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Model Predictive Control of stochastic LPV Systems
via Random Convex Programs

G. C. Calafiore∗, L. Fagiano∗,∗∗

Abstract— This paper considers the problem of stabilization
of stochastic Linear Parameter Varying (LPV) discrete time
systems in the presence of convex state and input constraints. By
using a randomization approach, a convex finite horizon optimal
control problem is derived, even when the dependence of the
system’s matrices on the time-varying parameters is nonlinear.
This convex problem can be solved efficiently, and its solution
is a-priori guaranteed to be probabilistically robust, up to a
user-defined probability level p. Then, a novel receding horizon
control strategy that involves, at each time step, the solution of
a finite-horizon scenario-based control problem, is proposed. It
is shown that the resulting closed loop scheme drives the state
to a terminal set in finite time, either deterministically, or with
probability no less than p. The features of the approach are
shown through a numerical example.

I. INTRODUCTION

In the last decade, several approaches have been proposed
for the design of Model Predictive Control (MPC) laws for
Linear Parameter Varying (LPV) systems, see, e.g., [1], [2],
[3], [4], [5], [6], [7]. The existing techniques have the fol-
lowing common features: they are deterministic algorithms,
in the sense that for given state value x and parameter value
θ they provide always the same optimal control sequence;
they guarantee robust stability and satisfaction of constraints;
finally they assume convexity of the sets Σ containing the
time-varying system matrices A(θ), B(θ) and affine depen-
dence of the matrices on the parameter θ. Some approaches
are also able to reduce conservativeness when a bound on
the rate of variation of the parameters is available, see, e.g.,
[1], [5].

However, there might well be control problems in which
Σ is not convex, and A(θ), B(θ) do not depend affinely on
θ. In these cases, the existing approaches cannot be applied
directly (they may possibly be applied indirectly, by first
overbounding Σ with its convex hull, at the cost of potentially
introducing conservatism). In order to cope with this issue,
we recently proposed [8] a novel approach for the design of
MPC laws for LPV systems. Following an idea common to
stochastic MPC techniques (see, e.g., [9], [10]), we assume
that the time-varying parameters θ have known stochastic
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nature, and exploit this knowledge in the control design. The
characterization of θ is quite general, since not only bounds
on its rate of variation, but also complex nonlinear models of
its time-evolution can be accounted for. Yet, the problem to
be solved at each time step is still convex and of manageable
size, and constraint satisfaction and convergence of the state
to a terminal set are still achieved, with at least a user-
defined probability p. The key point to achieve these features
is a shift of paradigm, from a deterministic algorithm to a
randomized one, i.e. an algorithm that relies on some random
choices. In particular, we rely on the solution of a scenario
Finite Horizon Optimal Control Problem (FHOCP), in which
we do not consider all possible outcomes of parameter
values, but only a finite number M of randomly chosen
instances of them, named the “scenarios”. By exploiting
recent results in Random Convex Programming (RCP) [11],
[12], [13], [14], we provide a precise guideline on how to
choose M in order to have the guarantee that the probability
of success is indeed at least p. Moreover, we propose a novel
receding horizon implementation of the scenario FHOCP,
named MPCR (MPC via Random convex programs), and
prove its constraint satisfaction and convergence properties.
Randomized approaches for MPC have been already pre-
sented in the literature (see, e.g., [15], [16]), however, they
either result to be very computationally demanding and can
not handle in a straightforward way the presence of state
constraints, or do not give any theoretical guarantee on the
actual probability of constraint satisfaction. This paper briefly
resumes the main results of [8] and presents the application
of the approach in a numerical example.

II. PROBLEM SETTING AND ASSUMPTIONS

Consider the following uncertain, discrete time LPV sys-
tem:

xt+1 = A(θt)xt +B(θt)ut (1)

where t ∈ Z is the discrete time variable, xt ∈ Rn is the
system state, ut ∈ Rm is the control input, θt ∈ Θt ⊆ Rg

is the vector of uncertain parameters, and A(θ), B(θ)
are matrices of suitable dimensions. The (generally time
varying) sets Θt, containing the values of parameter θt at
time t, are subsets of a time invariant set Θ. Let us consider
the following assumptions.

Assumption 1: (Model set) The set Σ
.
= {A(θ), B(θ) :

θ ∈ Θ} is bounded.
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Assumption 2: (Time varying parameters) We assume that
the parameter θt is measured at each time step t. Also,
{θt}t=...,−1,0,1,... is assumed to be a strict-sense stationary
stochastic process and, for any time instant τ , we denote with
Pτ the conditional distribution of the forward sequence δτ =
(θτ+1|τ , . . . , θτ+N−1|τ ), given the past sequence P(τ)

.
=

{θt}t≤τ , where N is some given integer, and we let ∆τ

be the support set of Pτ , that is, the set containing the
conditional values of δτ , given P(τ). We assume further that
it is possible to sample values of δτ according to Pτ .

Note that we make no specific assumptions on Pt and on the
support sets ∆t, which may be unbounded and of any form,
as long as Assumption 1 holds. The probability measure Pt

itself can be also not known explicitly, as long as there is
some mechanism to obtain samples of δt.

The control problem is to regulate the system state to the
origin, subject to the following (possibly time varying) input
and output constraints:

xt ∈ X(θt), ut ∈ U(θt), ∀t (2)

We assume the constraint sets to be convex in x and u:
Assumption 3: (Convexity of the constraint sets) For any

θt ∈ Θt and any t, X(θt) ⊂ Rn and U(θt) ⊂ Rm are
convex; they contain the origin in their interiors and they
are representable by:

X(θt) = {x ∈ Rn : fX(x, θt) ≼ 0}
U(θt) = {u ∈ Rm : fU (u, θt) ≼ 0} , (3)

where ≼ denotes element-wise inequalities, each entry of
the functions fX : Rn × Θt → Rr, fU : Rm × Θt → Rq is
convex in x and u, respectively, and r, q are suitable integers.

We finally assume that there exists a convex positively
invariant terminal set Xf and an associated affine state-
feedback control law u = K(θt)x, possibly depending on
the parameter θt, that renders the origin of (1) robustly
asymptotically stable, while robustly satisfying input and
state constraints:

Assumption 4: (Terminal set and terminal control law) A
set Xf , containing the origin in its interior, and a linear state
feedback terminal control law u = Kf (θt)x, Kf ∈ Rm×n,
exist for system (1), such that:

Xf = {x : fXf
(x) ≼ 0};

where fXf
: Rn → Rl has convex components and l is a

suitable integer, and:

∀θt ∈ Θt, ∀xt ∈ Xf , ∀t,
A(θt)xt +B(θt)Kf (θt)xt ∈ Xf ;

fX(xt, θt) ≼ 0, fU (Kf (θt)xt, θt) ≼ 0.

The origin of the closed loop system with the feedback law
u = Kf (θt) is asymptotically stable.

III. MPC FOR LPV SYSTEMS VIA RANDOM CONVEX
PROGRAMS

Let N ∈ N be a finite control horizon, chosen by the
control designer, let t ≥ 0 be the current time instant and
let xt be the system state observed at time t. We consider
the predicted evolution of (1) for N steps forward, under a
control law determined at the current time t:

uj|t
.
= Kf (θj|t)xj|t + vj|t, j = 0, . . . , N − 1, (4)

where uj|t is the predicted input at time t + j computed at
time t, x0|t = xt, θ0|t = θt and, for j = 1, . . . , N ,

xj|t = Acl(θj|t)xj−1|t +B(θj|t)vj−1|t, (5)

and Acl(θj|t) = A(θj|t) + B(θj|t)Kf (θj|t). Here, vj|t, j =
0, . . . , N − 1, are control corrections at time steps t + j,
computed at time t. Closed-loop prediction of state and
input trajectories is quite common in the context of robust
MPC and MPC for LPV systems, since it allows significant
improvements in feasibility, see e.g. [1], [17].
The recursion (5) implies

xt+j|t = Aj
cl(θj|t)xt +Φj(θj|t)Vt, (6)

where

Φj(θ) = [Aj−1
cl (θ)B(θ) · · · Acl(θ)B(θ) B(θ) 0 · · · 0],

Vt = [v⊤0|t · · · v⊤N−1|t]
⊤ ∈ RNm,

and ⊤ denotes the matrix transpose operation. The predicted
state and input trajectories, for a given initial state xt and
sequence of control correction Vt, are random, since they
depend on the sequence δt of random variables θj|t, j =
1, . . . , N − 1. As a consequence of Assumption 2, we have
that the random quantity δt belongs to the set ∆t, and events
related to δt are measured by Pt. Finally, let us define the
following (stochastic) cost function:

J(xt, δt;Vt)
.
=

N−1∑
j=0

x⊤
t+j|tQxt+j|t + u⊤

t+j|tRut+j|t (7)

where Q = Q⊤ ≻ 0, R = R⊤ ≻ 0 are weighting matrices
chosen by the control designer.

Without additional assumptions, like linearity of the time-
varying matrices w.r.t. to θt and convexity Θt, it is not
possible in general to enforce robust constraint satisfaction,
as done e.g. in [4], [5]. In our approach we deal with this
issue by considering a discrete set of predicted state and
input trajectories, obtained for a number M of randomly
extracted scenarios of δt at time t, i.e. δ(1)t , . . . , δ

(M)
t . Each

scenario has the probability distribution Pt according to
Assumption 2, and the quantity ωt

.
= (δ

(1)
t , . . . , δ

(M)
t ) is

named the “multisample” of scenario extractions at time t.
The probability distribution of ωt ∈ ∆M

t is given by PM
t .

Based on the random scenarios, we obtain M different state



and input predictions from (6), namely, for i = 1, . . . ,M ,

x
(i)
0|t = xt

x
(i)
j|t = Aj

cl(θ
(i)
j|t)xt +Φj(θ

(i)
j|t)Vt, j = 1, . . . , N,

u
(i)
j|t = Kf (θ

(i)
j|t)x

(i)
j|t + vj|t, j = 0, . . . , N − 1,

(8)

where the sequence
{
θ
(i)
j|t

}N−1

j=0
= δ

(i)
t . In the scenario

optimization approach, we will minimize the worst case cost
with respect to the M values of δt in the multisample, subject
to the corresponding state and input constraints. In order to
guarantee feasibility of the scenario optimization problem,
we transform the hard constraints of Assumption 3 into soft
ones, by introducing a slack variable qt ∈ R, qt ≥ 0. Then,
the scenario-based FHOCP is defined as follows:

P(xt, ωt) : min
Vt,zt,qt

zt + αqt (9a)

subject to

J(xt, δ
(i)
t ;Vt) ≤ zt; i = 1, . . . ,M (9b)

fX(x
(i)
j|t, θ

(i)
j|t)− 1qt ≼ 0; j = 1, . . . , N − 1, i = 1, . . . ,M

(9c)
fU (u

(i)
j|t, θ

(i)
j|t)− 1qt ≼ 0; j = 0, . . . , N − 1, i = 1, . . . ,M

(9d)
fXf

(x
(i)
t+N |t)− 1qt ≼ 0; i = 1, . . . ,M. (9e)

qt ≥ 0 (9f)

In (9a), the weighting scalar α > 0 is chosen by the control
designer, and 1 denotes a column vector of appropriate
length, containing all ones. We denote with V∗

t (xt, ωt) =
{v∗0|t, . . . , v

∗
N−1|t}, z∗t (xt, ωt) and q∗t (xt, ωt) an optimal

solution to problem (9).
We note that, once the multisample ωt has been extracted,

all the constraints (9b)-(9e) are convex in the decision vari-
ables, hence the scenario FHOCP is a convex optimization
problem, which can be solved efficiently also with a large
number M of samples, even when the system’s matrices
and the constraints are not convex w.r.t. to the time varying
parameters θt. This is the main advantage of using the
scenario approach, since it allows to treat, in a straightfor-
ward way, problems where the assumption of convexity of
the model set is not met. At the same time, the scenario
approach still yields guarantees, in a probabilistic sense, on
constraint satisfaction and convergence to the terminal set.
Before introducing these properties, let us re-write prob-
lem P(xt, ωt) in a more compact form. By collecting the
optimization variables (Vt, zt, qt) in vector st ∈ RmN+2,
the cost can be expressed as zt + αqt = c⊤ st, where
c = [0, . . . , 0, 1, α]⊤. Moreover, the constraints (9b)-(9f)
can be expressed compactly as h(st, xt, δ

(i)
t ) ≤ 0, for all

i = i, . . . ,M , where h : RmN+2 ×Rn ×∆t → R is defined
as:

h(st, xt, δ
(i)
t )

.
=

max

{
max

j=0,...,N−1

{
J(xt, δ

(i)
t ;Vt)− zt, fX(x

(i)
j|t, θ

(i)
j|t)− 1qt,

fU (u
(i)
j|t, θ

(i)
j|t)− 1qt

}
, fXf

(x
(i)
t+N |t)− 1qt,−qt,

}
.

Notice that h(st, xt, δ
(i)
t ) is convex in both st and xt, since it

is the point-wise maximum of convex functions. The scenario
FHOCP can hence be rewritten as

P(xt, ωt) : min
st

c⊤st (10)

subject to: h(st, xt, δ
(i)
t ) ≤ 0, i = 1, . . . ,M.

We denote with s∗t (xt, ωt) = (V∗
t , z

∗
t , q

∗
t ) an optimal solution

of P(xt, ωt). Notice that, due to the way it has been defined,
problem P(xt, ωt) is always feasible. We further assume that
this problem always attains a unique optimal solution.

Since the scenario FHOCP accounts only for a finite
number M of values of δ(i)t , i = 1, . . . ,M , a crucial aspect
to be considered is the probability with which the solution
s∗t is able to satisfy constraints also for another, previously
unseen scenario δt ∈ ∆t. This aspect is formalized by the
notion of reliability Γ of the scenario-FHOCP:

Γ
.
= Pt{δt : h(s∗t , xt, δt) ≤ 0}, (11)

where we notice that h is now evaluated at the optimal
scenario solution s∗t , and the state and input trajectories that
enter the definition of h are the “actual,” uncertain, ones,
obtained at a random δt.

In order to provide an explicit link between Γ and the
number of scenarios M considered in (9), we exploit the
fact that problem P(xt, ωt) belongs to the class of so-called
Random Convex Programs (RCP) (see e.g. [11], [12], [14])
and, in particular, the results of [11], [14] apply to our
context. Denote with d = mN + 2 the number of decision
variables in problem P(xt, ωt), let p ∈ (0, 1) be a given
desired reliability level, let β ∈ (0, 1) be a given small
probability level (say, β = 10−9), and let M be an integer
such that

Φ(p, d,M) ≤ β, (12)

with Φ(p, d,M)
.
=

d−1∑
j=0

(
M
j

)
(1−p)jpM−j . Then, it holds

that (see [11], [14])

PM
t {ωt : Γ(ωt) ≥ p} ≥ 1− β. (13)

The practical importance of the result (13) stems from the
fact that the number M of scenarios necessary to fulfill
condition (12) grows at most logarithmically with β−1 (see
e.g. [11]). Tighter values of M for given β and p can be
obtained by inverting numerically (12). Hence, the parameter
β may be fixed by the designer to a very low level, say
β = 10−9, and still the number M of scenarios necessary
to guarantee (13) remains manageable, as we show in the
example of Section IV. With such a small value of β, a
“certainty equivalence” principle can be adopted, by which,
to all practical engineering purposes, the event {Γ(ωt) ≥ p}
in (13) is the “certain” event. In other words, the possibility
that {Γ(ωt) ≥ p} is not satisfied by the scenario problem
is so remote that, before having any concern about it, the
designer should better verify the validity of many other
assumptions and approximations in the model. We will
adopt this certainty equivalence principle henceforth in this
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paper, essentially “eliminating” from consideration the outer
probability level in (13), since with practical certainty (the
expression “with practical certainty” shall be used in the
rest of this note as a synonym of “with probability larger
than 1−β,” where β > 0 is some extremely small value) the
inequality {Γ(ωt) ≥ p} holds true. This simplifies greatly
the practical application of scenario techniques, and makes
the whole approach more clear and understandable by both
theoreticians and control practitioners.
On the basis of (13), we can state a first result on the
scenario FHOCP.

Proposition 3.1: (Finite horizon robustness) Given the
state xt of system (1) at time t, a desired reliability level
p ∈ (0, 1), and a very small β ∈ (0, 1), let the number M of
scenarios in problem P(xt, ωt) be chosen so to satisfy (12),
and let (V∗

t , z
∗
t , q

∗
t ) be the solution of the scenario problem

P(xt, ωt). Then, with practical certainty (i.e. with probability
larger than 1−β) it holds that the computed control sequence
V∗
t :

a) steers the state of system (1) to the terminal set Xf in N
steps, with probability at least p and constraint violation q∗t ,
i.e.: Pt{δt : fXf

(xt+N , δt)− 1q∗t ≼ 0} ≥ p;
b) Satisfies all state constraints with probability at least p and
constraint violation q∗t , i.e.: Pt{δt : fX(xt+j , δt) − 1q∗t ≼
0, ∀j ∈ [1, N ]} ≥ p;
c) Satisfies all input constraints with probability at least p and
constraint violation q∗t , i.e.: Pt{δt : fU (u

∗
t+j , δt) − 1q∗t ≼

0, ∀j ∈ [0, N − 1]} ≥ p.

The proof of this result follows immediately from eq.
(13), which states that, with practical certainty, the optimal
solution s∗t of the scenario problem satisfies h(s∗t , xt, δt) ≤ 0
with probability at least p, which indeed implies that points
a)-c) in the proposition hold.

Proposition 3.1 provides a sufficient condition on M ,
such that the reliability of the solution s∗t is at least
equal to a desired value p. This result can be regarded
to as an “open-loop”, or finite horizon, approach, since
the corrective actions v∗j|t are computed at time instant
t and then applied forward in time, without observing
the actual evolution of the system from t onwards. In
the next section we present the main contribution of this
paper, that is the description and convergence proof of a
new receding-horizon algorithm that embeds the scenario
problem and allows to take advantage of the measure of the
state xt and of the parameter θt, at each time step.

In the following, the notation is set as follows: “∗”
variables, such as z∗t , q

∗
t ,V∗

t = {v∗0|t, . . . , v
∗
N−1|t}, denote

the optimal solution of the scenario optimization problem
P(xt, ωt) at time t, given xt; “∼” variables, z̃t, q̃t, Ṽt,
denote, respectively, two scalar values and a sequence of
N vectors of dimension m, as defined in the algorithm
below; finally plain variables, zt, qt,Vt, denote the
running values of the variables z, q and of the sequence

V = {v0|t, . . . , vN−1|t} in the algorithm. The first entry
in Vt, namely v0|t, is the actual control correction that is
applied to the system (1) at time t.

MPCR Algorithm
(Initialization) Choose a desired reliability level p ∈ (0, 1)
and “certainty equivalence” level β ∈ (0, 1) (say, β = 10−9,
or β = 10−12). Let M be an integer satisfying (12). Choose
ε ∈ (0, 1] (see Remark 3.1 below for the meaning of ε and
for guidelines on its choice). Given an initial state x0, extract
ω0 according to PM

0 , solve problem PM (x0, ω0) and obtain
the optimal control sequence V∗

0 = {v∗0|0, v
∗
1|0 . . . , v

∗
N−1|0},

and the optimal objective z∗0 and constraint violation q∗0 . Set
z0 = z∗0 , q0 = q∗0 , V0 = V∗

0 , and apply to the system the
control action u0 = Kfx0 + v0|0.
(1) Let t := t+ 1, observe xt, and set

Ṽt = {v1|t−1, . . . , vN−1|t−1, 0}
z̃t = max

(
0, zt−1 − εx⊤

t−1Qxt−1

)
q̃t = qt−1

(2) Extract the multisample ωt according to PM
t , and

solve problem PM (xt, ωt). Let (V∗
t , z

∗
t , q

∗
t ) be the obtained

optimal solution.
(3) Evaluate the following collectively exhaustive and
mutually exclusive cases:
(3.a) If z∗t > z̃t and z̃t < x⊤

t Qxt, then set
Vt = Ṽt; zt = 0; qt = q̃t;
(3.b) If z∗t > z̃t and z̃t ≥ x⊤

t Qxt, then set
Vt = Ṽt; zt = z̃t; qt = q̃t;
(3.c) If z∗t ≤ z̃t, then set Vt = V∗

t ; zt = z∗t ; qt = q∗t ;
(4) Apply the control input ut = Kf xt + v0|t, then go to
1).

Remark 3.1: The inequality z∗t ≤ z̃t, checked at step (3)
of the MPCR Algorithm, can be interpreted as a verification
of a required minimum improvement, in terms of worst-
case cost, achieved by the newly computed optimal solution
(V∗

t , z
∗
t , q

∗
t ) of the scenario problem at time step t, with

respect to the previous step. The user-defined parameter
ε ∈ (0, 1] influences such a requirement: the closer the value
of ε is set to 0, the more likely it is that case z∗t ≤ z̃t
is met, so that the MPCR algorithm relies, at each time
step, on the newly computed optimal solution. Vice-versa,
the closer is the value of ε to 1, the more likely it is that
the complementary condition z∗t > z̃t is detected, so that the
MPCR algorithm employs the previously computed solution.

The next result is concerned with the guaranteed properties
of the closed loop system obtained by applying Algorithm
3.1. We note that, by virtue of Assumption 4, under the
terminal control law u = Kf x the origin of system (1) is
robustly asymptotically stable with region of attraction equal
to Xf , and constraints are robustly satisfied for all x ∈ Xf .
Therefore, only the convergence of the state trajectories to
Xf and the satisfaction of constraints for x /∈ Xf are of
interest here.



Theorem 3.1: (Properties of Scenario MPC) Let Assump-
tions 2-4 be satisfied and let p ∈ (0, 1) be a chosen reliability
level. Let v0|t, t = 0, 1, . . . denote the sequence of control
actions produced by the MPCR Algorithm, and consider the
closed loop system obtained by applying to (1) the control
law ut = Kfxt + v0|t. Let x0 /∈ Xf . Then:
(a) With practical certainty, at all time steps t = 0, 1, . . ., the
probability that the state and input constraints are satisfied
with constraint violation qt is at least p, that is Pt{δt :
fX(xt+1, δt)−1qt ≼ 0 ∩ fU (ut, δt)−1qt ≼ 0} ≥ p, t =
0, 1, . . .
(b) The MPCR Algorithm either: (i) makes the state trajec-
tory converge to the terminal set in finite time, i.e. xt+N ∈
Xf , for some N < ∞, or (ii) there exists a finite time t∗ such
that, with practical certainty, the forward control sequence
{v0|t∗ , v0|t∗+1, . . . v0|t∗+N−1} drives the state of the closed-
loop system to the terminal set at time t∗ + N − 1, with
probability at least p and constraint violation qt∗ .

Proof: See [8].

IV. NUMERICAL EXAMPLE

We consider the system (1) with

A(θt) =

[
θt,1 log(θt,2) θt,3 + eθt,4 sin(θt,5)

0 θt,6

]
B(θ) =

[
θt,3 + eθt,4 cos(θt,5)

0.5θt,6

]
,

(14)
where θt,i is the i−th component of the parameter vector
θ. We also consider the following parameter-dependent con-
straints on the input and state variables:

X(θt) =

x ∈ R2 :

 1 0.1θt,8
0.1θt,8 1
−1 −0.1θt,8

−0.1θt,8 −1

x ≤

 2
2
2
2




U(θt) = {u ∈ R : |u| ≤ 2 + 0.1θt,7}

.

(15)
The parameters θt,i, i = 1, . . . , 8, are independent and
uniformly distributed in the ranges [0.9,1.1], [2,3], [.95,1.3],
[-10,-2], [0,2π], [0.8,1.2], [-1,1], [-1,1], respectively. We
employ the following terminal control law and terminal set
satisfying Assumption 4:

Kf = [−0.8057 − 0.8543]
Xf =

{
x ∈ R2 : xTQfx ≤ 1

}
Qf =

[
1.5452 0.1865
0.1865 0.9792

]
.

We designed the MPCR law with N = 10, Q =

[
1 0
0 1

]
,

R = 1 and α = 104, β = 10−9 and ε = 0.01. By setting a
desired guaranteed probability p = 0.95 for the design, we
obtained a value M = 840 from (12). It has to be noted that
the value of M does not depend on the dimension of the
state variable or of the uncertainty/disturbance variables; it
only depends on the chosen probability levels p, β and on
the number of decision variables in the scenario FHOCP, i.e.
the number m of inputs multiplied by the control horizon
N , plus the slack variables z and q. However, the number
of constraints embedded in h(s, xt, δt) depends linearly on

n, m and N . In conclusion, for a fixed value of β, the
growth of the overall number of constraints in the scenario
problem is ∼ (n · m2 · N2/(1 − p)), i.e. quadratic in the
horizon N for fixed value of p, regardless of the number
of time-varying parameters. We carried out Ntrials = 50, 000
Monte Carlo simulations, starting from the state value x0 =
[−1, −2.5]⊤, which is outside the state constraints and
whose corresponding uncorrected input, i.e. Kfx0 = 2.94,
is also outside the input constraint set. Indeed this initial
condition is not feasible for the deterministic counterpart
of the scenario problem, hence for some extractions of ω0

the constraint violation q∗0 is not negligible. In the Monte
Carlo simulations, the probability of success p̂ has been

estimated as p̂ =
Ntrials −Nfailures

Ntrials
, where Nfailures is the

number of simulations in which some of the constraints were
not satisfied. The results of the Monte Carlo simulations, with

TABLE I
NUMERICAL EXAMPLE. EMPIRICAL PROBABILITIES p̂ OF CONSTRAINT

SATISFACTION AND CONVERGENCE TO THE TERMINAL SET, FOR TWO

DIFFERENT VALUES OF p AND β = 10−9 .

p=0.5 (M=77) p=0.95 (M=840)
Finite Horizon 0.891 0.961
MPCR algorithm 0.975 0.996

either the finite horizon solution or the MPCR algorithm,
are reported in Table I for p = 0.5 and p = 0.95. It can
be noted that all of the empirical probabilities satisfy the
theoretical bounds, and confirm that the receding horizon
implementation, by re-optimizing the control corrections at
each time step, yields higher probabilities w.r.t. the finite
horizon solution.
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