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Abstract 

Identification of distribution underlying experimental data sets, lacking established mechanistic models, calls for an inferential 
process involving necessarily uncertainty of some sort. While components pertaining to parameter estimation are routinely taken 
into account, those related to selection of distribution form often are not; their awkward theoretical evaluation may explain why the 
issue tends to be conveniently ignored. Such an attitude may however lead to severe underestimation of overall uncertainty, s ince 
the component accounting for identification of distribution form often exceeds those concerning estimates of parameters. A 
pragmatic approach is presented, relying upon numerical simulation, allowing realistic evaluation of uncertainty inherent in 
empirical identification of form in a straightforward way. Application to an actual case is presented, and issues concerning 
identification procedure for parameters of auxiliary empirical distributions are discussed. 
 
© 2012 The Authors. Published by Elsevier B.V. Selection and/or peer-review under responsibility of Professor Roberto Teti.  
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1. Introductory remarks 

Fitting models to experimental data sets affected by 
scatter - all are - often involve tentative identification of 
underlying distribution. While standard errors of 
parameter estimates are routinely assessed, and joint 
confidence regions mapped as required, substantial 
information is seldom provided concerning uncertainty 
related to distribution identification, a practice which 
may be well explained by unwillingness to embark on a 
thankless job. Whatever the motivation, such a fairly 
widespread attitude has far reaching implications. While 
the bulk of most data sets sits comfortably on the 
friendly rump of normal distribution, tails may not 
comply as readily, owing to common causes such as 
skewness and/or existence of finite bounds. And, 
disregarding the component pertaining to distribution 
identification may lead to substantial underestimation in 
the uncertainty budget, since that component may well 
exceed those concerning estimates of parameters. 

2. Statement of problem 

Identification of form of underlying distribution(s) 
underlying a given experimental data set is a frequent 
requirement, e.g. to support models for stochastic 
simulation and related purposes. Normal distribution is 
ordinarily first selected, owing to its desirable properties 
as well as its wide applicability; other well-known forms 
are also considered, such as exponential, lognormal, 
gamma and beta. While sometimes providing adequate 
approximation, the usefulness of such distributions is 
somehow curtailed by inherent lack of flexibility, 
underlined by interdependence between third and fourth 
order moments. On the skewness-kurtosis plane, the 
fields of existence of the first two distributions listed 
above shrinks down to points only, with coordinates 
respectively 0, 3 and 4, 9; the third roughly corresponds 
to the straight line 2  3 + 1.95 1, only the last 
covers a sizable fraction of possible area [1-2]. Should 
symmetry apply ( 1 = 0), when 2 > 3 Student s t 
distribution is also a candidate if variance is related to 
kurtosis according to: 
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Empirical representation of a broad variety of data is 
on the other hand afforded by a number of methods, 
flexible enough to afford complete coverage of all 
possible combinations of skewness and kurtosis. Several 
procedures were developed, mainly based upon 
transformations of normal distribution in the wake of 

general approach to analytical description of a 
comprehensive range of distributions. Fitting a 
distribution to data requires identification of a suitable 
family, and parameter estimation; both steps entail some 
uncertainty, to be taken into account if a meaningful 
uncertainty budget is required. But for the first order one, 
sample moments are biased estimators of those of 
populations, and so are ratios such as sample skewness 
b1 and kurtosis b2:   

3

2
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1 23 2
2 2

,
m mb b
m m
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Other forms currently in use may however reduce bias 
substantially in some circumstances only, and fail to 
identify correctly even the sign of population parameters 
if sample size is not very large. 

3. Evaluation of confidence region 

Empirical distribution fitting may be performed in 
terms of the first four moments or their combinations - , 
, 1, 2 - or more frequently of their sample estimates, 

faute de mieux. In the latter case, substantial uncertainty 
and bias may affect estimates of skewness and kurtosis, 
particularly when sample size is not very large, as typical 
of many experimental data sets [4]. Systems of frequency 
curves capable of modeling a broad range of 
distributions were developed by Pearson [3] and Charlier 

distribution [7], owing to their adequate coverage of 1 - 
2 plane and comparatively straightforward fitting. 

ee families 
- SB, SU or SL (lognormal) - is selected, according to 
whether the estimate of 2 is less than, exceeds, or 
comes close to approx.  3 + 1.95 1.  

Substantial bias and scatter typical of sample 
estimates of skewness and kurtosis, not to mention 
higher order moments, may suggest fitting tentatively 
more than one family of distributions to data, and then 
perform selection in terms e.g. of goodness of fit [8]. 

Starting from a continuous random variable X, whose 
unknown distribution is estimated in terms of sample 
values, an approximation to underlying distribution may 
be inferred by identifying a transformation of x to a 
standard normal random variable z, according to the 
method of translation first introduced by Edgeworth [9], 
further extended by Kapteyn and Van Uven [10] and 
Rietz [11], see also Hahn and Shapiro [1].  

transformation having the general form. 

; , ,
0, , 0,

z x
  (3) 

where and are shape parameters is a scale 
parameter, is a location parameter, and is an arbitrary 
function, taking the following alternate functions 

1 ; , ln ,xx x          (4) 

2 ; , ln ,xx x
x

       (5) 

1
3 ; , sinh ,xx x       (6) 

Taking 

* ln  (7) 

the first leads to 

2
2

1
1 *exp ln ,
22

, 0, * , ,

f x x
x

x

(8) 

the three-parameter log-normal distribution also 
designated as Johnson SL family. Furthermore, for the 
second we may write 

2

2
1exp ln ,
22

, 0, , 0,

xf x
x x x

x

(9) 

defining the four-parameter Johnson SB family of 
distributions. Eventually, the third takes the form 
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corresponding to the four-parameter Johnson SU family 
of distributions. Advantages of this system of 
distributions for simulation input modeling over other 
distribution families such as triangular, beta, and normal 
were examined by DeBrota et al. [12].  

Fitting a Johnson distribution to data involves first 
selecting the proper family, and then obtaining estimates 
of the four parameters , , , , in terms of the 

1 and kurtosis 2, typically 
assessed in terms of their sample estimates. Closed-form 
expressions for parameter estimates based on the method 
of moment matching are not available, close 
approximations may however be obtained using iterative 
procedures [13], made substantially easier by dedicated 
software packages [8]. Three main methods are in 
general used, namely based upon selected percentile 
points, evaluation of moments, and maximum 
likelihood, mentioned in order of ease of application.  

Since a Johnson SB variate ranges between  and + , 
when both end points are known estimation of only  
and is required, readily performed in terms of selected 
percentile points. Equating two percentiles from the 
sample at hand - obtained by ranking and interpolation 
as required - with those corresponding for normal 

100th and of 
(1- 100th percentiles of sample and of standard normal 
distribution respectively which may be solved in a 
straightforward way. When only the lower bound  is 
known, an additional equation is obtained by matching 
data median with that of standard normal distribution, 
that is zero. Fitting is somehow more laborious when 
neither end points are known, a situation seldom 
occurring in practice [1].  

When precious few sample data are available, visual 
interactive fitting relying also on subjective information 
may also be performed [12]. For a Johnson SU 
distribution parameters  and  of may be estimated 
expeditiously in terms of skewness and kurtosis e.g. 

 and  are then determined from 
the first sample moments [6]. Fitting by moments is not 
always a desirable procedure, according to an elegant 
understatement [13]. It may be resorted to in some 
instances, e.g. as a first step towards evaluation of a 
maximum likelihood solution, or in the course of 
theoretical investigations where uncertainties connected 
to sampling carry little or no weight. A broad range of 

algorithms and computer aided procedures for 
distribution fitting, recently collected with a 
comprehensive, up to date survey of the subject [14], 
cater for easier selection of candidate distribution and 
fitting procedure.  

Exact evaluation of a joint confidence region in the  
  - 1 - 2 space entails substantial labor, hardly 

justified in view of the inherently large scatter in the 
sample estimates of third and higher order moments. For 
the purpose at hand expeditious determination of 
coordinates of apexes of some sort of prism built around 
the confidence region is quite adequate. Projection on 
the    plane yields a trapezium, readily marked off in 
terms of confidence intervals for mean and standard 
deviation. A rectangle on the 1 - 2 plane provides a 
rough approximation of a joint confidence region for 
skewness and kurtosis, shrinking down to a segment on 
the ordinate in case of symmetry. In the latter case, 
assuming independence among estimates of mean, 
variance and kurtosis leads to a three dimensional prism 
in the  -  - 2 space, whose eight apexes identify as 
many limit Johnson distributions still compatible with 
the data set at hand [15], see Fig. 1.  
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Fig. 1. Prism enclosing a joint confidence region in the - - 2 space for 
location, spread and peakedness of distributions compatible with data 
set [15]. 

When normal distribution may be assumed to a first 
approximation for the case at hand, as not unusual, a 
confidence interval for 2 straddles the nominal value of 
three, entailing that four out of the eight Johnson 
distributions belong to SB family and four to SU, that is 
four are bounded and four are not. Since each of these 
distributions corresponds to the combination of mean  
standard deviation  kurtosis estimates of the relevant 
apex, the envelope of their plots drawn e.g. as 
cumulative probability graphs identifies a reasonable 
approximation of the overall confidence region, 
inclusive of type A contribution due to both 
identification of form, and estimation of parameters of 
model assumed [4]. In the general case, a four 
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dimensional region would apply. A joint confidence 
region for skewness and kurtosis is conveniently 
assessed by numerical simulation; rectangular shape may 
not apply for rather small sample sizes, where estimates 
of skewness and kurtosis are strongly correlated [15]. A 
confidence region for the distribution underlying data at 
hand is eventually obtained as the envelope of sixteen 
distributions identified by as many combinations of 
estimates of , , 1, 2 consistent with the confidence 
level selected 

4. Example 

Let us consider a set of data concerning a laboratory 
verification of micrometer calibration with gauge blocks 
according to a relevant standard [16], obtained at 
Politecnico di Torino. The distribution of absolute values 
of differences between readings and reference values, 

2; three 
mavericks  identified as outliers according to 
established criteria [17] - observed on the right tail were 
previously rejected at 95% confidence level.  
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Fig. 2. Normal probability plot of absolute values of differences 
between micrometer readings and reference values. 

At exploratory level sample distribution appears 
symmetrical, slightly platykurtic, and bounded at either 
tail, albeit owing to different causes. Lower bound is 
zero, no negative values being possible; the existence of 

justified by widespread acceptance as natural for the 

and reluctance to consider as legitimate values twice as 
large. Suspiciously large results suggest careful 
replication, leading almost invariably to discard as a 
maverick the offending value. 
Confidence intervals for population parameters were 
readily assessed at 95% level, namely   

  
confidence interval at the same level for kurtosis is 

obtained numerically as  2.1 2 4.3 , hypothesis of 
symmetry of the underlying distribution being 
substantially consistent with sample data. Distribution of 
kurtosis is closely approximated by a three-parameter 
lognormal, but for minor departures concerning either 
tail covering less than 0.1% of population, see Fig. 3.  
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Fig. 3. Lognormal probability plot of 104 sample estimates of 2 
(n = 52), with 95% confidence bands. 

Coordinates of apexes of prism bounding a 
confidence region for population parameters in the  
  - 2 space are listed in Table 1, with the relevant terms 
of the corresponding Johnson distributions. Their 
envelope is shown in Fig. 4, along with confidence 
limits pertaining to normal approximation of sample 
data. Finally, shapes of probability density functions 
relevant to the eight Johnson distributions are shown in 
Appendix A. 

 

Table 1. Apex coordinates of prism shown in Fig. 1 for the case at 
hand. 

Apex A B C D E F G H 

 0.84 1.12 0.78 1.18 0.84 1.12 0.78 1.18 

 0.47 0.70 0.47 0.70 

2 2.1 4.3 

Type SB SU 
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Fig. 4. Envelope of Johnson distributions corresponding to apexes A to 
H of prism shown in Fig. 1 (continuous), along with 95% confidence 
bands pertaining to normal approximation of sample data (dashed). 

 

5. Discussion 

How broad should be a realistic confidence region for 
distribution underlying sample data is a subject 
preferably dealt with taking into account prior 
knowledge, or expert opinion in GUM [18] parlance, if 
at all possible. Should sample data represent the bulk of 
relevant information available, a prudent approach 
would suggest to take into account the uncertainty 
component due to empirical identification of population, 
besides that concerning only parameter estimation, 
routinely considered. On the other hand, when the 
experimenter enjoys the advantage of substantial 
accumulated experience on the specific subject, on 
whose ground the form of distribution is well known, 
disregarding such knowledge would hardly make sense. 
Between no a priori information, and well established 
knowledge about distribution, a substantial gap in terms 
of width of confidence intervals may be observed, which 
in another instance (for a smaller sample) was found to 
be even larger [15,19]. The component concerning 
distribution form to overall uncertainty, rather small in 
the neighborhood of average, increases dramatically 
towards either tail, where neglect of that component 
would lead to ludicrously optimistic predictions. 
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Appendix A. Shape of Johnson distributions 

Numerical approximations of probability density 
functions pertaining to the eight distributions defined in 
Table 1 were obtained with a commercial software. 
Representative shapes of SB distributions, relevant to 
apexes A, B, C and D, and SU distributions, relevant to 
apexes E, F, G and H, are shown in Fig. 5.  

Federica
Typewritten Text
5



 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 
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Fig. 5. Representative shapes of probability density functions of SB 
distributions relevant to apexes A, B, C and D, and SU distributions 
relevant to apexes E, F, G and H. Abscissas range from 0 to 2.4 in all 
graphs. 
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