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A New 3D Tool for Planning Plastic Surgery 
 

A. Bottino, M. De Simone, A. Laurentini, C. Sforza 

 

Abstract— Face plastic surgery (PS) plays a major role in today medicine. Both for reconstructive and cosmetic surgery, achieving 

harmony of facial features is an important, if not the major goal. Several systems have been proposed for presenting to patient and 

surgeon possible outcomes of the surgical procedure. In this paper, we present a new 3D system able to automatically suggest, for 

selected facial features as nose, chin, etc, shapes that aesthetically match the patient’s face. The basic idea is suggesting shape changes 

aimed to approach similar but more harmonious faces. To this goal, our system compares the 3D scan of the patient with a database of 

scans of harmonious faces, excluding the feature to be corrected. Then, the corresponding features of the k most similar harmonious 

faces, as well as their average, are suitably pasted onto the patient’s face, producing k+1 aesthetically effective surgery simulations. The 

system has been fully implemented and tested. To demonstrate the system, a 3D database of harmonious faces has been collected and a 

number of PS treatments have been simulated. The ratings of the outcomes of the simulations, provided by panels of human judges, 

show that the system and the underlying idea are effective. 

 
Index Terms— Computer supported surgery, Plastic surgery, face scanning, planning surgery outcomes, anisotropic ICP 

I. INTRODUCTION 

LASTIC surgical procedures enjoy increasing popularity in different countries as well as among different social groups. 

According to recent statistics by The American Society for Aesthetic Plastic Surgery, in 2008 more than one million facial 

plastic surgeries were performed, with a growth of 162% in ten years [1]. According to an estimate, in the US more money is 

spent annually on beauty related items or services than on both education and social services [2]. The popularity of plastic 

surgery (PS) also triggered new studies in face recognition aimed at taking into account facial differences due to these 

procedures ([3], [4]). Facial PS is defined reconstructive when aimed at correcting deformities congenital or due to accidents or 

diseases, and cosmetic otherwise. Actually, there is not a well defined boundary between the two fields. In any case, achieving as 

far as possible an harmonious or at least regular face shape is a main goal for both kinds of surgery. 

 

A. Previous work 

Planning PS requires taking into account a number of physiological and psychological constraints. The frequency of secondary 

rhinoplasties, due to unsatisfactory outcomes from previous procedures, and estimated around 8%-15% of the cases [5], shows 

that planning PS is far from simple. Fully planning PS would require considering several factors, as the exterior shape to obtain, 

its interaction with soft tissues and bones, and the evolution of tissues with time. This work deals with the problem of supporting 

the aesthetic judgment of surgeon and patient for choosing more harmonious facial shapes. 

To this purpose, a number of computer tools have been proposed, aimed at presenting possible outcomes of the surgical 

procedure. Ozkul and Ozkul [6] presented a system for simulating rhinoplasty in 2D profile images. Image interaction tools 

emulating real surgical procedures were supplied. Rabi and Aarabi [7] emulated the outcomes of PS in 2D frontal images by 

suitably pasting on the patient’s face facial features of other subjects. Liu et al. [8] attempted to predict the PS outcome on the 

basis of a number of results of former cases. Commercial 2D simulation packages are also available [9]. These packages 

essentially allow manipulating 2D images with morphing operators.  

 Since human face is a complex 3D object, several systems for manipulating 3D faces have been studied. Gao et al. presented 

a technique for warping the 3D B-spline surface obtained from patient’s face scan [10]. Lee et al. [11] constructed a patient 

specific 3D model from a generic model based on CT data and a 2D image of the patient and used morphing operators for 

emulating surgical procedures. A 3D PS planning system specific of nose surgery was proposed by Lee, Lin and Lin in [12]. The 

system works on CT data of the head of the patient from which the face surface is obtained for realistic rendering purposes. 

Wang et al. [13] proposed a 3D simulator of augmentation nose surgery, based on a surface scan and a lateral X-ray image. 
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Deformation tools were provided, as well as the evaluation of the size of the required prosthesis. Commercial 3D systems have 

also been recently proposed [14]. 

B. Our approach and its rationale 

The quoted planning systems supply manual interfaces for changing the shape of 2D or 3D patient’s images. All choices in 

manipulating faces and evaluating results are left to the surgeon's and patient’s judgment. 

Our approach is aimed at automatically suggesting, for the particular feature object of surgery and for the particular patient’s 

face, the shapes most suitable to enhance facial harmony. To explain the rationale of our approach, we will review some results 

of the research on facial attractiveness. Recently this research has been a major issue in psychology, psychobiology, 

anthropology, evolutionary biology, behavioral and cognitive sciences, and in medical areas such as plastic surgery and 

orthodontics. Empirical rating studies have demonstrated high beauty rating congruence over ethnicity, social class, age, and sex 

(see for instance [15][16][17][18]). Ratings are in particular very similar for beautiful and ugly faces. This means that the human 

perception of facial attractiveness is essentially data-driven, and largely irrespective of the perceiver. Many papers aimed at 

analyzing and assessing beauty using Computer Vision and Image Processing techniques have been recently presented. Several 

of them have been surveyed in [19].  

Although several results have been obtained, the question whether facial beauty can be synthesized into some relatively simple 

quantitative rules is far from being answered. Traditional rules, as the classic canons, have been found not to apply to many faces 

rated beautiful (see [20][21][22]). Several empirical results support the idea that there is not a unique beauty prototype. Although 

averaging facial images produces faces more attractive than each component image, attractive faces are mostly not average 

([23][24]). Beauty ratings have been found largely independent on ethnicity, but faces rated beautiful can be rather different in 

various ethnic groups ([25][26]). Cognitive theories support the idea that humans define and use several category prototypes for 

face image analysis [27]. According to this idea, several beauty rating programs provide results close to those of human raters, 

based on classifiers trained with a set of already rated faces [19]. Using around 100 samples, the quality of the ratings increases 

without saturation with the number of samples in the training set [28], highlighting the needs for large DBs of rated faces. 

Concluding, simple rules based on measurable face features, able to assess beauty or suggest how to improve it, are still 

lacking, and we must learn attractiveness by examples. Therefore, our general idea for patient-specific beautification is to 

consider several harmonious face prototypes, and to suggest surgical procedures able to approach the samples closer to the 

patient’s face. Observe that the idea of many different prototypes of harmonic faces implies that there is not a unique harmonic 

prototype of a particular facial feature (e.g. mouth, nose). Different shapes could be attractive, depending on the integration with 

the rest of the face. An example of rather different noses belonging to movie actors is shown in Fig. 1.  

In more details, our approach to the face beautification works as follows: 

1. consider a particular  patient’s face feature (target feature), and compare the face of the patient with a set of faces 

rated harmonic (reference database), excluding the target feature; 

2. minimize some convenient metric in the face space and find the nearest k attractive faces; 

3. blend the corresponding target feature of the k nearest attractive faces, as well as their average, with the original face, 

in order to produce k+1 surgery simulations; in the following these features will be referred to as target reference 

features (TRF).  

We also use the average feature since, as previously mentioned, averaging faces has been found to improve attractiveness. 

Two of the authors presented a first implementation of this idea in [29] focused on 2D face profiles, and choosing as target 

feature the nose. In this paper, we extend the idea to 3D face scans, and to any part of the face. 

The content of the paper is as follows. In Section II, we describe the 3D scans database used and we detail the various steps of 

the algorithm. In Section III, we present examples of PS simulation. Processing times are reported in Section IV and the ratings 

of the results of PS simulations supplied by a panel of human raters are discussed in Section V. Concluding remarks are reported 

in Section VI. 

 
Fig. 1. Different shapes could be more or less attractive, depending on the perceived general harmony 

II. THE PROPOSED TECHNIQUE 

In this section, we describe in detail the reference database used and the various steps performed by the system, that is: 

• Normalizing face scans 

• Selecting and removing on the patient’s face the target feature 
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• Determining  and removing the corresponding features on the harmonious faces of the reference DB 

• Retrieving the k DB faces most close to the patient’s face 

• Suitably pasting on the patient’s face the TRF of the k closer DB faces and their average. 

Underlying our technique is the assumption that facial harmony is unaffected by (slightly) non-isotropic 3D global scaling.  

A. Creating the reference DB 

The outlined beautification process requires a set of harmonious faces (the reference database). Unfortunately, not many 3D 

face databases are available, and those existing, being essentially aimed at supporting face recognition research, contain 

attractively average faces, and only a very few scans useful for our purposes. As mentioned before, a dense sampling of the 

manifold of beautiful faces in the face space is likely to require several hundreds of samples. To build such large database is 

beyond the scope of this paper, and we have constructed a database sufficient to demonstrate the PS simulation software 

implemented and the effectiveness of the general approach. 

To construct the reference DB, we collected scans from two sources.  First, we selected, with the help of a human raters panel, 

the most attractive faces (actually very few) from the available 3D databases, such as [30] and [31]. Second, we acquired high-

resolution 3D attractive face scans of professional male and female models. Data have been obtained with the VECTRA-CR-

two-pod system [32]. Each 3D scan has approximately 90.000 vertices with an associated 10 Megapixel resolution texture.  

In total, we selected as convenient to our purposes 53 face scans of both male and female multiethnic subjects. Due to the lack 

of a sufficient amount of male samples we finally decided to create a reference DB containing only female scans (36 samples) 

and, therefore, to use merely females as subjects of the PS simulation procedure. 

B. Scan normalization 

The 3D face scans used for constructing the current and future reference database come from different sources, and are 

different for size, orientation, resolution, type of meshes, etc. (Fig. 2). Therefore, for obtaining meaningful comparisons, mesh 

resolution and geometric normalization are applied. 

First, since many 3D scans present various imperfections, as missing polygons or spikes, mesh regularization is performed. In 

addition, faces have been cropped eliminating hairs and clothes (Fig. 3). Both cleaning and cropping have been performed 

manually with Blender [33].  

 

 

Fig. 2. Examples of face scans (rendered view and wireframe detail) from different databases 

 

 

Fig. 3. An example of scan before (a) and after (b) cleaning and cropping 

Our normalization algorithm performs the following steps. 

Orientation and size normalization 

Geometric normalization of 2D face images is mostly obtained by making coincident the centers of the eyes using suitable 

translation, rotation and 2D isotropic scaling. In our 3D case, normalization involves isotropic 3D scaling after a first rough 

registration using the sagittal plane and two feature points. 

The sagittal plane is determined by the algorithm described in [34], exploiting the Extended Gaussian Image (EGI). The 

sagittal plane is intersected with the face scan in order to determine its profile, where two facial landmarks, the nasion and 

subnasale are identified (see Fig. 4). These landmarks are computed with the algorithm described in [35]. 
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Fig. 4. Intersection of a face scan with its sagittal plane and automatic identification of landmarks on face profile 

 

Then, the sagittal plane and the two landmarks are made coincident for all the 3D scans by translation, rotation and scaling. 

Finally, a further finer registration with an intermediate face (a face of the reference DB chosen at random, see section II.D for 

details) is performed using the Iterative Closest Point algorithm (ICP, [36]) using the isotropic scaling software of the VTK 

library [37]. At the end of the registration process, all scans lie in a common reference system, and have common sagittal plane 

and reference axis on the sagittal plane, passing through the centroid of the intermediate face and oriented as described in [34].  

 

Mesh resolution normalization 

Reference DB samples and patient’s scan could have different resolution.  Mesh normalization is required by one of the 

following steps of the algorithm, where a dense point-to-point correspondence between different face scans is determined. 

Different resolutions can be used in the re-sampling process in order to balance the precision of the reconstructions and the 

computational costs. 

 

 

Fig. 5. Re-sampling process: (a) the mesh is sliced with horizontal planes obtaining a number of polylines; (b) the polylines are intersected with vertical planes 

rotated around the vertical axis. (c) The final point cloud; (d) reconstruction of the mesh connectivity 

To normalize resolution, face scans are re-sampled. As shown in Fig. 5(a), each face mesh is first intersected with H horizontal 

planes equally spaced within a reference bounding box. Then, the obtained polylines are intersected with a set of V vertical 

planes (Fig. 5 (b)), passing through the reference axis, common for all aligned faces, and equally spaced angularly. The 

resolution of the final meshes can be adjusted changing the H and V values. For the experiments described in Section III, and 

submitted to human raters (Section V), both variables were assigned the value 776, which produced mesh resolutions near to 

300K vertices. For the results presented in Section IV (Processing times), we also used two lower resolutions (160K and 40K). 

The result of re-sampling is the point cloud shown in Fig. 5(c). The final triangular mesh is determined, as shown in Fig. 5(d), 

by forming quads and splitting each of them in two triangles. Texture coordinates for each vertex of the new 3D mesh are 

computed with bilinear interpolation of those of the neighbouring points in the original mesh.  

C. Selecting the patient’s target feature  

Any area of the scanned patient’s face can be selected by the user as target of the PS simulation. An interactive tool allows 

drawing on the scanned face a 3D polyline, with vertices located at the re-sampled mesh points. The polyline can be more or less 

detailed according to the particular target feature and to the judgment of the user. In Fig. 6 an example is shown relative to the 

nose area. A detail view of an example of polyline and facial triangulation is shown in Fig. 7. 
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Fig. 6. Interactive feature selection: contour drawing (a); removal of the feature (b). 

 

Fig. 7. A detail view of the polyline delimitating the area subject of the PS procedure (red dots are vertices of both the polyline and the face mesh) 

D. Removing the target feature from all the reference faces 

Our algorithm requires removing the surface corresponding to the target feature both from the patient’s face scan and from all 

the scans of the reference database. 

The first operation is easily performed by intersecting the facial mesh with a cylinder whose generatrices pass through the 

polyline selected and parallel to a direction evaluated from the polyline by the Newell's Method [38].  

Removing the same feature from the scans of the reference database requires identifying a corresponding polyline on each 

face. To do this, we must first establish a dense point-to-point correspondence between the patient’s face and each reference 

face. To this purpose, we use a technique similar to that proposed in [39]. First, faces are registered with a thin plate spline 

transformation (TPS), a non-rigid smooth surface transformation particularly suited for morphing or animating faces, based on 

the correspondence of a number of keypoints. We used 37 pairs of corresponding landmarks manually selected on both the 

source and destination scans (see Fig. 8).  These keypoints are a subset of the standard landmarks used in Anthropometry [40] 

with additional points in eyes area. TPS provides a smoothly interpolated mapping between source and destination scans, which 

makes the landmarks coincident and brings the other points of the deformed source face very close to the destination face. This 

allows an accurate alignment of points in smooth regions, like cheeks and forehead. Then, after TPS morphing, for each vertex of 

the first scan a correspondence with a vertex of the second scan is derived with a closest point searching algorithm that exploits a 

KD-tree data structure to ensure computational efficiency.  

Consequently, a new polyline, equivalent to the polyline drawn on the patient’s scan, is determined for each reference face. An 

example of the transfer of the feature boundary on the reference DB faces is shown in Fig. 9. Once the boundary polyline has 

been determined on all reference faces, the target feature is easily removed from them, as done for the patient’s face. 

 

Fig. 8. The keypoints used for establishing dense point-to-point correspondence between faces 
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Fig. 9. An example of transferring a feature boundary from the patient’s face (a) to the scans in the reference DB (b) 

 

Finding the correspondences between two scans is a time consuming process. In principle, each new patient’s scan would 

require computing the correspondences with all the reference faces. As mentioned before, fully sampling the attractive face 

manifold could require several hundreds of samples, resulting in long computation times. To avoid this, we pre-computed the 

correspondences between an intermediate face (a face randomly chosen) and all the reference faces. In this way, for each new 

patient’s face, we have only to compute the correspondences with the intermediate face (see Fig. 10). 

 

 
Fig. 10. A point of the input face (a) corresponds to a point on the intermediate face (b) that, in turn, corresponds to a point on each face in the reference DB (c) 

 

Observe that, given the discrete nature of the correspondence, two vertices of the first scan could collapse in only one vertex in 

the second and there might be vertices of the destination scan which have no correspondences in the source scan. Therefore, the 

correspondence function is not bijective. However, bidirectional correspondences are necessary for our algorithm, since in the 

last step we also construct a mean feature, obtained from those of a set of reference faces by averaging their corresponding 

points. Therefore, computing the mean feature requires correspondences between all reference faces, which can be obtained 

evaluating the backward correspondences from each reference face to the intermediate face. These correspondences can be pre-

computed as well. 

E. Retrieving the most similar reference faces 

After the target feature removal, reference samples are sorted in order of similarity with the patient’s scan. The similarity 

measure between two faces is given by their RMS distance, which is the square root of the average of the sum of squares of the 

closest point distances, after their alignment with ICP using anisotropic scaling.  

As mentioned in the introduction, average faces have often been found to be more attractive then each component face. For 

this reason, we also computed an average feature from the first k-nearest neighbors in the following way. Starting from F1, the 

closest face, we evaluate the (weighted) mean of each vertex of its TRF and its corresponding points on the remaining k-1 faces. 

The correspondences between the target and the average features that are required for pasting a TRF on the patient’s face, are 

easily obtained, being equal to those between target feature and TRF of F1. 

As for the weights, we experimented with both a uniform and a weighted mean, based on the inverse RMS distances. 

However, since a panel of human raters did not express significant preferences for either option, we used equal weights. 

F. Blending the TRFs 

This final step produces the simulated surgery outcome, that is the 3D textured model of the patient’s face where the surface of 

the target feature has been modified according to the surface of the TRF retrieved, and the original patient’s texture has been 

conveniently applied on the new surface. This process should produce a smooth, realistic and seamless junction.   

The process consists of three steps:  

a) the surface of the TRF is registered with respect to the patient’s scan; 

b) the original target feature (surface and texture) is conveniently morphed toward the TRF surface. A feature of this 

particular morphing is that it produces a smooth blending of patient’s scan and TRF surface; 

c) the original texture intensity is corrected according to the different new shape. 

In more detail: 

a) Registration. An initial registration of the TRF on the patient’s face is obtained applying the same transformations used to 

match patient and corresponding face of the reference DB. This registration is refined to reduce the differences between the 

contours of the removed target feature and the TRF, by applying a second anisotropic ICP only to the points of their contours. 

The resulting transformation is applied to the entire mesh of TRF. 
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b) Morphing. The morphing process is schematically shown in (Fig. 11). The general idea is to use the dense correspondence 

computed between target feature and TRF, excluding a strip close to the contour, where the original surface and texture is 

morphed to an intermediate position, depending on the distance from the feature contour.  

 

 

Fig. 11. The reference feature (a, in green) is used to morph the target feature (b) to obtain the final result (c) 

 

In order to describe the details of the process, let us  refer to Fig. 12, where we show in (a) the target feature (red, on the left), 

the TRF (gray, on the right) and in Fig. 12(b) their registration. For each point Pi of the target feature: 

1. we compute ci, its distance from the closest point on its contour, and Di, its vector difference with its corresponding 

point on the transformed TRF (Fig. 12c);   

2. we transform Pi (Fig. 12d) according to the following equation: 

iiii DPWPP *)(+←
 

where W(Pi) is a scalar weight in the interval [0,1] obtained as: 
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 cmax is the maximal c value for all target feature points and t is a threshold (experimentally set to 0.1) that controls 

the width of the blending strip. 

Fig. 12(e) shows, in false colours, a map of the weights applied to the target feature points, ranging from 1 (blue) to 0 (red). 

The green is the area of blending. As it can be seen, points closer to the patient feature boundaries are smoothly interpolated with 

that of the reference feature. An example of transformation of a point is shown in (c) and (d). In this case, the distance ci is such 

that the point is outside the blending strip, and the point sticks directly on the corresponding point. For computing W(Pi) we used 

the Euclidean distance between Pi and the feature contour. A better option could have been the geodetic distance, however too 

expensive to compute.  

 

 

Fig. 12. a) target feature (left) and TRF (right); b) features alignment; c, d) evaluation of the weight of point Pi (with W(Pi)=1) and its transformation; e) a false 

color map of the weights W(Pi) (red = 0, blue = 1) 

 

c) Texture correction. The texture applied on the new shape corresponds to the original skin of the target features, but in 

general is not in full agreement with the new geometry, since the reflected light depends on the surface normals, more or less 

changed. Exactly reconstructing the illumination for the new surfaces is not easy, since it would require detailed information 

about lights and surface materials, which is not available in general.  

Actually, in most images of simulated PS the effects of this problem are not conspicuous. Anyway, we implemented an 

approximate algorithm providing a texture correction that appears effective in our case.  

Assuming that the reflective features of the surface material (skin) is the same for all the feature points
1
 and a Lambertian 

reflection model, the intensity of a surface point depends approximately only on the direction of its normal. 

 
1 There are cases where the feature material is not unique, e.g. the mouth area where lips and surrounding skin can be considered as two different materials; in 

this case we segment these different regions on the texture plane on the basis of their chromaticity values and we process separately each material 
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Therefore, we assign to the texture of the morphed target feature the intensity of the texture of the original feature where the 

surface had the same normal. In more detail, this is performed in the following way. 

First, we convert the feature texture from RGB to HSV space and we construct a look-up table (LUT) relating normal 

direction and average texture intensity for the target feature. The LUT is constructed by averaging, for 2
18

 equally spaced 

directions of the normals, the V values of the mesh vertices whose normals are closer to each direction.  

Then, for each vertex of the morphed mesh, we find the closest normal in the LUT and retrieve the intensity. The intensities of 

the pixels of the texture triangle corresponding to a mesh triangle are computed by interpolating that of its vertices. Some 

smoothing of the intensities is applied to reduce irregularities related to the initial normal space sampling. Finally, the adjusted 

intensities are combined with the original HS values and the texture is converted back to RGB. 

An example of texture correction is shown in Fig. 13. A surgery simulation of a patient subject to mouth and chin reshaping 

(a) is shown in (c) without, and in (d), with the adjusted texture. Finally, in (b) we have highlighted the points where the 

differences of normal directions are significant, that is the area where the texture correction takes place. 

(a) (b)

(d)(c)  

Fig. 13. Patient’s face subject to mouth reshaping (a); map of the differences of the normal directions (b); planning outcome without (c) and with (d) texture 

adjustment 

III. EXAMPLES OF PS SIMULATION  

The beautification algorithm has been applied to 26 test cases, and k has been set to 4, which appears in keeping with the 

cardinality (36) of the reference DB. Then, for each case, we produced 4+1= 5 PS simulations, including that related to the 

average feature, and overall 26x5=130 simulations 

The test cases have been chosen from the faces discarded when constructing the reference DB. Some of them were 

professional models, but presenting, in our opinion, some slight defect. Different target features have been considered in the 

various cases: nose, mouth, chin and chin and mouth together. The majority of the subjects were involved into nose reshaping.  

Some simulations are shown in this section. All have been used for evaluating the average computation times (Section IV) and 

rated by human panels (Section V). 

Examples related to various face features are shown in Fig. 14 and Fig. 15. To make the 3D shape changes more evident, for 

each case we present three different views of the original patient’s scan and of the PS simulation. The simulations shown are the 

best among 4+1 simulations for each face according to a panel of human raters (see Section V). In Fig. 16 we also show an 

example where all the 4+1 outcomes of nose reshaping simulations are present. The leftmost image in the top row is the original 

face.  From left to right and top to bottom follow the results obtained pasting the mean feature and the feature of the closest DB 

samples in decreasing similarity order. 
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Fig. 14. Examples of simulated surgeries related nose reshaping 

original

(a)

original

(b)

simulation

outcome

simulation

outcome
 

Fig. 15. Examples of simulated surgeries related to a) mouth and b) mouth and chin reshaping 
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Fig. 16.  In this case, all the 4+1 simulated nose reshaping surgeries are shown. Only one of them had been shown in Fig. 14-15. The leftmost image in the first 

row is the original patient’s face  

IV. PROCESSING TIMES 

The entire PS simulation process requires a pre-processing phase, in part manually performed by a trained operator, and a 

totally computer-performed computation of the possible surgery outcomes. Computation times have been determined by running 

our system on an Intel Core i7 3.7 GHz processor, 12GB RAM, and a 64-bit Linux operative system.  

The times reported in this section are relative to processing the 3D scan of a single patient. We suppose that the construction 

of the reference DB and all the related operations, as finding suitable face scans, mesh re-sampling, computing correspondences 

with the intermediate face, have already been performed. 

A. Pre-processing 

Three manual pre-processing operations are required: 1) scan cleaning and cropping, 2) facial landmark identification and 3) 

patient’s target feature selection. Clearly, scans’ cleaning strongly depends on their quality. Anyway, a trained operator (one of 

the authors) was able to perform operation 1), on the average, in about 6 minutes per mesh (Snorm). As for facial landmarks 

placement, in order to speed up execution times, a rough initialization of their position, obtained from that on the intermediate 

face, allows the trained operator to perform the task in about 30 sec. (Landm). Finally, operation 3) requires to the trained 

operator about 10 sec. (Fsel). 

The average times required by the remaining computer-performed phases of the pre-processing algorithm are reported in Table 

1. In addition to the top resolution class for re-sampled mesh (300K), used for the images of the previous Section and presented 

to human raters, 2 additional classes of resolution have been used namely 160K and 40K vertices.  

For each resolution class, the actual average number of vertices resulting from the re-sampling process is in column AvgPt, and 

the number of horizontal and vertical planes used for the re-sampling is indicated in column H and V. For each class, the table 

reports the average time required for finding the sagittal plane and normalizing faces for size and orientation (Fnorm), the 

average execution times for re-sampling the mesh (Re-samp) and evaluating its bi-directional point-to-point correspondences 

with the intermediate face (Corresp). To compute Fnorm and Re-Samp, actually depending also on resolution and orientation of 

the initial scans, we used the set of faces in the reference DB, re-sampled at the three class resolutions. These faces were 

randomly scaled, translated and rotated before applying the normalization process.  

CLASS AvgPt H V
Fnorm 

(sec)

Re-samp 

(sec)

Corresp 

(sec)

300K 304,962 776 776 152.64 366.85 8.27

160K 160,141 512 512 81.49 170.38 7.15

40K 40,329 256 256 48.05 126.54 6.25

Pre-processing

 
Table 1. All values are in seconds, except H and V (the number of planes used during re-sampling) and AvgPt  

B. PS simulation times 

Table 2 reports the average execution times required by each step of the simulation process. Similarity is the average time for 

removing the target feature from a database sample and matching it with the patient’s face and Morph the average time for 

morphing the target feature, whose mean resolution is in MorphPt. The times, depending on k, for computing the average TRF 

and selecting the k more close faces are negligible (with k=4, we obtained the average TRF in less than   0.003 sec. for class 

300k)  
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CLASS
Similarity 

(sec)

Morph 

(sec)
MorphPt

300K 3.03 3.13 6,277

160K 2.42 2.35 3,256

40K 1.66 1.49 830

PS simulation

 
Table 2. Times required by each phase of the simulation process. MorphPt is the average number of points per category and per target feature. 

C. Total processing times 

Overall time for obtaining k simulation outcomes, with a reference DB containing n faces, is given by: 

 Snorm + Landm + Fnorm + Re-samp + Corresp + Fsel + n*Similarity + (k+1)*Morph  

For instance, with the current settings (36 samples in the reference DB, 5 different simulations), total time is 1052 sec. for 

resolution 300k and 647 sec. for resolution 40k.  

Execution times for larger reference DBs are provided by the following examples. For n=100 and k=5,execution time is 1249 

sec. for resolution 300k and 755 sec. for resolution 40k. For n=200 and k=7 it is 1558 sec. for resolution 300k and 924 sec. for 

resolution 40k. These numbers shows that the approach is computationally feasible even with practical DBs. Anyway, improving 

and parallelizing code could shorten considerably computation times. 

Observe that he most expensive part of the computation required for setting up the system, that is pre-processing all the faces 

of the reference DB, is executed once for all, and adding a new sample requires only pre-processing this sample.  

V. HUMAN RATINGS OF PS SIMULATIONS 

We recall that a dense sampling of the manifold of harmonious (female) faces is likely to require some hundreds of samples, 

when our reference DB only contains 36 samples. Therefore, the effectiveness of the system could considerably improve with a 

larger DB, and the examples presented should essentially be considered a demonstration of the system developed.  

However, we also arranged the rating of the simulation results through a public website of the Politecnico di Torino.  For all 

the 26 test cases, the original scan and the five surgical simulations were shown on the same page in random order. Raters were 

allowed to rotate interactively original and modified faces. Then they were asked to evaluate, for each PS simulation, if there was 

an improvement (positive answer), a worsening (negative answer) or no change (neutral answer) in the perceived attractiveness. 

A total of 15,485 votes, with an average of 119 votes per simulated result, were obtained from 312 judges. The ratings showed a 

substantial congruence between gender and age range of the raters, which is consistent with congruence of human panels 

judgments of attractiveness reported in many papers.  

A first result, actually rather obvious, is that in almost all cases the results were perceived as positive or neutral. Globally, the 

number of simulations scoring more than 50% of positive grades is 68.4%, while those obtaining more than 50% of not negative 

grades were 99.2%.  

A more interesting result is the connection between closeness of scans in the face space and perceived attractiveness 

improvement. In Table 3, column Best+ shows, for the four closer scans of the reference DB, the number and percentage of test 

patients for which that corresponding PS simulation obtained the highest number of positive grades. It can be seen that the 

closest scan outperforms (11 times and 42% of the cases) the others. In the table, the sum of test patients gives 28 instead of 26, 

since there are two cases where two different scans provide the same highest grade. 

Although relative to a small DB, and thus affected by noise due to under-sampling, this is a confirmation of the general 

assumption at the basis of this paper. 

Another interesting result is the high rating of the average TRF. Actually, it received the highest percentage of positive 

answers in 18 cases. However, if we compare the percentage of positive answers of the average TRF and the highest of the four 

closer scan, their absolute difference is very small (2.3%). Also this result is probably affected by the under-sampling. Anyway, 

it is in keeping with the fact already mentioned that the result of averaging several facial images is usually rated more attractive 

than each component image. 

 

Closer

scan nr %

1st 11 42.3%

2nd 7 26.9%

3rd 6 23.1%

4th 4 15.4%

Best +

 

Table 3. Number of times (and percentage) in which the TRF of the closer reference provides the highest percentage of positive answers (Best +)  

 

Summarizing, the surgical simulations proposed appear in general more attractive than the original. The simulation obtained 

using the most similar reference face is several times the more appropriate to select and the average TRF provides a good pick as 

well.  
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VI.  SUMMARY AND FUTURE WORK 

We have presented a new 3D system for the aesthetic planning of face plastic surgery. The system can suggest, for any 

selected facial area, new 3D shapes able to improve the general harmony of the face. Since until now the research in the field has 

not been able to quantify rules for evaluating and improving general facial feature harmony, we proposed a “learning by 

examples” approach.  In our case, it consists in suggesting changes able to approach the shape of similar, but more harmonious 

faces. For doing this, a database of harmonious faces has been constructed. The feature to be improved (target feature) is deleted 

from a patient’s face scan, and the residual surface is compared with a set of harmonious face scans, where the same feature has 

been deleted. Retrieving and suitably pasting onto to patient’s face the target feature of the k more similar harmonious faces, as 

well as the average feature,  provides k+1 surgery suggestions. 

Implementing this general idea required to face and solve a number of problems, including scan normalization, finding dense 

point-to-point correspondences between different scans, performing smooth and seamless blending of scans, correcting the final 

textures of the morphed target feature to account for differences in shape and thus in intensity of reflected light. All the 

corresponding sub-systems have been implemented and tested. Several examples of surgery simulation have been provided, 

showing how the system works for key facial areas as nose, mouth and chin. 

The tests show that the general idea at the basis of our approach is effective. Although the database of harmonious faces used 

is rather small, the ratings provided by a human panel demonstrate that the closer is the scan of the harmonious face, the better is 

the aesthetical result of pasting the correspondent target feature. 

Further work for improving the system will be carried on along three directions. It has been already observed that a dense 

sampling of the space of harmonious faces is likely to require several hundreds of samples. In addition, an estimated 30% of 

today face surgeries are relative to male patients. Thus,  improving both system performances and application areas requires a) 

increasing maybe five or ten times the cardinality of the female harmonious faces database, with particular attention to covering 

several ethnic groups; b) constructing a database of harmonious male scans. With regard to the last point, according to most 

scholars of human attractiveness in human science and medicine, the elements of human face beauty are very different in male 

and female subjects, and thus the harmonious female database is not likely to be effective for beautifying males. 

 A second important area of improvement is extending the system described, which  deals with the aesthetic planning of 

surgery, to also deal with the surgical constraints, combining the surface model described with a volumetric scan of soft and hard 

tissues. Finally, in order to deal with large reference DBs, we are planning to improve the computational performances, for 

instance rewriting the code, which is highly parallelizable, addressing a multi-thread architecture, or porting some of the 

algorithms in GPU.  
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