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Abstract—Uncharacterized proteins pose a challenge not just
to functional genomics, but also to biology in general. The
knowledge of biochemical functions of such proteins is very
critical for designing efficient therapeutic techniques. The bot-
tleneck in hypothetical proteins annotation is the difficulty in
collecting and aggregating enough biological information about
the protein itself. In this paper, we propose and evaluate a protein
annotation technique that aggregates different biological infor-
mation conserved across many hypothetical proteins. To enhance
the performance and to increase the prediction accuracy, we
incorporate term specific relationships based on Gene Ontology
(GO). Our method combines PPI (Protein Protein Interactions)
data, protein motifs information, protein sequence similarity and
protein homology data, with a context similarity measure based
on Gene Ontology, to accurately infer functional information for
unannotated proteins. We apply our method on Saccharomyces

Cerevisiae species proteins. The aggregation of different sources
of evidence with GO relationships increases the precision and
accuracy of prediction compared to other methods reported in
literature. We predicted with a precision and accuracy of 100%
for more than half proteins of the input set and with an overall
81.35% precision and 80.04% accuracy.

Index Terms—Function Prediction, Gene Ontology, Protein
Interaction Network, Protein motifs

I. INTRODUCTION

As long as there are hundreds of conserved proteins with
unknown function even in model organisms, such as Es-
cherichia coli, Drosophila melanogaster or Saccharomyces
cerevisiae, the possibility of a ‘complete’ understanding of
these organisms as biological systems remains a challenge.
Complete comprehension of protein function is a prerequisite
for rational development of antibacterial compounds, drugs,
and vaccines. Hypothetical proteins on the other hand cannot
be taken into account as potential targets in a drug or vaccine
manufacturing process since their role is poorly defined in
the metabolic pathways. To make drugs more efficient and to
widen the set of their possible targets, it is necessary to devise
effective computational techniques for the precise annotation
of uncharacterized proteins.

Until recently, several approaches have been developed for
predicting protein function using high throughput datasets.

These techniques utilize information derived from sequence
similarity, phylogenetic profiles, protein 3D structure, protein-
protein interactions, protein complexes, gene expression pro-
files etc., [1]. The most recent and prominent set of techniques
uses protein-protein interactions data in a variety of ways to
infer protein function [2], [3], [4], [5]. These methods are
based on the idea that interacting proteins share common
functions; therefore, these methods tend to directly assign
functions to an unannotated protein based on the functions
of its neighbors.

Direct annotation of protein functions lacks both in terms of
precision and accuracy. For precise and accurate function pre-
diction, the context information of protein functions must be
incorporated in the methodology by utilizing the relationships
between them. Some researchers, e.g., [6], tried to incorporate
protein-protein interactions, and protein homology with Gene
Ontology (GO) [7], structural relationships to predict protein
functions. This method operates on a fixed size ontology
structure for GO term relationships. However, protein function
annotations vary from protein to protein and may not fit
into a fixed ontology size. The limitation of such methods
is increasing complexity, for larger ontology sizes. Hence,
only a subset of the functions can be taken into consideration.
Incorporating all functions of a protein and their diverse level
of annotation in GO gives a detailed view of protein’s cellular
activity. Therefore, a detailed function coverage based on GO
will improve the predictive power.

Approaches that try to aggregate different types of bio-
logical data, each focusing on a different aspect of cellular
activity, demonstrated to produce good results as shown in
[8], [9], [10]. Unfortunately, for most uncharacterized proteins
we rarely find enough biological information in their own
networks, which could be used for their functional association
with other proteins. For such proteins, it is important to
target biological data that could provide a functional link to
annotated proteins. Many hypothetical proteins are found with
no edges in their own network, but are connected to homologs
of other species network. For example in Figure 1, the protein
YKL033W-A of Saccharomyces cerevisiae species is not con-
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Figure 1. An example of Saccharomyces Cerevisiae hypothetical protein
connected with homolog proteins of the other species networks.

nected to any protein in its own network but is connected
with high homolog similarity edges to protein HDHD1 of
Homo Sapiens species and to protein CG15441 of Drosophila
Melanogaster species networks. Another type of biological
information that could be used for uncharacterized proteins
are the motifs conserved in those proteins that associate them
to a particular molecular activity.

In this paper we propose a novel method for protein func-
tion prediction that integrates different biological information
present across many uncharacterized proteins. The conceptual
innovation of our method is to integrate functionally related
information and to grab full functional coverage of related
proteins in the GO structure by selecting flexible ontology
sizes that increase the prediction accuracy. In the combined
model, we show how this two way integration improves both
the precision and accuracy of prediction compared with direct
annotation transfer.

The rest of the paper is structured as follows: In section II
we present the proposed computational model that evaluates
two measures: the functional potential, which is calculated
by integrating heterogeneous biological information, and the
context based similarity measure, which is based on GO rela-
tionships. Section III details the effectiveness of the proposed
method when applied to Saccharomyces cerevisiae species
proteins. We present the results by relating them with state
of the art methods of protein function prediction. In section
IV we conclude the paper with some future developments.

II. METHODS

Our scheme exploits the fact that interacting proteins are
likely to collaborate on a common purpose, thus the func-
tion of an unannotated protein can be deduced when the
function of its binding partners is known. Along with this,
we also combine heterogeneous information that is conserved
across many proteins and serves as functional evidence, by
calculating functional potential scores for interacting proteins.
After having a vivid idea about the function from potential
interactors, we calculate a similarity measure based upon Gene
Ontology. Functional terms with high similarity value are the
target annotations. We divide this strategy into three major
steps namely, A) Interacting protein selection, B) Filtering
based upon similarity scores, and C) Context similarity score
based on Gene Ontology.

A. Interacting Protein Selection
We obtain our protein dataset from UniProt [11] database.

For unannotated proteins we consider related protein-protein
network information which is passed as input to the proposed
technique. We select protein-protein interaction data from
two databases: IntAct [12] and DIP (Database of Interacting
Proteins) [13]. We only consider interactions for which there
is an experimental evidence.

B. Filtering based upon Similarity Scores
To increase the predictive power of our automated annota-

tion system we calculate similarity scores among interacting
proteins by integrating heterogeneous sources of data. This is
particularly important as each type of data typically captures
distinct aspects of cellular activity. We name this overall
score as Functional Potential (FP). In the second step we
compute Functional Potential measure FP(i,j) to filter proteins
which have high potential of being functionally similar to
unannotated protein. The functional potential measure FP(i,j)

is based upon three functional indicators: (1) Motif Similarity
Score (2) Homolog Similarity Score, and (3) Sequence Simi-
larity Score.

1) Motif Similarity Score: Patterns of evolutionarily con-
served motifs in a protein-sequence reflect the tendency of bio-
chemical functions of an annotated protein. Motif information
can also be conserved in unannotated proteins, so the number
of common motifs conserved in two connected proteins can
be a strong functional clue for functionally unknown proteins.
Based on this fact we incorporate motif information from the
ProSite database [14], and introduce a similarity measure. This
measure is normalized to M

i,j

and is calculated for same
number of common motifs between two interacting proteins
P
i

and P
j

as follow,

M
i,j

=
Common

Motif

(P
i

, P
j

)

Min
Motif

(P
i

, P
j

)
(1)

Where Common
Motif

(P
i

, P
j

) is the number of com-
mon motifs conserved between two interacting proteins and
Min

Motif

(P
i

, P
j

) is the minimum number of motifs con-
served in one of the two proteins.

2) Homolog Similarity Score: The second measure that
contributes to increase the functional potential of a protein
is the homologs similarity between two proteins P

i

and P
j

of
different species. Evolutionary relationships between species
suggest that orthologous proteins of different species, which
share high sequence similarity and whose functions have
been established before speciation, are likely to share similar
protein classifications. To capture homolog similarity based
upon orthologs, we define a homolog sequence similarity score
between protein P

i

and P
j

as H(i,j) a normalized pairwise
BLAST score [15]. We use normalized BLAST scores, defined
as the BLAST score (homolog) divided by self score of query
(which is BLAST score of the protein against itself), as defined
in equation 2. We only consider scores above 0.5 threshold
value, which is a strong similarity indicator as described by
[6].
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, P
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BLAST (P

i

, P
j

)

BLAST (P
i

)
(2)

3) Sequence Similarity Score: The third measure that in-
creases the functional potential of a protein is the sequence
similarity between two proteins P

i

and P
j

of the same species.
Sequence similarity of proteins by itself is also a strong hint for
functional relevance. Proteins with highly similar sequences
are found to have been involved in similar functional activities.
We define a sequence similarity measure between protein P

i

and P
j

as S(i,j) a normalized pairwise BLAST score. We
calculate this score in the same way as in equation 2, only the
proteins in this case are from the same species.

All the similarity scores values lie between 0 and 1 and the
overall functional linkage potential FP(i,j) between interact-
ing protein P

i

and its neighbor P
j

is calculated as follows,

FP(i,j) = Mi,j +Hi,j + Si,j (3)

The interacting nodes with high value of FP(i,j) are more
likely to participate in common functions. After this step, we
have a set of potential interactors for unannotated protein.

C. Context Similarity Score based on Gene Ontology

From the set of annotated potential interactors, we obtain
the annotation set for our protein under test. Each annotation is
represented in GO with a node label. Nodes (classes or labels)
are connected to other nodes through parent-child edges, which
impose hierarchical inter-relationships between them. Thus, it
is possible to compute the similarity between two GO nodes,
referred to as context similarity, on the basis of their relative
positioning in the hierarchy. We use Gene Ontology structural
data, downloaded from the Gene Ontology database [7], for
molecular function class hierarchies.

Potential interactors P
j

and P
k

of protein P
i

are annotated
with a number of functions, we map those functions on Gene
Ontology to obtain related term dependencies. For proteins
with multiple functions we define the functional context terms
F1, F2, ....., Fn

as the top most annotations of the Gene Ontol-
ogy. For protein annotations under the same functional context,
we define a functional similarity Sim(T

Pj , TPk) between two
terms T

Pj and T
Pk of protein P

j

and P
k

as follows,

Sim(TPj ,TPk) =
SimTO(TPj ,TPk)

Min(TPj ,TPk)
(4)

Where SimTO(T
Pj , TPk) is the number of terms overlap-

ping between the GO hierarchies of T
Pj and T

Pk terms, under
the same context term. The Min(T

Pj , TPk) is the minimum
length (number of terms) between the two hierarchies of
T

Pj and T
Pk terms.

For annotating protein P
i

, we need to calculate similarity
(defined in equation. 4) among all terms of its interactors. We
calculate similarity scores for all annotations of the interacting
proteins and the protein annotations under each functional
context crossing the defined similarity threshold are considered
as potential functions for the unannotated protein.

III. EXPERIMENTAL SETUP AND RESULTS

We applied our methodology to Saccharomyces cerevisiae
species proteins, one of the most complete and extensively
studied data sets. To calculate the prediction performance and
effectiveness of our method we use cross validation approach.
For evaluation of our methodology, we computed several
performance measures, such as: precision, recall, accuracy and
F1 as in [6]. With a FP(i,j) threshold of 0.5 and different
Sim(T

Pi , TPj ) similarity threshold values, we report the pre-
diction results calculated for above measures in the following
subsections.
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Figure 2. Effect of different Sim(TPi , TPj ) threshold values on precision,
recall, accuracy, F1 when applied to Saccharomyces cerevisiae proteins.

A. Effect of GO Similarity on Precision, Recall, and Accuracy

To observe the effect of similarity based on Gene Ontology
we calculated the precision, recall, accuracy and F1 measure
for different threshold values of Sim(T

Pi , TPj ) by fixing the
FP(i,j) potential to 0.5. The complete plot of the results is
shown in Figure 2. Except recall, all other measures show
an increasing trend. It can be clearly seen that as we raise
the similarity threshold values, precision, accuracy and F1
measure are continuously increased. This is due to the fact
that a higher similarity threshold selects annotations which
are highly related from a functional point of view, and thus
part of the same molecular activity. Hence, it can be seen
that using GO term specific similarities values improved the
precision, accuracy and F1 to 10%, 12%, and 5% respectively,
as compared to direct annotation transfer. Another important
observation of using GO classification is the decrease in FPR
(False Positive Rate) with increasing similarity values. The
FPR is decreased from 71% to 27% as shown in Figure
3, which means the predictions are more centered towards
semantically related annotations.

B. Comparison with other approaches

In this section, we compare our method to the most widely
used group of techniques for function prediction that integrate
multiple information sources. One of such techniques is pre-
sented by Nariai et al. [8], which is based on Bayesian proba-
bilistic approach. Since methods based upon these approaches
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Figure 3. Effect of different Sim(TPi , TPj ) threshold values on false
positive rate, when applied to Saccharomyces cerevisiae proteins.

are the widely used and accepted in the paradigm of protein
function prediction, therefore we compare our results with
most recent and established of these computational techniques.
We compare Narai’s best accepted prediction results i.e., with
the optimum values of precision and accuracy, with our results.
We report the precision, recall, accuracy and F1 measure
values for both methods in Figure 4. Our method outperforms
Narai’s method with respect to all reported measures. The
accuracy of our method is higher due to large number of
true negatives and less number of false negatives. Overall our
method shows higher values of precision, recall, accuracy and
F1 which improves the overall prediction confidence.
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Figure 4. Comparison of precision, recall, accuracy and F1 of our method
(black) with Narai’s [8] method (grey).

IV. CONCLUSION

In this work, we presented a new method that uses existing
biological data with Gene Ontology relationships to infer
function of uncharacterized proteins. We combined different
sources of information that are present across proteins of
unknown function. Along with this, term specific relationships
are utilized for defining functional contexts for activities of in-
teracting proteins, which improves the prediction accuracy by
involving only related functions. This approach may be easily
extended by integrating more sources of biological information
to further improve the function prediction confidence.
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