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1. INTRODUCTION

Multi-layered structures are increasingly used in aerospace, automotive and ship vehicles.
Nowadays, there are examples of fighter and commercial aircrafts, helicopters and gliders whose
structure is entirely made of composite materials. The analysis and design of composite and sand-
wich structures is a cumbersome subject. In order to achieve an effective design, the mechanics of
multi-layered structures should be modelled as accurately as possible. The drawback of refined plate
theories or three-dimensional analyses is represented by the computational costs. The objective of
the present work is to develop a consistent numerical method for the multiple models analysis of
plates by means of variable kinematic models. Thanks to this approach, refined theories with higher
accuracy and computational cost are adopted only in specific sub-domains where low-order theo-
ries are inaccurate. The remaining parts of the plate are then modelled using computationally cheap
elements. The Arlequin method (see Ben Dhia [1–3] and Ben Dhia and Rateau [4]) is adopted to
couple the sub-domains. A brief discussion on refined plate models and computational techniques
to combine different domains follows.

In the case of bending mechanics, classical two-dimensional models are represented by classi-
cal lamination theory (CLT) see Kirchhoff [5], and first-order shear deformation theory (FSDT),
see Reissner [6] and Mindlin [7]. Classical theories yield accurate results only in the case of thin
plates and low degree of anisotropy. Many refinements of classical models have been proposed to
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overcome the limitations of classical theories and to include partially or completely the so called C 0´ 
requirements (see Carrera [8]). Both displacements and transverse stresses are C 0-class functions 
along the thickness direction: they have, in the most general case, discontinuous first derivatives at 
each interface where the mechanical properties change. The fulfilment of the C 0 requirements´

is a crucial point of multi-layered structures’ two-dimensional modelling. A complete and exhaus-
tive discussion of several contributions that appeared in literature has been covered by many state-
of-the-art articles. Among these, the reviews proposed by Kapania and Raciti [9, 10], Noor and 
Burton [11], Reddy and Robbins [12], Carrera [13] and Hu et al. [14] should be mentioned. A 
unified formulation (UF) of axiomatically refined plate models was proposed by Carrera [15]. 
Models formulated on the basis of the Principle of Virtual Displacements (PVD) and Reissner’s 
Mixed Variational Theorem [16] (RMVT) were both considered. Both equivalent single layer 
(ESL) and layer-wise (LW) approaches were adopted. CLT and FSDT models were retrieved as 
particu-lar cases. Through a concise notation for the unknowns field, problem governing equations 
were reduced to a ‘fundamental nucleo’ that does not depend upon the approximation order that is 
a free parameter of the formulation. A comprehensive assessment of the corresponding finite 
elements was addressed in Carrera [17].

As far as coupling of ‘refined’ and ‘coarse’ sub-domains of a structure is concerned, several 
numerical methods have been formulated in the last years. In such a manner, accurate results can 
be obtained with reduced computational costs. In the multi-grid method (see Fish et al. [18]), 
coarse and fine meshes share information inside an iterative algorithm. In the case of multiple 
models methods, structure’s sub-domains may differ in the kinematic assumptions. In the s-version 
method (see Fish [19] and Fish and Markolefas [20]), incompatible meshes (different element size 
and polynomial order) with a local–global border are coupled. Park and Felippa [21] presented a 
continuum-based variational principle for the formulation of discrete governing equations of parti-
tioned structural systems, including coupled substructures as well as sub-domains obtained by 
mesh decomposition. Another variational approach for coupling kinematically incompatible 
structural models was presented by Blanco et al. [22]. In the three-field formulation by Brezzi and 
Marini [23], an additional grid at the interface is introduced. The unknowns are represented 
independently in each sub-domain and on the interface, the matching being provided by suitable 
Lagrange multipliers. Ben Dhia et al. [1–4] proposed the Arlequin method. The coupling among 
different numerical models is obtained through Lagrange multipliers. This method was adopted by 
Hu et al. [24, 25] for the linear and non-linear analysis of sandwich beams modelled via one-
dimensional and two-dimensional finite elements and by Biscani et al. [26] for the linear analysis 
of beams in the framework of UF: ESL beam elements of different orders, formulated via the 
principle of virtual displacements, are coupled. Reddy and Robbins [12] and Reddy [27] presented 
a multiple mod-els method on the basis of a variable kinematic theory and on mesh superposition 
in the sense of Fish [19] and Fish and Markolefas [20]. Coupling is obtained by linking the FSDT 
variables, which are present in all the considered models, without using Lagrangian multipliers. In 
contrast with the Arlequin method, total superposition is required in the case of non-conforming 
meshes.

In the present work, the Arlequin method is formulated in the context of Carrera’s UF. Cou-pling 
between a large variety of models is considered. Main unknowns to be coupled differ in type, 
description approach and approximation order. Arlequin coupling matrix is obtained in the 
framework of UF in terms of a fundamental nucleo, whose expression depends only on the choice 
of the coupling operator. Refined elements are employed in the portion of the structure in which 
low-order theories would yield inaccurate results, for instance, where the stress field is quasi-three-
dimensional. This approach, already presented for beam structures in Biscani et al. [26], is here 
extended to multi-layered plates. The novelty of the present work consists in consider-ing, besides 
ESL displacement-based models, also LW theories and mixed models with transverse stresses as 
primary variables. Several numerical investigations are also carried out to evaluate the influence of 
length parameter, weight parameter and extension of the superposition zone on the accuracy of the 
coupling. Non-conforming meshes are not considered. The proposed approach is validated towards 
mono-model UF theories as well as three-dimensional exact solutions. The total number of degrees 
of freedom and, therefore, the computational cost have been reduced, being the results still 
accurate.
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2. PRELIMINARIES

A plate is a flat three-dimensional structure in which one dimension (its thickness) is negligible if
compared to the in-plane dimensions. A Cartesian reference system is used. Plate’s reference or
middle plane � lies in the xy-plane, midway between top and bottom faces. The ´-coordinate is
along the through-the-thickness axis. Multi-layered plates of uniform thickness h are considered.
The displacement field in a kth layer is

ukT .x,y, ´/D
®
ukx .x,y, ´/ uky .x,y, ´/ uk´ .x,y, ´/

¯
(1)

in which ux , uy and u´ are the displacement components along x-axis, y-axis and ´-axis.
Superscript ‘T’ represents the transposition operator. Bold letters denote arrays.

Stress, � k , and strain, "k , vectors in a kth layer are split into vectors � kp and "kp acting on planes
parallel to �:

� kTp D
®
�kxx �kyy �kxy

¯
"kTp D

®
"kxx "kyy �kxy

¯
(2)

and � kn and "kn acting on planes perpendicular to �:

� kTn D
®
�kx´ �ky´ �k´´

¯
"kTn D

®
�kx´ �ky´ "k´´

¯
(3)

In the case of small displacements with respect to a characteristic dimension (h), linear relations
between strain and displacement components hold. A compact vectorial notation can be adopted:

"kpG DDpu
k

"knG D .Dn�CDn´/u
k (4)

Subscript ‘G’ denotes strains computed through geometrical relations. Dn�, Dn´ and Dp are the
following differential matrix operators:

Dn� D

2
64
0 0 @

@x

0 0 @
@y

0 0 0

3
75 Dn´ D I

@

@´
Dp D

2
664

@
@x

0 0

0 @
@y

0

@
@y

@
@x

0

3
775 (5)

I is the unit matrix.
Under the hypothesis of linear elastic materials, generalised Hooke’s law holds. According to

Equations (2) and (3) and for a reference system not coincident with the orthotropic axes, it reads
as follows:

� kpC D
QC
k

pp"
k
pGC

QC
k

pn"
k
nG

� knC D
QC
k

np"
k
pGC

QC
k

nn"
k
nG

(6)

where subscript ‘C’ denotes field variables computed through the constitutive relations. QC
k

pp , QC
k

pn,

QC
k

np and QC
k

nn are the following material stiffness matrices:

QC
k

pp D

2
64
QC k11

QC k12
QC k16

QC k12
QC k22

QC k26
QC k16

QC k26
QC k66

3
75 QC kpn D QC kTnp D

2
64
0 0 QC k13

0 0 QC k23

0 0 QC k36

3
75 QC knn D

2
64
QC k55

QC k45 0

QC k45
QC k44 0

0 0 QC k33

3
75
(7)
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For the sake of brevity, stiffness terms QC kij as a function of the engineering constants are not reported
here. For more details, see Reddy [27]. In the case of a first-order expansion or classical models,
material stiffness coefficients should be reduced according to the plane stress condition as follows:

QQk
11 D

QC k11 �
QC k
2

13

QC k33

QQk
22 D

QC k22 �
QC k
2

23

QC k33

QQk
12 D

QC k12 �
QC k13
QC k23
QC k33

(8)

in order to avoid the thickness locking; see Carrera and Brischetto [28]. For mixed models, in which
both displacements u and transverse shear/normal stresses �n are a priori variables according to
RMVT, Hooke’s equations should be rewritten as follows:

� kpC D
OC
k

pp"
k
pGC

OC
k

pn�
k
nM

"knC D
OC
k

np"
k
pGC

OC
k

nn�
k
nM

(9)

where ‘M’ indicates that the out-of-plane stresses are a priori assumed and, therefore, modelled.
The new stiffness matrices are

OC
k

pp D
QC
k

pp �
QC
k

pn
QC
k�1

nn
QC
k

np
OC
k

pn D
OC
kT

np D
QC
k

pn
QC
k�1

nn
OC
k

nn D
QC
k�1

nn (10)

3. UNIFIED FORMULATION FOR PLATE MODELS

Two-dimensional modelling of plate structures consists of the separation of a generic unknown
a D a.x,y, ´/ into a set of thickness functions F� depending only upon the through-the-thickness
coordinate ´ and the correspondent variables a� depending upon the in-plane coordinates (x and y).
The UF by Carrera [15] allows obtaining several two-dimensional models thanks to the following
compact form:

a.x,y, ´/D F� .´/a� .x,y/ (11)

where, according to Einstein’s notation, � is a dummy index standing for summation ofNC1 terms
in whichN is the through-the-thickness expansion order. In this work,N is assumed to be as high as
4. Thanks to the compact notation in Equation (11), the governing equations can be written in terms
of a fundamental nucleo that does not depend formally upon N and the unknowns description. This
latter can be ESL or LW. The primary unknowns can be displacements (PVD-based models) or both
displacements and transverse stresses (mixed models based on RMVT).

3.1. Equivalent single layer theories

Via an ESL description, problem’s unknowns are assumed globally for the whole structure. The
unknown field is approximated as follows:

aD F0a0CF1a1C � � � CFNaN D F�a� , � D 0, 1, : : : ,N (12)

Within UF, MacLaurin’s polynomials are adopted as thickness functions F� :

F� D ´
� (13)

The choice of MacLaurin’s polynomials allows obtaining classical theories such as CLT and FSDT
as particular cases of a linear theory by (i) imposing a constant value of the transverse displacement
through the thickness direction and, in the case of CLT, (ii) preventing out-of-plane shear defor-
mations by assuming fictitiously high values of the material out-of-plane shear modulus. For more

4



details, see Carrera and Giunta [29]. Reduced material stiffness coefficients according to a plane
stress condition, as shown in Equation (8), should be adopted in the case of classical theories and
ESL first order theory.

3.2. Layer-wise theories

According to Reddy [27], in LW theories, unknowns are considered independently in a generic
kth layer:

ak D Fta
k
t CFba

k
b
CFla

k
l
D F�a

k
� ,

� D t , b, l
l D 2, : : : ,N

(14)

Subscripts t and b stands for kth layer top and bottom values, and l denotes the higher-order terms of
the through-the-thickness expansion. The thickness functions are a linear combination of Legendre’s
polynomials (see Carrera [17]), and they vary versus a local through-the-thickness dimensionless
coordinate �k :

�k D
2´k

hk
(15)

being ´k a kth layer local coordinate and hk its thickness. These thickness functions have the
following properties:

�k D 1 W Ft D 1, Fb D 0, Fl D 0

�k D�1 W Ft D 0, Fb D 1, Fl D 0
(16)

In LW mixed models, these properties ensure compatibility and equilibrium at layers’ interfaces.C 0´
requirements are fulfilled: displacement and transverse stresses are continuous at layers’ interfaces,
and their first derivatives may be discontinuous.

3.3. Variational statements

The governing equations can be derived according to displacement-based or mixed variational state-
ments. The PVD is used for the case of displacement-based models. For a laminate made of Nl
layers, the PVD reads as follows:

NlX
kD1

Z
�k

Z
hk

�
ı"kTpG�

k
pCC ı"

kT
nG�

k
nC

�
d�kd´D

NlX
kD1

ıLke (17)

The integration domain�k indicates the reference plane of each lamina. ı represents a virtual varia-
tion. Lke is the expression of the external work that accounts for an external load acting on a generic
k layer.

Reissner’s Mixed Variational Theorem is adopted when both displacements and transverse shear
and normal stresses are a priori variables; see Reissner [16,30]. RMVT is obtained via the addition
of a Lagrange’s multiplier that allows modelling the transverse stress vector �n:

NlX
kD1

Z
�k

Z
hk

h
ı"kTpG�

k
pCC ı"

kT
nG�

k
nMC ı�

kT
nM

�
"knG � "

k
nC

�i
d�kd´D

NlX
kD1

ıLke (18)

3.4. Acronyms system

The following acronyms system is adopted for addressing the two-dimensional models that can
be obtained via UF. The first letter indicates the approximation approach, and it can be either ‘E’
for an ESL approach or ‘L’ for an LW one. The second letter refers to the main unknowns: ‘D’
stands for displacement-based models and ‘M’ for mixed theories. A number indicates the order of
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expansion. For instance, ‘ED1’–‘ED4’ are linear to fourth-order ESL displacement-based models,
whereas ‘LD1’–‘LD4’ and ‘LM1’–‘LM4’ are linear to fourth-order displacement-based and mixed
LW models, respectively. ESL mixed models are not considered in the present work.

4. FINITE ELEMENT FORMULATION

The generic unknown ak� is expressed in terms of the nodal unknowns qkT�i and the shape functions
Ni (see Bathe [31]):

ak� .x,y/DNi .x,y/qk�i , i D 1, 2, : : : ,Nn (19)

Nn denotes the element nodes number. Via substitution of Equation (19) into Equation (12) (ESL
models) or Equation (14) (LW models), the following expression is obtained:

ak.x,y, ´/D F� .´/Ni .x,y/qk�i (20)

The formulation of RMVT-based elements is addressed in detail. Both displacements and transverse
shear and normal stresses are modelled as primary unknowns:

qkT�i D
°
qkTu�i , q

kT
��i

±
D
°°
qkux�i , q

k
uy�i

, qku´�i
±

,
°
qk�´´�i , q

k
�x´�i

, qk�y´�i
±±

(21)

where qkTu�i is the nodal displacements vector and qkT��i is the nodal transverse stresses vector.
Because of the finite-element (FE) discretisation, the geometrical relations in Equation (4) read
as follows:

"kpG D F�Dp.NiI/q
k
u�i

"knG D F�Dn�.NiI/q
k
u�i CF�,´Niq

k
u�i (22)

Subscripts preceded by comma represent differentiation. Upon substitution of Equations (22), (20)
and (9) into Equation (18), the internal virtual work for a kth layer can be rewritten in the following
compact form:

ıLki D ıq
kT
�i K

k�sijqksj (23)

where Kk�sij 2 R6�6 is the fundamental nucleo of the FE stiffness matrix. According to the nodal
vector unknowns separation in Equation (21), Equation (23) reads:

ıLki D ıq
kT
u�i

�
Kk�sij
uu qkusj CK

k�sij
u� qk�sj

�
C ıqkT��i

�
Kk�sij
�u qkusj CK

k�sij
�� qk�sj

�
(24)

where the following arrays in R3�3:

Kk�sij
uu D GDT

p .NiI/Z
k�s
pp Dp

�
Nj I

�
F�k

Kk�sij
u� D GDT

p .NiI/Z
k�s
pn .NiI/Nj CD

T
n� .NiI/E

�sNj CE
�,´sNiNjIF�k

Kk�sij
�u D GNiE

�sDn�

�
Nj I

�
CE�s,´NiNj I �NiZ

k�s
np Dp

�
Nj I

�
F�k

Kk�sij
�� D G�NiZ

k�s
nn NjF�k (25)

represent the sub-block components of Kk�sij . Symbol G � � � F�k denotes the integral on �k .
Subscripts � and s count the expansion terms along the thickness direction, whereas subscripts i
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and j range over the element nodes number. The generic term Z
k�.,´/s.,´/
��

is a through-the-thickness
layer integral accounting for material and geometric stiffness:

Z
k�.,´/s.,´/
��

D OC
k

��E
�.,´/s.,´/ �, � D p,n

E�.,´/s.,´/ D
R
hk
F�.,´/Fs.,´/d´

(26)

As far as the whole structure is concerned, the FEM problem in the framework of the proposed UF
is governed by the following equation:

ıqk�i W K
k�sij

qksj DP
k

�i (27)

where K
k�sij

and qksj are the global FE stiffness matrix and nodal unknowns vector. P
k

�i is a load-
ing vector that is variationally coherent to the mechanical model through the external work. In the
case of RMVT-based elements, Equation (27) reads as follows:

ıqkTu�i W K
k�sij

uu qkusj CK
k�sij

u� qk�sj DP
k

u�i

ıqkT��i W K
k�sij

�u qkusj CK
k�sij

�� qk�sj D 0
(28)

where the stiffness matrix and the load vector are partitioned according to the separation of primary
unknowns in displacements and stresses.

Principle of Virtual Displacements based elements can be obtained in a similar manner as the
RMVT-based ones where qkT�i D q

kT
u�i and Kk�sij 2R3�3:

Kk�sij D GDT
p .NiI/

h
Zk�spp Dp

�
Nj I

�
CZk�spn Dn�

�
NjI

�
CZ

k�s,´
pn Nj

i
C

CDT
n� .NiI/

h
Zk�snp Dp

�
NjI

�
CZk�snn Dn�

�
NjI

�
CZ

k�s,´
nn Nj

i
C

CNi

h
Z
k�,´s
np Dp

�
Nj I

�
CZ

k�,´s
nn Dn�

�
Nj I

�
CZ

k�,´s,´
nn Nj

i
F�k (29)

Z
k�.,´/s.,´/
��

is computed using the generalised Hooke’s law as in Equation (6), that is, QC
k

�� instead

of OC
k

�� . The FEM problem of the whole structure reads as follows:

ıqku�i W K
k�sij

qkusj DP
k

u�i (30)

Demasi and Carrera [32] presented hybrid RMVT-based elements in which the a priori assumed
stresses are eliminated at element level via a static condensation. Since the primary unknowns are
only displacements, the element stiffness matrix has the same dimension as the one of a correspond-
ing PVD-based element. In the present work, the full mixed implementation is retained. Four-node
quadrilateral elements are considered. Shear locking is here avoided via a reduced integration
scheme. Because four-node elements are used, only a Gauss point is considered in the numerical
integration of the element shape functions Ni and their derivatives: all the terms in the fundamental
nucleo of the FE stiffness matrix are reduced integrated.

5. ARLEQUIN METHOD IN THE CONTEXT OF THE UNIFIED FORMULATION

Plate’s volume (V ) is divided into two sub-domains A1 and A2 that are partially overlapped as
shown in Figure 1. S represents the overlapping volume. For each sub-domain, a different model
is assumed:

ak� DNiF��q
k
�� i

with �� D 1, 2, : : : ,N
A�
u , � D 1, 2 (31)
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Figure 1. Plate mesh, loading and sub-domains considering several superimposition zones: (a) minimum
Sa, (b) reduced Sb and (c) extended Sc .

� being a dummy index that counts the sub-domains. The global mechanical problem is solved
merging together the two sub-domains via the Arlequin method. The internal and external virtual
works are computed for each sub-domain. The structural integrity in the overlapping volume is
ensured via a Lagrangian multiplier field (�) and a coupling operator (C� ) that links the DOF of
each sub-domain within the overlapping volume. The variational statement becomes

NlX
kD1

�
ıLki� C ıL

k
c�

�
D

NlX
kD1

ıLke� (32)

ıLk
i�

is the virtual variation of the strain energy in each sub-domain. In the case of RMVT-based

models, ıLk
i�

is

NlX
kD1

ıLki�D

NlX
kD1

Z
A�

˛�

h
ı"kTpG�

k
pCC ı"

kT
nG�

k
nMC ı�

kT
nM

�
"knG � "

k
nC

�i
dVk with

²
˛� D 1 in A� n S
˛1C ˛2 D 1 in S

(33)
˛� are weighting functions for scaling the energy in each sub-domain in order to not consider the
energy in the overlapping volume twice. According to Ben Dhia and Rateau [4], ˛� should be such
that the sub-domain with a more refined description has a higher weight in the global equilibrium.
The virtual external work ıLk

e�
is treated in a similar manner.

ıLk
c�

is the virtual coupling work:

ıLkc� D .�1/
� ıC k�

�
ı�k ,uk�

�
(34)

Two coupling operators are considered (see Ben Dhia and Rateau [4] and Guidault and
Belytschko [33]):
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� L2 coupling:

ıC k� D

Z

Sk
�

ı�kTuk� dVk (35)

� H 1 coupling:

ıC k� D

Z

Sk
�

°
ı�kTuk� C

Ql2
h
"kTpG

�
ı�k

�
"kpG

�
uk�

�
C "kTnG

�
ı�k

�
"knG

�
uk�

�i±
dVk (36)

Sk
�

is the volume of the kth layer in the overlapping region. Ql is a real parameter representative of

a characteristic length. " .�/ is defined in the same manner as the mechanical strain "
�
u�
�

where
the Lagrangian multiplier field is used instead of the displacement one. Stress components are not
accounted for by these two coupling operators. Ben Dhia [3] proved that L2 coupling operator is
meaningless for the continuous Arlequin problem. In the discrete problem, it can be considered
as an approximation of a dual Lagrange field linked to a dual continuous Arlequin coupling. The
Lagrangian multiplier field is discretised according to the UF:

�k DNiF���
k
��i

(37)

where �k��i is the nodal unknown vector. The virtual work for a kth layer is derived coherently to
Equation (23) via substitution of Equation (37) into Equation (35) or (36):

ıC k� D ı�
kT
��i

C
k��s� ij

�
qkus�j (38)

C
k��s� ij

�
is the fundamental nucleo of the coupling matrix. In the case of L2 coupling, this is

diagonal, and its components are

C
k��s� ij

�mn
D ımnE

k
��s�
GNiNj F� with m,nD 1, 2, 3 (39)

where ımn is Kronecker’s delta. Terms Ek��s� are defined as

Ek��s� D

Z
hk

F��Fs� d´ (40)

For the coupling operator H 1, coupling matrix fundamental nucleo can be obtained straightfor-
wardly noticing thatH 1 coupling operator is the sum of the L2 one and a term similar to the virtual
internal work in Equation (17). The components of this latter term are those of the stiffness matrix
that correspond to the diagonal terms of the constitutive matrices QCpp and QCnn:

C
k��s� ij

11 D C
k��s� ij

22 D C
k��s� ij

33 DEk��s� GNiNj F�C

C Ql2
h
Ek��s�

�
GNi ,xNj ,x F�CGNi ,yNj ,yF�

�
CEk�� ,´s� ,´

GNiNjF�

i

C
k��s� ij

12 D Ql2Ek��s� GNi ,yNj ,x F� C
k��s� ij

13 D Ql2Ek�� ,´s�
GNiNj ,xF�

C
k��s� ij

21 D Ql2Ek��s� GNi ,xNj ,y F� C
k��s� ij

23 D Ql2Ek�� ,´s�
GNiNj ,yF�

C
k��s� ij

31 D Ql2Ek��s� ,´
GNi ,xNj F� C

k��s� ij

32 D Ql2Ek��s� ,´
GNi ,yNjF� (41)

where

Ek��.,y/.,´/s�.,y/.,´/ D

Z
hk

F��.,y/.,´/Fs�.,y/.,´/ d´ (42)
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Coupling matrices are not affected by shear locking: full integration is adopted for the Lagrange
multiplier shape functions Ni and their derivatives. According to Ben Dhia [2] and Guidault and
Belytschko [33], the same approximation order should be assumed for the low-order model and the
Lagrangian multiplier. This choice avoids a locking phenomenon that arises when the approxima-
tion of the more refined model is adopted for the discretisation of the Lagrangian multiplier field.
Considering the whole structure and assuming that the refined model is adopted in the sub-domain
A2, the governing equations are
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9>>>>>>>>=
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(43)

where overlined terms refer to the whole structure. In the case of a PVD-based model, Equation (33)
reads as follows:

NlX
kD1

ıLki� D

NlX
kD1

Z
A�

˛�

�
ı"kTpG�

k
pCC ı"

kT
nG�

k
nC

�
dVk with

²
˛� D 1 in A� n S
˛1C ˛2 D 1 in S

(44)

Assuming that a refined RMVT-based model is adopted in the sub-domain A2, whereas
sub-domain A1 is modelled via PVD-based elements, Equation (43) is rewritten as
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6. NUMERICAL RESULTS AND DISCUSSION

Square plates having sides length a equal to 0.1 m are considered. The side-to-thickness ratio a=h
is equal to 10. Relatively thick plates are, therefore, investigated. A localised transverse pressure
(P ) equal to 1 MPa is applied on a square region of side length equal to a=5 centred at point
.a=2, a=2, h=2/ as shown in Figure 1. This configuration has been considered because the region
close to the loading application is likely to present a three-dimensional stress field, and a refined
model is required there. In the general case in which the location of a three-dimensional stress field
cannot be determined a priori, refined sub-domains should be chosen on the basis of experience and
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Figure 2. Convergence of Pagano’s solution for a Œ0=90=0	 plate. Starred results have been obtained with
nF D 101.

1.6

1.61

1.62

1.63

1.64

1.65

1.66

1.67

1.68

5 10 15 20

Elements along x- and y-axes

3D
LD4
LD1
ED4

(a)

1.67

1.68

1.69

1.7

1.71

1.72

1.73

1.74

1.75

5 10 15 20

- 
u z

 x
 1

02  [
m

m
]

- 
u z

 x
 1

02  [
m

m
]

Elements along x- and y-axes

3D
LM4
LM1

(b)

Figure 3. Convergence of the transverse displacement u´ versus the number of elements in the case of the-
ories based on (a) the Principle of Virtual Displacements and (b) the Reissner’s Mixed Variational Theorem.
Œ0=90=0	 stacking sequence. Horizontal lines without dots report the corresponding analytical solutions.

11



preliminary analyses via low-order models. A symmetric Œ0=90=0	 and an anti-symmetric Œ90=0	2
stacking sequences are considered. The stacking sequence starts from the plate top. Ply angles
are measured versus the x-axis. The layers are all made of the same orthotropic material, whose
mechanical properties are EL D 1.325 � 105 MPa, ET D 1.08 � 104 MPa, GLT D 5.7 � 103 MPa,
GT T D 3.4�103 MPa, 
LT D 0.24 and 
T T D 0.49. Four-node quadrilateral elements are employed.
Because of the problem symmetry, only a quarter of the plate is modelled. Results are presented in
terms of the transverse displacement u´, in-plane normal stresses �xx , �yy and the out-of-plane
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Figure 4. Convergence of the normal stress �xx versus the number of elements in the case of theories based
on (a) the Principle of Virtual Displacements and (b) the Reissner’s Mixed Variational Theorem. Œ0=90=0	

stacking sequence. Horizontal lines without dots report the corresponding analytical solutions.

Table I. Transverse displacement and stresses for the Œ0=90=0	 plate.

�105 � u´ �xx �yy �10� �x´
(m) (MPa) (MPa) (MPa) DOF

3D 1.674 11.94 2.019 6.524

FE AS FE AS FE AS FE AS

LM4 1.681 1.675 11.89 11.94 1.993 2.020 6.523 6.540 19968
LD4 1.672 1.675 11.83 11.94 1.983 2.020 6.464 6.523 9984
LD1 1.634 1.637 11.22 11.35 2.102 2.142 6.422 6.519 3072
ED4 1.657 1.660 11.85 11.95 1.985 2.005 5.830 5.865 3840
ED1 1.587 1.609 10.38 10.44 1.604 1.852 3.872 3.813 1536
FSDT 1.605 1.609 10.33 10.44 1.826 1.852 3.872 3.813 1280
CLT 1.255 1.260 10.88 11.00 1.617 1.642 — — 768

FE, finite-element solution; AS, analytical solution; FSDT, first-order shear deformation theory; CLT, classical
lamination theory.
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shear stress �x´ Unless differently stated, u´, �xx and �yy are evaluated at .a=2, a=2,�h=2/, and
�x´ is computed at .5a=12, a=2, 0/.

Mono-model solutions are first presented. The accuracy of the proposed theories is discussed
showing the fulfilment of the C0´ requirements and the through-the-thickness equilibrium. The con-
vergence of the solution versus the number of elements in the mesh is also investigated through
comparison with the corresponding closed-form analytical solution and a three-dimensional exact
solution based upon Pagano’s solution [34]. The variable kinematic models are then addressed.
Their accuracy is assessed towards the corresponding mono-model results and three-dimensional

Table II. Transverse displacement and stresses for the Œ90=0	2 plate.

�105 � u´ �xx �yy �10� �x´� �10� �x´�
(m) (MPa) (MPa) (MPa) (MPa) DOF

3D 1.719 11.28 1.823 6.104 6.104

FE AS FE AS FE AS FE AS FE AS

LM4 1.725 1.719 11.23 11.28 1.807 1.824 6.141 6.121 6.141 6.121 26112
LD4 1.717 1.719 11.17 11.28 1.802 1.824 6.118 6.145 6.069 6.104 13056
LD1 1.692 1.694 10.78 10.91 1.909 1.931 5.263 5.297 6.308 6.376 3840
ED4 1.698 1.700 11.19 11.28 1.778 1.789 8.214 8.267 4.899 4.931 3840
ED2 1.600 1.644 9.429 9.741 1.476 1.544 5.484 5.465 3.271 3.260 2304
ED1 1.596 1.634 9.937 10.16 1.202 1.446 5.806 5.562 3.463 3.318 1536
FSDT 1.614 1.634 9.938 10.16 1.420 1.446 5.671 5.562 3.382 3.318 1280
CLT 1.323 1.344 9.812 10.03 1.406 1.431 — — — — 768

FE, finite-element solution; AS, analytical solution; FSDT, first-order shear deformation theory; CLT, classical
lamination theory.
�Value at the bottom of the second layer.
�Value at the top of the third layer.
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exact solutions. The effect of the coupling operator, the extension of the superposition zone and the
weight parameters are investigated.

6.1. Preliminary mono-model results

Pagano’s three-dimensional solution is here extended in order to assess the accuracy of the UF
models. The localised loading is approximated by a Fourier expansion, nF being the number of
harmonic terms along the x and y directions. The convergence of the transverse displacement u´,
in-plane normal stresses �xx and �yy and the out-of-plane shear stress �x´ versus nF is presented
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Œ4=15, 7=15	 at y=b D 1=2 and ´ D 0 for a Œ0=90=0	 plate in the case of the coupling of two ED1 models

with (a) mesh represented in Figure 1 and (b) refined mesh with halved elements’ side length.
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in Figure 2. The symmetric Œ0=90=0	 plate is considered. Results are normalised with respect to the
values for nF D 101. This latter value of nF has been chosen in order to ensure a convergence of
the shear stress with four significant digits.

As far as the proposed theories are concerned, the convergence of the transverse displacement u´
and the in-plane normal stresses �xx versus the number of elements are presented in Figures 3 and 4,
respectively. FE results are compared to the analytical ones obtained by a Navier-type solution with
nF D 101 in the Fourier expansion of the loading. The transverse displacement u´ and the normal
stresses �xx with a mesh of 15� 15 elements differ from those with a mesh of 20� 20 elements by
less than 0.5%. A regular mesh of 15� 15 elements is, therefore, adopted in the following analyses.
Elements’ sides length lel is equal to a=30.

Transverse displacement and stresses for the symmetric Œ0=90=0	 plate are reported in Table I.
Results are computed via three-dimensional exact theory and both UF analytical (AS) and FE mono-
model solutions. Higher-order LW analytical results match the three-dimensional reference solution.
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ESL displacement-based models do not predict �x´ accurately. As far as the FE solution is con-
cerned, LM4 model yields results that differ from the reference solution by about 1%, at worst. In
the case of transverse displacement predicted by ED1 theory, the error is about 6%. For the employed
mesh, the difference in the transverse displacement between the FE solution and the corresponding
analytical one is about 1.4%, at worst. The last column in Table I represents the number of DOF of
the FE solution.

The case of an anti-symmetric Œ90=0	2 plate is presented in Table II. As far as accuracy and
convergence of the solutions are concerned, the same conclusions as for Table I are valid. The out-
of-plane shear stress �x´ is computed at both the bottom of the second layer and the top of the
third one, in order to show that LW mixed models satisfy the through-the-thickness equilibrium.
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The through-the-thickness variation of ux and �x´ is presented in Figure 5. The displacement com-
ponent ux is computed at x=aD 5=12, y=b D 1=2. C 0´ requirements for displacements are satisfied
by LW theories. The transverse shear stress continuity at the layers’ interface is fulfilled by the
RMVT-based theories.

6.2. Variable kinematic results

Finite elements that differ by the variables’ description (ESL or LW), and the through-the-thickness
expansion order are coupled. The coupling between PVD-based and RMVT-based elements is also
addressed. Figure 1 presents the plate division into sub-domains and the mesh. Refined models
are assumed for sub-domain A2 that has been discretised via 49 elements. As shown in Figure 1,
three different overlapping zone S are considered. They differ by the extensions along x-axis and
y-axis. A sensitivity analysis is carried out in terms of (i) length parameter Ql , (ii) extension of the
superposition zone, and (iii) weighting function ˛� .

6.2.1. Length parameter Three values of Ql are considered: zero, le and lc . The latter is the length
of the superposition zone along the x-axis or y-axis. It should be noticed that L2 coupling operator
can be considered as a particular case of H 1 one with Ql equal to zero. The superposition zone as
in Figure 1(c) and addressed as Sc is used. Such a large superposition zone, which includes most
of the refined sub-domain, is not well suited for practical application of the Arlequin method. It
is considered in the present work in order to highlight the spatial variation of quantities inside the
overlapping volume. The coupling of two identical kinematic models ED1 is considered in the first
place. According to Ben Dhia and Rateau [4], weighting functions equal to 0.5 are assumed. Figure 6
presents the Lagrangian multiplier �´ along x-axis at y=b D 1=2 and ´ D 0 for a Œ0=90=0	 plate.
Results are normalised versus their absolute maximum values j�´jMAX. Two meshes are considered:
the mesh shown in Figure 1(c) and a refined mesh with halved elements side length. As noticed in
Ben Dhia and Rateau [4] and confirmed in Guidault and Belytschko [33], the coupling operator L2

yields a multiplier field that tends to be singular on the interfaces of the superposition zone: the mul-
tiplier field is almost null everywhere except near the boundaries of the overlapping volume where
it oscillates. If the elements’ size is reduced, the oscillation regions become smaller. As explained
by Ben Dhia [3], the multiplier field seems to converge up to a homogenisation factor to a surface-
Lagrange multiplier. The transverse displacement, the normal in-plane stresses and the shear stresses
match the case of mono-model solution regardless of the choice of the length parameter. For sake
of brevity, they are not explicitly reported. In the second case, an LD2 model (sub-domain A1) is
coupled with an LD4 model (sub-domain A2). According to Ben Dhia and Rateau [4] and unless
differently stated, ˛2 equal to 0.98 is used. Figure 7 presents the Lagrangian multiplier �´ along x
axis at y=b D 1=2 at mid-plane. For L2, �´ tends to be singular at the interface with the unrefined
model. The distribution of �xx along the x-axis for y=aD 1=2 at plate bottom is shown in Figure 8.
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The case Ql D lel yields the least perturbed solution, whereas for Ql D lc the oscillation in the coupling
zone yields an underestimated value of �xx in the refined zone. Figure 9 presents the variation of
�x´ along x-axis. The shear stress is computed at y=b D 1=2 and ´D 0. The variation of the length
parameter affects the solution mainly in the coupling zone. It has been observed that the transverse
displacement via LD2–LD4-coupled solution matches the corresponding mono-model one. It is not
reported here for sake of brevity.

An ED1–ED4-coupled solution is also considered in order to investigate the coupling between
lower and higher ESL theories. The transverse displacement along the x-axis for y=aD 1=2 at mid-
plane is presented in Figure 10. Results for Ql D lel and Ql D 0 are very similar, and only the latter
is, therefore, presented in the figure. The variable kinematic results are not very accurate because of
the ED1 model in the coupled solution. The distribution of �xx is shown in Figure 11. L2 coupling
operator yields better results than the H 1 does. Similar considerations hold for the variation of �x´
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Figure 11. �xx along the x-axis for y=b D 1=2 at plate bottom for a Œ0=90=0	 plate. ED1–ED4-coupled
solution with (a) Ql D 0, (b) Ql D lel and (c) Ql D lc .
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as shown in Figure 12. For both normal and shear stresses, results obtained with Ql D lel are better
than those obtained with Ql D lc . In order to show the effect of the lower-order theory in the coupled
solution, a plate made of aluminium (E D 73 GPa and 
 D 0.34) is investigated. All the other
analysis parameters are unchanged. Stress components �xx and �x´ are presented in Figures 13
and 14, respectively. ED1 model is more accurate when compared to the case of the composite
plate. For the normal stress, no significant differences are found between the two coupling oper-
ators. In the case of the shear stress, results via H 1 coupling operator are smoother than the one
through L2.

The presented results confirm those reported by Ben Dhia and Rateau [4] and Guidault and
Belytschko [33]: L2 coupling operator presents a multiplier field that tends to be singular near
the interfaces of the superposition zone. This is not the case forH 1, which yields a smoother multi-
plier field. When coupling identical kinematic models or models with similarly accurate kinematics,
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Figure 12. �x´ along the x-axis for y=b D 1=2 at mid-plane for a Œ0=90=0	 plate. ED1–ED4-coupled
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Figure 13. �xx along the x-axis for y=b D 1=2 at plate bottom for an aluminium plate. ED1–ED4-coupled
solution with (a) Ql D 0 and (b) Ql D lel.

results obtained via H 1 are similar to those by L2. Nevertheless, in the considered cases, H 1 may
yield inaccurate results if the unrefined theories are not appropriate to model the mechanics of the
structure (especially when the transverse shear is important). This behaviour is emphasised by high
values of Ql . The relation enforced by H 1 (see Guidault and Belytschko [33]) in the superposition
zone is

.u1 � u2/� Ql
2 Œ
 .u1/�
.u2/	D 0 (46)

where 
 is the Laplacian. The higher the parameter Ql , the higher the contribution of the deriva-
tives of the displacements in Equation (46). As shown in Table I, the ED1 model, especially for the
prediction of the transverse shear stresses, is not accurate. The contribution due to the derivatives
of strain components may introduce a disturbance in the superposition zone. L2 couples only
the displacements that are, in general, more accurate than the transverse strains in lower-order
plate models.

6.2.2. Extension of the superposition zone The influence of the extension of the superposition zone
on the coupling is investigated. Several superposition zones, as shown in Figure 1, are considered.
Both L2 and H 1 coupling operators are considered. For the latter case, a length parameter Ql equal
to lel is considered. In order to avoid the perturbation in the coupling due to the plate theories,
two refined models are coupled (ED3 model in sub-domain A1 and LD4 model in A2). Figure 15
present �xx and �x´ in the case of L2. The extension of the superposition zone does not affect the
results in a significant manner. This conclusion is supported by the fact, as shown in Figure 7, that
the Lagrangian multipliers’ contribution is concentrated at the interface with the low-order model.
The case of H 1 coupling is shown in Figure 16. For the considered cases, the effect of the size
of the superposition zone is very small, the curves in the figures barely being distinguishable: the
superposition zone does not affect significantly the accuracy of the solution. On the other side, the
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Figure 14. �x´ along the x-axis for y=b D 1=2 at mid-plane for an aluminium plate. ED1–ED4-coupled
solution with (a) Ql D 0, (b) Ql D lel and (c) Ql D lc .

bigger the extension of the superposition zone, the higher the number of DOF, and therefore, small
superposition volumes should be used. The influence of the distance between the loading region
and the superposition zone is considered in Figure 17. �x´ in the case of H 1 coupling is presented.
A load of 400 N is applied as a uniform transverse pressure on square regions centred at point
.a=2, a=2, h=2/ with side lengths a=3, a=5 and a=15. Using the mesh in Figure 1, these regions
correspond to 5 � 5, 3 � 3 and 1 � 1 elements, respectively. Superposition zone Sa is adopted.
The smaller the loading application area, the higher the shear stress gradient. Multiple models solu-
tions match the corresponding mono-model ones outside of the superposition zone regardless of the
extension of the loading region. For the considered cases, this is also valid for displacements and
normal stresses.

6.2.3. Weight parameters Three different values of ˛2, the weight parameter of the refined
model, are used: 0.02, 0.5 and 0.98. Superposition zone Sa is considered. A length parame-
ter Ql equal to zero and lel is considered. An ED3 model is coupled to an LD4 model. The
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Figure 15. ED3–LD4 L2 coupling for a Œ0=90=0	 plate for different superposition volumes. (a) �xx at plate
bottom and (b) �x´ at mid-plane along the x-axis for y=b D 1=2.
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Figure 16. ED3–LD4H1 coupling with Ql D lel for a Œ0=90=0	 plate for different superposition volumes. (a)
�xx at plate bottom and (b) �x´ at mid-plane along the x-axis for y=b D 1=2.
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variation of �xx and �x´ along the x-axis at y=a D 1=2 is presented in Figures 18 and
19, respectively. For the considered cases, H 1 coupling operator is more sensitive than the
L2 one to the weight parameters. The results confirm, as reported in Ben Dhia and Rateau
[4], that the sub-domain with the most refined description should have a higher weight in the
global equilibrium.

6.2.4. Different kinematics and variational principles Unified formulation models that differ in the
type of the main unknowns, expansion order and approximation level (ESL or LW) are coupled.
The coupling parameters are fixed coherently to the results already presented: (i) the smallest super-
position zone Sa is used; (ii) higher weight in the global equilibrium is given to the most refined
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Figure 17. �x´ at mid-plane along the x-axis for y=b D 1=2 for a Œ0=90=0	 plate. ED3–LD4 H1 coupling
with Ql D lel for loading regions with different side lengths.
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Figure 18. �xx along the x-axis for y=b D 1=2 at plate bottom for a Œ0=90=0	 plate. ED3–LD4-coupled
solution for different ˛� with (a) Ql D 0 and (b) Ql D lel.
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Figure 19. �x´ along the x-axis for y=b D 1=2 at mid-plane for a Œ0=90=0	 plate. ED3–LD4-coupled
solution for different ˛� with (a) Ql D 0 and (b) Ql D lel.

Table III. Transverse displacement and stresses for the Œ0=90=0	 plate, variable kinematic multiple models.

�105 � u´ �xx �yy �10� �x´ DOF
(m) (MPa) (MPa) (MPa)

L2 coupling operator

LD1–LM4 1.658,�1.36* 11.82,�0.58 1.975,�0.90 6.478,�0.69 7968
ED4–LD4 1.665,�0.41 11.83,C0.00 1.976,�0.35 6.465,C0.01 6216
LD1–LD4 1.660,�0.71 11.84,C0.08 1.977,�0.30 6.497,C0.51 5472
ED1–LD4 1.617,�3.28 11.91,C0.67 1.953,�1.51 6.481,C0.26 3984
FSDT–LD4 1.617,�3.28 11.91,C0.67 1.953,�1.51 6.481,C0.26 3736
ED3–ED4 1.657,C0.00 11.84,�0.08 1.985,C0.00 5.831,C0.01 3936
ED1–ED4 1.609,�2.89 11.92,C0.59 1.962,�1.15 5.848,C0.30 2448
FSDT–ED4 1.609,�2.89 11.92,C0.59 1.962,�1.15 5.848,C0.30 2200

H1 coupling operator

LD1–LM4 1.661,�1.19 11.81,�0.67 1.974,�0.95 6.490,�0.50 7968
ED4–LD4 1.666,�0.35 11.85,C0.16 1.978,�0.25 6.467,C0.04 6216
LD1–LD4 1.663,�0.58 11.85,C0.16 1.974,�0.45 6.485,C0.32 5472
ED1–LD4 1.620,�3.11 11.92,C0.76 1.953,�1.51 6.458,�0.09 3984
FSDT–LD4 1.620,�3.11 11.92,C0.76 1.953,�1.51 6.458,�0.09 3736
ED3–ED4 1.657,C0.00 11.84,�0.08 1.985,C0.00 5.832,C0.03 3936
ED1–ED4 1.611,�2.77 11.92,C0.59 1.963,�1.10 5.838,C0.13 2448
FSDT–ED4 1.611,�2.77 11.92,C0.59 1.963,�1.10 5.838,C0.13 2200

*Percentage difference with respect to the corresponding mono-model finite-element results.

model (˛2 D 0.98); (iii) both L2 and H 1 (with Ql D lel) operators are adopted. Table III presents
the transverse displacement and the normal and shear stress components for a symmetric Œ0=90=0	
plate. The number of DOF of variable kinematic FE solutions is also addressed. Multiple models
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Table IV. Transverse displacement and stresses for the Œ90=0	2 plate, variable kinematic multiple models.

�105 � u´ �xx �yy �10� �x´* �10� �x´
�

(m) (MPa) (MPa) (MPa) (MPa) DOF

L2 coupling operator

LD1–LM4 1.714,�0.63	 11.13,�0.89 1.794,�0.71 6.051,�1.46 6.051,�1.46 10 248
LD1–LD4 1.717,C0.00 11.15,�0.17 1.796,�0.33 6.090,�0.45 6.099,C0.49 6984
ED2–LD4 1.688,�1.68 11.17,C0.00 1.796,�0.33 6.123,C0.08 6.139,C1.15 5496
ED1–LD4 1.769,C3.02 10.91,�2.32 1.768,�1.88 6.265,C2.40 6.187,C1.94 4752
FSDT–LD4 1.763,C2.67 10.93,�2.14 1.772,�1.60 6.265,C2.40 6.169,C1.64 4504
ED2–ED4 1.668,�1.76 11.20,C0.08 1.778,C0.00 8.259,C0.54 4.926,C0.55 3192
ED1–ED4 1.746,C2.82 10.95,�2.14 1.750,�1.57 8.262,C0.58 4.928,C0.59 2448
FSDT–ED4 1.739,C2.41 10.97,�1.96 1.753,�1.40 8.262,C0.58 4.928,C0.59 2200

H1 coupling operator

LD1–LM4 1.761,C2.08 10.97,�2.31 1.775,�1.77 6.131,�0.16 6.131,�0.16 10 248
LD1–LD4 1.746,C1.68 11.09,�0.71 1.780,�1.22 6.128,C0.16 6.047,�0.36 6984
ED2–LD4 1.707,�0.58 11.17,C0.00 1.796,�0.33 6.123,C0.08 6.139,C1.15 5496
ED1–LD4 1.783,C3.84 10.81,�3.22 1.763,�2.16 6.189,C1.16 6.179,C1.81 4752
FSDT–LD4 1.769,C3.02 10.85,�2.86 1.772,�1.66 6.135,C0.27 6.190,C1.99 4504
ED2–ED4 1.685,�0.76 11.16,�0.26 1.773,�0.28 8.237,C0.28 4.913,C0.28 3192
ED1–ED4 1.761,C3.71 10.90,�2.59 1.745,�1.85 8.220,C0.07 4.903,C0.08 2448
FSDT–ED4 1.747,C2.88 10.97,�1.96 1.753,�1.40 8.249,C0.42 4.920,C0.42 2200

*Value at the bottom of the second layer.
�Value at the top of the third layer.
	Percentage difference with respect to the corresponding mono-model finite-element results.

solutions match the corresponding mono-model results, proving the effectiveness of the Arlequin
method in merging domains discretised via finite elements derived from different theories. Results
are similar for the two coupling operators. Accurate results are obtained coupling PVD-based and
RMVT-based models, that is, LD1–LM4. The number of DOF is significantly reduced. When ED1
or FSDT is adopted as unrefined theory, results may exhibit inconsistent behaviour with respect to
the corresponding mono-model results and, being the two models similar, do not differ up to four
significant digits. For instance, in the case of ED1–ED4-coupled solution, �xx is higher than the cor-
responding mono-model results; see Table I. It should be noticed that, anyway, the difference from
ED4 model is less than 1%. This may be due to the first-order model inability to capture the mechan-
ics of the structure. Results in the case of an anti-symmetric Œ90=0	2 plate are presented in Table IV.
For the transverse displacement, a coupling between FSDT or ED1 model and a higher-order one
yields overestimated results by about 3% with respect to the correspondent mono-model solution.
At least a second-order model should be assumed for the unrefined sub-domain. The difference in
the transverse displacement from the mono-model solution whenH 1 coupling operator is used may
be due to the shift introduced by this operator in bending problems as reported in Guidault and
Belytschko [33]. The choice of the unrefined model in the considered cases is of primary impor-
tance: if the unrefined model does not model correctly the global response of the plate, results in the
refined sub-domain are less accurate.

7. CONCLUSIONS

The Arlequin method has been used to derive a variable kinematic multiple models analysis of plate
structures in the framework of a UF. This UF allows deriving several finite elements via a com-
pact notation that does not depend upon the through-the-thickness expansion order, the description
approach (ESL or LW) and the type of main unknowns (PVD or RMVT). According to the used UF,
Arlequin coupling matrix has been obtained as a fundamental nucleo. The derivation of the coupling
matrix in terms of a fundamental nucleo yields a straightforward implementation of the Arlequin
method regardless the kinematic assumptions of the coupled theories. Relatively thick composite
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plates have been investigated. A localised bending loading has been accounted for. Refined finite
elements have been used only in those sub-domains of the structure where a quasi-three-dimensional
stress field occurs. The proposed coupled models have been validated towards mono-models solu-
tions and a three-dimensional elasticity approach. It has been shown that the Arlequin method
proves to be an effective approach to couple sub-domains of the structure modelled with finite ele-
ments having different kinematics and/or variational principle. Two coupling operators have been
accounted for.H 1 coupling may yield inaccurate results if the lower-order model lacks in capturing
the mechanics of the structure. This is emphasised by high values of the length parameter Ql . In these
cases, L2 coupling operator should be preferred. The size of the superposition zone has no signifi-
cant effect on the accuracy of the coupling. In order to reduce the computational cost, the coupling
volume should be reduced as much as possible. Accurate results have been obtained in the refined
part of the model with a significant reduction of the total number of degrees of freedom and, there-
fore, of the computational cost. The proposed variable kinematic multiple models approach is of
particular interest for practical cases (for instance, free edges, concentrated loads, cut-outs, delam-
inations and failures) in which high gradients or singularities occur in localised regions. Accurate
modelling of the mechanics of these regions requires a local refinement of the solution.
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