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Belief-Propagation Assisted Scheduling
in Input-Queued Switches
Shadi Atalla, Davide Cuda, Paolo Giaccone, Marco Pretti

Dipartimento di Elettronica and Consiglio Nazionale delle Ricerche, Politecnico di Torino, Italy

✦

Abstract—We consider the problem of scheduling the transmission
of packets in an input-queued switch. In order to achieve maximum
throughput, scheduling algorithms usually employ the queue length as
a parameter for determining the priority to serve a given queue. In
this work we propose a novel scheme to optimize the performance
of a preexisting scheduler. Our main idea is to assist the scheduling
decision, considering “messages” rather than queue lengths. Such mes-
sages are obtained by running an iterative parallel algorithm, inspired
by a rigorous Belief-Propagation approach. We demonstrate that Belief-
Propagation-assisted scheduling is able to boost the performance of a
given scheduler, reaching almost optimal throughput, even under critical
traffic scenarios.

Index Terms—Scheduling, input queued switches, belief propagation,
maximum weight matching problem, router architectures.

1 INTRODUCTION

Traffic demand in the Internet keeps growing and the
switching architectures must be designed to process a
steadily increasing amount of data. One classical ref-
erence model for high-speed switching architectures is
the input-queued (IQ) switch, where packets are stored
in queues, before being transmitted across a bufferless,
high-bandwidth switching fabric. Such a scheme al-
lows for maximum switching speed. Indeed, packets
are transferred across the switching fabric at a speed
equal to the line rate, so that the queues do not re-
quire any speedup in their access speed. The latter fact
allows one to scale the performance much better than
any other alternative queueing structure [1]. In an IQ
switch, a scheduling algorithm has to choose, at any
time, a set of non-conflicting packets to be transferred
across the switching fabric. This task requires to solve a
combinatorial optimization problem in a very short time,
corresponding to the packet transmission time (e.g., a
64 bytes packet, transmitted at 10 Gbps, lasts 51 ns). Only
hardware implementations are capable of meeting such
tight time constraints. Note that the IQ switch is also one
common architecture to implement routing modules in
network-on-chips [2].

The design of scheduling algorithms has stimulated
a huge scientific literature, motivated by the following
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dichotomy. On the one hand, the Maximum Weight
Matching (MWM) algorithm could ensure optimal per-
formance, using the queue lengths as weights in the
matching computation, but this algorithm is too com-
plex to be implemented directly in hardware, because
of its centralized and sequential nature. On the other
hand, simpler (heuristic) scheduling algorithms, based
on parallel architectures, can be implemented satisfying
the time constraints, but they turn out to suffer from
heavy performance limitations.

1.1 The Belief Propagation approach

We propose a novel approach to boost the performance
of a preexisting scheduler, whose decisions are based on
the queue lengths (as is the case in schedulers mimicking
MWM decisions). The main underlying idea relies on the
theory of probabilistic inference over graphical models,
and specially on a related class of distributed message-
passing algorithms, generally known as Belief Propaga-
tion (BP).

BP was first conceived as a dynamic-programming
algorithm for evaluating marginal probabilities for so-
called Markov random fields, defined on graphs without
loops (trees) [3]. The corresponding algorithms for com-
puting maximum-a-posteriori probabilities, which can
be used to solve combinatorial optimization problems
like MWM [4], are known as max-product or min(max)-
sum (although they are sometimes called BP as well, as
we shall do in this paper). It has been demonstrated
that, in most cases, BP and related algorithms work
surprisingly well even for graphs with loops, where they
can be viewed as iterative algorithms. Such a successful
behavior seems to be related to the fact that BP fixed-
points are equivalent to minima of an approximate free-
energy function (Bethe free energy) for a corresponding
thermodynamic system. Note the Bethe approximation has
been employed in statistical physics since long [5], but
the connection with BP is a relatively novel result [6].

Given an undirected graph with weighted edges,
the MWM is defined as a matching (i.e., a subset of
edges without shared nodes) which maximizes the to-
tal weight. Each node of the graph is associated to a
constraint, that forbids more than one incident edge to
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belong to the matching. Generally, BP can be regarded
as an exchange of messages between the nodes of the
graph; for the MWM problem, a message sent by a node
i to a neighbor node j is, roughly speaking, an estimate
of the maximum weight which could be obtained, if
the ij edge is included in the matching, neglecting the
constraint associated to the j node. The messages are
iteratively updated in a parallel and distributed way across
all the nodes, until convergence. Then, in the matching
estimation phase, each node takes a local decision, based
on the incoming messages, and selects one of the inci-
dent edges as a candidate for the MWM. The outcome
of these distributed decisions is actually a matching,
provided that the MWM is unique and that the message
values have reached convergence.

In principle, by means of the BP approach, it is pos-
sible to compute the MWM in a completely distributed
and parallel manner. This approach was first proposed
for an IQ switch in [7]. Unfortunately, even though it
has been proved that BP converges and provides exact
results for the MWM problem [4], [8], the convergence
may be in fact very slow, making the whole method
impractical.

1.2 Our contributions
In spite of these limitations, we propose in this paper an
alternative scheme, which exploits the information, car-
ried by BP messages, to “drive” some ordinary heuristic
scheduler. Our assisted scheduling approach is a new
scheduling procedure, where BP is used to boost the
performance of an iterative matching algorithm. The
final matching estimation of BP is replaced by a tradi-
tional matching algorithm, to avoid the required conver-
gence of the messages. Our approach does not require
any change in the original scheduling architecture and
scheduler, since we simply use BP messages, instead of
the usual queue lengths, as weights for conventional
scheduling algorithms. This solution is implementable
natively in hardware, and it actually turns out to support
and improve the scheduler performance, at low imple-
mentation cost. This choice, motivated by the nature of
the BP algorithm itself, has also the considerable advan-
tage of avoiding changes to the numerical representation
of the weights in the scheduler hardware.

Furthermore, we propose to exploit the time corre-
lation induced by the queue behavior, namely, the fact
that the queue lengths can vary at most by ±1, for each
packet arrival or departure. Accordingly, the optimal so-
lution to the MWM problem at a given time is necessarily
correlated with the one at subsequent times. Similar
correlations appear between BP messages at adjacent
times, which allows us to curb the delay times due to
message computation.

The paper is organized as follows. In Sect. 2 we
describe the scheduling architecture and introduce the
concept of assisted scheduling. In Sect. 3 we describe the
classical version of the BP algorithm and our novel ver-
sion, aimed at improving performance and convergence
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Fig. 1. Input queued switch architecture: (a) standard
and (b) equipped with assisted scheduling.

speed. In Sect. 4 we demonstrate by simulations that our
BP-assisted scheduling can actually boost throughput
performance. In Sect. 5 we draw some conclusions. A
high-level hardware design of the proposed system is
described in [9] and in a more detailed technical re-
port [10].

2 SYSTEM MODEL

We consider a N ×N bufferless, non-blocking switching
fabric (e.g., a crossbar), as shown in (a) of Fig. 1. We
assume synchronous operations, i.e., time is divided into
intervals of fixed duration (timeslots) and the switch-
ing fabric transfers data units of fixed size (cells). The
timeslot duration is equal to the transmission time of
a cell. In the case of variable-size packets, incoming
packets are chopped into cells, whereas outputs collect
and reorder cells belonging to the same packet, before
forwarding to the output interfaces. No output queue is
needed, except for reassembly and reordering purposes.
We also assume that no speedup is available, i.e., cells
are transferred across the switching fabric at the line rate.
This allows for high scalability, in terms of number of
ports and bandwidth, but imposes the following transfer
constraint: when cells from different inputs are destined
to the same output, just one cell can actually be trans-
ferred. The other cells are stored in the input queues,
organized according to the Virtual Output Queue (VOQ)
architecture, to avoid the well-known Head of the Line
(HoL) blocking problem [11]. In more detail, each input
is equipped with N separate FIFO queues (one for each
output) of size Q − 1, each queue storing cells destined
to a specific output: a total of N2 queues is present at the
inputs, each one writing and reading cells at the line rate.
Let W (t) = [wij(t)] be a N × N matrix, whose generic
entry wij(t) is the queue length of the VOQ from input
i to output j at timeslot t.

2.1 The scheduler

At each timeslot, a centralized scheduler, shown in Fig. 1,
selects a set of HoL cells to be transferred. Such cells
must satisfy the aforementioned physical constraints of
the switching fabric. A feasible switching configuration
can be represented by a matching in a complete bipartite
graph of 2N nodes, the N left-side nodes representing
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the inputs and the N right-side nodes representing the
outputs. The edge connecting input i to output j is
associated to the corresponding VOQ. Let X(t) = [xij(t)]
be a N×N matrix, whose generic entry xij(t) is a boolean
variable, equal to 1 iff the scheduler selects a cell to be
transferred from input i to output j during timeslot t.
These are the decision variables of our problem. They
must satisfy the transfer constraints, which can be writ-
ten as:

N
∑

k=1

xik(t) ≤ 1 ∀i, t (1)

N
∑

k=1

xkj(t) ≤ 1 ∀j, t (2)

The evolution of each queue is simply described by
wij(t+1) = wij(t)+aij(t)−xij(t), where aij(t) is another
boolean variable, equal to 1 iff a new cell addressed to
j has arrived at i during timeslot t. For the sake of
conciseness, in the following we shall omit t from the
notation when the context is not ambiguous.

In general, the scheduling decision is based on the
state of the queues, obtained by a control path connect-
ing the queueing system to the scheduler. We assume
that the control path communicates the actual occupancy
state W (t) of all VOQs to the scheduler, as shown in
(a) of Fig. 1. If the weight of the edge from input i to
output j is equal to wij , it is well known [12] that com-
puting the MWM on the bipartite graph, weighted by
the queue lengths, guarantees 100% throughput under
any admissible Bernoulli i.i.d. traffic (this result has also
been extended to more general arrival processes [13]).
Unfortunately, MWM requires O(N3) operations and
it cannot be efficiently implemented in hardware, due
to its sequential nature, difficult to parallelize. Indeed,
to the best of our knowledge, MWM has never been
implemented on commercial chipsets but it has inspired
a large literature investigating heuristic algorithms, sim-
ple to implement in hardware, even if not throughput-
optimal. Notably, iSLIP [1] is an iterative algorithm in
which N arbiters concurrently select a subset of edges
to compute the matching, in a parallel and distributed
way. Due to its parallel nature, also compatible with
pipeline processing (as discussed in [14]), it has been
implemented on a single chip and used in a commercial
core router. iSLIP approximates a maximal size matching,
as it does not take into account the queue lengths. A bet-
ter approximation to the MWM is obtained by iLQF [15],
which can be designed with the same architecture as
iSLIP, but with a larger control information exchanged
by the arbiters; iLQF will be described in Sect. 4.2.
Many other algorithms have been proposed to approx-
imate the MWM or to achieve similar performance, by
giving priority to longer queues. As mentioned in the
introduction, the crucial issue is that optimal or nearly
optimal algorithms are difficult to be implemented in
hardware; conversely, implementable algorithms cannot
achieve 100% throughput under generic traffic scenarios.

2.2 Assisted scheduling

Motivated by this dichotomy, we propose a method to
boost the performance of a generic scheduler, which
takes decisions on the basis of a queue length matrix
W (t). As previously mentioned, this method can be
compatible with pre-existing scheduler implementations,
since it just adds a functional module between the VOQ
and the scheduler itself, as shown in (b) of Fig. 1.
This module, which we shall denote as Weight-Processing
(WP), is based on the update rules of BP-MWM, which
is a well known BP algorithm (described in details in
Sect. 3.1), designed to compute the MWM for the given
set of weights (queue lengths). Since the decision vari-
ables are boolean (two possible values), the messages are
scalar and estimate the difference between the maximum
weights that can be obtained by the two possible choices
of each decision variable. The scheduler runs in the
usual way, but, instead of being fed by the queue length
matrix W (t), it is fed by a message matrix F (t), whose
entries, computed by the WP module, have the same
numerical format as those of W (t). Roughly speaking, it
is like if WP were “cheating” the scheduler, providing
“fake” queue lengths. The reason why such quantities
actually boost the scheduler performance should be
clearer from the next section, where we describe the
message processing in full detail. From a practical point
of view, the interesting fact is that the WP module can
be implemented independently of the scheduler and that
it is amenable to an efficient parallel implementation.
The latter issue goes beyond the scope of the current
brief contribution, but it is thoroughly discussed in the
aforementioned technical report [10].

3 THE SCHEDULING ALGORITHM

The classical algorithm to compute the MWM is based
on a flow augmentation process, and the resulting com-
putational complexity is O(N3), with optimized data
structures. As previously mentioned, it is a sequen-
tial algorithm, difficult to parallelize and implement in
hardware. On the other hand, BP-MWM provides an
alternative rigorous approach to compute the MWM,
natively based on parallel computing. Sect. 3.1 describes
the basic BP-MWM algorithm; Sect. 3.3 explains how to
integrate it with a preexistent scheduler, and provides
the main algorithmic contribution of our work.

3.1 Basic Belief-Propagation for MWM

The BP-MWM algorithm is basically equivalent to the
min-sum formulation studied in [4], and is also very
similar to the one developed in [8] for the more general b-
matching problem. In [9], [10] we also report a theoretical
derivation, aimed at explaining the conceptual origin of
the algorithm, without resorting to previous knowledge
from the theory of graphical models.

The pseudocode of BP-MWM is reported in Fig. 2.
The algorithm is based on three phases: Initialization,
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BP-MWM: Input: W = [wij ]; Output: X = [xij ]
// Initialization
for all i, j

xij = 0, f0

i→j = wij , b
0

j→i = wij

// Update phase
while (messages not yet converged)

for all i, j

f
n
i→j = max{0, wij −max

k 6=j
b
n−1

k→i} (3)

b
n
j→i = max{0, wij −max

k 6=i
f
n−1

k→j} (4)

// Estimate phase

for all j // at each output

ı̂ = argmaxi f
Iconv
i→j ; if fIconv

ı̂→j > 0 then xı̂j = 1

Fig. 2. Pseudocode of the basic BP-MWM algorithm.
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Fig. 3. Parallel message update in WP.

in which all the messages and decision variables are
initialized; Update, in which the messages are updated
iteratively; Estimate, in which the decision variables are
fixed, depending on the message values obtained at the
end of the Update phase. The algorithm takes as input
a weight matrix W , and returns the boolean matrix
X , which represents the matching. The quantities on
which it operates are a matrix F = [fi→j ] of “forward
messages”, from any input i to any output j, and an
analogous matrix B = [bj→i] of “backward messages”
(from outputs to inputs). Both matrices are initialized as
F = B = W , whereas all the entries of X are initialized
at 0.

During the Update phase, all N2 messages are itera-
tively updated, following the non-linear rules (3) and
(4), which characterize the BP-MWM algorithm. The
specific message dependencies allow one to parallelize
the update process at each iteration n, according to
the scheme shown in Fig. 3. A given forward message
from input i to output j (namely, fn

i→j) is generated by
backward messages, computed at the previous iteration
n− 1, coming from all the outputs but j (namely, bn−1

k→i,
with k 6= j). The same holds for backward messages,
generated by forward messages. The iterative Update
phase ends in Iconv iterations (a-priori unknown), when
the messages converge to fixed values. Let us note that
the convergence criterion adopted in [4] is slightly looser,
but this fact will be irrelevant to our approach, which
does not require to reach convergence, as discussed
below.

During the Estimate phase, each output j determines

the input ı̂ corresponding to the maximum forward
message fı̂→j . If such a message is nonzero, then the
output sets xı̂j = 1 (i.e., ı̂ is connected to j in the
matching). Note that it is also possible to define an
alternative (but perfectly equivalent) estimate phase at
each input i, choosing the maximum backward message.

3.2 Convergence of BP-MWM

In principle, the Update phase of BP-MWM is not guar-
anteed to converge on a generic loopy graph (as in
our complete bipartite graph), so that also the xij as-
signments, computed locally by each output during the
Estimate phase, may not represent a feasible matching.
In fact, the recent work by Bayati, Shah, and Sharma [4]
has proved both convergence and exactness of BP-MWM
for precisely our problem (namely, MWM on a complete
bipartite graph), under the assumption that the MWM is
unique. Even though this result is extremely interesting
from a theoretical point of view, the actual implementa-
tion of a pure BP algorithm still poses several problems.
First of all, the number of iterations Iconv is still O(N3)
as in the classical flow-augmentation based algorithm for
MWM, but Iconv is not a-priori known, and turns out to
depend on the weights [4]. Note that, before reaching
convergence, the messages cannot be directly used for
the Estimate phase, since the distributed choice may
lead to unfeasible solutions, not satisfying the matching
constraints (1)-(2). Moreover, [4] proves that the conver-
gence time scales also as O(ǫ−1), where ǫ is the difference
between the weight of the maximum weight matching
and the one of the second-ranked (in terms of total
weight) matching. The lower this difference, the longer
BP-MWM may take to converge; when the MWM is not
unique, BP-MWM may not converge at all. We claim that
such a behavior negatively affects our scenario, since,
in order to maximize throughput, the MWM scheduler
tends to “equalize” queue lengths, likely giving rise
to a large number of different matchings with similar
or equal weights. Alternatively, one could satisfy the
MWM uniqueness requirement, by adding some random
“noise” to the entries of W before feeding it to the
scheduler, but such a possibility would pose some extra
challenges, concerning the noise sample generation and
the numerical representation of the messages.

3.3 Belief-Propagation assisted scheduling

Hereafter, we discuss the techniques we propose to
implement efficiently the WP module and assist the
scheduling decision. Basically, WP runs only the Update
phase of BP-MWM, whereas the Estimate phase is “left”
to the ordinary scheduler. At odds with BP-MWM,
which computes a matching, WP just computes N2

messages, that will be used by the scheduler (instead
of the N2 VOQ lengths) to compute the final match-
ing. Recall that, when messages converge, the largest
message toward each output corresponds to the exact
MWM. Interestingly, most of the greedy algorithms for
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WP: Input: W (t) = [wij(t)], I ; Output: [fI
i→j(t)]

// Memory

for all i, j

f0

i→j(t) = fI
i→j(t− 1), b0j→i(t) = bIj→i(t− 1)

// Update phase

for n = 1 . . . I // run for I iterations

for all i, j

if wij(t+ 1) 6= wij(t) // self-asynchronous update

fn
i→j(t) = max{0, wij(t)−maxk 6=j b

n−1

k→i(t)}

bnj→i(t) = max{0, wij(t)−maxk 6=i f
n−1

k→j(t)}

else

fn
i→j(t) = fn−1

i→j (t), b
n
j→i(t) = bn−1

j→i (t)

Fig. 4. Pseudocode of WP.

approximating the MWM would choose such edges, if
the weights were given by F instead of W . In particular,
the Estimate phase of BP-MWM is identical to the Grant
phase of the iLQF scheduler [15], where the output
arbiters grant the requests corresponding to the largest
weight. Hence, we can claim:

Property 1: If the MWM is unique, BP-assisted iLQF,
running with the edge weights given by F = [f Iconv

i→j ],
computes exactly the MWM.

In order to bound the computation latency due to
the WP module, we fix the number of iterations I ,
usually at a very small constant value (I = 2 or 3), so
that the Update phase of BP-MWM does not converge
(I ≪ Iconv). As a consequence, the ordinary Estimate
phase of BP-MWM may return an unfeasible matching,
whereas a heuristic scheduler like iLQF is still able to
compute a feasible one, even if it is an approximation of
the MWM. As I grows, the performance of BP-assisted
iLQF will approach the MWM, and, for I ≥ Iconv, the
scheduler will behave exactly as the MWM (thanks to
Prop. 1), but at the cost of an unbearable computation
latency.

Let us remark that the computational complexity of
WP is O(N) for each iteration and for each input or
output node. The overall complexity remains O(N),
thanks to the fixed number of iterations I and to the
possibility of a parallel implementation. This is much
smaller than O(N3), experienced by MWM because of its
intrinsic serial nature. The low complexity of WP is also
compatible with an efficient hardware implementation,
as discussed in our technical report [10].

In the following, we propose three complementary
techniques (message memory, self-asynchronous update,
and integer message representation), aimed at improving
the message convergence (i.e., to decrease Iconv) and
simplifying the WP hardware implementation. The pseu-
docode reported in Fig. 4 shows the final scheme pro-
posed. Sect. 4 will show that the combination of all these
techniques is crucial to achieve maximum throughput.

3.3.1 Message memory
As previously mentioned, the occupancy of each queue
can vary at most by ±1, due to arrivals and departures:
|wij(t + 1) − wij(t)| ≤ 1, ∀t. This means that the queue
state exhibits a strong time correlation, which is neces-
sarily reflected in the message dynamics. For this reason,
WP uses the last messages computed at the previous
timeslot as initial values for the Update phase:

f0
i→j(t) = f I

i→j(t− 1) b0j→i(t) = bIj→i(t− 1)

Note that this technique provides a much “richer”
memory of the past queue states, with respect to the
pointers adopted in iterative matching algorithms [1],
[15].

3.3.2 Self-asynchronous update
The BP-MWM algorithm, reported in Fig. 2, assumes
synchronous and parallel message updates, which is also
implementable in hardware. Nevertheless, early studies
on BP algorithms [16] have shown that asynchronous
updates (i.e., messages updated in a random sequen-
tial order) are beneficial for convergence. Unfortunately,
an asynchronous implementation is very difficult to be
obtained in hardware, since it requires O(N2) sequen-
tial iterations. WP mimics the asynchronous behavior by
updating, in the usual synchronous way, just a subset
of messages, chosen on the basis of the arrival pro-
cess, namely, messages corresponding to queues whose
length changed at the previous timeslot. Hence, at most
2N messages are updated for each timeslot. In some
sense, this technique exploits the arrivals themselves as
a randomness source. This also emphasizes the memory
effect, enhancing the time correlation between messages
at different timeslots.

3.3.3 Integer message representation
We have already mentioned that, in BP-MWM, some
“noise” must be added to the weights, in order to guar-
antee the MWM uniqueness and the algorithm conver-
gence [4]. In general, this is not easy to obtain, because
one has to generate random samples, which also need
to be represented as real numbers. Fortunately, in our
architecture, BP is not required to converge, whence
WP does not need to add noise, because, in case of
multiple optimal solutions, arrivals in future timeslots
are expected to change the MWM and provide an effect
similar to random noise. The main technical consequence
is that, without noise, the messages are integer numbers.
Furthermore, according to the update rules of Fig. 2, the
following bounds hold:

0 ≤ fi→j ≤ wij 0 ≤ bj→i ≤ wij

implying that the numerical range of the messages is
precisely the same as that of the queue lengths:

Property 2: In WP, F (t), B(t) ∈ {0, 1, 2, . . . , Q}.
In the assisted-scheduling approach, this detail is of great
importance, because it allows us to represent the mes-
sages with the same number of bits as the queue lengths.
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Fig. 5. Slow-BP assisted algorithm: The scheduler pro-
cesses F (t), which is computed once every S time slots.

This ensures backward compatibility in the control path
between the WP module and the scheduler module.

3.4 Slow assisted scheduling

Even though we have fixed the number of iterations
I to be small (2 or 3), the running rate of WP can be
decoupled from the running rate of the scheduler, pro-
portional to the line rate. Actually, high end routers and
switches usually have to take a scheduling decision in
at most one time slot, which, depending on the line rate,
amounts to few tens of nanoseconds for current 10 Gb/s
and 40 Gb/s technologies. As we verify in [9], [10], a
FPGA implementation of WP turns out to be compatible
with current line rates, but we propose also a “slower”
version of the algorithm, providing better scalability,
since it can be implemented on slower hardware, or it
can cope with future higher line rates, or with large port-
count switches.

Fig. 5 displays the high-level architecture implement-
ing the slow version of BP-assisted scheduling. The
architecture of the WP module remains unchanged, but
the VOQs are sampled every S time slots, i.e. at time
⌊t/S⌋S, where S is a suitable slowing factor. Accordingly,
the BP algorithm is run once every sampling period,
taking now S time slots to perform 1 iteration. At each
timeslot, the scheduler computes a scheduling decision
and avoids serving empty queues. We call this solution
slow-BP algorithm.

4 PERFORMANCE EVALUATION

In this section, we discuss the performance of BP-assisted
scheduling, which we have investigated by means of a
discrete-time simulator written in C.

4.1 Simulation settings

We consider both uniform and unbalanced traffic sce-
narios, that are common reference testbeds for analyzing
scheduler performances in IQ switches. Let ρ ∈ [0, 1] be
the normalized load at each input port, and λij the load
from input i to output j (Λ = [λij ] is called the traffic ma-
trix). Under uniform traffic, λij = ρ/N . Standard practice
among researchers is to require a scheduling algorithm
to obtain 100% throughput under such a scenario, which
is not considered critical. In order to better evaluate the
performance under more critical traffic, we also consider
two different unbalanced scenarios, namely, bi-diagonal
and log-diagonal. Under bi-diagonal traffic, λii = 2ρ/3
and λi|i+1|N = ρ/3, where |x|N = ((x − 1) mod N) + 1,
i.e., input port i sends traffic just to output i and |i+1|N .

This scenario is a worst case, since just two matchings
are “optimal”, whereas any other matching leads to sig-
nificant throughput degradation. No greedy algorithm
can achieve maximum throughput under such a critical
scenario, as also shown later. Under log-diagonal traffic,
one has λij ∝ ρ2|j−i|, i.e., the traffic doubles across
each diagonal of the traffic matrix. This scenario can be
thought of as a hybrid case between uniform and bi-
diagonal.

As far as the maximum queue size is concerned, we set
Q = 1024 cells. The results are obtained with accuracy
better than 1% with a confidence interval of 95%.

4.2 The scheduling algorithms

We consider three different algorithms: iSLIP [1], Longest
Queue First (iLQF) [15] and a basic greedy approxima-
tion of the MWM, denoted as GWM.

Let us first describe iLQF, which is an iterative al-
gorithm. At the beginning of a timeslot, all inputs and
outputs are unmatched. During each iteration, iLQF runs
three phases, denoted as Request, Grant, and Accept.
During the Request phase (from inputs to outputs),
each unmatched input sends all its queue lengths as
requests to the corresponding outputs. During the Grant
phase (from outputs to inputs), if an unmatched output
receives requests, it sends a grant to the input corre-
sponding to the longest queue (contentions are solved
randomly). In the Accept phase (from inputs to outputs),
if an unmatched input receives grants, it selects the
output associated to the longest queue (contentions are
solved randomly). During a timeslot, iLQF runs many
iterations; at each iteration the three phases consider
only unmatched inputs and outputs. The final matching
is guaranteed to be maximal if the number of iterations
is N , but it has been shown that, under uniform traffic,
log2 N are actually sufficient [15]. In the following, we
always consider log2 N iterations for iLQF.

iSLIP runs almost identically as iLQF, but without
taking into account the queue lengths. In other words,
iLQF becomes equivalent to iSLIP by setting wij = 0
or wij = 1, if the corresponding queue is, respectively,
empty or nonempty. Hence, iSLIP cannot be assisted by
WP.

GWM is a centralized scheduling algorithm, which
computes maximal matchings in a greedy way. At each
iteration, GWM selects the unmatched input-output pair
associated to the longest queue; it matches that input-
output pair and continues with a new iteration. After N
iterations, the final matching is maximal.

As far as notation is concerned, in the following we
shall use iLQF and GWM to denote the original algo-
rithms, described above, and WP-iLQF and WP-GWM
to denote the corresponding BP-assisted versions.

4.3 Simulation results

In Tab. 1 we report the maximum throughput, nor-
malized to one, obtained under uniform, log-diagonal,
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TABLE 1
Maximum throughput achieved with N = 32, ρ = 0.99.

Traffic iSLIP iLQF WP-iLQF GWM WP-GWM

Uniform 0.99 0.99 0.99 0.99 0.99
Log-diagonal 0.83 0.97 0.97 0.97 0.97
Bi-diagonal 0.83 0.87 0.98 0.87 0.98

and bi-diagonal traffic scenarios. As well known in the
literature, iSLIP behaves poorly, except in the uniform
traffic case. The performances of WP-iLQF and WP-
GWM are evaluated with I = 3 iterations, in the presence
of message memory and self-asynchronous update, as
described in Sect. 3.3. The effect of these techniques
to the final performance of the system is discussed
below. Under uniform traffic, all the schedulers obtain
maximum throughput. Under log-diagonal traffic, the
performance gain due to BP is negligible, as all the
algorithms (but iSLIP) achieve throughput larger than
0.97. Conversely, under bi-diagonal traffic, BP-assisted
scheduling is able to boost the performance of both iLQF
and GWM by more than 10%. In absolute terms this may
be a relevant value for a terabit switch. Note that the
performance does not depend significantly on the sched-
uler. For this reason, in the following we consider only
one scheduler, namely WP-iLQF, under a bi-diagonal
traffic scenario, which appears to be the most critical and
meaningful one.

The top panel of Fig. 6 shows the effect of message
memory. It turns out that, almost independently of the
number of iterations, memory strongly affects the system
performance. This result confirms that the strong time
correlation between the messages can be fruitfully ex-
ploited. In our simulation, I = 3 turns out to be sufficient
to obtain nearly maximum throughput. The mid panel of
Fig. 6 shows the effect of the different update strategies.
As expected, the asynchronous strategy turns out to be
the most efficient one, but, as previously mentioned, it
is difficult to be implemented in hardware. On the other
hand, the synchronous strategy, even though amenable
to parallel implementation, behaves poorly, almost in-
dependently of the number of iterations. Interestingly,
the self-asynchronous strategy turns out to be nearly
as efficient as the purely asynchronous one. This fact
suggests that the arrival randomness effectively mimics
an asynchronous update. Finally, in the bottom panel
of Fig. 6, we characterize the performance of WP-iLQF
(with message memory and self-asynchronous update)
for different switch sizes N . In all the investigated
cases, few iterations are needed to get nearly optimal
performance: I = 1 is enough to improve from 0.87
to 0.95, whereas slightly larger numbers of iterations
(I ≥ 3) reach almost 100% throughput. In the following,
we always fix I = 3.

WP does not affect negatively the delays. Indeed, in
all the scenarios considered so far, the delays for WP-
iLQF/GWM have been generally observed to be lower
than, or (in the worst case) 1.37 times, the delays of
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Fig. 6. Throughput achieved by WP-iLQF under bi-
diagonal traffic with ρ = 0.99 and: (top) N = 32, self-
asynchronous update, with or without message memory;
(middle) N = 32, message memory, different update
strategies; (bottom) variable switch size, message mem-
ory, self-asynchronous update.

TABLE 2
Maximum throughput achieved by slow-WP-iLQF under

bi-diagonal traffic, with N = 32, ρ = 0.99, I = 3; message
memory, self-asynchronous update.

S 1 2 4 8 16 32 64

Throughput .953 .951 .946 .938 .927 .916 .905

pure iLQF/GWM. As an example, in Fig. 7 we plot the
average delay under bi-diagonal traffic. Note that the
flat behavior of iLQF for load larger than 0.9 is due to
the finiteness of the queues; according to Tab. 1, loads
larger than 0.87 lead to unstable behavior and the delays
of iLQF become (theoretically) unbounded.

We have finally analyzed possible throughput degra-



8

 0.1

 1

 10

 100

 1000

 0  0.2  0.4  0.6  0.8  1

M
ea

n 
D

el
ay

Normalized Load

WP-iLQF 
iLQF

Fig. 7. Average delays for iLQF and WP-iLQF under bi-
diagonal traffic, with N = 32, I = 3; message memory,
self-asynchronous update.

 1

 10

 100

 1000

 0.5  0.6  0.7  0.8  0.9  1

M
ea

n 
D

el
ay

Normalized Load

S=1
S=2

S=16
S=32
S=64

Fig. 8. Average delays for slow-WP-iLQF under bi-
diagonal traffic, with N = 32, I = 3; message memory,
self-asynchronous update.

dation, which may occur when iLQF is assisted by
slow-BP. Tab. 2 reports some results for the maximum
throughput obtained in the usual simulation settings,
upon varying the slowing factor S. It turns out that
losses become significant only for rather large values
of S, such as S = 32 or S = 64. Fig. 8 shows the
corresponding average delays. As S increases, the delay
increases, due to the fact that the messages are kept fixed
for S time slots. For small values of S, the delay is similar
to the one obtained by running WP at each time slot,
independently of the load, whereas, for larger S, the
difference becomes meaningful, but only at high load
values. Of course, the latter effect is due to the “old”
state of the queues, processed by the algorithm.

5 CONCLUSIONS

We have proposed the Belief-Propagation assisted
scheduling as a viable approach to boost the perfor-
mance of a given scheduler, provided the scheduling
decisions are based on the queue lengths. Our scheme
is inspired by rigorous Belief-Propagation, enhanced by
message memory and self-asynchronous message up-
date. We have shown that the resulting performance is

very close to the optimal one. In [9] (with additional
details in [10]), we have also investigated the hardware
implementation of our approach. The results demon-
strate the actual scalability of the approach, leveraging
a parallel architecture to compute the messages.

Let us finally remark that the matching problem,
considered here, models a generic resource allocation
problem occurring in many network scenarios (wireless
network control [4], data centers [17]). Therefore, we
expect that the impact of our approach might be much
wider than the scope of the current paper, and we plan
to investigate about these issues in the near future.
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