POLITECNICO DI TORINO
Repository ISTITUZIONALE

Investigating Automatic Static Analysis Results to Identify Quality Problems: an Inductive Study

Original

Investigating Automatic Static Analysis Results to Identify Quality Problems: an Inductive Study / Vetro', Antonio;
Zazworka, N.; Shull, F.; Seaman, C.; Shaw, M.. - STAMPA. - (2013), pp. 21-31. (Intervento presentato al convegno
35TH ANNUAL IEEE SOFTWARE ENGINEERING WORKSHOP tenutosi a HERACLION, CRETE, GREECE nel 12-13
OCTOBER 2012) [10.1109/SEW.2012.9].

Availability:
This version is available at: 11583/2502193 since:

Publisher:

Published
DOI:10.1109/SEW.2012.9

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 May 2024

Investigating Automatic Static Analysis Results to Identify

Quality Problems: an Inductive Study
Antonio Vetro'™?, Nico Zazworka®, Forrest Shull*, Carolyn Seaman®3, Michele A. Shaw*

'Fraunhofer CESE
College Park, MD, USA

nzazworka@fc-md.umd.edu
fshull@fc-md.umd.edu
mshaw@fc-md.umd.edu

ABSTRACT

Background: Automatic static analysis (ASA) tools examine

source code to discover “issues”, i.e. code pattdhat are
symptoms of bad programming practices and thatlead to

defective behavior. Studies in the literature hahewn that
these tools find defects earlier than other vetfan activities,
but they produce a substantial number of false tipesi
warnings. For this reason, an alternative appraadb use the
set of ASA issues to identify defect prone filesl momponents
rather than focusing on the individual issues.

Aim: We conducted an exploratory study to investigettether
ASA issues can be used as early indicators of yfdiléts and

components and, for the first time, whether thentpim a decay
of specific software quality attributes, such asntanability or

functionality. Our aim is to understand the critip@rameters
and feasibility of such an approach to feed intiurfel research
on more specific quality and defect prediction nisde

Method: We analyzed an industrial C# web application gsin

the Resharper ASA tool and explored if significaatrelations
exist in such a data set.

Results We found promising results when predicting defect

prone files. A set of specific Resharper categoeee better
indicators of faulty files than common software riat or the

collection of issues of all issue categories, dreb¢ categories
correlate to different software quality attributes.

Conclusions Our advice for future research is to perform

analysis on file rather component level and to eata the
generalizability of categories. We also recommesithgilarger
datasets as we learned that data sparseness cdntdea
challenges in the proposed analysis process.

Categories and Subject Descriptors
D.2.8 Metrics]: Product, D.2.0 [Generall: Standards, D.2.4
[Software/Program Verification]: Statistical Methods

General Terms

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeighed that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa fiist page. To copy
otherwise, or republish, to post on servers oreistribute to lists,
requires prior specific permission and/or a fee.

Conference’lpMonth 1-2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010...$10.00.

“Automatics and Informatics Dept.
Politecnico di Torino, Torino, Italy

antonio.vetro@polito.it

*UMBC
Department of Information Systems
Baltimore, MD, USA

cseaman@umbc.edu

Measurement, Experimentation, Verification.

Keywords

Automatic static analysis, software quality, defeediction.

1. INTRODUCTION

Automatic program analysis is the process of etitrgc
information about a software program from its seuror
artifacts (e.g., from byte or object code, or etiecu traces)
using automatic tools [2]. Program analysis canstadic (i.e.
without executing the program) or dynamic (i.e.hnéxecuting
the program): our work is focused on static analysi

Automatic Static Analysis (ASA) tools analyze tlmuce
code or intermediate code (e.g. byte code) to oiter defect
patterns and violations of good programming prasticyaming
conventions, security flaws and coding standardislations are
called “issues” and could cause defective behawibrthe
software system. ASA tools are able to evaluate domm early
stages in development onward, and do not requirenaing
version of the program. Also, contrary to popularification
techniques such as unit and system tests, ASA tdolsiot
necessitate the specification of a test oracleceSASA tools are
applicable while developers write code (i.e. thpgrate in close
to real-time), their usage suggests a benefit irmge of
identifying problems as early as possible when ceg to
other verification activities such as testing. Asansequence,
given that the time between a fault insertion arsdrémoval
correlates with the cost of removing that defeci, [Bhe
introduction of ASA tools in the development phaseld lead
to important economic benefits.

Even if the usage of ASA tools promises benefitd high
return on investment, the currently available todsd
algorithms often have limitations when applied nagtice. The
most important and well-studied limitation is tlegde number
of false positives returned when ASA is used taniifie defects
that would lead to faults in software applicatio@ realistic-
sized applications ASA tools typically generateubends of
issues, and so the output needs further refinemrahttailoring
from developers to be useful. One of the main gorstis how
to prioritize the long list of issues in order tmd the most
important defects as soon as possible. This cdoajypbe done
in two different ways. First, one can try to undensl which
ASA issues are real indicators of defects that teddults. This
assumes that for each observed fault the relatiedtde actually
signaled by an ASA issue, which is not always tsec

Secondly, one can use the large set of ASA issaes t

understand the coexistence of issues and realtdéfethe same
source code file, or software component. This beoagproach
will not assume a cause-effect relationship betw&8A issues
and software faults, and could therefore captusesavhere, for
example, sloppy programming or Technical Debt Edds to
defects and ASA issues at the same time. Howevgiaiso less
specific in guiding the developer to the specificdtion of the
defect (i.e. the line of code).

Beyond simply predicting the occurrence of defemtsl
faults, it is often also of interest to study howefetts affect
common software quality attributes, such as maiataility,
functionality, usability, security, etc. For exampla security
defect leading to an intrusion can be more expen&w an
organization than a usability defect, and vice aei/hat has
not yet been studied is if ASA issues are able ffectvely
predict a defect (or a defect prone component)targpecify at
the same time which software quality attribute tthect will
affect.

This exploratory study uses the second approaalsiofy
ASA issues to identify defect prone files and congrds and
takes a first leap towards understanding the fédggibof
identifying more specific quality problems. The dyuis
inductive in its character and the main aim is nderstand key
parameters for future model building and to gemertset of
hypotheses and recommendations for future research.

2. RELATED WORK

The effort of the research community has focusedvaluating
ASA tools in two main streams: 1) looking at singi8A issues
to identify defects in single lines of code orlbpking at large
sets of issues as early indicators of the more ctipi®ne
modules (e.g. classes, files, software components).

2.1 First research stream: looking at single
ASA issues to find defects

Several studies in the literature have reported tloa
percentage of false positive ASA issues (i.e. issugt related to
defects) of different tools and in different cortex-or instance,
Wagner et al. [23] analyzed and classified with ezignced
developers issues from three ASA tools (FindBugi?1Q and
PMD) on four industrial projects and one univergitgject, and
they reported that the percentage of false positige 47% for
FindBugs, 31% for PMD and 96% for QJ Pro.

Weydan et al. [24] reported that more than 96%
FindBugs and IntelliJ issues did not relate to daylt or
refactoring in two open source systems (jJEdit arexi).

Similar findings were reported by Vetro’ et al. [220]
applying the FindBugs tool to students’ Java pitsjec

Lower percentages of false positives are reportgd
Ayewah et al. [1] running FindBugs on the JDK 1-61D5; the
authors report that almost 50% of medium/high [isicissues
related to correctness had impact on the fundiitgnand 10%
had a serious impact. On the flip side, 160 issugsof 379
were trivial (i.e., no impact), while 5 issues wehge to faulty
analysis of FindBugs. A similar experiment with tlsame
category of issues was performed at Google, withilai
percentages of false positive issues, and a funhédation
conducted on Glassfish v2 showed an even bettedtres0

defects out of 58 disappeared due to changes made t

specifically address the issues raised by FindBugs.
Switching to the C languages, Boogerd and Moongfb]4
analyzed four industrial projects in C and C++ wathASA tool

of

for the MISRA standard [15], and they discoveredt th small
set of rule violations (12 out of 72 in [4] , an@ dut of 88 in
[5]) were related to defects in source code. Fnallagappan et
al. [16] reported that only 12.5% of defects fixedWindows
Server 2003 pre-release were found with two ASAlstoo
(PREfix and PREfast). Precision was not reportethis study,
so this figure is not directly comparable to theeviously
reported results.

Overall, except for one study [1], we conclude thz
precision of the ASA tools is rather low, becausghtratios of
false positives (i.e. low precision) were reported many
studies.

2.2 Second research stream: using ASA

issues to predict modules with more defects

The second approach is to investigate whether cstati
analysis issues can be used as early predictorshéormost
defect prone modules in software systems, ratham ttentify
the single issues that point to specific defects.

Nagappan et al. [16] discovered positive correteti(0.37
and 0.58) between issue densities from two ASAstoBREfix
and PREfast, and the pre-release defect densityedwer, they
successfully used the ASA issue densities to disndte
between components of high and low quality.

A similar approach was used by the same atthaa
study carried out at Nortel Networks [18], wleutomatic
inspection defects found by ASA tools had a positierrelation
with failures (0.40 and 0.49). Moreover, togethethwcode
churn, ASA issues were good discriminators in idging fault-
prone modules. The study at Nortel continued arely&ar later
Zheng et al. [26] reported even higher correlatibatveen the
number of ASA issues in files and three differemdicators of
external quality, i.e. number of tests failures,mier of
customer reported failures and number of total ufad
(respectively 0.71, 0.60 and 0.73).

Other authors used a similar approach. For instdPlosch
et al. [19] studied the correlation between the bemof
FindBugs and PMD issues, and defects in Eclipse 8MK2.1
and 3.0. They found positive correlations for btdbls (0.34,
0.25 and 0.30 for PMD, and 0.20, 0.08, 0.20 fordBings).
Excluding the LOC related metrics, PMD issues dateel
better with defects than other static metrics (engmber of
methods, number of fields, etc.)

Finally, Marchenko and Abrahamsson [14] used twalsto
namely CodeScanner and PC-LINT, to analyze fivgepts in
the Symbian C++ environment. They computed theetation
between issues and critical defects in two snapshbtthe
project (i.e. within 90 days after the release waittlin 180 days
after the release) and they observed contradictesults:
CodeScanner obtained very high positive correlati@70 and
0.90), while PC-LINT issues strongly correlated ategely (-
0.90 and -0.70) with defects.

Overall, all the current results available in therature but
one [14] show that using ASA issues to find the haefect-
prone files or modules is more effective than udimdjvidual
ASA issues to discover individual defects.

2.3 Contributions of this study

We are helping an industrial partner in understamdhe
usefulness and effectiveness of the Resharper A8lAin their
development projects and we decided to adopt tloense
approach because it is more promising than thé éire, as

summarized in the previous sections. Our long taem is to
provide our partner with models that use ASA issogsoint to
more specific quality problems. These models shbeldble to
make recommendations for code inspections baseal et of
quality characteristics of interest. For example,security
inspection should be able to use a prediction mpdgiting to
software files and components with potential ségdtaws. Or,
the user experience review should be able to usmdel that
selects parts of the software with potential usigtplroblems.

The main novelties that we introduce with respecthe

previously conducted related work are:

« We contribute to the body of evidence of the second
research stream by adding a new
tool/language/application combination (Resharper/
C#/ Web application). The Resharper tool has, to ou
knowledge, not yet been evaluated in past work.

¢« We perform the analysis at two granularity leveks,
software components and source code files.
Components are high-level functional units
encapsulating one or more main functionalitieshef t
software system, such as: “User Login”, “Database
Access”, or “Admin Backend”. Source code files are
low-level artifacts, usually containing classest thge
the building blocks for components. Since past
studies were done at only one of the two levels thi
study will give some insight into the comparison
between the two levels.

¢« We investigate whether specific types of ASA issues
can be linked to specific quality dimensions. Tiss
helpful to understand if an increased importance of
one quality dimension, such as usability, can help
pre-select the set of ASA issue types that wildme
usability defects with the highest precision. Orreno
generally, the approach can be used to priorifiee t
set of ASA issues a reviewer would have to inspect,
based on a prioritization of desired quality
characteristics.

To our knowledge, no past work has yet studiedctireelation
between ASA issue types and quality characterislibe most
similar works we found were two studies that inigsded
instead the typology of defects found by ASA todibe first
one is a study conducted by Nagappan et al. {18}, classified
defects found by the FlexeLint tool using the OD&ssification
schema [6] and found that defects associated WA £ell into
three ODC defect types: checking, assignmetidlization,
and interface. Wagner et al. [23] also classifi&gifAssues, but
they focused on their effect on code rather thair tauses. The
authors used a 5-point scale of severity to clasgife true
positive issues signaled by FindBugs, PMD and Qdfrdive
industrial projects. The highest category level Wisfects that
lead to a crash of the application”, while the Istvavas
“Defects that reduce the maintainability of the €bdThe
authors found that most of the true positives welated to
maintainability of the code (e.g., readability astthngeability).
They also compared ASA issues with defects fouridgusode
reviews and unit tests, and they discovered thatefécts found
by ASA tools were also found by the review, whiksting
activities found different categories of defects.

We adopt a different perspective from these twalisg)
and we focus on whether any ASA issues can pretiifetcts
relating to a very general set of software qualityibutes, using
the well-known ISO/IEC 9126 quality model [9] asasis for
defect classification. The ISO/IEC 9126 Softwarejieaering

Product Quality Model is an international standdod the
evaluation of software quality. It defines a qtyalnodel with
six main characteristics namely, functionality (Fjability (R),
usability (U), efficiency (E), maintainability (Mjand portability
(P), which are further broken down into 22 sub-elteristics.
The standard was revised in March 2011 by the BO/25010
standard committee [10]. Our defect classificati@sed on the
standard was created two months after the new atdndas
released, but we decided to keep the old standzrduse of its
widespread use and because of the large overlapebetthe
two.

We proposed our defect classification in a previaugsk
[22]; it is complementary to already existing déefec
classifications because it helps in understandimggimpact of
the software on different quality attributes. Sughssification
might help programmers and managers with pradiisiis, such
as the prioritization of defects according to théfedent
stakeholders’ interests, the ease of process ireprent
measurement on specific quality dimensions or fnin
verification activities according to specific quglidimensions.
This work is specific to the latter point and it asfirst step
towards understanding whether different ASA isscesld be
related to specific quality dimensions.

3. GOAL AND STUDY DESIGN

The first goal of this study is to understand wketsome
predefined subsets of ASA issues (a.k.a. ASA issuegoried
are eligible as indicators of defect-proneness. Sdowond goal is
to understand whether and which categories of ASA@s are
related to specific software quality dimensionstiBquestions
are analyzed at two levels of granularity: firsthth respect to
components, and secondly source code files. Thienedé
behind the decision to perform analysis on diffedemels is to
better comprehend if results would differ, be thens, or even
contradict each other.

3.1 Study Context

The study was carried out at a software companwt th
develops web-based applications in C# (using .N&J \disual
Studio). The company uses the JIRA tracking sy4temecord
defects.

Of the current projects at this company, we setkotee for
in-depth analysis based on data quality. Prelimpiremalysis
showed that data quality varied considerably betwaeilable
projects, reflecting the level of process conforomf25] with
which developers recorded defects in JIRA. We chthse
project with the best data quality (according te three criteria
below) to reduce the influence of incomplete orsgoilata on
the results:

A. Number of empty fields in defect reports (e.g. migs
data).

! Issue categories vary depending on the ASA toed LSypical
categories for the Resharper tool used in this ystack:
Redundancies in Code,
Improvements, Compiler Warnings, etc.

2 http://www.atlassian.com/software/jira

Common Practices and Code

Resharper
Issues SVN
& categories Repository

> File A

Change Set 1

Change Set 2

JIRA

Issue Tracker

Issue 1: Defect
Componentl1

Issue 2: Defect
Component2
Issue 3:

Change Set 3

Change Request

SVN Commit
Comment:
“Issue 3"

Figure 1: Linkage between Resharper issues, saoaefiles, issue and defect fixes, and compon¥eitow defects indicate that a
file is linked to at least one defect issue in JIRA

B. Number of defect report fields that were filled lwithe
default value (which may indicate the default valuas
accepted rather than that the true value was igegstl).

C. Percentage of components that could be boundes (dur
approach for this is described below).

The selected application has about 35 KLocs andokan
active in production since November 2009, with 4dlepers
working on it in parallel. At the time of the ansiy, the JIRA
system contained 78 fixed and cloSelgfects for the selected
project (which we will call J).

3.2 Mapping between ASA issues, Defects,
Files, and Components

Our methodology for performing the mapping between

components, files, and ASA issues, as illustrateBigure 1, is
based upon the fact that JIRA systems can trackmgtdefects
but any other element that can be associated vaftware
artifacts. Those elements are called “JIRA issuesid each
project has its own set of issues. Example of JiBAles are
change requests, system incident reports, impletienttasks,
etc. Moreover, developers establish links betwelas fn the
SVN code repository to JIRA issues by includingeicids in
their SVN commit comments. Finally, each JIRA issibnked
by the software developers to one or more softwaneponents.
With this information one can build a frequencyléafsee
Figure 2) of files (rows) and components (cellgjigating how

3 JIRA defects with resolution “fixed” and statuddsed” are

the types of defects that were reported, found ® b

reproducible defects, fixed in the implementatioand
validated as repairing the fault. Defects that werat
considered in this analysis are, for example, “oped not yet
fixed defects”, “defects that were duplicates dfestreported
defects”, “defects that could not be reproducedq &defects
that were fixed but not yet validated to solve fangt”

often files were changed (i.e. added, modifieddeleted) when
working on a component. If a JIRA issue is relatecone or
more logical components, then the set of modifikes foelong
to the respective components. Using this methodapping is
built based on evidence of how the system changddeaolved
over time.

Since a file can belong to many logical components,
accept multiple classifications. Further we redsiome possible
noise by mapping a file only to a component if @salinked to
this component in at least 20% of all the filesaobes. This
percentage was set after an analysis of frequeistybditions.

3.3 Study Execution

We derive from our first goal two research quesiam
component (C) and file (F) level:

RQ C1: Which ASA issue categories can identify defgone
components?

RQ F1: Which ASA issue categories can identify defgone
files?

Component 1
Component 2
Component 1
Component 2

File A 1 0 File A X
File B 1 0 # File B X
File C 1 2 File C X X
File D 0 1 File D X

Figure 2: Evidence-based binding of files to logmamponents

Additional research questions are derived fromsawond goal:

RQ C2: Which ASA issue categories can point to cigbeone
components that impact various system quality

characteristics?

RQ F2: Which ASA issue categories can point to cigfeone
files that impact various system quality
characteristics?

We address these questions inductively, investigatvhether
the detection of defect-proneness was possiblefasa which
types of ASA issues were useful for doing so. Wezas the
metrics and the methodology separately for eacleareb
question below.

RQ C1: Which ASA issue categories can identifyctlefe
prone components?

To answer RQ1-C1, we first performed the mapping as
described in sub-section 3.2 to link Resharper esstio
components. Secondly, we checked to see if the aumb
Resharper issues is correlated with software 3ikes step was
necessary to investigate a possible bias from sie If such a
correlation exists, it is necessary to normalize dlata (e.g. by
using issue density instead of number of issuebp $ame
analysis is done for defects.

In a third step we test for correlations betweembers of
defects and numbers of Resharper issues in eachaipes
category, per component. We use the Spearman ceeffi
correlation (a non-parametric statistic), sinceolserve a wide
range of issues and defects that do not appeaolimnf any
defined distribution (see Tables | and II).

RQ F1: Which ASA issue categories can identify alefe
prone files?

To answer this research question we used again the
mapping procedure from sub-section 3.2. We alsalate for
possible bias as described in RQ-C1. Lastly, weededor
correlation between Resharper issue categoriesdafetts by
using a two sample Mann-Whitney test [23] afterning an
unsuccessful Shapiro test for normality. This tyfetest was
more appropriate than the Spearman correlation thee
sparseness of the data; it has also been use@viops studies
[5] [21]. As the results will show, only a smallmber of files
(about 10%) were associated with defects. Therefove
partitioned the sample intnon-defect-prondiles and defect-
prone filesin order to perform the Mann-Whitney test. This
decision implies that the analysis will investigétéles with at
least one defect can be identified by the Reshaipmres
residing in the same file.

RQ C2: Which ASA issue categories can point toctigi®ne
components that impact various system quality

characteristics?

RQ F2: Which ASA issue categories can point tootigfi®ne
files that impact various system quality
characteristics?

For both of these research questions, we usedSBAEC
9126 quality model as a basis for classifying thefects
according to different quality characteristics. Timethod for
classifying defects in this way was developed aatdated in a
prior experiment [22], which also used the samgegtoas the
subject project. In that study, six different swige divided into
two groups with respect to their expertise, clésgdifthe 78
defects using the ISO/IEC 9126 quality main chamstics and

TABLE |. RESHARPER ISSUES DETECTED

Resharper category Number of
issues

ASP.NET 2
Common Practices and Code Improvements 521
Compiler Warnings 36
Constraints Violations 445
Language Usage Opportunities 591
Potential Code Quality Issues 14
Redundancies in Code 645
Redundancies in Symbol Declarations B2
Unused Symbols 7
Sum of issues 2343

TABLE Il. RESHARPER ISSUES ON COMPONENTS

Sum of
Component ReSharper Defects NCSS

issues
Cmp 1 1407 43 3192
Cmp 2 324 13 961
Cmp 3 232 6 711
Cmp 4 29 5 97
Cmp5 7 4 9
Cmp 6 29 4 97
Cmp7 0 3 0
Cmp 8 119 2 246
Cmp 9 93 1 208
Cmp 10 0 0 0
Cmp 11 428 0 1392
Cmp 12 0 0 0
Cmp 13 0 0 147
Cmp 14 0 0 0
Cmp 15 0 0 0

B Functionality

B Functionality & Usaob”it)’
& Reliability 5%

5%

B Reliability
6%

Usability
26%

Functionality
58%

Figure 3: Defect Classification

sub-characteristics. Subjects read the defect t®pad assigned

each defect to one or more quality characteristind sub-
characteristics (the classification is not orthagpn The
underlying idea is that each defect reduces a softwapability
and impacts the corresponding characteristic andb- su
characteristic.

We observed that more experienced software engineer
produced classifications with less variability, anldat the
classification at characteristic level was morgal#e than those
at sub-characteristics level. As a consequencedepted as the
final classification the one created by experts the
characteristics level.

Using that classification we were then able to &hetthe
work described in this paper, whether various tygfeResharper
issues are correlated to the defects related toifgpguality
characteristics.

4. RESULTS

We collected metrics on the revision of the tangetject
preceding the first defect fix commit to includeraany defects
as possible. Resharper reported 2343 issues osotitee code
of the web application: Table | reports the isspes each
Resharper category and Table Il reports, for eamficdl
component, total number of Resharper issues, nuoflaefects
and non-commented source statements. Some compdmeare
0 NCSS for two reasons: a component was built #feerersion
of the software analyzed, or the files-componentppitey
produced zero files for a component, or in somesgdwmth.
Resharper reported issues on files with extensispx, .xaml,
.csproj, .cs (including .xaml.cs, .ascx.cs, .aspx.@shx.cs,
.Master.cs). .

Among the 78 fixed and closed defects, 65 had casnmi
linked to them. According to the experts’ clagsifion [22]
(Figure 3), the majority of defects (58%) impactedly
functionality, followed by usability (26%) and rahiility (6%).
Mixed classifications (FR and FU) accounted for &¢h, while
no defects had impact in the remaining three catego

The total number of files with at least one defiecis 58.
However, excluding those files that were out ofpe®f the
Resharper analysis (e.g., .sql files, .css files) those files that
were added after the revision we analyzed, onlyofLithe 58
remained. These files are listed in Table Ill. Asth
components, the data indicates that there is notlear
relationship between number of defects and Reshaspaes:
the most defect prone file (C) has 35 issues wiseseme of the
less defect prone files (G,l,J) have up to twieeifisue count.

As this is an exploratory study, when analyzingistiaal
significance we ran our tests at a 90% confidergell As we
are intending to discover relationships that canlater more
rigorously examined, we would prefer to err on gide of
finding false positives, rather than missing arigtienship.

We now answer separately each research question.

4.1 RQ C1-C2: Which ASA issue categories

can identify defect-prone components?

Table 1V, first column, reports Spearman correlzgio
between Resharper issues densities of specifie isategories
and defects. Statistically significant values (ippvalue< 0.10)
are shown in bold.

We used issue densities (issues/NCSS) in the foilpw
computations because a positive Spearman cormlatio
(rho=0.93, pval < 0.01) was found between NCSS ramdber
of issues. We did not normalize the number of defbecause
the correlation between defects and size was mptifsiant
(rho=0.42, pval= 0.15)

TABLE Ill. DEFECTS PER FILE

File Component(s) R_esharper Defects
1D issue:

A C1, 29 1
B C1,C2, 15 4
C 35 6
D C1, 84 3
E 7 1
F C1,C2, 73 4
G C3,C1,C2, 73 2
H 1 2

| C1, 45 1
J C1, 65 2
K C5,C9, 7 2

TABLE V. CORRELATION BETWEEN DENSITY OFRESHARPER ISSUE
TYPES AND DEFECT DENSITIES

Defect types:| All F FR FU | R U

RQ1C1

ASP.NET

Common -0.14
Practicesand
Code

Improvements

-0.13 -0.34| 0.07, O -0.2

Compiler 0.3 0.31 0.48 0.28/ 0.04 0.25
Warnings

Constraints 0.11 0.1 0.03 0.09] 0.23 0.18
Violations

Language 0.57 0.53 0.55 0.5 0.2 0.43
Usage
Opportunities

Potential Code| 0.54 0.5 0.51 044 0.22 044
Quality Issues

Redundancies | 0.52 0.49 0.47 0.33] 0.39 0.58
in Code

Redundancies | 0.42 0.45 0.01 0.28 0.17 0.14
in Symbol
Declaration

Unused 0.53 0.53 | 0.75 0.57 | 0.33 | 0.56
symbols

Sum of | 0.19 0.18 0.1 0.09] 0.23 0.23
Resharper
issues

The total number of Resharper issues has an ifisigmi
but positive correlation with defect-proneness 0.4 = 0.29)
with all defects. Looking at Table 1V, column “ARQ C1”, we
observe positive correlations for all but one catggCommon
Practices and Code Improvements), and one (Languagge
Opportunities, rho= 0.57) is significant at the 9@¥nfidence
level (in bold). Hence, the answer to RQ C1 is:yCmfew issue
categories, such akanguage Usage Opportunitiem this
example, are positively correlated with defectthatcomponent
level. Issues in the categolyanguage Usage Opportunities
identify optimizations at code level based on dpeci
characteristics of C#. The most frequent detectioai®:

e Convert 'if statement to 'switch' statement

e Invert 'if statement to reduce nesting

* Loop can be converted into LINQ-expression

e Use 'var' keyword when initializer explicitly
declares type

e Use 'var' keyword when possible

Possible root causes for this correlation arettr@tisage of more
advances language features leads to less defecttie more
language usage opportunities, the less code fesatweeused in
the code). Or, it might be that junior developerse uess
advanced language features than their more expgerjeeers, and
also produce more defect prone code.

Table IV, columns 2-6, reports on the correlatibesveen
Resharper issue densities and defects, dividedtfiredSO\IEC
9126 quality characteristics. The only categoryhvgignificant
positive correlations (in bold) isnused Symbal®.75 with FR
defects, 0.57 with FU defects, 0.56 with U defegts.Unused
symbols issues were type members never used. Weentise
research question the following way: Only very fewlicators
can be mapped to defects on the component levdl, ttzese
indicators point to a wider range of quality chaéeastics rather
than on a single one.

We performed a follow-up analysis to see whetherttio
categories Language Usage Opportunities and UnBgetbols
could be used as defect locators. We tested tlapiakility to
detect defects earlier than metrics of size andptexity, widely
used in the defect prediction literature (e.g.][1B7], [11], [8],
[12]). Figure 4 shows the cumulative distributioh defects
found ranking logical components with respect te fibllowing
indicators:

* An ideal indicator that perfectly rank logical
components from the faultiest one to the ones
with no defect.

* The density of issues of each of the following
Resharper issues categories:

. Unused Symbols
. Language usage opportunities

* The density of all Resharper issues.

* The number of statements (NCSS).

* The average McCabe complexity.

In other words, the curves in Figure 4 represent ho
quickly defects would be found if components weested in
different orders, sorted by the criteria listedahoA horizontal
line on the graph indicates the point at which 86fefects
have been found.

We observe in Figure 4 that the first 3 componentgain
80% of the defects using the ideal locator. Langubigage
Opportunities issue density and the total Reshaggsee density
find 80% of defects at the‘hSComponent, and all the other
indicators at the 6 (Unused Symbols, Complexity and Size).
The figure also shows that the two selected Reshagtegories
are overall close to the “all issues” data line eabhidoes not
consider the category of Resharper issues. Thisates that, at
the component level, the distinction between issaigories
might lead to small but not vast improvement coragdo using
all issues.

4.2 RQ F1-F2: Which ASA issue categories

can identify defect-prone files?

Tables V and Table VI show, both for defectrgrdiles and
non-defect prone files and for each Resharper isstiegory,
mean and standard deviation of Resharper issuestidenthe

Ratio of defects

e ‘ - 4 — — R —
7 k//g?ﬂ—ﬂ—ﬂ/e g—8
e
3 =gt =t
/ﬂf /
2 / |
&—pf—n77
~ Ideal defect locator
3 &~ Unused symbols
& Language usage opportunities
9 —%— Allissues
—A— NCSS
—v—v McCabe complexity

T T T
0 5 10 15

Number of components

Figure 4. Cumulative distribution of defects in conponents

Ratio of defects

and indicators

1.0

08

! 4
e E
[
l.,, L R
=+ l [
e [=i A Ideal defect locator
v‘.‘{ ~5— Redundancies in code
o o1 —#— Language Usage Opporiunities
° 3”"5 —F— All lssues
fi::.. =A— NCSS
i
MeCabe Complexity
2 plexity
T T T T
0 50 100 150
Number of files

Figure 5. Cumulative distribution of defects in files and
indicators

number of files for each set and the p-value of ihann-

Whitney test on the difference between the two.sBwd

percentages indicate p-values that are signifieardur chosen
confidence level of 90%. Table VI presents only borations
of Resharper categories and ISO\IEC 9126 defesstifleations
for which the null hypothesis was rejected.

The categories with highest differences on Reshaspaes
densities in defect prone/non defect prone filese ar
Redundiancies in Code and Language usage oppaetinit
Redundancies in Code are related to Functionatity dsability
defects, both separately and together. Constrgialations are
related to Functionality and Functionality-Usalilit while
Language usage opportunities only with Usability.

We already presented examples of the issues of the
category Language Usage. Examples of Redundanci€nde
are:

e Assignment is not used

» Explicit delegate creation expression is redundan

e Expression is always 'true' or always 'false’

* Redundant boolean comparison

* Redundant cast

e Redundant 'else' keyword

* Redundant explicit type in array creation

e Redundant 'this.' qualifier

We performed the same follow up analysis that veefdr
components and we report in Figure 5 the cumulative
distribution of defects found ranking files withspect to the
following indicators:

TABLE V. RESEARCHQUESTIONF1:RESULTS

Defect prone files (11) Non defect prone files (1p1
Pval

Mean Mean

Resharper issues Resharper isgjs?\,aég Resharper .S;ﬁ?fcrg
issue/NCSS issues’NCSS
ASP.NET 0 0 0 0 NA
Common Practices and Code Improvements A3 D.19 21 [0. 0.18 0.983
Compiler Warnings 0 0.01 0 0.01 0.333
Constraints Violations 0.13 0.05 0.08 0.0% 0.014
Language Usage Opportunities 0.14 0/07 0.08 .080.026
Potential Code Quality Issues 0 0.01 0 0| 0.021
Redundancies in Code 0.27 0.20 0.08 0.11 <0.001
Redundancies in Symbol Declarations 0 0 0[06 0.1 96D
Unused.Symbols 0 0 0 0 NA
Sum 0.67 0.24 0.52 0.23 0.133
TABLE VI. RESEARCHQUESTIONF2 (ONLY STATISTICALLY SIGNIFICANT RESULTS
) o Defect prone files Non defect prone files
Quality characteristic — Mean Sd Resharper | Nrof Mean Sd Resharper | Nr of Pval
Resharper issue category Resharper issues’NCSS files Reshar per issues/NCSS files
issues’NCSS issues’NCSS

F — Constraints Violations 0.14 0.06 6 0.08 0.0% ol 0.013
F — Redundancies in Code 0.23 0.14 6 0.09 0.1 on 0.002
FR — Compiler Warnings 0.02 NA 1 0 0.01 99 0.001
FU — Constraints Violations 0.18 0.04 3 0.08 0.0% o 0.002
FU — Redundancies in Code 0.35 0.05 3 0.09 0.13 of 0.004
FU - Sum 0.74 0.09 3 0.53 0.24 oy 0.062
R — Redundancies in Code 0.39 0.39 2 0.09 0.12 98 0.033
R -Sum 0.93 0.21 2 0.53 0.2 98 0.029
U — Constraints Violations 0.13 0.07 4 0.08 0.0% 96 0.085
U - Language Usage R
Opportunities 0.15 0.07 4 0.09 0.08 96 0.042
U — Potential Code Quality Issugs 0.01 0.01 o o 96 <0.00L
U — Redundancies in Code 0.16 0.12 0.09 0.1 96 0.033
e an ideal indicator that perfectly rank logical locator). The second best indicator is the sum e§harper

components from the faultiest one to the ones with

defect;

e the density of issues of each of the following

Resharper issues categories:

. Language Usage Opportunities

. Redundancies in code
« the density of all Resharper issues;
« the average McCabe complexity ;
¢ the number of statements (NCSS).

A horizontal line in the graphs indicates the pa@htvhich

80% of defects are found.

Results at file level are more diverse than at camept
level: Selecting files based on the densityRe&fdundancies in
codeissues outperforms all the other indicators, reacB0% of
defects at the 4ifile (compared to the®file of the ideal

issues: however, it reaches the threshold at ttfe position.
NCSS and McCabe complexity are less precise imtigatt file
level: they are able to identify the 80% of defemt$y very late:
a user will have to examine at 90% of all file$dve capturing
80% of all defect prone ones.

Overall we answer the research questions on filel lthe
following way:

1.

Multiple Resharper categories are good

candidates for building predictive models for

defect prone modules.

There is a set of promising candidates of
Resharper categories that is able to predict the
quality impact of defect more precisely.

1.0

06

06

0.4

Ratio of defects Functionality

S w —¥— Redundancies in code
L — —f#— Constraints Violations
s | —7— Allissues
° T T T
0 50 100 150
Number of files

Figure 6: Predictor Performance for Functionality

In a follow up analysis we picked two quality chamaistics of
interest, Functionality (F) and Usability (U), amdbtted the
same graphs as before (see Figure 6 and 7) forepective
significant issue categories from Table VI. In bothses

Redundancies in Cods a more efficient predictor than the sum

of all issues.

5. DISCUSSION

The presented data indicates that the answer tetigarch
questions is not straight forward in all cases. tatistics on
component level were rather inconclusive and showsly
small correlations or a small set of useful issategories. We
believe that this indicates the high-level compdnelew is
perhaps not the right perspective for future regealirection.
The more promising results showed on file levekreif we had
to deal with a sparse data set. The results ireticitat number
of promising indicators is larger, and this alsddsofor the
number of categories pointing to specific qualitgldems.

On both analysis levels we could improve the defect

prediction quality by using selected single preatist e.g. as
Figures 4-7 show. Results also indicate that ASgués are
more promising to be good defect predictors thaditional
software metrics, such as complexity or size.

Some of the inspected issue categories, such
redundancies in code and unused symbols (both coemp®and
file level) indicate problems regarding memory weastetro’ et
al. [20] also found a correlation between a simdategory of
FindBugs issues (unused variables) and defectstudests’
projects. The authors commented that this coroglatiould be
the consequence of the programmers’ difficultietshie design
of the class, because they planned to use mowfeliff
variables that indeed were not necessary. A sirei@tanation
could be extended for these categories of Resharper

Further, some of the issues of category Languagegds
Opportunities can also be an indicator of the lewdl
programmers’ knowledge on the language.

6. THREATS TO VALIDITY

We identify a first construct threat in the mappifilgs-
components. Even though this heuristic eliminatde t
subjectivity of the manual mapping, 18% of thedilwere not
assigned to any component.

Another threat is subjectivity in the ISO 9126 defe
classification. We controlled this threat selectittte most
reliable classification made by the experts.
comprehensive discussion of this threat is fountheoriginal
study [22].

as

A more

Ratio of defects Usability

1.0

08

0.6

0.4

Redundancies in code
Language Usage Opportunities
Allissues
Potential quality issues
Constraint violations
T T

100 150

02

0.0

Number of files

Figure 7: Predictor Performance for Usability

The small number of components and of files witfeds
(11) make statistical significance and a definitareswer to our
research questions hard to obtain. We were awatieiothreat
and also for this reason we performed an explazagiudy and
findings will be evaluated and better investigatetuture work.

As in any inductive study, the generalization otgh
findings is debatable because they are tied tgpleeific context
of the analysis. Our research design reflectsabigern: in this
study we were focused on identifying whether thews any
evidence that Resharper issues could be used lgdreficators
of defect-prone parts of the system, and especiathether
estimates could be made regarding the type of tyuatipacted
by those defects. Having obtained an initial indarathat this is
in fact a feasible approach, further study is neamgs to
determine whether the specific correlations foumdhis study
can be replicated elsewhere.

7. CONCLUSIONS

Recent work in the literature ([23] [24] [4] [5] 31 [21]
[20]) showed that automatic static analysis to@sa too many
false positive issues, i.e. issues not relatedniodefect. As a
consequence, looking at the single issues camt@donsuming
and not efficient. For this reason, researchersentbc
investigated whether using the ASA issues can betpnical
managers and developers to identify faulty modukeszeral
studies ([16] [18] [26] [19] [14]]) reported a ptise answer.
The study presented in this paper is in the sesirehm of
research, adding the following contributions:

* We evaluate a combination tool-language
(Resharper,C#) not yet evaluated in past works,
up to our knowledge.

* We performed and compared the analysis at two
granularity levels, i.e. logical components and
files.

* We investigate whether ASA issues are able to
identify specific categories of defects belongiag t
specific quality dimension.

We found that few Resharper categories had positive

correlations with defects at component level, whsleveral
categories were more efficient at file level. Thsues with
higher correlations identify problems regarding eodadability,
performance, and more in general related to maiabdlity
problems.

Moreover, classifying the defects according to tB©
9126 quality characteristics, different ASA issuestegories
were positively correlated to different quality caeteristics.

We compared the capability of Resharper issuesetect
the faultiest modules, both at components and fdesls with
the result that specific ASA issues were more igfficthan the
sum of them or traditional indicators (i.e. softezanetrics).

Based on the experience of this study, we provideré
researchers with the following set of recommendatio

* Analysis on file level might lead to more
promising results than on component level.

* The size of the project should be at least, but
preferably larger than our medium sized project,
to avoid data sparseness problems as we found in
our study.

Considering future research directions, we suggelsetter
understand if results for specific categories aeful in other
environments (e.g. if redundancies in code alsdipreisability
problems when using other ASA tools), or if thipegach will
always require a process of exploration, data amlyand
tailoring towards a specific software environméntlatter case,
the contribution of future research should focus herilding
practitioner-orientednethodsto build such prediction models
rather than building new models.

8. REFERENCES

[1] Nathaniel Ayewah, William Pugh, J. David Morgkaler,
John Penix, and YuQian Zhou. Evaluating static ysisldefect
warnings on production software. Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program analysis fo
software tools and engineerin@ASTE '07, pages 1-8, New
York, NY, USA, 2007. ACM.

[2] D. Binkley. Source code analysis: A road mapFuture of
Software Engineering, 2007. FOSE ;QYages 104 —119, may
2007.

[3] Barry Boehm and Victor R. Basili. Software deffeeduction
top 10 list.Computey 34:135-137, January 2001.

[4] C. Boogerd and L. Moonen. Assessing the valtieanling
standards: An empirical study. Boftware Maintenance, 2008.
ICSM 2008. IEEE International Conference, pages 277 —286,
28 2008-oct. 4 2008.

[5] C. Boogerd and L. Moonen. Evaluating the relatbetween
coding standard violations and faultswithin andoasrsoftware
versions. InMining Software Repositories, 2009. MSR '09. 6th
IEEE International Working Conference ,quages 41 —50, May
2009.

[6] R. Chillarege, I.S. Bhandari, J.K. Chaar, Mdalliday, D.S.
Moebus, B.K. Ray, and M.-Y. Wong. Orthogonal defect
classification-a concept for in-process measurem&tftware
Engineering, IEEE Transactions orl8(11):943 -956, nov
1992.

[7] Ward Cunningham. The wycash portfolio managemen
system. InAddendum to the proceedings on Object-oriented
programming systems, languages, and applications
(Addendum)OOPSLA '92, pages 29-30, New York, NY, USA,

1992. ACM.

[8] Norman E. Fenton and Niclas Ohlsson. Quantieaiinalysis
of faults and failures in a complex software systl#t&E Trans.
Softw. Eng.26:797-814, August 2000.

[9] ISO/IEC. lIsoliec 9126. software engineering foduct
quality, 2001.

[10] ISO/IEC. Isoliec 25010. systems and softwargireeering
— systems and software quality requirements anduatian
(square) — system and software quality models, 2011

[11] A.Gilnes Koru, Khaled EI Emam, Dongsong Zhang,
Hongfang Liu, and Divya Mathew. Theory of relatidefect
pronenessEmpirical Softw. Enggl13:473—-498, October 2008.

[12] A. Giines Koru and Hongfang Liu. An investigatiof the
effect of module size on defect prediction usiragistmeasures.
SIGSOFT Softw. Eng. Note30:1-5, May 2005.

[13] A. Gunes Koru, Dongsong Zhang, and Hongfang. Li
Modeling the effect of size on defect pronenessoften-source
software. InProceedings of the Third International Workshop
on Predictor Models in Software Engineerif@ROMISE '07,
pages 10—, Washington, DC, USA, 2007. IEEE Computer
Society.

[14] Artem Marchenko and Pekka Abrahamsson. Priedict
software defect density: a case study on automstegtt code
analysis. InProceedings of the 8th international conference on
Agile processes in software engineering and extreme
programming XP'07, pages 137-140, Berlin, Heidelberg, 2007.
Springer-Verlag.

[15] MIRA Ltd. MISRA-C:2004 Guidelines for the usé the C
language in critical systems, October 2004.

[16] Nachiappan Nagappan and Thomas Ball. Statalyais
tools as early indicators of pre-release defectsithen In
Proceedings of the 27th international conferenceSumftware
engineering ICSE '05, pages 580-586, New York, NY, USA,
2005. ACM.

[17] Nachiappan Nagappan, Thomas Ball, and And=dier.
Mining metrics to predict component failures.Rroceedings of
the 28th international conference on Software esgiimg
ICSE '06, pages 452—-461, New York, NY, USA, 200EM

[18] Nachiappan Nagappan, Laurie Williams, John éhahl,
Will Snipes, and Mladen Vouk. Preliminary results osing
static analysis tools for software inspectiSoftware Reliability
Engineering, International Symposium, @429-439, 2004.

[19] R.Plosch, H. Gruber, A.Hentschel, G. Pombergand
S. Schiffer. On the relation between external safevquality
and static code analysis. Boftware Engineering Workshop,
2008. SEW '08. 32nd Annual IEEEages 169 —174, oct. 2008.

[20] A.Vetro’, M. Morisio, and M. Torchiano. An ggirical
validation of findbugss issues related to defelff§. Seminar
Digests 2011(1):144-153, 2011.

[21] A.Vetro’, M. Torchiano, and M. Morisio. Asssag the

precision of findbugs by mining java projects deped at a
university. In IEEE CS Press, editéoceedings of MSR 20,10
pages 110-113, 2010.

[22] A.Vetro’, N. Zazworka, C. Seaman, and F. $hulsing

the ISO/IEC 9126 product quality model to classiifects : a
controlled experiment. IProceedings of the 16th International
Conference on Evaluation & Assessment in Software
Engineering (EASE 20122012.

[23] Stefan Wagner, Jan Ji¢Yarjens, Claudia Kobed Peter
Trischberger. Comparing defect finding tools widviews and
tests. InIN PROC. 17TH INTERNATIONAL CONFERENCE
ON TESTING OF COMMUNICATING SYSTEMS (TESTCOM
2005), VOLUME 3502 OF LNCPages 40-55. Springer, 2005.

[24] F.Wedyan, D.Alrmuny, and JM. Bieman. The
effectiveness of automated static analysis tools fault
detection and refactoring prediction. IBoftware Testing
Verification and Validation, 2009. ICST '09. Intational
Conference orpages 141 —150, april 2009.

[25] Nico Zazworka, Kai Stapel, Eric Knauss, Forr&hull,
Victor R. Basili, and Kurt Schneider. Are develogpeomplying
with the process: an xp study. Bmoceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software
Engineering and MeasuremerESEM °'10, pages 14:1-14:10,
New York, NY, USA, 2010. ACM.

[26] J. Zheng, L. Williams, N. Nagappan, W. Snipé<p.
Hudepohl, and M.A. Vouk. On the value of static lgsia for
fault detection in software.Software Engineering, |EEE
Transactions on32(4):240 — 253, april 2006.

