clear in the following, we need to extend the above theory to

the case of forcing terms of the linear elasticity operator that are Borel measures (i.e.

elements of the dual space of C0, see [61]). Following Casas [20], [18] the following

theorem holds for the pure Dirichlet and pure Neumann cases, although a generalization

to the mixed case is quite straightforward when Ω is sufficiently regular:

Theorem 2.16. Let Ω a bounded open set such that its boundary ∂Ω is C2−regular.

Set s ∈ [1, n
n−1 ) and s′ such that 1

s + 1
s′ = 1. Then, the variational problem: find

u ∈W 1,s(Ω) such that ∀v ∈W 1,s′(Ω) equation (2.20) holds, given b and c regular Borel

measure, admits a unique solution which depends continuously on the data.



22 CHAPTER 2. BACKGROUND

2.3 Introduction to Inverse and Optimal Control Problems

In this Section we introduce the notion of Inverse Problem. Since inverse problems are

often ill posed in the classical Hadamard sense, there is the need to introduce a weaker

notion of solution for those problems. We then discuss briefly the regularization of an

inverse problem, a mathematical technique that allows to obtain a sequence of solvable

problems; the solutions of the latter is actually a sequence that may converge to the

aforementioned mollified solution of the inverse problem at hand. A problem taken from

such a regularization sequence happens to be solvable in practice borrowing techniques

from the Optimal Control Theory.

2.3.1 Inverse Problems

To introduce the definition of an inverse problem, let me quote verbatim from the Intro-

duction of [26]:

”When using the term Inverse Problem, one immediately is tempted to ask ’inverse to

what?’ Following J.B. Keller (reference omitted) one calls two problems inverse to each

other if the formulation of one problem involves the other one. For mostly historic

reasons one might call one of these problem (usually the simpler one or the one which

was studied earlier) the direct problem, the other one the inverse problem. However, if

there is a real world problem behind the mathematical problem studied, there is, in

most cases, a quite natural distinction between the direct and the inverse problem. ”

In the case of our interest, the physical feature which permit us to distinguish the direct

(or forward) problem from the inverse one is the dicotomy internal/external, introduced

in the first Section of this Chapter when writing the definitions (2.4) and (2.3) and the

Axiom 2.2 at page 14. We thus call the problem in (2.19) direct (or forward) if external

actions (the body force b, the boundary conditions, possible constraints) are assumed

to be known and the unknown field is the motion (equivalently, the displacement u).

Viceversa if some external fields are to be inferred (in our case will be the body force

and/or the boundary traction) from some information on the motion map, we call such

a problem the inverse one.

Now, we come back to more general issues. Let M : F → H a linear operator between

the Hilbert spaces F and H and consider, formally, the problem:

find f ∈ F such that Mf = h (2.21)

If the latter happens to be an inverse problem, it may fail in principle one or more

HadamardWell Posedness Conditions [62] § , as noted many time in practical applications

[71]. For example, due to the noise always present in real world measurements, the data

h can in principle not belong to the range of the operator M thus leading to the lack

of existence of the solution. In addition, the data can perhaps be very few, so the

operator M would fail to be injective. Eventually, the lack of stability usually happens

not by faulty data, but for intrinsic irreversibility of physical processes (as a paradigmatic

example, think at the Backward Heat Equation [26]).

§we may also say for brevity: it may be ill-posed.
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2.3.2 Ill–Posed Problems

Ill–posed problems, which occur frequently in practice, call for a weakened notion of

solution.

Definition 2.17. We call fBAS ∈ F the Best Approximation Solution of (2.21) if:

fBAS = argmin
F

{∥g∥F such that g = argmin
F

(
n 7→ ∥Mn− h∥2H

)
} (2.22)

This definition naturally induces a weakened concept of the inverse map ofM, namely

theMoore Penrose Generalized Inverse, usually indicated withM†. Apart of its technical

definition, we can recall its most interesting properties. From [26], we have:

Theorem 2.18. The Moore–Penrose generalized inverse M† satisfies:

dom(M†) := ranM+ (ranM)⊥

moreover, it is continuous if and only if ranM is closed.

Let h ∈ dom(M†), then Mf = h has the unique Best Approximation Solution M†h.

For some problems, including the one discussed in this Part of the work, the Definition

(2.22) is usually not suitable for a straightforward numerical implementation. Mainly to

overcome this difficulty, a regularization technique has to be introduced. In this work we

only consider the Tichonov regularization [26, 71]. The application of the aforementioned

tool consists in approximating the Eq. (2.21) with the series of minimum problem:

find fε ∈ F such that Jε(fε) ≤ Jε(g) ∀g ∈ F (2.23)

where Jε(g) :=
ε
2∥g∥

2
F +

1
2∥Mg − h∥2H.

The convergence of the sequence of solutions of these regularized problems to the Best

Approximation Solution as ε → 0 is guaranteed under suitable hypothesis (see [26] for

the details).

A still missing fundamental ingredient of our picture is the noise that can influence the

data in our posses. Since the noise is unavoidable in real world measurements, it is

unreasonable to take the coefficient ε as small as possible in practical computations since

the theory sketched above does not encompass the presence of uncertain data (note that

h ∈ H is supposed to be exact in the discussion above). In fact, the convergence of the

regularized solution to the Best Approximation Solution (as ε → 0) is not guaranteed

when the noise does not vanish. The question that arises now is how to choose an

’optimal’ value of the parameter ε to get a reliable solution, extracting all the possible

information from the given noisy data.

In the most general case, since the only information are the measurements h and possibly

also an estimate of the noise level , say ν ∈ R+, a parameter choice rule can be written

(slightly abusing the notations) as a map (h, ν) 7→ ε(h, ν) : H × R+ → R+. The latter

selects an optimal value of ε, in the sense sketched before, given the measurements and

an estimate of the noise level [26].

A suitable theorem of convergence to the Best Approximation Solution, accounting for

the presence of noise, could be obtained when considering the slightly simpler parameter

choice rule ν 7→ ε(ν) ¶ (see [26]):

¶we stress that this parameter selection rule depends only on the estimate of noise level and not on
the set of data h
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Theorem 2.19. Set fνε the solution of (2.23) when ν is the noise level (i.e. ∥h−h♢∥H ≤
ν, being h♢ ∈ ranM the ’true’ data whereas h are the measured ones). If:

lim
ν→0

ε(ν) = 0 and lim
ν→0

ν2

ε(ν)
= 0

then:

lim
ν→0

fνε(ν) = M†h♢

To make things short, we cite only one parameter choice criterium, namely the L–

Curve rule [26, 71]. This method states that an ’optimal’ value of ε can be found at the

corner of the presumed L-shaped curve

∥fε∥F 7→ ∥Mfε − h∥H

having ε > 0 as a parameter. Following [71], the optimal εopt is the argument that

minimizes the curvature of the aforementioned L–curve (thus, giving a precise meaning

of corner). The curvature κ can be expressed, when using the Tichonov regularization

shown in (2.23), as [71]:

κ(ε) := −
R(ε)S(ε)(εR(ε) + ε2S(ε)) + (R(ε)S(ε))2

S′(ε)

(R(ε)2 + ε2S(ε)2)3/2
(2.24)

where S : ε 7→ ∥fε∥F and R : ε 7→ ∥Mfε − h∥H.
It has been noted that sometimes the L–curve criterion may not satisfy the hypothesis

on the parameter selection rule in the Theorem 2.19, see for example [71]. However, the

L–curve strategy is very easy to implement and turns out to be very effective, at least in

our application (see the Third Chapter of this Part).

2.3.3 Optimal Control Problems

The problem (2.23) (for fixed ε) is well known in the Optimal Control literature. The

additional difficulty arising here is the fact that the operator M is not immediately

evaluable. In fact, in Optimal Control as well as in the case we are going to present

during this work, (2.23) usually comes from a constrained minimization problem, viz:{
minimize J : (u,g) 7→ ε

2∥g∥
2
F +

1
2∥Ou− h∥2H

subjected to Au = f

where O : U → H and A : U → F are linear operators. Note that in this case we have

M = OA−1.

Also, the terminology used in the Optimal Control literature refers to the field f as the

control of the above set of equations. It is clear that, in general, the inversion of an

infinite dimensional operator is not a trivial task. The problem above is usually solved

introducing the adjoint state p, formally defined as:

ATp = OT (Ou− h).

Using the Euler equation for g 7→ J ◦ (A−1g,g) : F → R which writes

εg +A−TOT (OA−1g − h) = 0,
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and gluing together all the previous equations one finds the coupled set of functional

equations: {
Au = −1

εp

ATp = OT (Ou− h)

The above system of equations is usually solvable in practice, at least when A is a linear

differential operator [40].





Chapter 3

Analytical Results

Force Traction Microscopy is an inversion method that allows to obtain the stress field

applied by a living cell on the environment on the basis of a pointwise knowledge of

the displacement produced by the cell itself. This classical biophysical problem, usually

addressed in terms of Green functions, can be alternatively tackled using a variational

framework and then a finite elements discretization. In such a case, a variation of the

error functional under suitable regularization is operated in view of its minimization.

This setting naturally suggests the introduction of a new equation, based on the adjoint

operator of the elasticity problem. In this Chapter, we illustrate the rigorous theory

of the two–dimensional and three dimensional problems, involving in the former case

a distributed control and in the latter case a surface control. The pointwise observa-

tions require to exploit the theory of elasticity extended to forcing terms that are Borel

measures.

3.1 General Issues

This Sections introduces the mathematical aspects of the Force Traction Microscopy

problem. Here, we will see the previously introduced concepts and tools applied to our

specific issues.

3.1.1 Forward Problem

The forward problem considered for our applications is the one of linear elasticity, in-

troduced in the previous chapter in (2.19). In the following, we denote as f ∈ F (F is a

suitable Hilbert space) the so called control field (i.e. the right hand side of (2.20)):

f := v 7→
∫
Ω

b · v +

∫
ΓN

c · v (3.1)

for all suitable test fields v. We also denote by U the Hilbert space containing the

displacement field u.

The main definition of this section is:

Definition 3.1. We define Solution Operator S : F → U, the map that, for a given

control f on the right hand side of (2.19) or (2.20) (see the (3.1) above), assigns the

27
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displacement field u that solves the problem. More specifically, we study the following

two cases ∗ :

• Distributed control: Su = b if (2.19) or (2.20) hold, with c = 0 ;

• Boundary Control: Su = c if (2.19) or (2.20) hold, with b = 0.

In this section we assume that F and U are tuned in such a way that †:

S ∈ Lin(F,U). (3.2)

The rigorous proof of this fact is given in the following Sections.

3.1.2 The Inverse Problem

In this work, the term at the right hand side of equation (2.20) is to be interpreted as

a control, so that the traction at the boundary c or the volume force b are formally an

unknown of the problem. As declared above, such a control will be generically indicated

as f ∈ F according to the Eqn. (2.20).

We introduce below another operator that will turn useful for the applications to be

discussed in the following.

In this work, in fact, we are interested in pointwise observation of the state. Typically,

in cellular traction microscopy some beads are seeded into the elastic matrigel and their

displacement is recorded during the motion of the cell. Mathematically, the observation

operator is therefore defined as a list of Dirac Delta distributions ‡:

Definition 3.2. The Observation Operator is intended to be the map that assigns to a

continuous field the list of the values that assumes at some given points x1, . . . ,xN , i.e.:

O := (δx1
, . . . , δxN

)

It can be easily shown that this operator is continuous in the functional spaces of our

interest if Ω ⊂ Rn, n ≤ 3. In fact (see [61]):

Proposition 3.3. O is a linear and continuous form on C0(clΩ) if Ω ⊂ Rn (n = 1, 2, 3).

Under suitable regularity of the control f , in the following section we will prove that

O ∈ Lin(U,RNn). (3.3)

Let also:

⋆ Fadm be the admissible force space, a closed subspace of F;

⋆ X := RNn, where N is the number of beads and n ≤ 3 as before (we denote with the

bullet • the scalar product in X);

⋆ u0 = (u1
0, . . . ,u

N
0 ) ∈ X is the list of the measured displacements, supposed known;

∗For simplicity, we restrict ourselves in the case where only the control appears as a forcing term.
The more general case in which the forces in (2.19) or in (2.20) are sum of known fields and the control
is analogous but technically more cumbersome, since the solution operator S is affine (see [40]).

†We recall that Lin(U,V) is the space of linear and continuous functional from U to V.
‡a Dirac Delta distribution is a linear form δx : Lin(C0(clΩ,V),V) such that δxu = u(x).
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Since we want to use the tool presented above as an Inverse method rather than an

Optimal Control one, it is worthwhile to recall some basic definition and properties of

Inverse and Ill–Posed problems and their regularization. As a basic reference for this

matter one can consider [26] an the brief introduction given in the previous chapter.

Here the discussion is taken at a minimum level of complexity and, hence, of rigor. Let

us focus on our basic problem, i.e. find the force producing exactly the displacement

measured which writes in formulas (cfr. with (2.21)):

find f ∈ Fadm such that OSf = u0. (3.4)

Since it is not guaranteed the existence (since the data u0 can be affected by noise)

and the uniqueness (since O maps an infinite dimensional space into a finite one, i.e.

data are few) of the solution of the problem above, it is convenient to deal with the

mollified notion of solution introduced in Section 2.3. Since the range of the operator

OS (ran(OS)) is a subspace of R3N we can apply the the Theorem 2.18 to state:

Proposition 3.4. The fBAS, as defined above, exists unique and the operator (OS)† is

continuous.

3.1.3 Regularization and Optimal Control Strategy

We now discuss the regularization of the problem in (3.4) giving the convergence results

and discussing the its solvability properties.

Penalty Functional

Following Chapter 2, we introduce the Tichonov Regularization of the problem in (3.4)

fixing the penalization parameter ε > 0. We introduce a definition analogous the one

given in the Eqn. (2.23) §:

Definition 3.5. The penalty functional J : F → R+ is defined as:

J (g) =
1

2
∥OSg − u0∥2X +

ε

2
∥g∥2F. (3.5)

Our goal is to minimize the functional J on Fadm. If the forward problem (2.19) has

the properties stated in the previous section, the existence and uniqueness of a global

minimum for the functional J above can be readily obtained. We first state (see [40]):

Proposition 3.6. The penalty functional J in (3.5) is coercive and convex. Moreover,

if (3.2) and (3.3) hold, it is also continuous.

Proof.

After some manipulations, we can rewrite the penalty functional as follows:

J (g) =
ε

2
∥g∥2F +

1

2
∥OSg∥2X −OSg • u0 +

1

2
∥u0∥2X,

⋆ J is convex: it is obvious since it is quadratic;

⋆ J is coercive: 2J (g) ≥ ε∥g∥2F − 2OSf • u0 → ∞ if ∥g∥F → ∞ since ε is fixed positive;

§We drop the subscript ε on J in order to have lighter notations.
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⋆ J is continuous: given f , g in F

|J (g)− J (f)| = ε

2
(∥g∥2F − ∥f∥2F) +

1

2
(∥OSg∥2X − ∥OSf∥2X)− u0 • OS[g − f ],

=
ε

2
(∥g∥F + ∥f∥F)

∣∣∣∥g∥F − ∥f∥F
∣∣∣+

+
1

2
(∥OSg∥X + ∥OSf∥X)

∣∣∣∥OSg∥X − ∥OSf∥X
∣∣∣+

− u0 • OS(g − f),

≤ 1

2

[ (
ε+ ∥O∥Lin(U,X)∥S∥Lin(F,U)

) (
1 + ∥O∥Lin(U,X)∥S∥Lin(F,U)

)
(∥g∥F + ∥f∥F)+

+ 2∥u0∥X∥O∥Lin(U,X)∥S∥Lin(F,U)
]
∥g − f∥F,

where we have used continuity of the norms and the hypothesis on O and S (Eqs.

(3.2), (3.3)).

�

According to the Theorem 2.9 of the previous Chapter a unique minimum point of J
exists, say f . Now we can characterize it using the Euler equation associated to J . We

must show that:

Proposition 3.7. If (3.2) and (3.3) hold, then J is differentiable.

Proof.

The proof is a direct calculation of the functional derivative J ′ : F → F∗. Set o(h) any

function such that lim
∥h∥F→0

o(h)

∥h∥F
= 0. Then it holds

J ′(g)[h] + o(h) = J (g + h)− J (g)

= ε

(
(g|h)F +

1

2
(h|h)F

)
+OSg • OSh− u0 • OSh+

1

2
OSh • OSh

= ε(g|h)F + (OSg − u0) • OSh+ o(h),

since OS is continuous we have OSh • OSh = o(h) and the result follows.

�

Remarkably, the theorem above gives:

J ′(g)[h] = ε(g|h)F + (OSg − u0) • OSh (3.6)

The following statement resumes the results obtained in this section. From Theorem 2.9

and 2.11 of Chapter 2 we have:

Proposition 3.8. Let F be an Hilbert space, J : Fadm ⊂ F → R+ defined as in (3.5)

and Fadm being a closed subspace of F. Let the hypothesis (3.2), (3.3) on S and O hold.

Then, a unique minimum point of J exists, say f ∈ Fadm and it solves:

PJ ′(f) = 0.

where P ∈ LinF is the projection onto Fadm.
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Applying the Tichonov regularization procedure to the operator (OS)† we end up

with the minimum problem for the family, with respect to the parameter ε, of penalty

functional in (3.5). Actually, the Theorem 2.19 confirms us that:

Proposition 3.9. If the noise level ν tends to 0 and the parameter choice rule ν 7→ ε(ν)

satisfies the hypothesis of Theorem 2.19, the sequence of minimum of J strongly converges

to fBAS.

Adjoint State

Since the functional J admits a unique global minimum in a closed subspace Fadm ⊂ F

and it is differentiable, from (3.6) and the Proposition 3.8 it follows that the minimum

control f ∈ Fadm satisfies

PJ ′(f) = 0 ⇔ εf + P(OS)T (OSf − u0) = 0, (3.7)

where P ∈ LinF is the projection onto Fadm.

To avoid the evaluation of the operator S in equation (3.7), we introduce the so called

adjoint state [40]. The proof of well posedness of the following problem will be given in

the following sections for the specific contexts. Let p ∈ P be formally defined as:

ATp = OT (Ou− u0), (3.8)

where P is a suitable functional space and AT : P → U∗ an operator to be assigned.

Roughly speaking, A should be taken such that the operator SA will be easy to handle.

For example, in Section 2, we will find that SA is the identity map. Differently to most

of the literature on the subject (e.g. [40]), we strictly need to make a distinction between

A and S−1 as we shall see in Section 3. Now, plugging Equation (3.8) into (3.7), we

obtain:

εf + PSTATp = 0. (3.9)

The choice of the operator A and the analysis of its continuity property is the main goal

of the paper. We deal with this issue in the following section, discussing the control of

Dirichlet and Neumann problems.
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3.2 The Dirichlet Problem with Distributed Control

In this section we introduce and analyse an inverse problem which arises in cellular trac-

tion microscopy on flat substrates. We provide well–posedness results for the problem

formally stated in [2], [3] in the plane. Results still hold for a Dirichlet problem in R3

with almost no modifications.

3.2.1 Forward Problem

Let Ω ⊂ R2 be a regular set, where the Dirichlet problem of Linear Elasticity applies.

For this section we consider ΓD = ∂Ω, F = L2(Ω), U = H2(Ω)∩H1
0 (Ω), c = 0 and b := f .

The problem (2.19) or (2.20) with the above hypothesis reads:

given f ∈ L2(Ω), find u ∈ H2 ∩H1
0 (Ω) s.t. ∀v ∈ H1

0 (Ω):∫
Ω

∇u · C[∇v] =

∫
Ω

f · v. (3.10)

According to the notation introduced in the previous section, if u and f satisfy (3.10),

then we say that Sf = u. If f ∈ L2(Ω) is known, the problem (3.10) is well–posed from

Theorem 2.14 and, thanks to Theorem 2.15, its solution satisfies:

∥Sf∥H2(Ω) ≤ k∥f∥L2(Ω), k > 0, (3.11)

which is the continuity estimate requested in (3.2) for the solution operator.

Admissible Force Space

Let Ωc ⊂ Ω be the Lebesgue–measurable set where the cell lays and f ∈ F = L2(Ω)

the force density per unit surface exerted by the cell. Since neither external forces nor

constraints apply on the cell and inertia is negligible, we can argue that its force field f

must have null average and null average momentum, so that it belongs to ¶:

Fadm :=

{
g ∈ F = L2(Ω)

∣∣∣ ∫
Ωc

f = 0,

∫
Ωc

r× f = 0, f = 0 a.e. on Ω \ Ωc

}
. (3.12)

We can easily prove the following characterization of Fadm.

Proposition 3.10. Fadm, as defined in (3.12), is a closed subspace of F.

Proof.

• Fadm has the structure of a linear space.

• Since Ω has finite measure, L2(Ω) ↪→ L1(Ω) (via Hölder inequality, Theorem 2.4)

and therefore the forms f 7→
∫
Ω

f and f 7→
∫
Ω

r× f are continuous in L2(Ω).

¶To define the wedge product in R2, we proceed in this way. Fix J ∈ Skw(R2) ∩Ort(R2) one among
the two perpendicular turn in R2 [51]. Define: h× g = Jh · g for all vectors g,h of R2.
Moreover we have defined r(x) := x− o where o ∈ R3 is a given point.
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• Eventually, set (fn)
∞
n=1 ⊂ Fadm such that: fn → f ∈ F, fn ̸= 0 on Ξn ⊂ Ω \ Ωc and

meas(Ξn) = 0 for all n ∈ N, where the symbol meas indicates the Lebesgue measure

of a set. Then, by continuity of measures, meas(∪n∈NΞn) ≤ Σn∈Nmeas(Ξn) = 0;

this means that the limit function f equals to 0 almost everywhere in Ω \ Ωc.

�

3.2.2 Optimal Control

Penalty Functional

Our goal is to determine f minimizing the penalty functional in (3.5) and belonging to

a closed subspace Fadm ⊂ F. In the previous sections, we have proved (see inequality

(3.11)) that the suitable choice of U and F done at the beginning of this section yields

a continuous solution operator S (i.e. satisfying (3.2)). Since the solution u belongs

to H2(Ω), the observation map O is also continuous. In fact, by the Sobolev Theorem

2.6, H2(Ω) ↪→ C0(clΩ) when n = 2, 3 and, thanks to Proposition 3.3, the condition

(3.3) is clearly satisfied. We can then apply Theorem 3.8 and find that, in this case, our

functional J admits a unique minimum point and it is differentiable therein.

Adjoint State

In this section we explicitly assign the operatorA appearing, in abstract form, in equation

(3.8) and we prove some of its properties. Taking A = S−1, we argue that Problem (3.8)

rewrites as follows (cfr. with [19]): ∥:

find p ∈W 1,s
0 (Ω) s.t. ∀q ∈W 1,s′

0 (Ω):∫
Ω

∇p · C[∇q] = (Ou− u0) • Oq. (3.13)

The next step is to prove the well–posedness of the above equation.

Proposition 3.11. The problem in (3.13) is well–posed when s ∈ [1, n
n−1 ), s

′ is conjugate

to s, Ω is a bounded domain with C2−boundary and n = 2, 3.

Proof:

As a consequence of the Prop. 3.3, OT (Ou − u0) is a Borel measure (having fixed

u ∈ H1
0,ΓD

(Ω) ∩H2(Ω) ↪→ C0(clΩ) as noted before).

We also observe that, by Sobolev embedding Theorem:

q ∈W 1,s′(Ω) ↪→ C0(clΩ) if s′ > n⇔ s ∈
[
1,

n

n− 1

)
.

Then, we can apply Theorem 2.16 with s ∈ [1, n
n−1 ) and n = 2, 3 to prove the thesis.

�

Using Sobolev embedding Theorem 2.6 it can be proved that:

p ∈W 1,s(Ω) ↪→ L2(Ω) if s ≥ 2n

n+ 2
⇔ s′ ∈

[
1,

2n

n− 2

)
.

∥W 1,s
0 (Ω) is the subspace of W 1,s(Ω) of functions having zero trace on ∂Ω, see [49] and [1].
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Moreover, let q = Sh (h ∈ L2(Ω)): one has from (3.11) that q ∈ H2(Ω) ∩H1
0 .

Using again the Sobolev embedding Theorem 2.6, one has:

H2(Ω) ↪→W 1,s′(Ω) if s′ ∈
[
1,

2n

n− 2

]
⇔ s ≥ 2n

n+ 2
.

Collecting the latter results, the following equation is thus well defined granted s ∈[
2n
n+2 ,

n
n−1

)
: ∫

Ω

∇p · C[∇Sh] =
∫
Ω

h · p.

We observe that the equality above follows from the definition of S (as in the forward

problem (3.10)) and the symmetry of C (see Eq. (2.16)).

Characterization of the optimal control

The optimal control f satisfies, as stated in (3.9), f = −1

ε
Pp. We now wish to charac-

terize the projection operator P : F → Fadm ⊂ F. Equation (3.9) here takes the following

meaning:

(εf + p|h)L2(Ω) = 0, ∀h ∈ Fadm. (3.14)

Since any test function h is equal to zero in measure on Ω \ Ωc, equation (3.14) reduces

to:

ε(f |h)L2(Ωc) + (p|h)L2(Ωc) = 0, ∀h ∈ Fadmc, (3.15)

where Fadmc := {L2(Ωc)|
∫
Ωc

f = 0,
∫
Ωc

r× f = 0}.
Then f = −1

εχcp + f⊥, where f⊥ ∈ Fadm
⊥
c and χc is the characteristic function of Ωc.

To determine f⊥ we note that (from the Theorem on the dimension of range and kernel

[51]):

Theorem 3.12. Let H ∈ Lin(Y,Rn), Y a (possibly infinite dimensional) Hilbert space,

n ∈ N. Then dim(kerH)⊥ ≤ n.

In R2, if we set H =
[
f ∈ L2(Ωc) 7→

(∫
Ωc

f ,
∫
Ωc

r× f
)

∈ R3
]
, then we have

dimFadm
⊥
c ≤ 3. Moreover one can readily find a 3−dimensional basis, say {ei}3i=1 for this

space. Set {e1, e2} as two constant, linearly independent–valued mappings. Obviously,

if h ∈ Fadmc:

(ei|h)L2(Ωc) =

∫
Ωc

ei · h = ei ·
∫
Ωc

h = 0,

for i = 1, 2. Evidently {e1, e2} ⊂ Fadm
⊥
c . Next, let J ∈ Skw(R2) ∩ Ort(R2) the chosen

perpendicular turn in R2, as in footnote ¶ (the same calculation in R3 would require a

slightly different technique). Choose e3(x) = Jx, then:

(e3|h)L2(Ωc) = (Jr|h)L2(Ωc) =

∫
Ωc

Jr · h =

∫
Ωc

r× h = 0.

Eventually, given {ei}3i=1 as above, f ∈ Fadm turns out to be:

f = −1

ε
χcp+

3∑
i=1

liei, (3.16)

where (li)
3
i=1 ∈ R3 are the Lagrangian multiplier associated to the constraint of null net

force and torque (see the definition of Fadmc above) and so they are unknowns of the

problems.



3.2. THE DIRICHLET PROBLEM WITH DISTRIBUTED CONTROL 35

3.2.3 System of equations

Below we resume the results of the present section, pointing out the system of differential

equations, in weak form, that one may want to solve in practice.

find u ∈ H2(Ω) ∩H1
0 (Ω), p ∈W 1,s

0 (Ω), (li)
3
i=1 ∈ R3, s ∈ [ 2n

n+2 ,
n

n−1 )

such that ∀q ∈W 1,s′

0 (Ω), ∀v ∈ H1
0 (Ω):

∫
Ω

C∇u · ∇v +

∫
Ω

f · v = 0,∫
Ω

C∇p · ∇q+
N∑
j=1

δxju · δxjq =
N∑
j=1

u0j · δxjq,

f +
1

ε
p−

3∑
i=1

liei = 0,∫
Ω

f = 0,∫
Ω

r× f = 0.

(3.17)
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3.3 Boundary Control with Neumann or Mixed Conditions

While traction force microscopy on flat surfaces is nowadays a well established technique

for cells moving on flat surfaces, the challenging goal is currently to obtain a good recon-

struction of the stress exerted by a cell in its physiological three dimensional migration

environment. In a typical experimental setup, a cell is immersed in a matrigel box as in

Fig. 3.1 and exerts a stress on the inner boundary of the gel, the traction at the inner

surface plays here the role of the unknown of the problem. Homogeneous Dirichlet or

Neumann conditions can be considered for the outer boundary, i.e. the walls of the box..

3.3.1 Forward Problem

Let Ω ⊂ R3 be an open bounded domain with C2−regular border, as in fig.3.1. The

boundary conditions characterize a mixed problem in Linear Elasticity and, in this sec-

tion, we consider U = H1
0,ΓD

(Ω) ∩H2(Ω), F = H
1
2 (ΓN ), c := f and b = 0. The forward

problem (2.19) or (2.20) now reads:

given f ∈ H
1
2 (ΓN ), find u ∈ H1

0,ΓD
(Ω) ∩H2(Ω) such that for all v ∈ H1

0,ΓD
(Ω):∫

Ω

∇u · C[∇v] =

∫
ΓN

f · v. (3.18)

The above problem admits a unique solution inH1(Ω) thanks to the Lax–Milgram lemma

(Theorem 2.14). If we consider the setup as in fig.3.1, where ΓD ̸= ∅ and cl(ΓN )∩cl(ΓD) =

∅, we can apply the Theorem 2.15 to obtain the estimate:

∥Sf∥H2(Ω) ≤ k∥f∥
H

1
2 (ΓN )

, k > 0, (3.19)

where Sf = u if (3.18) is satisfied. For a pure Neumann problem (ΓN = ∂Ω), the same

results hold, but the solution u is unique up to a rigid motion (see [21]).

Admissible Force Space

As in the case of distributed control of the previous section, since neither force nor

constraint act on the cell, we define the admissible force space as:

Fadm :=

{
g ∈ F = H

1
2 (ΓN )

∣∣∣ ∫
ΓN

f = 0,

∫
ΓN

r× f = 0

}
. (3.20)

This is a closed subspace of L2(ΓN ) and therefore also of F = H
1
2 (ΓN ) since H

1
2 (ΓN ) ↪→

L2(ΓN ), the proof being the same as the one given in the previous section (it is sufficient

to exchange Ω with ΓN , noting that also ΓN has a finite measure).

3.3.2 Optimal Control

Penalty Functional

We search for f ∈ Fadm which minimizes the functional in (3.5). The discussion below is

very similar to the one in the previous Section and some details are omitted.

We have proved in (3.19) that the choice of U, F done in this section provides a continuous

solution operator S. Since the solution u belongs to H2(Ω) also the observation map
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Figure 3.1: A pictorial representation of the experimental setup: the outer boundary of
the domain Ω is ΓD, the inner boundary is ΓN where the traction of the cell applies.

O is continuous. In fact, by Sobolev Theorem 2.6, H2(Ω) ↪→ C0(clΩ) when n = 2, 3

and, thanks to Proposition 3.3, (3.3) is clearly satisfied. We can then apply Theorem

3.8 to see that in this case our functional J admits a unique minimum point and it is

differentiable therein.

Adjoint State

In the following, we explicitly characterize the operator A that appears in (3.8) and prove

some of its properties. In this case A ̸= S−1, in fact we state the following counterpart

of (3.8) (cfr. with [20]):

find p ∈W 1,s
0,ΓD

(Ω) s.t. ∀q ∈W 1,s′

0,ΓD
(Ω):∫

Ω

∇p · C[∇q] = (Ou− u0) • Oq. (3.21)

We now state the well posedness of the above equation, the proof being identical to the

one of the Prop. 3.11.

Proposition 3.13. The problem in (3.21) is well posed when s ∈ [1, n
n−1 ), s

′ is conjugate

to s, Ω is a bounded domain with C2−boundary and n ≤ 3.

It happens that TΓNp ∈ Ls(ΓN ) because from the Trace Theorem 2.5 :

W 1,s(Ω) ↪→ Ls(∂Ω) if s < n.

Moreover, let q = Sh (h ∈ H
1
2 (ΓN )); one has, according to (3.11), that q ∈ H1

0,ΓD
∩

H2(O).

Using again the Sobolev embedding Theorem 2.6, we find that:

H2(Ω) ↪→W 1,s′(Ω) if s′ ∈
[
1,

2n

n− 2

]
⇔ s ≥ 2n

n+ 2
.

Since, by virtue of Trace Theorem 2.5, one has H1(Ω) ↪→ H
1
2 (ΓN ) then it is worth to

point out the following embedding:
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H1(Ω) ↪→ Ls′(∂Ω) if s′ ∈
[
1,

2n− 2

n− 2

]
⇔ s ≥ 2n− 2

n
.

that guarantees h ∈ Ls′(∂Ω).

According to the above results, the following equation is thus well defined, granted s ∈
[2n−2

n , n
n−1 ]: ∫

Ω

∇p · C[∇Sh] =
∫
ΓN

TΓN
p · h, (3.22)

We observe that the equality above follows from the definition of S (as in the forward

problem (3.18)) and the symmetry of C (see Eq. (2.16)).

Remark 3.14. Similar arguments hold for a pure Neumann problem, excepts for minor

details.

Remark 3.15. A proof of the well–posedness of a pure Neumann problem when suppO ⊂
∂Ω is given in [25] using the potential theory (suitable for the boundary elements numer-

ical method). Here we do not constrain the support of the observation operator.

Characterization of the optimal control

The optimal f , as stated in (3.9), satisfies f = −1

ε
PSTAp. It can be useful to recall that

Equation (3.9) here takes the following meaning (see (3.22)):

ε(f |h)
H

1
2 (ΓN )

+

∫
ΓN

p · h = 0, ∀h ∈ Fadm. (3.23)

Given p ∈W 1,s(Ω), thanks to Riesz theorem (see [8]), a unique solution f ∈ H
1
2 (ΓN ) of

this problem exists since h ∈ H
1
2 (ΓN ) 7→

∫
ΓN

p · h is a linear and continuous functional

on H
1
2 (ΓN ). Unfortunately, Equation (3.23) cannot be approximated by standard FEM

tools, even when Fadm = F, since they do usually not deal with non–integer Sobolev

spaces. A reasonable and computationally cheap way to overcome these difficulties is

addressed in the next paragraph.

An hypothesis on the Observation Operator and its consequences

We note that, according to Theorem 2.5, the trace of an element of W 1,s(Ω) (s as

before) does not necessarily belongs to H
1
2 (ΓN ). Nevertheless, if we add an additional

hypothesis, we can achieve a greater regularity for the adjoint state.

Hypothesis 3.16. The support of the observation operator O is an open set contained

in Ω′ which is such that clΩ′ $ Ω.

Using the hypothesis 3.16, we are able to state (see [38] for the proof):

Proposition 3.17. Let Ω” ⊂ Ω \ Ω′ strictly. Then p|Ω” belongs to H1(Ω”).

Since, by the above hypothesis 3.16, dist(ΓN ,Ω
′) > 0 we can surely choose a set

Ω” ⊂ Ω \ Ω′ such that ΓN ⊂ Ω”. Then, by (3.17), p|Ω” belongs to H1(Ω”) and, by the

Trace Theorem 2.5, TΓN
p belongs to H

1
2 (ΓN ). According to [20], the adjoint variable p,

solution of (3.21), actually solves:∫
Ω

p · (div(C∇q)) + (p|(C∇q)n)
H

1
2 (ΓN )

= (Ou− u0) • Oq. (3.24)
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If we put the last equation inside Eq. (3.9) with q = Sh (h is any function in H
1
2 (ΓN ),

as before), we find that:

f = −1

ε
Pp,

which is a purely algebraic equation in the non–constrained case (i.e., when P is the

identity). The constrained case can be treated as above, as we shall see during the next

paragraph.

Remark 3.18. Remarkably, thanks to the hypothesis 3.16, the problem is also well posed

choosing F = L2(ΓN ). The incoming paragraph takes a great advantage of this comment,

as we shall see.

The Space Fadm
⊥

In the constrained case the latter equation can be exploited as in Section 2, and

f = −1

ε
TΓNp+ f⊥

with f⊥ ∈ Fadm
⊥. As noted in the Remark 3.18, we can consider Fadm as in the defi-

nition (3.20) but with F = L2(ΓN ). The actual calculation of a basis for its orthogonal

Fadm
⊥ can be performed exactly in the same way as we have done in Section 2 (the little

difference, purely algebraic, is due to the fact that we are working in three dimension).

Actually, by the theorem of range and kernel (Theorem 3.12 of Section 2) we argue that

dim(Fadm
⊥) ≤ 6, since we are now in R3. But one can readily find a 6−dimensional

basis for Fadm
⊥ letting (ei)

3
i=1 be three constant–linear independent–valued mappings

and ei+3 = r × ei, i = 1, 2, 3. The conclusion of the proof follows exactly the same

calculations and reasoning of the discussions done for the analogous problem in Section

2.

Another observation that is worth to be done is the following: the null total moment

of force constraint can be a little tricky to implement. For this reason, and only in this

paragraph, we deal with the following admissible force space:

Fadm :=

{
g ∈ F = L2(ΓN )

∣∣∣ ∫
ΓN

f = 0

}
.

Loosely speaking, we do not enforce the equilibrium of momentum and we just constraint

the force field to have null resultant only. This choice of Fadm, as the reader may easily

verify, does not affect the well–posedness results previously found. In such a case, we

find that the set of equations (where (li)
3
i=1 is the set of Lagrangian multiplier associated

with the constraint):

f = −1

ε
TΓN

p+
3∑

i=1

liei∫
ΓN

f = 0

can be solved explicitly thanks to the fact that the basis (ei)
3
i=1 assume constant values.

The above equation is thus equivalent to:

f =
1

ε

(
1

measΓN

∫
ΓN

p − T p

)
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being measΓN the (n − 1)-measure of ΓN . Of course, this kind of reasoning can be

repeated when treating the problem discussed in Section 2.

3.3.3 System of equations

Below we resume the results of the Section, pointing out the system of differential equa-

tions in weak form that one may want to solve in practice. Here we consider the assump-

tion made in section 3.18, i.e. we only consider the null total force constraint, that give

us a considerably simpler set of equations.

find u ∈ H1
0,ΓD

(Ω) ∩H2(Ω), p ∈W 1,s
0,ΓD

(Ω), s ∈ [2n−2
n , n

n−1 ]

such that ∀q ∈W 1,s′

0,ΓD
(Ω), ∀v ∈ H1

0,ΓD
(Ω):

∫
Ω

C∇u · ∇v +

∫
ΓN

f · v = 0,∫
Ω

C∇p · ∇q+
N∑
j=1

δxju · δxjq =
N∑
j=1

u0j · δxjq,

f =
1

ε

(
1

measΓN

∫
ΓN

p − TΓN
p

)
,

(3.25)

We are now in the position to step back to the original biological problem and recover

the physical interpretation of equations (3.25). This reintepretation may become more

apparent when assuming that the elastic gel is isotropic, so that the elasticity tensor

takes a particularly simple form, depending just on two material parameters (µ and λ,

the usual Lamé moduli). In this case equations (3.25) rewrite ∗∗


∫
Ω

(µ∇u · ∇v + λ(divu)(divv))− 1

ε

(∫
ΓN

p · v − 1

measΓN

∫
ΓN

p ·
∫
ΓN

v

)
= 0,∫

Ω

(µ∇p · ∇q+ λ(divp)(divq)) +
N∑
j=1

δxju · δxjq =
N∑
j=1

u0j · δxjq,
(3.26)

The differential system in the weak form (3.26) eventually has the following meaning.

Given an isotropic elastic material (like polyacrilamide), with known elastic moduli λ and

µ, deformed by a living cell embedded in it, we have experimentally measured pointwise

displacements u in the positions xj . The force field that produces such a displacement,

in the sense of the one minimizing the penalty functional (3.5), is the traction field f

solution of the system (3.26), defined on the boundary ΓN where the gel and the cell are

in contact. The traction f is simply proportional to the solution of the adjoint equation

p, up to a correction due to the null–average constrain. The two differential equations are

coupled by linear non–differential terms, of surface or volumetric type. In this respect,

one can pictorially say that the discrepancy between the measured and the calculated

displacement the right hand side of equation (3.26.b) is the volumetric source for the

adjoint field p, its value at the interface being basically the cell traction we are looking

for.

∗∗This sentence translates in formula as (see [21]):

C = 3λ sph+ 2µ sym,

where sph denotes the projection onto Sph(R3) (spherical tensors) and sym is the projection onto
Sym(R3).



Chapter 4

Numerical Approximation

The main goal of this chapter is to ascertain the accuracy and robustness of an inversion

method of force traction microscopy in 3D. This biophysical target rewrites, in mathe-

matical terms, in solving numerically the differential problem (3.26) by a finite element

discretization on an unstructured grid. In this section we illustrate and discuss numeri-

cal results of the numerical model on a specific test case: a three dimensional boundary

control of the linear elasticity problem with mixed boundary conditions. To best of our

knowledge, numerical simulations of this type have not yet appeared in the literature,

with a notable exception [39] where the three dimensional cellular traction problem is

tackled using Green functions. However, no details are provided on the mathematical

well–posedness. In addition, the finite element reconstruction using Green functions

seems not really efficient and not appealing for generalization.

Several methods for solving optimization problems are known in the literature. Fol-

lowing [2] and [43], we chose the approach that in optimal control is called first optimize

then discretize method [33]. In a few words, we first write down the optimality condition

and then we solve numerically the two resulting coupled PDEs. In our case, this corre-

sponds to take the coupled system of equations (3.26), approximating the unknowns (u,p)

and the corresponding test fields (v,q) with their counterpart finite element function (uh,

ph) etc. The numerical approximation of the problem (3.25) is obtained discretizing the

trial fields u and p and the associated test fields v and q with Lagrange P1 elements.

The integration of the forms is done using a Gauss formula, exact on polynomials of fifth

degree. This is done in practice using the code Free-FEM v.3.11, see [31] for the details.

The following validation algorithm is adopted according to [63, 39]:

• Set fgiven and evaluate the displacement solving numerically ugiven = Sfgiven (the

linear elliptic elasticity problem).

• Observe the displacement u0 = Ougiven (possibly perturbed by artificial noise).

• Solve the Optimal Control Problem (for a range of ε): given u0 and the model

parameters, obtain u and f .

41
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• Evaluate the errors such as ∥f − fgiven∥2 etc. and discuss the results.

4.1 A Comparison with the Green Function Approach

We now explain the reasons why we believe that the method exposed in this work, bor-

rowed from Inverse and Optimal Control Theory, is more efficient from the computational

point of view than its Green function counterpart, as exposed in [39]. Set:

• N the number of degrees of freedom of the computational mesh.

• M the number of degrees of freedom associated to the boundary traction at the

border ΓN .

Starting the analysis considering our approach, the unknown of our problem (see (3.25))

are the displacement u and the adjoint state p which will be easily discretized in a

2 · 3 · N vector. The system obtained can be efficiently solved using an iterative method

for sparse matrix at an average cost proportional to the dimension of the matrix (in this

case, 2 · 3 · N evidently). Thus, the cost of one run of our algorithm is proportional to

N , whatever the value of N (number of beads) or M we choose.

We now sketch what kind of operations involves the algorithm of Legant, Chen et

al. [39]. First, they calculate numerically the operator we call OS which relates the

boundary traction f to the displacements u0 measured on the beads at x1, . . . ,xN (Γ, in

their notations) using Finite Elements. In order to do so, they have to solve numerically

the Eqn. (2.20) for every element of the Finite Element basis whose support belongs to

ΓN ; since the problem is linear, this is enough to evaluate the operator OS. Having done

so they can evaluate the displacement (i.e. the solution of the problem (2.20)) at the

observation points.

Since the number of base elements having support on ΓN is 3 · M the cost of such an

operation scales as M · N , since we consider, as before, that a FEM run costs as the

number of degrees freedom of the grid. After this first passage, they use such a discretized

operator OS (let us call it G, which is a 3N×3M matrix) to solve the discrete minimum

problem:

find the minimum of F 7→
(
|GF − u0|2 + ε|F |2

)
where F is the 3M−vector containing the values of the discrete boundary traction. Such

a problem will lead to a 3M dimensional linear system. The latter is presumably attacked

using an iterative method, which costs (as we have said before) about M flops.

The overall cost of the inverting procedure advocated by Legant, Chen et al. [39] scale

thus as M · N . If we do the estimate (as could roughly be expected) M ∼ N 1/2, then

the cost of the Green function method would be proportional to N 3/2.

The procedure advocated by the latter authors has thus a considerably higher cost than

what can be obtained using a variational framework.

Remark 4.1. When analyzing the Legant, Chen et al. [39] approach to the force traction

microscopy, the reader should be persuaded by the fact that their calculations are abso-

lutely not generalizable to a genuine non–linear case since the assumption of linearity of

OS is crucial if one wants to evaluate it numerically in the way described before.
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4.2 Numerical Setup

In this work all the equations are written in dimensional form, so that the reader in-

terested in the specific biophysical application can easily appreciate that the order of

magnitude of forces and spatial dimensions match the ones typically observed in the

experiments.

The reference setup that we use for the simulations has a computational domain,

a 1003µm3 cube, with a 20 × 10 × 10µm3 ellipsoidal hole, representing the cell. In the

reference case we have used 300 beads (i.e., the “observation points”) with mean distance

17.88µm from the origin. The mesh is characterized by a tethraedron aspect ratio ranging

between 0.6µm (near the ellipsoid) and 10µm (near the external border). The number

of degrees of freedom is 7392. In Fig. 4.1 are reported a picture of the computational

mesh and of the position of the beads. In Section 5 we explore the behavior of the inverse

method when the listed numerical parameters change in suitable ranges.

(a) (b)

Figure 4.1: The computational mesh (a) and the location of the beads (b)

In the calculations that follow we use the standard value of the elastic moduli [2, 3, 24]

λ = 4150
pN

µm2
, µ = 2100

pN

µm2
.

The observed displacement field is first produced, once for all, solving the direct

problem using the following given dipole–like force (see Fig. 4.2):

fgiven := 103

{
(x, y, z) x > 15

(αxx, αyy, αzz) x < 0

pN

µm2
(4.1)

The origin of the axis is put at the geometrical center of the computational setup. We

have chosen Cartesian coordinates, with the x axis coincident with the semi–major axis

of the ellipsoid. We have defined αξ :=

∫
ΓN

χ(x>15) ξ∫
ΓN

χ(x<0) ξ

(for ξ = x, y, z) and χ is the

characteristic function of a set (χΣ(x) = 1 if x ∈ Σ and 0 elsewhere). The given force

and the resulting displacement are graphically represented in Figure 4.2.
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a b

c

Figure 4.2: The given traction fgiven in picoNewton per micron square (a) and the given
displacement ugiven = Sfgiven in microns (b) are plotted at the cell–gel surface. A colour
map of the magnitude of ugiven in some points is in figure c.

4.3 Numerical results

The main aim of the present work is to evaluate the ability of the inversion method

to recover the true force produced by a cell on the basis of pointwise measures of the

displacement. In other words, we aim controlling and possibly minimizing the error in

calculating f according to the proposed inversion procedure. Different error measures can

be applied, depending on the physical meaning and on the expected level of regularity

of an unknown (see the analytical results collected in section 3.3). It is therefore useful
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to introduce here the following concise notations:

e2(f) :=
||f − fgiven||2
||fgiven||2

:=

(∫
ΓN

|f − fgiven|2
)1/2

(∫
ΓN

|fgiven|2
)1/2 (4.2)

e2(u) :=
||u− ugiven||2
||ugiven||2

:=

(∫
Ω
|u− ugiven|2

)1/2
∣∣∣∫Ω |ugiven|2

∣∣∣1/2 (4.3)

e2(Ou) :=
|Ou− u0|2

|u0|2
:=

(∑N
i=1 |u(xi)− ugiven(xi)|2

)1/2
(∑N

i=1 |ugiven(xi)|2
)1/2 (4.4)

e∞(u) :=
maxx∈Ω |u(x)− ugiven(x)|

maxx∈Ω |ugiven(x)|
(4.5)

We observe that a stronger norm (as the infinity norm) for the force field f is not allowed

in this framework as, in general, such a force field might not have the needed regularity.

In fact, in section 3.3.2, we have found that f ∈ H
1
2 (ΓN ).

4.3.1 Noise and regularization

In this Section we report numerical results obtained from data u0 either exact and affected

by noise. As a matter of fact, experimental measures are always affected by noise. In

order to estimate the stability of the inversion method to small perturbations in the data

we introduce a list of independent and isotropic Uniform Random Functions with zero

mean and amplitude ν = 0.4µm. The same numerical simulations are then carried out

with the data u0 = (u1
0, . . . ,u

N
0 ) perturbed as follows:

ui
0 ·w = ugiven(xi) ·w + ν Unf

(
− 1

2
,
1

2

)
,

for all unitary vectors w. The symbol Unf(a, b) denotes the uniform probability distri-

bution in the interval ]a, b[. The above expression is referred in the literature [71] as a

semistochastic semidiscrete linear data model with additive noise.

The amplitude of the noise is comparable to what is found in practice [39]: here ν is

greater than the sum of the uncertainty in the placement of the beads (declared to be

0.210µm) and the error of cell surface reconstruction (which is estimated at 0.176µm).

Notwithstanding the common agreement that the errors introduced by a measure ap-

paratus follow a Normal Probability Distribution, here we use a Uniform one (easier

to implement in our code), while aware that we possibly overestimate the actual noise.

Figures 4.3 and 4.4 compare the errors when data are affected or not by noise

A major issue in inversion algorithms is the determination of the optimal value of

the regularization parameter ε and the analysis of the sensitivity of such a value to the

numerical and physical data. Figures 4.3 and 4.4 show the relative error in force and

displacement, as defined in (4.2,4.3,4.4,4.5), depending on the regularization parameter

ε.

The error approaches 100% when ε is large both in the noisy and in the non–noisy

case. As far as ε decreases, the error becomes smaller up to a minimum. When data are

not perturbed by noise, the numerical method becomes unstable below a critical value
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Figure 4.3: Error in the traction field, e2(f) vs ε (figure a) and error in the displacement
field, e2(u) vs ε(figure b). Empty circles refer to noisy data, filled ones refer to non–
noisy data. In the ideal case of measures not affected by errors, a minimum (non–null)
reconstruction error of f can be achieved. Below this optimal ε, the error abruptly grows.
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Figure 4.4: Error in the displacement field. Figure (a) reports e∞(u) vs ε, Figure (b)
shows e2(Ou) vs ε. Empty circles refer to noisy data, filled ones refer to non–noisy data.
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of the regularization parameter. The best possible approximation for the traction, the

quantity of our main interest, has an apparently uneliminable 30% error, attained when

exact data are inverted.

The behavior of the error vs. ε is very similar for noisy data: in particular, the

optimal stabilization parameter grows with the noise. The main difference is in the

minimum error in traction that one can hopefully obtain (now of the order of 40 %) and

the somehow counter–intuitive stabilization of the numerical algorithm for very small ε.

Remark 4.2. We observe that the stability of the inversion method with respect to noise

actually comes from the continuity of the generalized (Moon–Penrose) inverse of the

operator OS (see the Proposition 3.4 for the proof and the introductory matter in section

2.3 for the general theoretical setting, in particular the Theorem 2.18).

4.3.2 Optimal choice of the regularization parameter

As anticipated in Section 2.3, here we consider a method to estimate an (in some sense)

optimal value of the regularization parameter ε that does not require knowledge of the

exact force field in a very analogue problem. This method is known as the L–curve

criterion, and it is briefly described at page 24.

||f|
| 2
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+
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+
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Figure 4.5: Left: the L-curve, i.e. |Ou−u0|2 vs ∥f∥2. Right: the curvature of the L-curve
κ as a function of ε.

The L–curve criterion states that the optimal value of ε lies in the corner of the curve

plotting the magnitude of f versus the discrepancy between measured and calculated

displacement, viz |Ou − u0|2 (Fig. 4.5a). In figure 4.5b the curvature κ is plotted as a

function of ε; the corner of the L-curve corresponds to the value of ε that maximizes the

curvature κ. Such a curvature can be evaluated as a function of ε referring to the Eqn.

(2.24). However, we have found that the following approximation of Eqn. (2.24) works



48 CHAPTER 4. NUMERICAL APPROXIMATION

well, since the outcome of our simulation shows ε S(ε)
R(ε) ≪ 1 for small ε (data omitted):

κ(ε) ≈ S(ε)

R(ε)

(
S(ε)

S′(ε)
+ ε

)
.

Following this approach, we find that the optimal value of the regularization parameter

for the reference problem is εopt = 1.5347 ·10−8. The L-curve turns out to be an effective

criterium: the value of ε that actually provides the minimum error e2(f) is exactly the

same.

We are now in the position to state a reference inversion set up of the parameters for

our problem:

• regularization parameter ε = εopt = 1.5347 · 10−8,

• number of observation points N = 300,

• average distance of observation points from origin 17, 88µm,

• noise level ν = 0.4µm.

The three dimensional plots shown in Fig. 4.6 report the numerical solution obtained

using such values.

4.4 Sensitivity analysis

In this Section we perform simulations varying some numerical and physical parameters,

one by one, with respect to the reference test. The sensitivity analysis aims to test

the robustness and reliability of the inversion technique. In particular, we explore the

accuracy of the reconstruction provided by the inversion tool when

• varying the number of observation,

• perturbing the ellipsoidal shape of the boundary ΓN ,

• refining and coarsening the computational mesh,

• changing the beads-to-cell distance.

All the simulations are performed for noisy data as, in practice, data are always affected

by noise. Moreover, this choice allows us to compare the optimal value of ε in the L-curve

sense.

4.4.1 Number of observation points

In Figure 4.7 we compare the results obtained by the reference simulation traction and

displacement computed using 150 and 450 beads, ceteris paribus. In particular, the mean

distance from the origin (i.e. the center of the ellipsoid) is 17.95µm when using 150 beads

and 17.87µm when using 450 beads, values that are close to the mean distance in our

standard simulation.

Increasing the number of observations, one obtains a small improvement in the mini-

mum error, both on the force and on displacement fields. More remarkably, also the slope
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(a) (b)

(c) (d)

Figure 4.6: Force reconstructed using our inversion method (a). Error between given
and reconstructed force (i.e. f − fgiven) (b). Error between given and reconstructed
displacement on the cell boundary (i.e. (u−ugiven)|ΓN

) (c). Magnitude of the local error
in displacement (d).

of the curve diminishes, thus representing a smaller sensitivity of the error on ε. The op-

timal ε (see Figure 4.7) has the same value for 300 and 450 beads, thus suggesting that a

plateau is reached, while only the curvature of the L curve changes. It therefore appears

that adding more than 300 beads does not increase the information on the system.

4.4.2 Shape of the boundary

A geometrical characterization of traction force microscopy that might influence the

accuracy of the inversion method is the regularity of the boundary ∗. We therefore

perturb the shape of the smooth ellipsoid as shown in Fig. 4.8. The same numerical

experiments carried out above are now performed in the less regular domain.

∗Here, the terms regular and smooth should not be intended in their topological meaning. As will
become clear in a while, we are always working with C2 boundaries. What we want to analyze here is
the sensitivity of the method with respect to the shape of the boundary, an aspect of little mathematical
importance but very relevant when dealing with applications.
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Figure 4.7: Plot of the error in traction e2(f) vs ε (figure a), the displacement field
evaluated at beads e2(Ou) vs ε (figure b) and curvature of the L-curve κ as a function
of ε (figure c). The curves refer to 150 beads (filled circles), 300 beads (plus signs) and
450 beads (empty circles).
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The results are to be compared with the reference solution, although here the mesh is

slightly finer then in the computations above, to prevent sharp corners with few elements.

The average distance of the beads from the center of the ellipsoid is now 17.492µm. The

analytical expression for the force is the same as above in Eqn. (4.1).

Figure 4.8: The irregular shaped cell, i.e. ΓN .

Results of the numerical inversion in the perturbed geometry are reported in Figure

4.9. The error increases a bit, when compared with the reference results. In this specific

case, an error of 40% in the reconstruction of f is found. Moreover, the optimal ε (see

Figure 4.9) increases for the case of shape perturbed ellipsoid: this behavior is qualita-

tively similar, although conceptually different, to an addition of noise to the reference

setup. The optimal value of the regularization parameter in the case of perturbed el-

lipsoid, in the sense of the L-curve, turns out to be εopt = 2.657 · 10−8. The value of ε

that actually gives the minimal discrepancy in the force field is, instead, 3.496 · 10−8. In

Figure 4.10 are shown calculations for ε = εopt.

4.4.3 Mesh Refinement

All the errors quantified in the present work are numerically calculated; therefore, they

depend not only on the inversion method, but also on the discretization scheme too (mesh

size, finite element basis, numerical algorithm...). Let ξ be any quantity of interest and

ξh its discrete counterpart. Using the triangular inequality we get:

∥ξ− ξgiven∥ ≤ ∥ξh− ξhgiven∥+ ∥ξ− ξh∥+ ∥ξgiven− ξhgiven∥ ≤ ∥ξh− ξhgiven∥+O(hp) (4.6)
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Figure 4.9: Plot of the error in traction e2(f) vs ε (figure a) and curvature of the L-curve
κ as a function of ε (figure b). The curves refer to the smooth ellipsoid (filled circles)
and the perturbed ellipsoid (empty circles).

(a) (b)

Figure 4.10: Comparison between given (a) and reconstructed (b) force field for an
irregularly shaped ellipsoid.
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where ξh and ξhgiven are the approximate values of the exact and the inverted ξ, respec-

tively. The first term at the right hand side of (4.6) is the inversion error, the second one

represents the numerical one, i.e. the one due to the projection of the solution (ξ, ξgiven)

onto the finite element space of interest.

For h→ 0 the second term at the right hand side tends to zero, but the same comment

does not apply to the first one. The inversion errors is therefore underestimated on

coarse numerical grids, since the ratio between number of observations and degrees of

freedom of the finite element basis is high. This is the reason why, for a fixed number of

observation points, the inversion error actually grows for smaller h.
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Figure 4.11: Error e2(f) vs ε calculated on different grids (a). Curvature of the L-curve
κ vs ε: note that the values labeled with empty and filled circles are nearly superposed
(b). Filled Circles: Grid 2 (Finest grid). Empty Circles: Grid 1. Plus signs: Grid 0
(Standard Grid).

In Figure 4.11 the error in f are plotted as a function of ε using three numerical grids:

• Grid 0: the reference one described in Section 3.

• Grid 1 has 14331 degrees of freedom, the tethraedron aspect ratio ranges between

0.5µm (near the ellipsoid) and 10µm (near the external border). The mean distance

of the beads from the origin is 17.43µm

• Grid 2 has 21758 degrees of freedom and the tethraedron aspect ratio ranges be-

tween 0.4µm (near the ellipsoid) and 10µm (near the external border). The mean

distance of the beads from the origin is 17.48µm.

The noise level, the number and position of the observation points are the reference ones.

According to Figure 4.11, the error reaches to its mesh–independent value in grid 1, while

the optimal ε decreases as the grid becomes fine enough. This is mainly due to the fact

that, using finer grids, the true displacement u0 calculated from the force field fgiven in
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(4.1) is actually more accurate, leading to a greater signal to noise ratio (having the same

noise level per bead). Despite of this fact, the curvature of the L-curves takes smaller

values as the grid gets finer.

4.4.4 Location of the beads

Numerical simulations have been performed applying a variation in the positions of the

beads, while keeping all the other parameters in their reference values. The results are

reported in Fig. 4.12, where the mean distance of the beads from the center of the

ellipsoid center is denoted by ϱ.

As intuitively expected, the error in all fields increases as far as the distance of the

beads increases (see Figure 4.12). Conversely, the optimal value of ε decreases with

ϱ. The maximum value of the curvature of the L-curve also decreases with distance.

Therefore the distance between the beads and the Neumann border ΓN happens to be a

crucial parameter to be taken into account (see also the remarks by Legant, Chen et al.

[39]).
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Figure 4.12: L2 error in the reconstruction of the traction field vs ε for different bead
distributions (a) errors on displacement calculated at beads vs ε (b), and curvature of
the L-curve κ vs ε (c). The mean distance of the observation points from the origin
is ϱ = 17.88µm (squares), ϱ = 19.63µm (plus signs), ϱ = 20.52µm (filled circles), and
ϱ = 21.41µm (empty circles).





Chapter 5

Final Remarks

A inverse problem inspired by biophysical practice has been address in terms of formal

and rigorous statements. The specific characteristics of this problem is to assume point-

wise observations: they call for a generalization of the classical elasticity theory to forcing

terms (for the adjoint problem) that are Borel measures.

The results exposed in this Part are not a theoretical advancement in optimal control

theory per se. Our main aim here is the correct statement of the set of equations that

can be adopted to address traction force microscopy in a three dimensional environment,

a challenging question in cell biology. The mathematical theory largely stands on known

results, while the novelty of this contribution is in the specific form system of equations

(3.25) and their well posedness for the application at hand. Now, on this basis, the reader

interested in biological applications can step forward to the numerical approximation of

these two elliptic partial differential equations, coupled by the boundary conditions. It

may be worth to recall that force traction microscopy in three dimensions is still in its

infancy; just in very recent years imaging techniques have revealed detail of the patterns

of the mechanical strain produced by the cells in their movement. Early attempts of

quantitative inversion have been carried out [39], but a precise analysis of the methods

seems to be still missing.

The content of this work provides now the basis for a mathematically precise appli-

cation of the inversion method to real biophysical questions.

The inversion method has been here implemented using Finite Element Method and

applied to a prototype system. Before running the inversion code, we assign an explicit

force field and numerically solve the direct elasticity problem only. Such a tension at the

boundary and the resulting deformation are then taken as true values. The efficacy of

the inversion code is then evaluated in terms of its ability to recover the true fields on the

basis of the provided data. The numerical simulations yields the following conclusions.

• Even in the best possible configurations, the relative error in the recovered force is

never below 30%. For small variations of the parameters of the problem around such

an optimal setting, the error remains below 40%. The pattern of the reconstructed

force has, however, a fairly good agreement with the given one.

• The location of the observation points is crucial: they should stay as near as possible

to the cell-gel interface.
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• The results are obviously dependent on the value of the regularization parameter

ε; an almost–optimal choice of its value is provided by the L-criterion.

• The quality of the inverted data depends poorly on the noise in data and on the

regularity of the contour of the cell, at least for the range of variations numerically

explored.

• The solution depends weakly on the number of observation points, provided that

a minimum number of bead locations is registered.



Part II

Mathematical Model of Cell

Adhesion in Tissues
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Chapter 6

Motivation

Starting from the paper [16], in the last ten years several multiphase models have been

developed and applied with success to describe tumour growth. As reviewed in [4, 5, 11,

27, 46, 57, 67], most of the models use fluid-like constitutive equations for the cellular

constituents. However, this is only an approximation, because tumors and multicellular

spheroids, as most tissues, are more complex, showing solid-like properties associated

with the adhesive characteristics of cells. Only recently some attention has been paid to

such adhesive interactions between cells and between cells and ECM [6, 7, 22, 32, 44, 45]

and how these mechanisms influence the behaviour of cell aggregates and therefore the

detachment of metastases. All the models above, including the one presented here, work

at a mesoscopic tissue level, though the experiments studying adhesions are performed

at a molecular scale. In fact, what is usually measured is the strength of single or

clustered adhesion bonds formed by a cell (see, for instance, [9, 17, 55, 66]). The typical

experiment is done using an atomic force microscopy cantilever with a tip that can be

possibly functionalised with proper adhesion molecules to check the specific interaction of

the cell adhesion molecules with those placed on the tip of the cantilever. After putting

the tip in contact with the cell for some time, either the cantilever or the plate with

the cell are pulled away at a constant speed, typically in the range 0.2–5 µm/sec. If

the tip of the cantilever does not attach to the cell, when the cell is moved away, the

cantilever does not deflect. This behaviour is experimentally obtained, for instance, by

the addition of an antibody attaching to the external domain of the adhesion molecule [9],

or by interfering with the links between the adhesion molecules and the cell cytoskeleton

[17], or by disrupting the actin cytoskeleton [66]. Otherwise, adhesion gives rise to the

deflection of the cantilever that can be related to the stretching force exerted by the cell.

Of course, the distance between the cell and the cantilever increases with time, increasing

the deflection angle and the stretching force. It is then observed that, after some time,

one or more adhesive bonds break causing a characteristic jump in the deflection of the

cantilever that tends to return to its undeformed configuration. In this way it is possible

to evaluate the maximum force exerted by an adhesion bond before breaking.

Baumgardner et al. [9] found that the mean strength of the adhesion bonds is in the

range 35–55 pN, giving a distribution function of the critical unbinding force like the one

shown in Fig.6.1a.

Similar results were obtained by Canetta et al. [17], and Sun et al. [66] (see Fig.
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(a)

(b)

Figure 6.1: Distribution function of the force of unbinding events (a) when a single bond
is acting (Data from [9]) and (b) for different types of cells (Data from [66]).
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1b). In particular, Sun et al. [66] did not functionalize the microsphere and allowed a

longer resting period on the cell surface, ranging from 2 to 30 seconds. Again, pulling

away the cantilever at a constant speed in the range 3–5 µm/sec caused the rupture of

one or more adhesive bonds. They used different cell types (Chinese hamster ovary cells,

endothelial cells and human brain tumour cells), all showing a mean adhesive strength

of a single bond slightly below 30 pN (see Fig.6.1b).

Panorchan et al. [55] attach to the cantilever a cadherin-expressing cell, similar to

the cell attached to the substratum. The time of contact is short, in order to have the

formation of a very limited number of adhesion bonds. The rupture force is found to

increase with the loading rate and it is much smaller when N-cadherin bonds are involved

(up to 40 pN) rather than E-cadherin bonds (up to 73 pN for a loading rate of 1000 pN/s

and 157 pN for a loading rate of 10000 pN/s).

In order to utilize these data in a multiphase (PDE) model like the one used in

this Part, one needs to upscale the results of the above experiments to the macroscopic

scale. Specifically, one needs to describe how the attachment/detachment behaviour of

the ensemble of adhesion sites linking the cells with the surrounding ECM influence the

constitutive equation related to the interaction force between the cellular and the ex-

tracellular constituent present in the multiphase model. When describing the behaviour

of the actin cytoskeleton, Ölz and Schmeiser [52, 53, 54] faced a similar problem be-

cause they needed to relate the link between the adhesion of the single actin filaments

to the behaviour of the whole cytoskeleton. Using some of their ideas we here solve the

problem in a multiphase framework. According to the rules used to describe the detach-

ment phenomena depending on the type of cells, we find different relationships for the

interaction force, that might correspond to the different migration behaviours of the cell

populations. First of all, we distinguish between a Darcy–like contribution, related to the

tortuosity and the porosity of the extracellular matrix (ECM), and a contribution due to

the adhesion of cells on the ECM, related to microscopic quantities like the probability

of bond rupture, the density of adhesive molecules on the membrane, the rate of bond

formation, the possible continuous renewal of bonds due to spontaneous internalisation

and externalisation, the strength of the single bonds. The dynamics generated by such

laws presents similarities with the transition from epithelial to mesenhymal cells or from

mesenchymal to ameboid motion, and viceversa, though the chemical cues triggering such

transitions, that at least as a first approximation influence such microscopic parameters,

are out of the scopes of this Part.

The plan of this Part is the following. After an introductory Chapter concerning some

aspects of ContinuumMixture Theory, Sections 8.1 and 8.2 deal with the interaction force

between different constituents for which adhesion plays a relevant role. In particular we

focus on cells and ECM. In Section 8.3 some examples of macroscopic interaction laws

are deduced analytically.

Chapter 9 briefly presents few possible developments.





Chapter 7

Basic Mixture Theory

In this Chapter we provide the basic notions of the mechanical Theory of Continuum

Mixtures that will be instrumental for modeling some gross features of biological tissues

and aggregates. A Virtual Work format is used to derive balance equations, as done

when dealing with the single component theory in Part I. In fact, some notions intro-

duced in the previous part are recalled in this Chapter. Constitutive admissible laws are

derived explicitly using frame invariance arguments and a Clausius–Duhem like inequal-

ity. Thus, our approach follows mainly the Configurational one adopted in [60]. The

slightly different framework we stick to will eventually allow to introduce the notion of

adhesion, discussed in greater details during the next chapters.

7.1 Kinematics

Consider two continuous bodies ∗ Bα,Bβ of the mixture and their motion maps χα, χβ

defined as (see [13], [14], [36], [56])

χα(·, τ) : Bα → Bα
τ ⊂ A , τ ∈ [0, T ) , (7.1)

where Bα
τ is the configuration of the α−body manifold at time τ , embedded in the affine

space A, with translation space V. The definition of χβ is obviously similar. Let assume

that whenever introducing the definition for the constituent α, a similar definition holds

in the following also for the constituent β.

We consider the mixture manifold as the Cartesian product of the two body manifolds

considered Bα,Bβ . Any field f defined on such a mixture is, in the most general case, a

mapping

f :
(
Xα ∈ Bα, Xβ ∈ Bβ , t ∈ [0, T )

)
7→ f(Xα, Xβ , t) .

Other descriptions, such as the Eulerian one in the current configuration at the current

time t, can be obtained straightforwardly using the motion definition in (7.1) (see [13],

[14], [36]). Moreover we indicate with a superposed dot (�̇) the derivation with respect

∗we restrict ourselves to a binary mixture, the generalization to a n−component one is straightfor-
ward, although cumbersome.
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to time and with the nabla (∇) the derivation with respect to space † .

We defined, analogously to Part I, the α−Deformation Gradient

Fα(Xα, t) := ∇χα(·, t)(Xα) ∈ Lin (TXαBα,V) ,

The tensor Fα maps the set of all vectors tangent to Bα in Xα (say, in TXαBα) onto

V. Since some smoothness is assumed for χα, a three-dimensional region of the refer-

ence configuration cannot collapse under the α−motion: loosely speaking, no cracks or

compenetration are allowed. We define the spatial velocity of a constituent α as

vα(·, t) := x ∈ Bα
t 7→ χ̇α

(
χα−1(x, t), ·

)
(t) ∈ V ,

when, clearly, x ∈ Bα
t . The spatial α−Velocity Gradient is, as customary:

Lα := ∇vα : [0, T )× Bα
t → LinV .

7.2 Dynamics

In this Section we describe the procedure to obtain balance equations and invariance

requirements for the mixture at hand. As mentioned before, a standard Virtual Power

setting is used. We restrict, for the sake of simplicity, to a first gradient theory.

7.2.1 Virtual Power

We introduce the momentum exchange vector and the Cauchy stress tensor spatial fields

(one for each constituent), respectively:

• sα : [0, T )× Bα
t × Bβ

t → V,

• Tα : [0, T )× Bα
t → LinV.

Note that the domain of the Cauchy stress tensor field is, as usual, the body it is referred

to. The domain of momentum exchange vector field is the Cartesian product of both

bodies. This slight generalization would take into account long range forces between

constituents. Obviously, analogous definitions hold for the β constituent.

A key quantity of interest is the internal power of the mixture, which we define as (cfr.

with Part 1):

wint :=

∫
Bα

t ×Bβ
t

(
sα · vα + sβ · vβ +Tα · Lα +Tβ · Lβ

)
(7.2)

where vα : Bα
t → V, vβ : Bβ

t → V have the role of arbitrary test velocity fields.

We also postulate the power expended by external actions as:

wext :=

∫
Bα

t ×Bβ
t

(
bα · vα + bβ · vβ

)
+

∫
∂(Bα

t ×Bβ
t )

(
fα · vα + fβ · vβ

)
(7.3)

With respect to the theory outlined in [60], one may note that the virtual powers defined

in (7.2) and (7.3) are actually considered as measures defined on the Cartesian product

Bα
t ×Bβ

t , instead of Bα
t ∩Bβ

t ⊂ A. Remarkably, our kind of choice of the power does not

depend on the existence of the embedding Bα
t , B

β
t ⊂ A. Such an embedding is, however,

sometimes advocated during this work for rendering the discussion more understandable.

†We choose not to overload the notations with several ”gradient like” symbols, as happens in treatise
on Continuum Mechanics. The reader should pay attention to the domain of the field involved in the
derivation (the material manifold rather than the current configuration) and interpret the ∇ consistently.
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7.2.2 Frame Indifference

A change of reference frame is introduced as done in Part 1 (see the footnote at page 14).

The map χα changes, after such a change of frame, as:

χα∗ = o+ c+Q(χα − o), (7.4)

where o, c and Q are defined as in the footnote at page 14. Deriving in time the above

expression:

vα∗(x, ·) = ȯ+ ċ+ Q̇(x− o) +Q(vα(x, ·)− ȯ).

Then, after the change of frame resumed above, the internal power becomes:

wint ∗ =

∫
Bα

t ×Bβ
t

(
sα ∗ · vα∗ + sβ ∗ · vβ∗

+Tα ∗ · Lα ∗ +Tβ ∗ · Lβ ∗
)

=

∫
Bα

t ×Bβ
t

[
sα ∗ ·

(
w + Q̇(p− o) +Qvα

)
+

sβ ∗ ·
(
w + Q̇(q − o) +Qvβ

)
+

Tα ∗ ·
(
QLαQT + Q̇QT

)
+

Tβ ∗ ·
(
QLβQT + Q̇QT

) ]
. (7.5)

where w := ȯ+ ċ−Qȯ. For clarity, we have defined:

p : (x ∈ Bα
t , y ∈ Bβ

t , t ∈ [0, T )) 7→ x ∈ A,

q : (x ∈ Bα
t , y ∈ Bβ

t , t ∈ [0, T )) 7→ y ∈ A.

According to Part I the invariance of the internal power, as stated in the Axiom 2.1,

allows us to deduce the following interesting consequences (cfr. with [60]).

(i) Let w ∈ V be arbitrary, with Q̇ = 0 and vα = vβ = 0.

From (7.2) we have wint = 0 and Eqn. (7.4) gives wint ∗ =

∫
Bα

t ×Bβ
t

(sα ∗ + sβ ∗) ·w.

From the Axiom 2.1 it turns out, after localizing, that: sα ∗ + sβ ∗ = 0. The latter

equation can be interpreted as a balance law for the momentum exchange vectors.

(ii) Let Q ∈ OrtV be arbitrary, with Q̇ = 0 and vα, vβ arbitrary homogeneous fields.

The equality in Axiom 2.1, looking at the expressions of the internal powers in (7.2,

7.5) and using the result obtained in (i), implies:∫
Bα

t ×Bβ
t

(
sα · vα + sβ · vβ

)
=

∫
Bα

t ×Bβ
t

(
sα ∗ ·Qvα + sβ ∗ ·Qvβ

)
.

taking vβ = 0 in the latter and localizing we find sα ∗ = Qsα. Conversely, taking

vα = 0, we obtain sβ ∗ = Qsβ . Taking into account the item (i), one also has

sα = −sβ . Thus, from now on we call s := sα = −sβ .

(iii) Let Q ∈ OrtV be arbitrary, with Q̇ = 0 and vα, vβ arbitrary.

The equality in Axiom 2.1, together with the previous result in items (i)-(ii)
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and Eqns. (7.2), (7.5), implies:∫
Bα

t ×Bβ
t

(
Tα · Lα +Tβ · Lβ

)
=∫

Bα
t ×Bβ

t

Tα ∗ ·
(
QLαQT

)
+Tβ ∗ ·

(
QLβQT

)
.

from which, as customary: Tα ∗ = QTαQT .

(iv) Eventually, consider Q ∈ OrtV and Q̇QT ∈ SkwV arbitrary.

The equality in Axiom 2.1, together with the previous results in items (i)-(ii)-(iii)

and Eqns. (7.2), (7.5), implies:

0 =

∫
Bα

t ×Bβ
t

(
s∗ · Q̇(p− q) + (Tα ∗ +Tβ ∗) · Q̇QT

)
=

∫
Bα

t ×Bβ
t

(
Tα +Tβ + s⊗ (p− q)

)
·QT Q̇.

from which (since QT Q̇ is an arbitrary skew tensor):

skw
(
Tα +Tβ + s⊗ (p− q)

)
= 0.

In the classical literature adopting a balance law approach rather than a configurational

one, the equations obtained above in (i) and (iv) are better known as the balance of

momentum exchange [56] and of the moment of momentum respectively [14, 56]. The

equations obtained in (ii) and in (iii) represent the usual invariance requirements for

the momentum exchange and for the Cauchy stress respectively [14].

7.2.3 Balance Laws

Fundamental balance laws can be derived from the balance of virtual power, as stated in

[29] and briefly sketched in the Part I of this dissertation. Their derivation consists in a

standard application of Stokes–Gauss theorem [12] and localization arguments, granted

the arbitrarity of the test velocity fields. If we substitute the expressions (7.2) and (7.3)

in the statement of Axiom 2.2, if we incorporate the results contained in the items (i)

and (ii) of the previous Section, we eventually get:∫
Bα

t ×Bβ
t

(
s · (vα − vβ) +Tα · Lα +Tβ · Lβ

)
=∫

Bα
t ×Bβ

t

(
bα · vα + bβ · vβ

)
+

∫
∂(Bα

t ×Bβ
t )

(
fα · vα + fβ · vβ

)
(7.6)

Since Lα = ∇vα, using Gauss theorem we can rewrite:∫
Bα

t ×Bβ
t

Tα · Lα =

∫
Bα

t ×Bβ
t

−divTα · vα +

∫
∂Bα

t ×Bβ
t

Tαnα · vα

where nα is the normal vector to the material surface ∂Bα
t . The momentum balance

equations for the α constituent can be obtained choosing a vα field vanishing at the
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boundary ∂Bα
t and taking vβ = 0. Using eqn. (7.6), the above consequence of Gauss

theorem and remembering that Tα and vα actually depend only on Bα
t :∫

Bα
t

vα ·

(
−(measBβ

t ) divT
α +

∫
Bβ

t

s

)
= (measBβ

t )

∫
Bα

t

vα · bα.

After a standard localization argument on Bα
t , the latter gives:

− divTα +mα = bα on Bα
t (7.7)

where mα :=
1

measBβ
t

∫
Bβ

t

s. This equation is the balance of the momentum of the

species α at the net of external actions, either due to the other constituent β or due to

the environment. The equation for the β constituent is similarly obtained reversing the

role of vα and vβ .

Boundary conditions appears to be trivial with this approach (cfr. with [60]). Playing

with the Stokes–Gauss Theorem when substituting the expressions (7.2) and (7.3) in the

Axiom 2.2, using the balance equation (7.7) one easily finds:∫
∂Bα

t ×Bβ
t

Tαnα · vα +

∫
∂Bβ

t ×Bα
t

Tβnβ · vβ =

∫
∂(Bα

t ×Bβ
t )

(
fα · vα + fβ · vβ

)
.

Next, using the Leibniz rule ∂(Bα
t ×Bβ

t ) = (∂Bα
t ×Bβ

t )∪ (∂Bβ
t ×Bα

t ) and letting vβ = 0,

it can be reached:

Tαnα = fα.

The analogous boundary conditions for the β constituent are similarly obtained reversing

the role of vα and vβ . Since the latter are of little importance for our scope, we skip the

discussion on this controversial subject [41].

7.3 Constitutive Issues

We now sketch some notions of the constitutive theory for the mixture at hand.

A constitutive field c will be here provided with a constitutive mapping ĉ such that

c(Xα, Xβ , t) = ĉ(χα, χβ ;Xα, Xβ)

The constitutive dependence on the motions only follows from the choice of dealing with

a purely mechanical theory. Since we aim to keep the theory at the minimum level of

complexity, we choose to work with c =
(
ψ,Tα,Tβ , s

)
, ψ being the so-called free energy.

The existence of the latter is, as a matter of fact, postulated [42].

We then restrict the constitutive map form by the use of the objectivity principle.

Moreover, via an entropy–like inequality, we exploit the relationship between stress ten-

sors, momentum exchange vectors and the free energy postulated before.

7.3.1 The Free Energy

We define the free energy in a material description, this only because the dissipation

inequality would be easier to exploit. The latter is presumed to be an additive scalar–

valued continuous measure, reading:

Ψ :=

∫
Bα×Bβ

ψ,
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where ψ : [0, T ) × Bα × Bβ → R is the free energy density (also called free energy in

the following, for brevity). The constitutive map ψ̂ associated to ψ, is supposed to be

objective, i.e.:

ψ̂(χα, χβ) = ψ̂(χα∗, χβ∗
)

Such a condition leads to the following considerations (please refer, for the definitions

to the footnote at page 14 and to (7.4)):

(i) set Q = 1 and c arbitrary:

ψ̂(χα, χβ)− ψ̂(χα + c, χβ + c) = 0

if we assume regularity, for small c ‡:(
(∂1 + ∂2)ψ̂

)
c = 0

which is a hyperbolic differential equation whose well-known general solution is:

ψ = ψ̂(χα − χβ)

(ii) set Q arbitrary:

ψ̂(χα − χβ) = ψ̂(Q(χα − χβ))

that means that ψ̂ is an isotropic scalar function, see [42].

The considerations given in the two item above are, to the best of our knowledge, not

found in the literature although quite simple to obtain. Such a line of reasoning gives

the important result:

ψ = ψ̂(|χα − χβ |).

7.3.2 Dissipation Principle

A simplified Thermodynamic framework is now introduced. For later convenience, we

introduce a material description for the fields, according to the identity:

f(Xα, Xβ , t) = f(χα−1(x, t), χβ−1
(y, t), t)

for any x = χα(Xα, t) ∈ Bα
t , y = χβ(Xβ , t) ∈ Bβ

t . From here to the end of the Section we

consider a material description of the fields (vα,vβ ,Lα,Lβ ,Tα,Tβ) without changing

their name, thus abusing the notations slightly as customary in Continuum Mechanics.

A Clausius–Duhem type of inequality is assumed as a dissipation principle [60] (in the

material manifold):

Ψ̇ ≤ wext.

Using the Axiom 2.2 and the expression of the internal power (7.2), the above inequality

rewrites:

Ψ̇−
∫
Bα

t ×Bβ
t

(
s · (vα − vβ) +Tα · Lα +Tβ · Lβ

)
≤ 0 (7.8)

‡We recall that ∂i means the derivative of the function at hand with respect to the i−th argument.
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Under this assumption, we can localize Eqn. (7.8) in order to get:

ψ̇ − s · (vα − vβ)−Tα · Lα −Tβ · Lβ ≤ 0. (7.9)

Then, we postulate a simple material behavior [42]. This writes in mathematical terms

as:

ψ(Xa, Xb, t) =

ψ̂(
∣∣χα(Xα, t)− χβ(Xβ , t)

∣∣ , ∣∣vα(Xα, t)− vβ(Xβ , t)
∣∣ ,Fα(Xα, t),Fβ(Xβ , t)).

Taking into account the above relations, we can follow the usual Coleman–Noll exploita-

tion of (7.9) (see [13], [29]):

(∂1ψ̂)
χα − χβ

|χα − χβ |
· (vα − vβ) + (∂2ψ̂)

vα − vβ

|vα − vβ |
· (v̇α − v̇β)

+ (∂3ψ̂) · Ḟα + (∂4ψ̂) · Ḟβ − s · (vα − vβ)−Tα · Lα −Tβ · Lβ ≤ 0.

The latter, using the standard argument of arbitrary and independent prescription of the

fields
∣∣χα(Xα, t)− χβ(Xβ , t)

∣∣ , ∣∣vα(Xα, t)− vβ(Xβ , t)
∣∣ ,Fα(Xα, t),Fβ(Xβ , t) (cfr. e.g.

with [28]), leads to: 
∂2ψ̂ = 0,

ŝ = (∂1ψ̂)
χα−χβ

|χα−χβ | + s+,

T̂α = (∂3ψ̂)F
αT ,

T̂β = (∂4ψ̂)F
β T

(7.10)

where the additional term with the subscript ’+’ satisfies the residual inequality:

s+ · (vα − vβ) ≤ 0 . (7.11)

7.4 Further Discussions

The constitutive restrictions (7.10) and (7.11) are quite standard, see [13, 56].

The first equation in (7.10) state the independency of the free energy from the veloc-

ity fields.

Moreover, the Cauchy stress tensors can be prescribed exactly in the same way as

for a single component theory, as stated in the third and fourth equations in (7.10). A

useful remark is that, since Tα (resp. Tβ) is a field defined only on Bα
t (B

β
t ) (as defined

in Section 7.2), then it can constitutively depend only on Fα (resp. Fβ). The latter

sentence means Tα = T̂α(Fα) (resp. Tβ = T̂β(Fβ)). From the third and the fourth

relationship in (7.10), following the above reasoning:

∂3∂4ψ̂ = ∂1∂3ψ̂ = ∂1∂4ψ̂ = 0.

Including the result encapsulated in the first equation in (7.10), one can deduce the

important splitting of the free energy:

ψ(Xα, Xβ , t) = ψ̂s

(∣∣χα(Xα, t)− χβ(Xβ , t)
∣∣)+ ψ̂α (Fα(Xα, t)) + ψ̂β

(
Fβ(Xβ , t)

)
.
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The three addenda on the r.h.s. above take into account the energy associated with

links between material points of different constituents (ψ̂s), the potential energy of the

internal stress for the constituent α (ψ̂α) and β (ψ̂β), respectively.

The second equation of the system (7.10), together with the residual inequality (7.11),

restricts the possible form of the momentum exchange vector. Apart from its dissipative

part s+, the latter can essentially take into account spring–like type of links between

material points [56]. Interestingly, such energetic–type forces are directed along the

vector connecting the material points in exam. The dissipative part of the momentum

exchange vector can be taken, for example:

s+(x, y) = M(|x− y|)
(
vα(x)− vβ(y)

)
.

With M a positive–definite tensor. When s+ satisfies the equation above for x = y

(x and y viewed as elements of A) and, if s+ is supposed to vanish when x ̸= y, one

has the so-called Darcy law [14]. In view of the definition of mα appearing in Eqn.

(7.7), if we (constitutively) demand a suitable measure on Bβ concentrated on the set

{(x, y) ∈ A2 s.t. x = y} we find:

ma(x) = M
(
vα(x)− vβ(x)

)
.

The latter is a short range constitutive map largely used to model solid–fluid friction

in porous media [36]. Remarkably, in the case of Darcy law, the balance of momentum

exchange found in the items (i) and (ii) at page 67 implies mα = mβ .

We now turn into the discussion of an invariance requirement in which the momentum

exchange vector enters in a substantial way. In the item (iv) of the Section 2.2 we have

found:

skw
(
Tα(x) +Tβ(y) + s(x, y)⊗ (x− y)

)
= 0.

In view of the first equation in (7.10) the latter is equivalent to:

skw
(
Tα(x) +Tβ(y)

)
= skw (s+(x, y)⊗ (y − x)) .

In the case we assume a Darcy law of friction for s+, this further simplifies to:

skw
(
Tα(x) +Tβ(y)

)
= 0.

Since the latter holds whatever x ∈ Bα
t and y ∈ Bβ

t are, it implies:

Tα ∈ Sym(V) and Tβ ∈ Sym(V).

This point renders our theory slightly different in predictions than those contained in [60]

and classical theories [13, 56, 68]. All those theories end up with the weaker requirement

skw
(
Tα(x) +Tβ(x)

)
= 0.



Chapter 8

Mixture Theory Modeling Adhesion

This chapter is entirely devoted to the introduction of the notion of adhesion and to

the related discussions, as advocated in the introduction. The first section introduces a

simplified kinematics with respect to the one sketched in the previous Chapter. As shown

in the other two sections of this Chapter, this slight simplification still allows to describe

mathematically the adhesive bonds in a mixture framework in a more straightforward

way.

8.1 Reduced Kinematics

In this section, we are going to describe a special type of mixture, in which the fields are

allowed to depend on the point of the bodies that were superposed somewhere in time,

for instance, because of the formation of some adhesive bonds. In such a way, we avoid

the complication induced by the introduction of fields that depend on points belonging

to both bodies. As a paradigmatic example, think to the momentum exchange vector s

defined in Chapter 7.

As sketched in Fig. 8.1, let then χβ(Xβ , t − a) = χα(Xα, t − a) = ξ. We will state for

every field f that

f(Xα, Xβ , t) = f̃(ξ, t) . (8.1)

It is also useful to introduce the quantity

rαβ(Xα, Xβ , t) := χα(Xα, t)− χβ(Xβ , t) . (8.2)

Referring to Fig.8.1, since the body points Xα and Xβ were superposed at time t − a,

we remark that

Xβ = χβ−1
(ξ, t− a) = χβ−1

(χα(Xα, t− a), t− a) . (8.3)

The vector field rαβ can then be written as

rαβ(Xα, Xβ , t) = χα(Xα, t)− χβ(χβ−1
(χα(Xα, t− a), t− a), t) . (8.4)

73
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Figure 8.1: Superposition of material points of different bodies.

Remark 8.1. It is worth to stress again some facts. In this special kind of mixture,

any field can be described uniquely by prescribing the α−point Xα and the time lapse a

measuring the time passed from the superposition. It means that, instead of a product of

two body manifolds (as done in the general treatment in Chapter 7), we can refer to the

4−dimensional manifold Bα × [0, t). This kind of mixtures requires, roughly speaking, an

additional scalar coordinate to fully specify a field (in contrast with all previous theories,

see [13], [14], [15], [36], [56]). So,by a field f on the mixture, we shall intend the mapping

f : (Xα ∈ Bα, a ∈ [0,+∞), t ∈ [0,+∞)) 7→ f(Xα, a, t) .

From now to the end of the chapter we intend that any field is of the above type, if not

explicitly stated in a different way.

We point out that the material derivative, using the type of description suggested in

the remark above, is well defined as

ḟ(Xα, a, t) := lim
h→0

f(Xα, a+ h, t+ h)− f(Xα, a, t)

h
≡ f′(Xα, a, ·)(t) + f′(Xα, ·, t)(a) ,

(8.5)

that holds constant the time of superposition t−a. For fields declared to be independent

from a: ḟ(Xα, t) ≡ f′(Xα, a, ·)(t).
It is interesting for future developments to compare here the typical lifetime of a bond

A with the characteristic time T related to cell motion, that can be related to the cell

size L and the characteristic velocity of cell motion V through T = L/V . T is then

the time needed by a cell to move across a cell length, that using physiological values

is at least of the order of few minutes. On the other hand, due to the fast trafficking

of adhesion molecules coming back and forth from the membrane A is of the order of

few seconds (see, for instance, [9, 69, 72]). This behaviour, that from the biological
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viewpoint is understood to lead to cell plasticity, from the mathematical viewpoint leads

to the existence of a small parameter ϵ = A/T , that allows to study the limit ϵ ≪ 1

that in dimensional terms corresponds to what we will denote with the dimensional limit

a→ 0.

Defining x := χα(Xα, t), for small a one has

χα(Xα, t− a) ≃ x− a
∂

∂t
χα(Xα, t), a→ 0. (8.6)

Next we consider

χβ−1
(
x− a

∂

∂t
χα(Xα, t), t− a

)
≃ χβ−1

(x, t)− a
∂

∂t
(χβ−1

)(x, t)− a∇(χβ−1
)(x, t) [vα(Xα, t)]

= χβ−1
(x, t) + a (Fβ)−1(x, t)

[
vβ(χβ−1

(x, t), t)
]
− a (Fβ)−1(x, t) [vα(Xα, t)], a→ 0 ,

(8.7)

where, as in the previous Chapter, we stress that ∇ means the differentiation respect to

the first argument of the function at hand (i.e, it is a derivation in space). Remarkably,

in the calculations above, we used the fact that

∂

∂t
χβ−1

(x, t) = −Fβ−1
[
vβ(χβ−1

(x, t), t)
]
, (8.8)

and

∇χβ−1
(x, t) = Fβ−1

(x, t) . (8.9)

Using (8.6) and (8.7), we can approximate (8.4) as

rαβ ≃ x− χβ

(
χβ−1

(x, t) +

+ aFβ−1
(x, t)

∂

∂τ
χβ
(
χβ−1

(x, t), τ
) ∣∣∣∣∣

τ=t

− aFβ−1
(x, t)

∂

∂t
χα(Xα, t) , t

)

≃ −a∇χβ(·, t)

∣∣∣∣∣
χβ−1(x,t)

Fβ−1
(x, t)

[
∂

∂τ
χβ
(
χβ−1

(x, t), τ
) ∣∣∣∣∣

τ=t

− ∂

∂t
χα(Xα, t)

]

for a→ 0. Therefore, since ∇χβ(·, t)(χβ−1
(x, t)) = Fβ(χβ−1

(x, t), t)

rαβ(x, t) ≃ −a

[
∂

∂τ
χβ
(
χβ−1

(x, t), τ
) ∣∣∣∣∣

τ=t

− ∂

∂t
χα(Xα, t)

]
≃ a

(
vα(x, t)− vβ(x, t)

)
, a→ 0 , (8.10)

where the Eulerian description of velocities is used. In other words, (8.10) means

rαβ
′
(x, ·, t)(0) = vα(x, t)− vβ(x, t) . (8.11)
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8.2 Iteraction Force between Constituents

Equation (7.7) of Chapter 7 represents the momentum balance for a constituent of the

mixture. For convenience we now recall it:

−divTα +mα = bα on Bα
t ,

where Tα is the Cauchy partial stress tensor, mα = (1/measBβ
t )

∫
Bβ

t

s and s is the so–

called momentum exchange. In this Section we will focus on this last term. The vector

field mα only measures the forces acting on the α-constituent due to its interactions

with the other constituents of the mixture. It is also worth recalling that the momentum

exchange s is intrinsically defined on the whole mixture manifold, while other quantities,

like stress tensors and densities, are defined only on the single body and no meaningful

extension exists out of this manifold. Also balance equations are defined on the body

per se, but the presence of interaction forces constitutes a link among the bodies.

For sake of clarity, the reader may think of the indices α and β as those referring

respectively to the cell population and to the extracellular matrix, though the argument

has a wider generality and can be, for instance, applied to cells of different type. When

dealing with cell-ECM interactions, we distinguish in mα two types of contributions: the

first is related to the tortuosity of the extracellular matrix and therefore to the fact that

the cells must move to an intricate network of fibers. Hence, even in absence of adhesive

interactions the ensemble of cells move in a porous-like medium so that the interaction

force can be modeled by the classical term leading to Darcy’s law (see the last section of

chapter 7)

mα
D(x, t) = M(vα(x, t)− vβ(x, t)) (8.12)

where the spatial description of the fields is used, since Darcy’s law is a local type

interaction between point superposed in the current configuration. The second is related

to the adhesion between the constituents. Therefore, even if cells were in a straight

channel in the ECM and the force were aligned to it, the ensemble of cells would still

experience a traction force mα
ad due to the adhesive interaction with the ECM.

In further detail, we call microscopic force Fα
mic(X

α, Xβ , t) the part of momentum

exchange (called s above and in Chapter 7) due to the adhesive interaction between

Xβ ∈ Bβ and Xα ∈ Bα. The total momentum exchanged in Xα with the manifold Bβ

due to adhesion forces, according to the definition of mα after the (7.7), reads:

mα
ad(X

α, t) :=

∫
Bβ

Fαβ
mic(X

α, Y, t) dY. (8.13)

Using the hypothesis in (8.1) we have the nice formula

mα
ad(X

α, t) =

∫ +∞

0

Fαβ
mic(X

α, a, t)µ(da) . (8.14)

where µ(da) is a measure to be a priori given. For reasons that will become apparent

later, we define the dummy a in the Eq. (8.14) as the age of the bond between the

two considered material points. The range of the integration with respect to the latter

spans from 0 (adhesion bonds born at current time) to ∞ (adhesion bonds formed at the
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”beginning”). Clarifying examples will be exploited in the following section. In view of

the items (i) and (ii) at page 67:

Fαβ
mic(X

α, Xβ , t) + Fβα
mic(X

β , Xα, t) = 0, ∀Xα ∈ Bα, Xβ ∈ Bβ . (8.15)

As advocated in Chapter 7, we take as basic fields only the motions χα, χβ as defined

in (2.1) since we want to keep the discussion at the minimum level of complexity.

Then, taking adhesion into account, we introduce the scalar internal variable fαβ related

to the probability of forming an adhesion bond between an α−material point and a

β−material point.

Using the field hypothesis (8.1), the number density of bonds formed at time t is

Nαβ(Xα, t) =

∫ +∞

0

fαβ(Xα, a, t) da . (8.16)

This internal variable has its own balance equation suggested by population dynamics

theory [34] or kinetic theory [10]

ḟαβ :=
∂fαβ

∂t
+
∂fαβ

∂a
= −ηαβ , (8.17)

where ηαβ has the role of describing detachment processes.

The internal variable fαβ is also used to specify the measure µ(da) that is taken to

be absolutely continuous and proportional to the bond density µ(da) = fαβ(Xα, a, t)da.

We now discuss the constitutive maps for the microscopic force Fαβ
mic and the de-

tachment rate ηαβ . Following [56] we assume that the microscopic force depends on the

position, age of the bonds and time through rαβ , i.e.,

Fαβ
mic(X

α, a, t) = F̂αβ
mic(r

αβ(Xα, a, t)) . (8.18)

The constitutive relation for ηαβ follows from the physical intuition that a bond breaks

up depending on the magnitude of the microscopic force exerted on it and on its age,

reading:

ηαβ(Xα, a, t) = η̂αβ(Fαβ
mic(X

α, a, t), fαβ(a, t), a) , (8.19)

where Fαβ
mic = |Fαβ

mic|. Actually, it is also reasonable to assume a linear relationship with

fαβ , so that

ηαβ(Xα, a, t) = ζαβ(Fαβ
mic(X

α, a, t), a)fαβ(a, t)

= ζαβ(F̂αβ
mic(r

αβ(Xα, a, t)), a)fαβ(a, t) . (8.20)

In the next section we will explain how to deduce ζαβ from some experimental data. As

an example we can state a simple linear isotropic map

Fαβ
mic(X

α, a, t) = −kαβmicr
αβ(Xα, a, t) , (8.21)

where kαβmic is the elastic constant of the microscopic bond. From (8.14) we have

mα
ad(X

α, t) = −kαβmic

∫ +∞

0

rαβ(Xα, a, t)fαβ(Xα, a, t) da . (8.22)
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8.3 The Quasi-stationary Limit

The aim of this section is to relate the microscopic measurement with the macroscopic

constitutive laws defining the interaction force mα
ad. In order to have a more compact

notation we drop in this section the indexes α and αβ. A way to upscale the information

obtained at the sub-cellular level is suggested by Ölz and Schmeiser who solved in [52, 53,

54] a similar problem when dealing with the actin cytoskeleton. For doing that, we first

need to join Eqn. (8.17) with a proper boundary condition. We could take the rate of

bond formation to be constant, but as will be shown at the end of the Section, this would

give rise to unreasonable results in some cases. A better boundary condition should take

into account the fact that the cell can expose on the membrane a maximum number of

adhesion bonds, so that the number density Nmax of active bonds per unit volume is in

a first approximation proportional to the volume ratio occupied by the cells, or better to

the ratio of cell contact area per unit volume. We can then assume that the formation

of new bonds is proportional to the bonds that can still be formed, i.e., recalling (8.16),

f(a = 0, t) = β
(
Nmax −Nαβ(t)

)
= β

(
Nmax −

∫ +∞

0

f(a, t) da

)
, (8.23)

Using the scaling introduced in Section 8.1, we can re-write in dimensionless form the

problem constituted by (8.17), with η given by (8.20), and (8.23) as
ϵ
∂f̃

∂t̃
+
∂f̃

∂ã
= −ζ̃(F̃mic)f̃ ,

f̃(ã = 0, t̃) = β̃

(
1−

∫ +∞

0

f̃(ã, t̃) dã

)
,

(8.24)

where we have defined:

• t̃ := t/T , being T the characteristic time of cell motion introduced in Section 8.1,

• ã := a/A, being A the characteristic time of adhesion bond lifetimes introduced in

Section 8.1,

• ε := A/T

• f̃ :=
f

Nmax/A

• ζ̃ = Aζ

• β̃ = Aβ

In the limit ϵ→ 0 the problem reduces to its quasi-stationary version, dropping the time

derivative in the differential equation, so that time only taking the role of a parameter

in the boundary condition. Preferring to work with dimensional variables, we go back to

the dimensional quasi-stationary problem that writes
∂f

∂a
(a, t) = −ζ(Fmic(a, t))f(a, t) ,

f(a = 0, t) = β

(
Nmax −

∫ +∞

0

f(a, t) da

)
.

(8.25)
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For any ζ, the differential equation in (8.25) can be solved giving

f(a, t) = C(t) exp

[
−
∫ a

0

ζ(Fmic(α, t)) dα

]
, (8.26)

where C(t) can be determined through the boundary condition obtaining

C(t) =
βNmax

1 + β

∫ +∞

0

exp

[
−
∫ a

0

ζ(Fmic(α, t)) dα

]
da

. (8.27)

Hence, dropping the dependence on t, for the sake of simplicity,

f(a) =

βNmax exp

[
−
∫ a

0

ζ(Fmic(α)) dα

]
1 + β

∫ +∞

0

exp

[
−
∫ a

0

ζ(Fmic(α)) dα

]
da

, (8.28)

and, from (8.14),

mad =

βNmax

∫ +∞

0

Fmic(a) exp

[
−
∫ a

0

ζ(Fmic(α)) dα

]
da

1 + β

∫ +∞

0

exp

[
−
∫ a

0

ζ(Fmic(α)) dα

]
da

. (8.29)

If we take Fmic = −kmicr
αβ , by an argument similar to the one detailed in the

previous section, it can be shown that in the limit A≪ T , (i.e., ϵ→ 0), using (8.10)

Fmic = kmica(v
β − vα) ,

and therefore

mad = kmicβNmax(v
β − vα)

∫ +∞

0

a exp

[
−
∫ a

0

ζ(kmicvrelα) dα

]
da

1 + β

∫ +∞

0

exp

[
−
∫ a

0

ζ(kmicvrelα) dα

]
da

, (8.30)

where vrel = |vβ − vα|. Referring to the modulus of the microscopic force rather than

the age of the bond, we can then write

|mad| =
Nmax

∫ +∞

0

e(F )F dF

W +

∫ +∞

0

e(F ) dF

, (8.31)

where W = kmicvrel/β and

e(F ) = exp

[
− 1

kmicvrel

∫ F

0

ζ(ϕ) dϕ

]
. (8.32)

Example 1. If there is a continuous constant renewal of bonds, i.e., ζ = ζ0 constant,

then

f(a) =
βζ0Nmax

β + ζ0
e−ζ0a , (8.33)
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Figure 8.2: Macroscopic adhesion laws for different cell-ECM microscopic interaction
laws. In (a) |mad|/NmaxF0 versus W/F0 as given by Eq.(8.36) (Example 2) In (b),
referring to the CHO cells data in [66], |mad|/Nmaxmb (bottom curve) and |m|/Nmaxmb

(top curve), related to Example 3 and Eq.(8.46), are plotted versusW/mb asM/mb = 0.2.

and

mad = −kmic
βNmax

ζ0(β + ζ0)
(vα − vβ) . (8.34)

One then finds the classical drag law asserting that in addition to mD the adhesive inter-

action force is also proportional to the relative velocity, i.e., a Darcy’s-like relationship.

So, it does not add any new effect to mD and the two terms can merge to single one.

Example 2. If the bond start breaking only after the microscopic force Fmic overcomes

a threshold F0, and being constant after this level, i.e.,

ζ(Fmic) = ζ0H(Fmic − F0) , (8.35)

where H is the Heavyside function, then

|mad|
Nmax

=
F̂ 2
0 + F̂0F0 +

1
2F

2
0

W + F̂0 + F0

, (8.36)

where

F̂0 =
kmicvrel
ζ0

. (8.37)

For small velocities |mad| tends to F0Nmax/2 while for large velocities it goes back to

the modulus of (8.34) that if the rates of bond formation and association are equal, as

plausible, simplify to kmicNmaxvrel/(2β). This behaviour, shown in Fig.8.2a, is com-

patible with the one proposed in [58] where it is argued that if cells are not pulled

strongly enough, they move together with the ECM. If the force overcomes the threshold

F0Nmax/2, they detach from the ECM.

In spite of the simplicity of (8.34) and (8.36), however, it is more proper to obtain ζ

from assumptions or experimental data on the bond-breaking distribution b(Fmic) (e.g.,
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those in Fig.6.1). In order to do that we distinguish in ζ two contributions: the first,

similar to the ones in the two examples above, related to the internal renewal of adhesion

molecules, the second (ζr) related to the force-induced detachment, e.g.,

ζ(Fmic(a)) = ζ0H(F − F0) + ζr(Fmic(a)) . (8.38)

This last contribution is related to the breaking distribution b by

ζr(Fmic(a)) =
b(Fmic(a))

B(Fmic)
= − 1

B(Fmic(a))

dB

da
(Fmic(a)) , (8.39)

or, because of the linear dependence of Fmic from a,

ζr(Fmic) = − kmicvrel
B(Fmic)

dB

dFmic
(Fmic) , for Fmic < FM , (8.40)

where FM is the supremum of the support of b, that is compact, and

B(Fmic) =

∫ FM

Fmic

b(ϕ) dϕ , (8.41)

is the survival function. Of course, different breaking distributions would give rise to

different macroscopic forces. However, we can state some general properties that can be

easily proved.

Properties 1 (on B). Since the function b(F ) is positive with compact support in

[Fm, FM ], then B(F ) is constant for F < Fm, decreases in (Fm, FM ), vanishes at F =

FM , and has an inflection point corresponding to the maximum of b(F ). In addition,

if for F ≃ FM , b(F ) ≃ CM (FM − F )αM =⇒ B(F ) ≃ CM

αM + 1
(FM − F )αM+1 .

Integration by parts gives that the mean value of b(F ) is

mb = Fm +

∫ FM

Fm

B(F )

B(Fm)
dF , (8.42)

and the standard deviation σ is given by

σ2 = F 2
m + 2

∫ FM

Fm

F
B(F )

B(Fm)
dF −m2

b . (8.43)

From the data by [9, 55, 66] reported in Fig. 8.1, we can argue that Fm is of about

10 pN, with a slightly larger value in [55] and a lower value (approximatively 4 pN) for

the Chinese Hampster Ovary cells used in [66]. Regarding FM from the graphs in [9] it

is clear that it is about 200 pN and for the endothelial cells in [66] it is about 70 pN. The

other graphs reported there as well as in [55] do not reach zero, so it is hard to evaluate

FM .

Properties 2 (on ζr). The above properties on B imply that the function ζr(F ) vanishes

for F ≤ Fm and blows up at FM and is not integrable there. Therefore, for F ∈ [Fm, FM ],∫ F

0

ζr(ϕ) dϕ =

∫ F

Fm

ζr(ϕ) dϕ = −kmicvrelln
B(F )

B(Fm)
. (8.44)
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Example 3. If ζ = ζr, corresponding to neglecting the continuous renewal of bonds

which for instance may characterize epithelial cells, we have the strong simplification

e(F ) =
B(F )

B(Fm)
(8.45)

Obviously, e(F ) = 1 for F < Fm, and e(FM ) = 0. We can then extend e(F ) and B(F )

assuming that they vanish for F > FM . Hence, from (8.31), (8.42), and (8.43)

|mad|
Nmax

=

F 2
m

2
+

∫ FM

Fm

F
B(F )

B(Fm)
dF

W + Fm +

∫ FM

Fm

B(F )

B(Fm)
dF

=
σ2 +m2

b

2(W +mb)
, (8.46)

that increasing the relative velocity decreases from b0 = (1+ σ2

m2
b
)mb

2 to zero. This is due

to the fact that the high velocity breaks more bonds than the ones that are formed at

a rate β. There is, however, a threshold stress determining cell detachment. We remark

that mb and σ are properties of the bond-breaking distribution function that are usually

measured. For instance, in [66] mb = 28, 29, 29 pN and σ = 10, 9, 10 pN , respectively

for Chinese hamster ovary cells, a malignant human brain tumor cell line, and human

endothelial cells (EA hy926). Higher values can be deduced from the data in [9], giving

mb ≈ 73 pN and σ ≈ 38 pN .

Referring to Fig.8.2b, it should be noticed that when mad and mD are added to get

m = −Nmax
σ2 +m2

b

2(W +mb)

vα − vβ

vrel
−M(vα − vβ) , (8.47)

after a minimum reached for vrel =
√
(σ2 +m2

b)β/(2kmicM), |m| grows to infinity be-

cause |mD| becomes dominant. Starting from rest, when the interaction force overcomes

the threshold value b0, cells detach to crawl with a velocity given by the right branch, that

we will denote Darcy-dominated behaviour. If now the interaction force decreases below

the minimum, then the cells attach again, giving rise to a behaviour that is characteristic

of bistable sytems.

We now consider that in addition to a force-driven detachment, there is a continuous

renewal of the bonds. We will assume there this is triggered when F > F0 and use (8.38).

Therefore, we have

e(F ) =
B(F )

B(Fm)
exp

[
− (F − F0)+

F̂0

]
, (8.48)

where h+ stands for the positive part of h, and

|mad|
Nmax

=

∫ Fm

0

F exp

[
− (F − F0)+

F̂0

]
dF +

∫ FM

Fm

F exp

[
− (F − F0)+

F̂0

]
B(F )

B(Fm)
dF

W +

∫ Fm

0

exp

[
− (F − F0)+

F̂0

]
dF +

∫ FM

Fm

exp

[
− (F − F0)+

F̂0

]
B(F )

B(Fm)
dF

.(8.49)

Example 4. If the bonds always renew, i.e., F0 = 0, which might resemble cells in a

mesenchymal state, one has the behaviours shown in Fig.8.3a that is based on the exper-

imental results reported in [9, 55, 66]. Considering the discussion in Example 3, adding
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Figure 8.3: Macroscopic adhesion laws for the microscopic detachment rates given in [9]
(top) [55] (bottom), and [66] (the three almost identical in the middle) as given by (8.49).
In (a) F0 = 0 and in (b) F0 = Fm/2.
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Figure 8.4: Sketch of the interaction forces when F0 = 0 (bottom curve) and F0 ̸=
0 (upper curves). The right-pointed arrow indicates a transition that resembles the
one between mesenchymal and ameboid motion. The left-pointed arrow, the reverse
transition. The dot indicates a transition from rest to a mesenchymal-type motion.

the Darcy-like contribution, that is dominant for large relative velocities, we have again

a total interaction force characterized by a cubic-like curve, as the one shown in Fig.8.4.

In a descriptive way, we might call ”mesenchymal-like branch” the increasing branch on

the left and ”ameboid-like branch” the one on the right, because the former is character-

ized by smaller velocities and is adhesion-dominated while the latter is characterised by

larger velocities and is related to the difficulties in moving in the network of fibres. So, if

the stress acting on the cells is too high, they might jump to the ameboid-like or Darcy

branch and when it decreases again below the minimum in the graph they will jump to

the adhesion-dominated or mesenchymal-like branch. We have then a transition that re-

sembles an ameboid-mesenchymal transition. However, we need to warn the reader that

the above description is a strong simplification, because there are chemical mechanisms

that are not considered here, whilst they are at the basis of the ameboid-mesenchymal

transition (see, for instance, [35, 37, 64, 65]).

Example 5. When 0 ̸= F0 < Fm, i.e., the threshold for spontaneous renewal is lower

than the one leading to bond rupture, the behaviour of (8.49) is similar to the one

discussed in Example 2, presenting an initial increase from a non-null value that might

be described as an epithelial-to-mesenchymal transition from rest to a slowly moving

state. Again we would have a mesenchymal-like (or adhesion-dominated) branch and an

ameboid-like (or Darcy-dominated) branch, as in the previous example and shown in Fig.

8.4. According to whether the local minimum is above or below the threshold value for

low velocities, when decreasing the velocity from the ameboid-like branch the cell will go

to the mesenchymal-like branch or to the rest branch.

As a final remark, as anticipated at the beginning of this section, we notice that if

the rate of formation of bonds were simply constant, i.e., in absence of the integral in

the boundary condition (8.23), then the above procedure would yield a force blowing up

for small velocities because of the absence of the second term in the denominator, for

instance of (8.29), and then of the last two terms in (8.36). This biologically corresponds

to the fact that if the cell barely moves, bonds always form but never break. So, in

the limit an infinite number of bonds form, corresponding to an infinite force. This

is of course unphysical and justifies the presence of a saturation term in the boundary

condition (8.23).



Chapter 9

Final Remarks

In this Part II of the dissertation we have shown how the information obtained perform-

ing experiments at the sub-cellular scale on the detachment forces of single adhesion

bonds can be upscaled and used in a macroscopic model. For instance, an easy formula

(8.36) linking the adhesive interaction force in the multiphase model with the mean and

stardard deviation of the bond-breaking probability, the microscopic elastic constant,

the bond renewal rate and the maximum number density of adhesive sites is found. An

unexpected by-product of the study of cell-ECM interaction is the deduction of some

laws that qualitatively lead to behaviours like the epithelial-mesenchymal transition and

the mesenchymal-ameboid transition. We are well aware that the comparison can only

be qualitative because our description is purely mechanical, neglecting all the chemical

phenomena triggering such transitions (see, for instance, [35, 37, 64, 65]) and that, for in-

stance, from the viewpoint presented here can at least change the parameters. However,

in our opinion such constitutive laws for the interaction force present in the multiphase

model is by itself very interesting also from the mathematical point of view. In fact,

they are likely to give rise to bistable behaviours and to the presence of hysteresis cycles,

localization and phase transition–like features. However, such characteristics were here

only argued and not proved mathematically. Also from the numerical point of view, the

use of such non-monotonic laws is not trivial and need some care. Other developments

can be obtained taking into account several phenomena not considered here and that

can influence the cell-cell adhesion and cell-ECM adhesion properties. For instance, it is

known that in a tumour mass there are several clones characterized by different adhesive

behaviours and motilities, that hypoxia can induce changes in the mechanisms of adhe-

sion and trigger cell motility, and there are actually several chemical factors influencing

the transition of cells towards a mesenchymal state.
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List of Principal Symbols

and Abbreviations

Abbreviation Description

Lin Space of Continuous Linear Transformation

Skw Subspace of Skew–Symmetric Transformation

Sym Subspace of Symmetric Transformation

Sph Subspace of Spherical Transformation

skw Projection on Skw

sym Projection on Skw

sph Projection on Sph

tr Trace of a Second Order Tensor

Ort Group of Orthogonal Transformation

T Tangent Bundle of a Manifold

meas Lebesgue Measure

�′ Frechet Differential

∂i Derivative with respect to i−th Argument

∇ Gradient (Derivation in Space)

div Divergence

�̇ Time Derivative

dom Domain

ran Range

dim Dimension

W k,p Sobolev Functional Space

Hk Hilbert Functional Space

· Scalar Product on Finite Dimensional Space

| | Norm on Finite Dimensional Space

⊗ Tensor Product on Finite Dimensional Space

× Exterior Product on two or Three Dimensional Space

( | ) Scalar Product on Infinite Dimensional Hilbert Space

∥ ∥ Norm on Infinite Dimensional Space

�† Moore-Penrose Generalized Inverse Map
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