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Intelligent Energy Optimization for User Intelligible
Goals in Smart Home Environments

Fulvio Corno,Member, IEEEand Faisal RazzalStudent Member, |IEEE,

Abstract—Intelligent management of energy consumption is  To cope with increasing energy needs the smart grid is a
one of the key issues for future energy distribution systems, promising infrastructure [6] which focuses on demand side
smart buildings, and consumer appliances. The problem can be management. It provides customers an ability to make in-

tackled both from the point of view of the utility provider, with f d decisi bout thei tion b i
the intelligence embedded in the smart grid, or from the point of {ormed decisions about their energy consumption by adjgsti

view of the consumer, thanks to suitable local energy management timing and quantity of their electrical usage [7], [8]. This
systems (EMS). Conserving energy, however, should respecteth flexibility is enabled by pricing policies for electrical age
user requirements regarding the desired state of the environmen  over time [9], [10] and/or by dynamic demand scheduling
therefore an EMS should .constantly and |nteII|gentIy find the algorithms to optimize energy services in buildings [11R]|
balance between user requirements and energy saving. The paper.l_h t arid infrastruct . ¢ .
proposes a solution to this problem, based on explicit high-level € smart gri _'n ras mc ure requires a WO'Way communica
modeling of user intentions and automatic control of device tion through which appliances can be monitored and coedlol|
states through the solution and optimization of a constrained by a control center installed on the premises of the energy
Boolean satisfiability problem. The proposed approach has been provider which may lead to privacy and security issues [13].
|ntegr§ted into a smart environment framework, and promising A complementary approach to energy management is the
preliminary results are reported. s 4 .
o _ _ local optimization of energy consumption using a locally
Index Terms—Building automation, Home automation, Do- installed Energy Management System (EMS) on the building
motic Effects, Electrical power optimization, Energy Manage- remises. Most EMS focus on making the consumer more
ment Systems, Energy optimization heuristic . : -~
aware of their electrical power usage and/or providing oesh
to share this information with energy providers or thirdtpar
. INTRODUCTION application developers [14]-[17]. The research focuses on

different graphical illustrations of data related to camgul

I N the last decgde, intelligence emerged as the basic Co%Mergy to ease consumer comprehension [18], [19] and on
ponent to deS|gnu_mod_ern ho”m_e and building automatiQfitterent tools and methodologies to share this data over th
systems. The term “intelligence” implies a provision of aUgep [14]. All these approaches need active user participati
tomated control over the buildings to solve interoperapili;, orqer to implement energy management strategies.

issues among dewges from different ven.dors, to sense therhis paper proposes a more automated approach, where the
environment, to provide context-aware services to theleess g\ may automatically act on appliances and control their
and to manage safety and security issues. Regardless of hWer consumption, while satisfying user requirementsiabo
ambitious and diverse the notions might seem, the reseaffll ¢\,rrent environment state. The presented approacisésiba
community has demonstrated the ability to achieve suchsgog}, o pillars: the availability of an explicit model for the
using pilot projects [1]-[4]. In the past few years, energymart home (such as provided by intelligent home gateways),
efficiency has become a key requirement for designing modefRy he expression of user needs in a more abstract way. The
buildings and industries. The approaches in this regard r&HVironment should be controlled by “user Intelllglble gﬁa
only rely on improving building structures and adopting B0r 4t represent the state of the environment perceived by the
efficient appliances but also aim at increasing user awasNBser on an abstract level. For example, the user may wish to
towards their energy usage. _ illuminate a room and this may be done by acting on lamps,
~ Energy efficiency has become one of the major concerggytains and shutters in different ways. Therefore, ther use
in today’s life, impacting almost all human activities, 0 4chieves the effect of illuminating the room on an abstract
industrial and commercial, to leisure and vacation. Act@d ||
to the statlst|ps from the US D_ep_artment of Energy and theTpe paper describes a novel approach to optimize the energy
European Union Energy Commission, global energy consumpsage in a building while achieving user intelligible godike
tion is likely to increase in the next decade, with resid@nti ,5in contributions of the paper are: adopting an explicitial
and commercial buildings raising their aggregate figure(to 2modeling for user goals (based on the Domotic Effects mod-
40% of the total yearly consumption. If only electricity iSg|ing framework); proposing an architecture that is corilpat
considered, the consumption share allocated to buildiBgsjith existing ambient intelligence solutions; describiag
suppose to increase up to 73%, evenly distributed betwegBorithm based on Boolean satisfiability (SAT) for compati
residential and commercial buildings [5]. the optimal solution and integrating the SAT algorithm wéth
. T I . . suitable heuristic in order to tackle combinatorial exfas
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the theoretical framework of the paper, i.e., the expligithh [1l. USER INTENTION MODELING
level modeling of user intention. The problem tackled in the 145 control the environment. an EMS needs to be aware

paper is then formalized in Section IV, while the approacl the structure of the environment, including a list of de-
adopted for optimization is described in Section V. Sectibn vices, their locations, their available commands, and most
shows detailed results of a preliminary experiment. Fma”importantly their power consumption in their various opieg
Section VII concludes the paper and highlights future workgiates. For environment and device modeling the DogOnt [26]
ontology was adopted which is supported by the Dog [3]
automation gateway. Device models include device features

Hubert et al. [20] outlined that in order to realize th@ynctionalities, commands and attainable states. In quaati,
potential of the smart grid, optimization of energy usage {§r each device the set of possible internal working stades i
required at different consumer levels, i.e., residenti@m- represented, and each state may influence power consumption
mercial, industrial. In the domain of EMS, the literature ofnwformation about power consumption of devices or device
optimizing the electrical power usage while achieving us@fasses is encoded in a simple light-weight DogPower ontol-
intelligible goals (in real time) is scarce but several egskers ogy, derived from the Energy Profile ontology proposed in
have addressed the energy optimization issue at differcfm]_ The combination of DogOnt and DogPower gives all
consumer levels. needed information about the environment.

Reference [21] advocates the need to build an intelligentyger intentions, on the other hand, are modeled thanks to
decision support system which takes into account user prefge “Domotic Effects” framework, presented in this sectitin
ences and behavior, and then trie_s to assist the user inirlgduq‘.S an abstract high level modeling approach, which addsesse
the energy consumption according to a dynamic notion @{e concerns from both Aml designer and resident points of
price. A model is proposed that learns user preferences afgly. Domotic Effects allow them to concentrate on high-
chgr.acteristics over time, and provides different altévea for || goals that the environment should accomplish, withou
efficient energy usage. However, the practical implem@mtat \yorrying about the underlying device(s) fulfilling the goal
of such model, i.e., how to integrate it with a home automa- pomotic Effects provide Aml designers with an abstraction
tion system and its feasibility was not discussed. Moreoqupglyer that enables defining generic goals inside the environ
the model focuses on user's preferences over devices rath@i: in a declarative way, and designing and developing
than on higher level intelligible goal. A similar approachnpielligent applications. The high-level nature of Dongoti
is proposed in [22]. Dynamic pricing and incentive pricingffects also allows the residents to program their personal
policies are adopted and advocated by many in the smart g§iice or work spaces as they see fit: they can define different
community to optimize the energy usage [9], [23] but the usgghjevement criteria for a particular generic goal, by gsin

perspective is often missing. domain-specific operators.
Amir-Hamed et al. [24] propose optimization of residential

load control with price prediction in a Real-Time electhyci )
pricing environment. It minimizes the householder's ey A Conceptual Modeling
costs by scheduling the operations of each appliance, gtubje The Domotic Effects modeling framework is organized in
to special needs of the user. The user perspective is moddlege tiers (Fig. 1), supporting the needs of designers and
as a waiting parameter in the scheduling problem, whose cusers. Thecore layer contains the basic class definitions for
increases with time. Therefore, each appliance operasonexpressing Domotic Effects. Each Domotic Effect (DE) is
scheduled based on price of electricity and the value of te®pressed as a function of existing device states or sensor
waiting parameter. values. Such function is expressed using a set of operators
Reference [25] proposed a system model that uses gathat can be extended or modified by the Aml designer. The
theory to design a energy consumption scheduling garenl layerencodes the set of operators defined or customized
among consumers to address demand side managemenby Ithe Aml designer, depending on the application domain.
considers a single energy source and multiple consumétially, the Instance layerrepresents the specific Domotic
The consumers automatically coordinate among each otldfects being defined in a specific environment.
to find optimal energy consumption on an hourly basis. The The choice of operators, and their associated numerical
scheduling problem is modeled over a set of consumers afwmains and ranges, are customized depending on the domain
could face scalability issues when the number of consumafsapplication requirements. For example, in monitoringl an
increases. This technique also lacks the description ofetnodcontrol applications, Domotic Effects express logicabesl (in
ing consumer requirements. Boolean algebra), and the Aml designer would define Boolean
One potential weakness of all above proposals is that thegerators to construct effects. On the other hand, in energy
focus entirely on minimizing energy consumption and ignomaanagement applications, Domotic Effects would represent
other environment aspects, especially the user’s perspectpower and energy values, and Aml designers would define
The Ambient Intelligence (Aml) community has addressemal-valued aggregation operators.
such aspects in the domain of smart environments. OftenA DE can be é&Simple Effec{SE) if it depends upon a single
missed is the point that the EMS inside a building will belevice being in a particular state or a sensor having some
part of a larger smart environment system, providing sensirvalue range; otherwise it is@omplex Effec(CE) and depends
actuation and user interaction. upon combinations of other DEs (both simple and complex). A

Il. RELATED WORKS



Instance layer . . .
House 1 House 2 A C. Representing Power with Domotic Effects

Each device, in each operating state, consumes some amount
of electrical powet, thas is represented as a real-valued Simple

User

Ventilation

g Effect P(s), P: S(d) — R*.
Aml layer 2 The instantaneous power consumed by the whole environ-
a ment is therefore represented as a Complex EffectG —
{ Boolean ] [ Real ] g RT aggregating all individual power measurements:
[ HVAC ] [ Lighting ] Plg) =>_ P(s(d)) (1)
Y deD

Core layer

[Core Domotic Effect Classes]

D. Domotic Effect Enforcement

For Boolean valued domotic effects, the user can request the
system to enforce particular domotic effects. “Effect Ené
ment” addresses the problem of finding at least one configura-
tion g that satisfies the user request and using the automation
system to bring the home devices into that satisfying state.

. i . The user requesiR is defined as a subset of the declared
modular “DogEffects” ontology provides a formal knowledggsgglean domotic effectsk. C 7. In simple terms, the user
base for describing DEs, and is organized in a structure ﬂ?@ﬁuestR is the subset ofDE; that the user wants to be
corresponds to the three tiers modeling framework. active (true) at a given instant.

Users can define several domotic effects, based on thesatisfying user requests amounts to solving the Boolean
operators defined for the environment. At any instant, ea€h Bunction F (¢) defined as:

has a (Boolean or real) value associated with it. For example
a user may describe a Boolean Domotic Effect corresponding Fr(g) = H DE )
to the generic goal of lighting up a room, and this goal may DEER

be reached by acting, in different ways, on lamps, curtains,, 5qqdress the problem, the user request is transformed into
and window shutters in that room, possibly by taking in tg gyolean satisfiability problem (SAT). SAT is the problem of
account external conditions. determining if the variables of a given Boolean expression
can be assigned in such a way as to make the expression
evaluate tdrue. Each domotic effect defined in the DogEffects
ontology is mapped to a Boolean variable. The functionality
of each effect operator defined in the Aml layer is mapped in

Given an inte"igent ambient managing a set of devi&s terms of a Boolean Sub—eXpI’eSSion in the SAT problem. The
each devicel is associated with a set of allowed stafggl); Boolean expressions for all complex domotic effects presen
depending on the nature of the device, states may be disci8 user request are recursively constructed and conjuncted.
(e.g.,{On, Off} for a lamp) or continuous (e.g., [0, 100] for The Boolean expressions are solved using a SAT solver, which
a volume knob). During system evolution, the actual state Bsatisfiable gives the values (true or false) of all the afales.
each device is a time-dependent functidd, t) € S(d). As simple domotic effects represent the terminal nodes ®f th
expressions, the values corresponding to their variables g
us the device configurations that will satisfy the user rsgue

Framework

Figure 1. Domotic Effect Modeling Framework

B. Domotic Effect Formalization

The whole environment possesseglabal state space;,
represented by the Cartesian product of all device statsespa
G = S(d), thus defining a global environment state
g€ g_HdED (@) 99 V. PROBLEM STATEMENT
the global state spac®F : G — V, whereV is an application- the paper is to compute the minimum value ®fg), while
dependent value space. For Boolean application domaifiglisfying the user requet This correspond to a constrained
V = {0,1}. A Simple EffectSE is a function that considers OPtimization ofP(g) subject to the Boolean constraif (g).
the state of only one devic&E : S(d) — V; such function In this paper, the basic SAT-based approach for effect en-
is time-dependent since it depends efil, ). An operator forcement has been extended to find a solution with minimum
op is a functionop : VN — V, where N represents the POWer consumption. Since the set of possible solutions may
number of operands of the specifip. A Complex EffectCE  be extremely large, a suitable heuristic is proposed to get a
is represented by a coupl®p, (DE; ... DEy)) composed satisfactory low-power solution in acceptable CPU times.

of an operator namep and a list of Domotic EffectsDE, Energy management technﬁques shogld in fact respond in
whose values are used as operands. Such function is also tiffgar real-time (NRT), by acting on a time scale compara-
dependent. ble with user requests and device state change frequencies.

A se_tI contains all domotic effects defined for an environ- 1, ;s paper active instantaneous power is consideretiowgh the
ment, i.e.,Z = {DEy,DE,... DE\}. modeling approach can be trivially extended to other eleaitpproperties



A. Heuristic
User
request

2 A novel power minimizing heuristic is proposed to deter-
mine in near real-time a configuration that consumes minimal
electrical power and satisfies the user’s request. Since the

oo s | ) y heuristic is called only when the solution space is largd{),
Solver configuraton this degree of freedom is exploited by trying to switch off
e e e appliances that have the highest electrical power consampt
— Fo_rcing a device_to l_Je switched off reduces the _size of the
‘ sat vy ’ solution space, but it might render the SAT problem infdasib
Therefore a greedy approach was adopted which tries to force
\- % all the involved devices off, one by one, starting from the
Domotic Efect Optimizer highest-consuming SE. Those SE that render the problem
infeasible are kept free in the SAT problem. The others
Figure 2. Architecture of proposed approach are forced off. There is no guarantee that the configuration

received after applying the heuristic has the minimum power
consumption. There might be cases in which the combination
Normally, the computational delay should be less than a fe&¥ small power consuming devices in total consumes more
seconds. than the device with high power consumption, but such
conditions are rare and the experiments (Section VI) prbee t
configuration with minimum power value is ususally achieved
V. PROPOSEDAPPROACH Algorithm 1 shows the overall steps taken to find the optimhize
configuration, and Algorithm 2 details the greedy procedure

To minimize powerP(g) subject to user-requested domoti¢/Sed to simplify the SAT problem.
effects F’r(¢), a Domotic Effect Optimizemodule is devel-
oped (Fig. 2). TheDomotic Effect Optimizereceives a user Algorithm 1 Overall approach
request and transforms it into a SAT problem, that is soleed t SAT = SAT problem derived fronf’z (g)
find valid configuration(s). The number of configurations may if (Solvable(SAT))then
be zero or more. If zero, the user request is not satisfiable. " (NUM_sOIUtions(SAT)- Tc) then

. . . . . . SAT = Heuristic Algorithm (SAT)
Otherwise, a configuration with minimum power consumption 4 if
needs to be determined. device states = solve (SAT)

An exhaustive enumeration approach can be adopted, irend if
which each valid configuration is checked for its total power
consumption valueP(g) and the one with minimum value
is enforced on the environment. However, the enumeratggorithm 2 Heuristic Algorithm (SAT)
approach becomes computationally expensive and pragtical sorted SE = sort( allSE, decreasingower )
infeasible if the number of configurations is too large. for all ( SE in sortedSE ) do

To guarantee near real-time (NRT) execution, the number SAT' = SAT N ( SE=false )
of configurations returned by the SAT solver is compared ' (;c&llx_/a_bltsa(A?AT))then
with an experimentally-tuned configurable threshdld that end if
roughly corresponds to the number of configurations that mayend for
be enumerated in one second. If the number of configurationgeturn SAT
is lower thanT’,, then exhaustive enumeration is fast enough to
achieve NRT responsiveness. Otherwise, a heuristic isemppl
to guarantee results in NRT, even if the absolute optimum is
no longer guaranteed.

The complete approach is highlighted in Fig. 2. At startup, To prove the validity of the proposed approach and measure
the Domotic Effect Optimizerqueries the DogEffects andthe performance of the proposed heuristic, a set of expatsne
DogPower ontologies to get all the domotic effects and theirere carried out. The “Domotic Effect” modeling framework
associated (device and power) information. Tremotic Effect was developed and integrated with Dog2.1 [3] as a new
Optimizertransforms the user request for particular values &fomotic Effect Optimizebundle running in the Dog OSGi
domotic effects in to a correct set of Boolean equations afrémework.
constraints, constructing a SAT problem. Then it feeds theA complete house environment was simulated, whose do-
SAT problem to a SAT solver. For our current implementatiomotic structure was modeled as an instance of DogOnt ontol-
the Sat4j [27] solver is used. Based on the set of Booleagy. A new test bundle was developed to test the approach
equations, the Sat4j solver determines (if possible) thal toand the proposed heuristic. The house environment contains
number of configurations that satisfy the set of Boolealb00 user-defined Domotic Effects. These DE correspond to
equations. generic goals like securing or illuminating the house.

VI. EXPERIMENTAL EVALUATION



The experiments have been run on a standard personal exceeds the configuration threshdlg. For such cases,
computer with a quad-core Intel i5 processor and 4GB of the time to determine a configuration with minimum
RAM. power consumption exceeds the NRT requirements, or
is marked asunknown Unknown refers to cases in
which the number of configurations excelil), 000. The
enumeration approach is practically infeasible in such

cases were enforced on the environment one after another.

These use casdswereSecure HomeBathRoom lllumination
Home Illumination Afternoon Lunch Isolated Kitchenand
Morning Wakeupscenarios. The “Secure Home” use casB. Results
secures all the exit points of the house, i.e., all exit doors
and windows. This use case comprises many DEs providingT® demonstrate the applicability and results of the progose
the ability to secure different rooms of the house. This cdifuristic thébove Thresholdases were focused, only, since
be used in case of emergency, theft, robbery or fire ethe exhaustive enumeration approach is sufficient foiZiwe
The “BathRoom lllumination” combines small use cases th&onfiguration and Below Thresholdcases, that have been
represent alternative ways to illuminate the bathroom. TK&opped from the subsequent tables.
“Home Illlumination” requires that all the rooms of the house Table Il compares the time taken by the exhaustive enu-
are illuminated. lllumination can be either natural orfaitl. meration approach against the time taken by the heuristic
The “Afternoon Lunch” deals with the daily routine of coolin described in Section V-A to determine a configuration with
lunch inside the kitchen. The “Isolated Kitchen” use cagwinimal power usage. THEnumeration Solution Timeolumn
represents isolating the kitchen from the rest of the houtgpresents the time (in milliseconds) taken by the enuriograt
during cooking hours; this scenario does not consider thgproach. Theédeuristic Solution Timeolumn represents the
energy spent for cooking, since that action is not automatdine (in milliseconds) taken by the heuristic. TResultcol-
The “Morning WakeUp” use case maps a typical scenarigmn reports the comparison, i.e., Solved, Good, or Respansi
when a resident wants to perform a sequence of activitiéhe case is “Solved” when the heuristic is able to find a
after waking up in morning, like illuminating the bedroomgonfiguration with minimal power consumption in NRT while
the kitchen and the bathroom, switching off the gas heatidve enumeration approach is infeasible. The “Good” cases
inside the bedroom, switching on the kitchen television andean that the heuristic solution is faster than enumeration
the bathroom radio. while the “Responsive” label means that the heuristic smut
Since |[Z| = 6, there were2® = 64 possible user requests,is slower but still well inside NRT.
or 63 if the trivial R = () is omitted, where no domotic effect Table Il shows the comparison of the computed power
is enforced. consumption values between the enumeration and the heurist
Table | shows the total number of configurations and thegpproaches. ThEnumeration Power Valueolumn shows the
time taken by thexhaustive enumeraticapproach to find the minimum electrical power (Watt), when it can be exhaustivel
total number of configurations, compute their power consumgomputed. TheEnumeration Est. Power Valugolumn shows
tion and determine the configuration with minimum powethe estimated minimum electrical power (Watt) found after
consumption. The first 6 columns report which use cases am®), 000 iterations; this value is useful only as a comparison,
enforced (1) or not (0) by the user. The time is calculated gince the involved CPU time is unrealistic. The colubeuris-
milliseconds. When the number of configurations were vetic Power Valueshows the power value (Watt) of the config-
large, the enumeration was stoppedi @, 000. uration found by the heuristic. THeesultcolumn shows our
For the application of the heuristic optimization, the probobservations, i.e., Better, Poor, or Equal. In the “Bettdes
lems that require more that one second to be enumerated wteee heuristic was able to find a configuration that consumes
selected. From the analysis of the computation times ineTabl less than the configuration found by the enumeration approac
it is evident that these cases can be selected by choosinghe “Equal” label shows cases in which the heuristic was able
threshold valuel,. equal to 150. to find the configuration that consumes minimum electrical
From Table I, three types of cases are observed. They apewer in a shorter time than the enumeration approach. Only

1) Zero Configurations: It refers to the case when the Sat4jwo cases are marked with “Poor”, where the heuristic was
solver cannot find a configuration satisfying the user®@ot able to find the minimum power, but this happened for
request, which means that the current combination of uééeasible cases, only, where no practical alternative g
cases can not be enforced together. is available.

2) Below Threshold: It refers to the cases when the total The size of the search space seems also to influence the
number of configurations satisfying the user’s request aeffectiveness of the heuristic procedure: for example fitlsé
less thanT,. In such cases, the enumeration approachw in Table Ill puts very few constraints over device states
is sufficient to determine in NRT a configuration withand the heuristic is usable to find a good solution, while the
minimum power consumption and enforce it. second row adds some constraints (i.e., Isolated Kitctea),

3) Above Threshold: It refers to the case when the totakhe narrower search space allows to find a better solutioa. Th
number of configurations satisfying the user’s requesame applies to rows 5 and 6.

A. Use Cases



Table |
ENUMERATION APPROACH STATISTICS

Secure Home| BathRoom lllumination | Home lllumination | Afternoon Lunch | Isolated Kitchen| Morning Wake Up | No. Of Configurations| Time (ms)
0 0 0 0 0 1 32 220
0 0 0 0 1 0 3 16
0 0 0 0 1 1 32 56
0 0 0 1 0 0 3 18
0 0 0 1 0 1 32 65
0 0 0 1 1 0 3 13
0 0 0 1 1 1 32 73
0 0 1 0 0 0 >100000 unknown
0 0 1 0 0 1 0 10
0 0 1 0 1 0 >100000 unknown
0 0 1 0 1 1 0 14
0 0 1 1 0 0 >100000 unknown
0 0 1 1 0 1 0 15
0 0 1 1 1 0 >100000 unknown
0 0 1 1 1 1 0 13
0 1 0 0 0 0 16 94
0 1 0 0 0 1 32 111
0 1 0 0 1 0 48 65
0 1 0 0 1 1 32 67
0 1 0 1 0 0 48 74
0 1 0 1 0 1 32 86
0 1 0 1 1 0 48 84
0 1 0 1 1 1 32 58
0 1 1 0 0 0 >100000 unknown
0 1 1 0 0 1 0 11
0 1 1 0 1 0 >100000 unknown
0 1 1 0 1 1 0 11
0 1 1 1 0 0 >100000 unknown
0 1 1 1 0 1 0 11
0 1 1 1 1 0 >100000 unknown
0 1 1 1 1 1 0 9
1 0 0 0 0 0 192 534
1 0 0 0 0 1 0 12
1 0 0 0 1 0 48 97
1 0 0 0 1 1 0 16
1 0 0 1 0 0 48 95
1 0 0 1 0 1 0 19
1 0 0 1 1 0 48 113
1 0 0 1 1 1 0 14
1 0 1 0 0 0 2304 5100
1 0 1 0 0 1 0 18
1 0 1 0 1 0 576 1285
1 0 1 0 1 1 0 16
1 0 1 1 0 0 576 1424
1 0 1 1 0 1 0 15
1 0 1 1 1 0 576 1392
1 0 1 1 1 1 0 12
1 1 0 0 0 0 768 1421
1 1 0 0 0 1 0 13
1 1 0 0 1 0 192 394
1 1 0 0 1 1 0 13
1 1 0 1 0 0 192 416
1 1 0 1 0 1 0 50
1 1 0 1 1 0 192 417
1 1 0 1 1 1 0 13
1 1 1 0 0 0 2304 4650
1 1 1 0 0 1 0 39
1 1 1 0 1 0 576 1215
1 1 1 0 1 1 0 30
1 1 1 1 0 0 576 1195
1 1 1 1 0 1 0 9
1 1 1 1 1 0 576 1387
1 1 1 1 1 1 0 13

C. Discussion From Table Il, it can be seen that our proposed heuristic was

able to solve all cases in NRT, even where the total number
In our experiments, a total of 63 iterations were performe@f configurations made the enumeration approach infeasible
corresponding to each possilfiedefined over an environmentMost cases took around 1 second to be solved by the heuristic.
with over 1500 declared DEs. Two performance comparisoB¥ observing the results, it can be stated that the proposed
were measured between the proposed heuristic and the e¥proach is feasible for integration with intelligent liirig
meration approach. systems.

« the comparison of time taken by the approaches toTable Ill compares the power values of the configuration
compute the best solution to the user’s request (Table Ibbtained using the enumeration and the heuristic approach.

« the consumed electrical power by the enforced settings cases where the total number of configurations were less
of domotic effects (Table IlI). than 100,000 it can be seen that the proposed heuristic alway



Table I

COMPARISON OF SOLUTION TIME(MILLISECONDS) BETWEEN THE ENUMERATION APPROACH AND THE PROPOSED HEURISTIAPPROACH

secwe | penoon e atemon | s [ worng [ o1 Ermormon e [
tion tion Solution (ms) Solution Time
0 0 1 0 0 0 100000 unknown 556 | Solved
0 0 1 0 1 0 100000 unknown 743 | Solved
0 0 1 1 0 0 100000 unknown 689 | Solved
0 0 1 1 1 0 100000 unknown 1123 | Solved
0 ! 1 0 0 0 100000 unknown g2g | Solved
0 ! 1 0 1 0 100000 unknown 463 | Solved
0 ! 1 1 0 0 100000 unknown 760 | Solved
0 1 1 1 1 0 100000 unknown 1172 | Solved
1 0 0 0 0 0 192 534 506 | Good
1 0 1 0 0 0 2304 5100 708 | Good
1 0 1 0 1 0 576 1285 e62 | Good
1 0 1 . 0 0 576 1424 1299 | Good
1 0 1 1 1 0 576 1392 907 | Good
1 1 0 0 0 0 768 1421 443 | Good
1 1 0 0 1 0 192 394 g72 | Responsive
1 1 0 1 0 0 192 416 578 | Responsive
1 1 0 1 1 0 192 417 1252 | Responsive
1 1 1 0 0 0 2304 4650 2358 | Good
1 1 1 0 1 0 576 1215 1296 | Responsive
1 1 1 1 0 0 576 1195 1018 | Good
1 1 1 1 1 0 576 1387 1371 | Good

COMPARISON OF COMPUTED POWER VALUE BETWEEN THETEaI\llJLeMlllfIRATloN PPROACH AND THE PROPOSED HEURISTIC APPROACH

Secure :?Iﬁtr:jnﬁg?m mamﬁ]a_ Afternoon Isplated Morning No. Of Enumeration Enumeration Heuristic | Result
Home tion tion Lunch Kitchen Wake Up Solution Power Value Est. Cg:ﬁzr Power Value

0 0 1 0 0 0 >100000 N/A 4047.02 5411.29 | Poor
0 0 1 0 1 0 100000 N/A 3355.93 2763.87 | Better
0 0 1 1 0 0 >100000 N/A 4728.43 4136.37 | Better
0 0 1 1 1 0 >100000 N/A 4728.43 4136.37 | Better
0 1 1 0 0 0 100000 N/A 3408.39 5411.29 | Poor
0 1 1 0 1 0 >100000 N/A 2961.98 2763.87 | Better
0 1 1 1 0 0 >100000 N/A 4334.48 4136.37 | Better
0 1 1 1 1 0 >100000 N/A 4334.48 4136.37 | Better
1 0 0 0 0 0 102 0 A o | Equal
1 0 1 0 0 0 2304 2583.16 N/A 2583.16 | Equal
1 0 1 0 1 0 576 2763.87 N/A 2763.87 | Equal
1 0 1 1 0 0 576 4136.37 N/A 4136.37 | Equal
1 0 1 1 1 0 576 4136.37 N/A 4136.37 | Equal
1 1 0 0 0 0 768 175.88 N/A 175.88 | Equal
1 1 0 0 1 0 192 1146.36 N/A 1146.36 | Equal
1 1 0 L 0 0 192 2518.86 N/A 2518.86 | Equal
1 1 0 1 1 0 192 2518.86 N/A 2518.86 | Equal
1 1 1 0 0 0 2304 2583.16 N/A 2583.16 | Equal
1 1 1 0 1 0 576 2763.87 N/A 2763.87 | Equal
1 1 1 1 0 0 576 4136.37 N/A 4136.37 | Equal
1 . 1 1 1 0 576 4136.37 N/A 4136.37 | Equal




finds the configuration with the absolute minimum electricale]
power value. On the other hand, the cases in which the

number of configurations exceeds 100,000, the heuristic w

able to quickly solve all of them, and in most of the cases

it

was able to find a configuration that consumed less electricl
power, compared to an (inapplicable) enumeration approach
Hence the experiments prove the feasibility of the completm®]

approach as well as highlighting the robustness of the m@gho
optimization heuristic.

VIl. CONCLUSION

(20]

(11]

This paper tackles the minimization of power consumptio[rﬂz]

from the point of view of individual buildings or homes. Srhar

environments may be equipped with an energy management

system that is able to intelligently control the activatior[m
of devices and to minimize power accordingly, taking into

account the varying requirements of the users. The approdtt

exploits the degrees of freedom that are available when the
users express their requirements at a higher level, in a user

intelligible way, rather than directly controlling the ttaof
each device.

(15]

The Domotic Effects modeling framework that has beene]

presented effectively enables users to easily expresstbeds

at a higher level, by means of a Boolean formalization ([1{7]
the Domotic Effects enforcement and a SAT problem. The
Boolean problem has been extended to minimize power con-

sumption, in near real-time, while satisfying user requieats,
and a heuristic algorithm has been proposed to find satisfact
power results while respecting timing constraints.

The extensive results reported on a case study show Eﬂﬂ

feasibility and the robustness of the approach, making

(18]

it

suitable for adoption in smart environments. The propos%%]

approach can be extended to include further constraings |
reducing the number of state changes to conserve thetiie-ti

of the appliances, or taking into account the energy neenled3!!

switch between states (e.g., for mechanically actuateit ey

Currently the work is being done towards a better integnatio
of the approach in the Dog gateway open source distributi(%r212]

and on devising intuitive user interfaces to monitor andiicin
the environments through the Domotic Effects paradigm.
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