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Abstract 

The aim of this thesis is to use the concept of uncertainty to improve the effectiveness 

of Product Lifecycle Management (PLM) systems. Uncertainty is a rather new concept in 

PLM that has been introduced with the new technical language, drawn by ISO, to manage 

Geometrical Product Specification and Verification (GPS) in the challenging environment 

of modern manufacturing. GPS standards regard in particular design and verification 

environments, and want to guarantee consistence of information through a technical 

language which define both specification and verification on sound logical and 

mathematical bases. In this context, uncertainty is introduced as the instrument that 

measures consistency: between the designer intentions (specifications) and the 

manufactured artefact (as it is observed through measurement) as well as between the 

measurand definition provided by designers (the specification again) and that used by 

metrologists. 

The implications of such an approach have been analyzed through a case study 

dealing with flatness tolerance and paying particular attention to the verification 

processes based on Coordinate Measuring Machines (CMM). A Design of Experiment 

(DoE) has been used and results have been analyzed and used to build a regression model 

that allows generalization in the experiment validity domain. 

Then, using Category Theory, a categorical data model has been defined which 

represents the operation based structure of GPS language and uses the flatness research 

results in order to design a software able to concretize the GPS vision of geometrical 

product specifications management. This software is able to translate specification 

requirements into verification instructions, estimate the uncertainty introduced by 

simplified verification operations and evaluate costs and risks of verification operations. 

It provides an important tool for designers, as it allows a responsible definition of 

specifications (designer can simulate the interpretation of specifications and have an idea 

of the costs related with their verification), and for metrologist, as it can be a guide for 

designing GPS compliant verification missions or handling the usual verification 

procedures according to the GPS standards. 

However, during the study, it has been matured the consciousness that this approach, 

even if correct and valuable, was not the most suitable to fully exploit the real potential of 

CMM. Then, aside the GPS oriented work, an adaptive sampling strategy, based on 

Kriging modelization, has been proposed with very encouraging results. 
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Introduction 

The main aim of this thesis is to understand the role of uncertainties in the management of 

product information, thus in the Product Lifecycle Management (PLM).  

Uncertainty is a rather new concept in PLM that has been introduced with the new 

technical standards drawn by ISO in order to cope with the new challenges of modern 

manufacturing [1, 2]. Globalization, with the delocalization of manufacturing facilities with 

respect to the design or assembly centres as well as the cooperation of several manufacturing 

companies to the realization of high precision products, has stressed the need for a technical 

language able to manage the aspects related with the geometry control and to grant 

information consistency throughout the whole product lifecycle [3].  

ISO/TC 213 is drawing the new technical language entrusted to bridge the actual gap 

between design, manufacturing and verification through a corpus of standards going under the 

name of Geometrical Product Specification and Verification (GPS) standards [3]. The main 

aim of these standards is to guarantee the information consistency through a new technical 

language based on mathematical sound definitions. This kind of approach overcomes the 

traditional expert-based system of Geometrical Dimensioning and Tolerancing (GD&T), 

which has characterized the industrial world since soon after the post World War II. GD&T is 

a technical language consisting of a series of rules and symbols which have been improved 

through the last century to face the evolution of industry requirements and to answer the 

specific problems of interchangeability of components and rapid verification of mass 

productions. Nowadays, very complex shapes characterize components and the tendency is 

towards customization and flexibility rather than mass production, pushing verification 

processes far from the hard gauges, evolved in symbiosis with the GD&T language, toward 

three dimensional metrology and instruments such as coordinate measuring machines 

(CMM). 

This change in the complexity of geometries to be described and in the potential of 

measuring instruments forces the new language to be used for describing products geometry 

and verification operations to evolve towards greater generality [4]. GPS language is born 

with the aim to describe geometry in the most accurate way (there is not a symbiosis with a 

particular instrument as for GD&T) and not simply to guarantee interchangeability inside 

assemblies. For this reason geometry is completely described, from the mathematical point of 

view, through sets of elementary operations that are combined inside operators. The 

background idea is that the workpiece geometry can be fully expressed, as a continuous or 

discrete signal, with Fourier transforms. This approach inspired by signal processing theory 

has been endorsed by the availability of instruments that are able to measure dense clouds of 
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points in a very short time. Moreover, it allows the definition of geometrical specifications 

(measurands) regardless the equipment that should be used for verification. 

The quality of verification processes is assessed by means of uncertainties, which are the 

instrument used to quantify the distance of actual verification operations from their perfect 

counterparts fully compliant with standards. Several types of uncertainty are defined and the 

concept of uncertainty is elected as the currency for business management. Uncertainty 

becomes the discriminant element of decision rules and it is used to decide the allocation of 

resources for both design and verification. 

This thesis deals with the use of uncertainty in managing product lifecycle and try to 

address most of the problems related with uncertainty estimation in case of verification 

processes non-compliant with GPS standards. In Chapter 1 an introduction to GPS language 

with the definition of operations, operators and uncertainties is provided in order to lay the 

foundations of the whole work. Chapter 1 in particular highlights the main differences 

between the GPS approach and the already consolidated GD&T. 

The problem of uncertainty estimation for CMM-based verification of form errors is then 

afforded according to the new GPS standards. First of all, the state of the art in CMM 

sampling is assessed, in Chapter 2, looking for all the aspects responsible of generating 

uncertainty.  

In Chapter 3 a case study is selected which becomes the test bench for the GPS based 

verification approach with respect to flatness tolerance. In particular, the perfect specification 

operator is defined, which is different from the GD&T geometrical tolerances, and the 

standard verification process is derived from it. This verification process is implemented with 

a CMM (Dea Iota 0101) for the case study’s workpiece and simplified verification operators 

(which represent the actual industrial practice) are obtained from it as subsamples. Actual 

verification operators have been defined, according to a Design of Experiment (DoE), in order 

to simulate the range of most common practices as the use of different cut-off wavelengths, 

different sampling grids, different association criteria or simply reduction of sampling 

density. Flatness estimation algorithms have been applied, together with different methods for 

uncertainty estimation and the results have been analyzed in order to understand the effect of 

different factors on the performance of verification operators. Particularly, in order to clarify 

the effect of sampling accuracy (the measurement uncertainty associated with the sampling of 

each point) on the performance of verification operations, the same study performed on the 

case study’s flatness feature has been reproduced on a virtual surface (Chapter 4). 

Then all the results obtained for the flatness case study and the knowledge of GPS 

standards supporting specification and verification operations have been structured into a data 

model, in Chapter 5. This data model, defined according to Category Theory (the top method 

in this field, at the state of the art) has been used to build a software able to assist metrologists 

allowing them to perform GPS-based verification operations and to manage them reasoning 

on uncertainties to which costs can be associated as GPS standards suggest. A further novelty 



  Introduction 

5 

 

for this approach is represented by the ability to exploit the valuable know-how of companies 

in order to develop, from experimental results, predictive capabilities that can be used for 

improving design of verification processes as well as allowing a responsible definition of 

geometrical specifications. 

However, dealing with CMMs it was evident that GPS standards result in verification 

requirements too much time demanding for the most widely spread trigger-contact-probe 

CMMs. This evidence has been the motivation for a research on adaptive sampling strategies 

that, even if working differently from standards suggestions (blind sampling strategies based 

only on the measurand definition: specification), allow to detect the main component of form 

deviation with few sampling points. Chapter 6 develops an adaptive sampling strategy, based 

on Kriging modelization, that uses the information contained in the points already sampled in 

order to infer about the surface geometry and search for the feature peaks and valleys: the 

relevant areas for the correct estimation of form error.  
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1 The ISO-GPS standards 

1.1 Introduction 

Globalization, with the delocalization of manufacturing facilities with respect to the 

design or assembly centres, as well as the cooperation of several manufacturing companies to 

the realization of high precision products, has stressed the need for a technical language able 

to manage the aspects related with geometry control and to grant information consistency 

throughout the whole product lifecycle. Many examples can be found to understand the 

complexity level and the precision requirements that have to be guaranteed by technical 

standards. Good ones are offered by the aeronautic industry with Boeing 787 and Airbus 380, 

the new long range and high capacity airliners which have the last assembly phase in one 

single facility but whose subassemblies are prepared in different countries (often continents) 

and have to fit with incredibly low error margins. A so complex manufacturing system 

requires the use of a common technical language able to carry all the information necessary to 

describe the workpiece geometry that is meant to guarantee the functional requirements. 

ISO/TC 213 is drawing the new technical language entrusted to bridge the gap between 

design, manufacturing and verification through a corpus of standards going under the name of 

Geometrical Product Specification and Verification (GPS) standards. The main aim of these 

standards is to guarantee the information consistency through a new technical language based 

on mathematical sound definitions. This kind of approach overcomes the traditional expert-

based system of Geometrical Dimensioning and Tolerancing (GD&T) which has 

characterized the industrial world since soon after the post World War II.  

Vijay [1] underlines the latest efforts and the achievements of ISO TC/213 from the point 

of view of Product Lifecycle Management. As a matter of fact, the GPS program is the 

industry response to the beginning of the new information age; to the revolution brought by 

new possibilities of communication and movement on a global scale. 

1.2 The traditional GD&T approach 

GD&T is a technical language consisting of a series of rules and symbols that have been 

improved through the last century to face the evolution of industry requirements and to 

answer to specific problems. In Figure 1.1 there is the example of a part drawing: it carries all 

the information necessary to define the workpiece intended geometry and the allowed 

deviations. 
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Figure 1.1 - Part drawing according to GD&T standards (ISO approach). 

Drawings consist of two-dimensional projected views of the part nominal geometry where 

all indicated dimensions are to be intended as nominal dimensions. But the nominal geometry 

could not be obtained in practice and the allowed deviation must be stated, for each feature, 

through notes and symbols accompanying the two-dimensional projected views. The overall 

look is of suggestive “engineering hieroglyphics” (see Figure 1.1) which can be interpreted 

only with a deep knowledge of the standards lying behind. Standards define both the language 

syntax and semantics [2], the former being two-dimensional (as reported on projected views) 

while the latter three-dimensional. An example of syntax and semantics for the flatness 

tolerance symbol is reported in Figure 1.2. 

 

Figure 1.2 - Syntax and semantics of flatness tolerance according to ISO 1101. 

GD&T is an expert-based system, as it needs a deep knowledge of rules and familiarity 

with all the possible cases and examples. Every time it is not possible to specify some 

characteristic according to the current standards, the pool of experts responsible for its 
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definition and maintenance has to be consulted and the solution becomes part of the 

knowledge that will be embodied in the next standard amendment. This has been the leitmotif 

of the GD&T approach. It led to a complex structure of symbols, definitions and cases that, 

anyway, are no longer suitable to express many new product requirements. 

The main drawbacks of GD&T will be briefly presented in the next section, with a 

comparison of the ISO and ASME standards, their main divergences and some examples of 

specifications they are no longer suitable to deal with. 

1.3 GD&T: ISO (ante GPS) versus ASME 

GD&T can be based on both European (ISO) and American (ASME) standards with 

slightly different approaches that will be briefly analyzed in order to underline the origins of 

the need for a new technical language with wider and stronger foundations.  

According to ASME, GD&T is based only on standard Y14.5 [3] which provides 

respectively the syntax and semantics of symbols (together with many examples and empiric 

rules about their application). The mathematic definition of the dimensioning and tolerancing 

principles is provided by the standard Y 14.5.1M [4]. On the other hand, the GD&T ISO 

fundaments (ante GPS) consisted of nearly 20 standards that had been object of several 

reviews in different periods. A huge effort was required to keep the consistency of definitions 

throughout the numerous non-simultaneous reviews that easily led to ambiguities. 

Analysing the fundaments, we find an opposite approach between ASME and ISO 

standards. ASME’s “Rule# 1” establishes a deep correlation between size and form 

prescribing the explicit definition of the dimensional limits and defining the Envelope 

Principle. This principle states: “no variation in form is permitted if the regular feature of size 

is produced at its Maximum Material Conditions (MMC) limit of size unless a straightness or 

flatness tolerance is associated with the size dimension or the Independency symbol is 

applied”. Thus, according to the default set by Rule #1, the feature shape can vary only 

between the dimensional limits, resulting in a perfect shape in MMC and in the maximum 

permissible form error in Least Material Conditions (LMC). Designers can choose to avoid 

the use of Envelope Principle on a feature by specifying a form tolerance or appealing to 

Independency principle. In the latter case, they need to state their will explicitly in the 

drawing title box.  

On the opposite ISO 8015 [5] bases GD&T on the “Independency Principle” meaning that 

dimensional and geometric tolerances have to be considered as independent. Geometric 

tolerances apply regardless of parts dimensions. Designers can eventually use the envelop 

principle but they need to state it clearly, beside the tolerance it applies to, using the symbol 

. Otherwise, they can state it in the drawing title block if its use is intended for all features. 
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Figure 1.3 - Interpretation of the envelop principle for a cylindrical feature (shaft). Form 

error is allowed provided that the local size respects dimensional tolerance and the actual 

mating envelop does not exceed the MMC dimension. 

ISO differs from ASME also for the opportunity of stating dimensional tolerances of 

mating parts through standardized codes [6]. For example (see Figure 1.4) H7/f6 represents 

the couple of tolerances to be applied on the couple Hole/shaft to get a fitting with clearance. 

In particular the letter identifies the position of the tolerance zone with respect to the nominal 

feature while the number identifies the extent of the tolerance zone (the higher the number the 

larger the tolerance). The letter used to identify the tolerance zone position is capitalized for 

the hole and lower-case for the shaft. ISO/R 1938 [7] defines the characteristics of plug 

gauges for the verification of this kind of specification. 

 

Figure 1.4 - Example of geometrical specification for a hole/shaft clearance fitting according 

to ISO 286-1. 

Another difference between ISO and ASME GD&T concerns the definition of datum 

reference frames. In particular the difference is about the management of the orientation 

problem when the datum feature is convex. According to ISO [8] if a datum feature is convex 
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and results in an unstable orientation of the part, the part should be stabilized with adequate 

supports (wedges) in an “average” orientation (Figure 1.5) and all the features should be 

verified with respect to this orientation. Obviously this approach lacks of repeatability as ISO 

standards do not propose any rule to orient the workpiece. The ASME approach is completely 

different and solves the orientation problem stating that tolerances should be verified 

according to each possible orientation (candidate reference frame) and that the workpiece can 

be considered compliant if all specifications are satisfied at least in one orientation. 

 

Figure 1.5 - ISO (left) and ASME (right) approaches to solve the orientation problem when a 

convex datum feature leads to instability. 

The last important difference is about the nature of surfaces and how to deal with surface 

texture when assessing form errors. According to ASME, the actual feature surface consists of 

two different elements, respectively form and texture, which should be separated by a 

filtration operation. ANSI B46.1 [9] provides the smoothing functions to separate roughness 

from form when performing compliance verifications. On the opposite ISO (ante GPS) does 

not address the issue of surface texture in form error assessments, thus allowing possible 

ambiguous situations to arise. 

Even if with some drawbacks, the GD&T language has been able to deal with the 

problems of geometry characterization for a long time and still represents a good base for 

many mechanical applications. However, its deficiencies are increasing with respect to the 

needs of the modern high precision industry.  

GD&T evolved in a context where form errors and surface texture were two completely 

different domains separated by several orders of magnitude. Nowadays, thanks to 

breakthrough developments in tribology and in manufacturing capabilities, many precision 

products require form tolerances of a magnitude that until few decades ago was intended for 

surface texture only. In some cases surface texture presents a magnitude similar or even 

greater to that of the form error stressing the need for a new paradigm able to separate the 

different surface deviations. The distinction between form and surface texture is no longer 

based only on deviations magnitude but also on frequency. 
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1.4 The structure of GPS standards 

Since 1996, ISO Technical Committee 213 (ISO/TC 213) has been working for the 

harmonization of the previously standardized practices in tolerancing and related metrology. 

The reasons behind such an effort have been partially explained in the previous section, with 

respect to the specification ambiguities. The first important step toward the birth of GPS 

project comes from Bennich in 1994 [10] with the identification of the gaps and 

contradictions affecting the standards that dealt with the specification and verification of 

geometrical tolerances. The stimulus coming from the awareness of these drawbacks was 

enforced by the demand of a continuously spreading and evolving CAD/CAM/CAQ 

marketplace asking for a clear mathematical formalism. This was necessary to enable the 

construction of compact and reliable softwares in order to support computerized applications 

[11]. 

The first effort aimed at harmonising the existing ISO standards is described by the “GPS 

matrix”, presented in the ISO Masterplane in 1995 [12]. Standards are classified in 4 different 

classes, and collected in as many tables, according to their validity domain: 

 Fundamental GPS standards establish the fundamental rules and procedures for 

dimensioning and tolerancing of workpieces and products. For example, the Principle 

of Independency [13] belongs to this class. 

 General GPS standards are the main body of GPS standards establishing the rules 

for drawing indications, definitions and verification principles for the different types 

of geometrical characteristics. General standards are organized in the GPS matrix (see 

Figure 2 of the GPS Masterplan [12]). Each row of the matrix represents the chain of 

standards necessary to describe a certain geometrical characteristic from specification 

to verification, thus there is one row for each geometrical characteristic. Rows take the 

name of chains because the order of columns represents a progression through the 

product lifecycle and reflects the natural sequence of users reading, understating and 

deploying the concepts contained in standards.  

 Global GPS standards cover or influence several or all chains of General GPS 

standards and Complementary GPS standards. 

 Complementary GPS standards establish complementary rules for drawing 

indication, definitions and verification principles for a specialized category of features 

or elements. These rules depend on the type of manufacturing process and/or the type 

of machine element itself and can be arranged in chains of standards in the same 

fashion of General GPS standards matrix.  
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1.5 Three different domains 

The GPS language wants to guarantee the information consistency along the whole 

product manufacturing cycle. It recognizes three different domains for products representation 

on which to base its structure (Figure 1.6) [14]: 

 Nominal model embodies the designer idea and is characterized by nominal 

dimensions. It defines a workpiece of perfect form with shape and dimensions that 

perfectly fit the functions of the mechanism. This representation is far from reality, as 

manufacturing and measuring processes are characterized by their own variability or 

uncertainty, but is the base for technical representation in drawings and CAD models. 

 Non-ideal surface model (Skin model) corresponds to the designer imagination of 

the variations that could affect the real geometry of the workpiece. This model is used 

by designers to figure out the possible effects of workpiece geometry deviations in 

order to set the limits necessary to guarantee the part functional requirements. These 

limits are the geometrical specifications and are expressed in the form of dimensional 

and geometrical tolerances to complete the nominal geometry on drawings and CAD 

models. 

 Real workpiece geometry is the result of the workpiece manufacturing process. It is 

different from the nominal model because of the intrinsic variability of all the aspect 

concerning a real product (material, ambient conditions, manufacturing process, etc.). 

However deviations from the nominal model geometry should be within the 

geometrical specifications set by designers. Measurement is the unique way to know 

the real workpiece geometry but introduces further distortions and uncertainties 

intrinsic of the instrument and measurement procedure. 

 

Figure 1.6 - Three domains of product representation for ISO GPS standards [14]. 

Then, compliance verification for a geometrical characteristic consists of comparing the 

real surface geometry against the limits set on the skin model. Obviously, this comparison 

must take into account the uncertainty of the measurement process through which we know 
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the real feature, according to the classical concept of measurement uncertainty provided by 

GUM [15]. 

But the skin model is not merely used by designers to set the limits for the variation of 

features geometry. According to the operation based approach that will be presented in next 

sections, it represents also the base on which the verification process is defined as the dual of 

specification. Thus the skin model is a representation used also by metrologists to understand 

specifications and figure out the proper measurement strategy. 

1.6 Features and characteristics 

The definition of feature is that of point, line or surface entities. Features can be classified 

as ideal or non ideal with respect to the context they are in. Ideal features refer to the nominal 

model while non-ideal features refer to the skin model and real workpiece. Features are the 

simplest elements necessary to completely define whatever workpiece geometry and are 

named after the type they belong to. Feature type corresponds to the invariance class the 

feature belongs to: one among the seven possible that are summarized in Table 1.1 according 

to ISO/TS 17450-1. 

 

Table 1.1 - Geometrical features classification according to their invariance class [14]. 

Features can be defined also as associated, integral or derived according to ISO 14660-1 

[16].  

 Associated features are nominal features related to non-ideal features according to 

particular association criteria.  

 Integral features represent parts (line or surface) actually belonging to a surface 

whatever its nature is (nominal, non-ideal, real). 
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 Derived features are entities obtained with the application of mathematical operations 

to a certain feature. Examples of derived features are cylinders axes, circles or spheres 

centres and symmetry planes (Figure 1.7). 

 

Figure 1.7 - Axis of a non-ideal cylinder: example of derived feature [14]. 

The representation of the workpiece geometry through features is nothing else than a 

mathematical representation. The classification introduced by invariance classes allows a 

univocal identification of the nature of geometry, but it is not enough to completely define a 

feature. Invariance classes represent only the surface degrees of freedom with respect to rigid 

motions; they are not able to represent dimensions and completely grasp the nature of 

bounded features.  

A bounded feature is a feature with a finite dimension, which can then be encircled within 

the virtual boundary of a finite radius sphere. To complete features representation ISO 17450-

1 introduces the concepts of intrinsic and situation characteristics. 

 Intrinsic characteristics are defined on ideal features and are responsible for the 

identification of the feature size. 

 Situation characteristics are defined either between couples of ideal features or 

between ideal and non-ideal features. They are responsible for the definition of 

distances, thus for the feature location in the space. 

1.7 Operations and operators 

At this point, a clear structure for the GPS language has been outlined. The product data 

management system has been structured in three different domains and a univocal 

representation of geometry has been introduced through the concepts of features and 

characteristics. The building of a language based on mathematics proceeds with the definition 

of seven operations entrusted to define specification and verification operators (Figure 1.8).  
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Figure 1.8 - Operations defining specification and verification operators. 

An operator, by definition [17], is an ordered set of operations that apply on any feature. 

As we can see in Figure 1.8 some operations are not reported for the nominal model as they 

are not necessary. As a matter of fact, extraction, filtration and association are defined for 

non-ideal features only, with the aim of identifying the counterparts of the nominal model. 

The seven operations are briefly introduced according to the ISO/TS 17450-2 definitions.  

1.7.1 Partition 

The feature operation called partition is used to identify bounded features. From a 

computational point of view, it is straightforward if used on nominal models but becomes 

trickier when dealing with non-ideal surface models or real surfaces.  

In nominal models features are described by equations, thus the partition is intrinsic to the 

definition of each feature domain: the equation domain corresponds to the feature boundaries 

(contour lines in Figure 1.9). 

In non-ideal surface models and real surfaces, features are affected by several deviations 

such that it is not possible to describe them by means of equations, unless introducing 

approximations (see section 1.7.4). In this case partition is used to identify which portion of 

the non-ideal surface model, or of the real surface, corresponds to a nominal feature on the 

nominal model. The number of non-ideal (or real) features identified on a surface must be 

equal to the number of features on the relative nominal model.  

Figure 1.10 shows one of the main problems presented by partition in the attempt of 

performing the operation without the reference of a nominal model. The shown surface is the 

skin model corresponding to Figure 1.9 with the sphere north pole lowered by a 
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manufacturing defect. The lowered area presents an almost constant curvature that, together 

with its centre location, is slightly different from that of the remaining spherical feature. At a 

first glance, the surface resembles a sphere and, if we try to fit a sphere, we can see that it 

matches quite well. But we can still improve the fitting performance, due to the flattened 

geometry of the sphere pole, trying to fit two independent spheres. The result is that the fitting 

performance improves, Figure 1.10, but the partition obtained is no longer correct.  

 

Figure 1.9 - Example of nominal model with the features boundaries corresponding to the 

domains of the respective equations. 

 

Figure 1.10 - Partition of a non-ideal surface. On the left only one sphere is used, resulting in 

a poor fitting performance but in a correct partition. On the right fitting performances are 

improved, using two different spheres, while the partition operation identifies features not 

corresponding to the nominal model. 
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In this case we can say that it is not correct because we know the nominal model, but 

without this information we would have not been able to figure out which of the two 

partitions was the right one. That with the best fitting performance? Clearly not.  

Other important issues when partitioning non-ideal or real surfaces come from the 

definition of the features boundaries. For these reasons, at the state of the art, partition 

operation cannot be defined univocally with a mathematical formulation and is not yet 

implemented in any software.  

Before closing this section we have to consider that ISO/TS 17450-1 defines as partition 

also the operation used to identify limited portions of an ideal or non-ideal feature (e.g. a 

segment of a straight line or a section of a non-ideal surface). But this operation presents none 

of the problems highlighted above. 

1.7.2 Extraction 

Extraction is the feature operation used to identify a finite number of points from a 

feature, according to specific rules (see Figure 1.11).  

If we are dealing with a real surface, extraction represents the contact between 

metrologist and measurand (the process of acquiring knowledge about the surface geometry) 

and corresponds to the measurement process. Hence, the importance of adequate extraction 

operations in order to be able to collect the information that effectively allows us to assess the 

compliance of features with their specifications. 

 

Figure 1.11 - Example of extraction operation according to ISO 17450-1. 

1.7.3 Filtration 

Filtration is the feature operation used to distinguish between roughness, waviness, 

structure and form. It permits the separation and identification of different scale 

characteristics from non-ideal features (see Figure 1.12) allowing to define different 

specifications for each of these characteristics. 

 

Figure 1.12 - Example of filtration operation used to separate the form error components of a 

straightness profile [14]. 
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1.7.4 Association 

The association operation is used to fit ideal features to non ideal features according to 

specific rules called criteria. Association criteria give an objective for a characteristic and can 

possibly set constraints to fix the value of the characteristic or to set limits to it. Constraints 

can apply either to intrinsic or situation characteristics (where situation characteristics can be 

both between ideal features and between ideal and non-ideal features). 

An example of association operation is visible in Figure 1.13 where an ideal cylinder is 

associated to a non ideal feature according to the criterion that asks to maximize the diameter 

of the inscribed cylinder. However, several different association criteria are available for each 

kind of feature. They are characterized by different objective functions and constraints and, 

therefore, they end up in the association of ideal features with different characteristics.  

 

Figure 1.13 - Association of an ideal cylinder to a non-ideal feature [14]. 

The associated feature is usually the base of the verification process for assessing the 

compliance with tolerances. Thus, for the variability it may potentially introduce, the 

association criterion to be used for defining a certain geometrical feature (both in specification 

and verification) must be chosen by the designer and clearly stated along with the feature 

specification. 

Association criteria can be classified according to the nature of the algorithm they are 

based on: 

 Statistical association criterion: if the algorithm is such that all the measurement 

points coordinates participate to the definition of the nominal feature equation. 

 Extreme-fit association criterion: if the algorithm is such that the nominal feature 

equation is defined according to coordinates of extreme points only.  
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1.7.5 Collection 

The feature operation called collection is used to identify and consider together some 

features which together play a functional role. Collection operation can be performed equally 

with ideal or non-ideal features. Features built with collection operations can be of a type and 

degree of invariance different from those of the simple features composing the collection. 

Moreover, if two features are related by a situation characteristic, after the composition 

operation, the situation characteristic will be an intrinsic characteristic of the collection 

feature. 

An example of collection operation is visible in Figure 1.14 where two parallel cylinders 

are considered together to build a common datum. The axes of both cylinders lie parallel in 

the same plane and once they are considered as a single feature the distance “L” between 

them becomes an intrinsic characteristic of the collection feature. In this case the collection 

feature has only a translational degree of freedom (in the direction identified by the two axes) 

and belongs to the prismatic invariance class while the two simple features belong to the 

cylindrical invariance class. 

 

Figure 1.14 - Example of collection of two ideal cylinders [14]. 

1.7.6 Construction 

Construction is the feature operation used to build ideal features starting from other ideal 

features. This operation requires the definition of constraints. A simple example, from ISO 

17450-1, is reported in Figure 1.15 and shows the construction of a straight line defined as the 

intersection of two ideal planes. 
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Figure 1.15 - Construction of a straight line by intersection of two planes [14]. 

1.7.7 Evaluation 

Evaluation is the operation entrusted to identify the value of characteristics. If it is applied 

to a non-ideal feature it returns the characteristic nominal value and the limit (or limits) of its 

deviation. Both in specification and verification it can be applied only after the complete 

definition of the specification or verification operator respectively, thus after any other 

possible operation (see Figure 1.8). 

1.8 Uncertainty contributions 

The seven operations defined in previous sections allow a consistent definition of 

specification and verification operators. The operation and operator based approach allows a 

substantial improvement of the workpiece data management, thus the minimization of the 

uncertainty related to the possible interpretations of geometrical specifications. Differently 

from GD&T, the GPS system is based on mathematics (not on experts) and, rather than 

interpreting symbols, metrologists shall simply apply procedures: the ordered sets of 

operations called operators. From this point of view the GPS aim is to unable the univocal 

interpretation of specifications, if these are defined according to the new language. 

However, in the fundaments of GPS approach there is the awareness that such a kind of 

language will require ages before becoming common practice. Many compromises are 

required when dealing with the actual facilities of metrology laboratories and the majority of 

instruments actually used is not suitable to implement a perfect verification operator.  

Nevertheless, the compromises are not only related with the interpretation of 

specifications and the verification of workpieces’ compliance. GPS language looks at 

products on a broader perspective as the final aim of a workpiece is to perform a function (on 

its own or in the assembly of a more complex machine). This means that geometrical 

specifications have to be adequate to guarantee the workpiece functionalities (named also 

‘functional needs’ and ‘functional requirements’) and that they represent a possible source of 

uncertainty with respect to the correct workpiece functioning. The GPS language, as a matter 
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of fact, is able of describing products along their whole lifecycle and evaluating the 

consistency of the actual workpieces with the functional needs they are demanded to satisfy. 

This is the breakthrough with respect to GD&T, which enabled only the representation of 

geometrical specifications without taking into account the overall workpiece functional 

requirements. 

To guarantee the best workpiece description and the evaluation of its correspondence to 

functional requirements, GPS language introduces the definition of new uncertainty 

contributions that are able to characterize products at different stages of their lifecycle. These 

uncertainty contributions are presented in ISO/TS 17450-2 [17] and participate in the 

definitions of the workpiece total uncertainty according to the scheme presented in Figure 

1.16. Each uncertainty contribution will be briefly presented in the following sections in an 

order that respects the levels of the composition scheme. Note that these are not hierarchical 

levels, as the uncertainty contributions are defined independently from each other. 

TOTAL 

uncertainty

CORRELATION 

uncertainty

COMPLIANCE 

uncertainty

MEASUREMENT 

uncertainty

SPECIFICATION 

uncertainty

METHOD 

uncertainty

IMPLEMENTATION 

uncertainty
 

Figure 1.16 – Composition scheme for the GPS uncertainty contributions. 

1.8.1 Total uncertainty 

Total uncertainty represents the deviation of the actual verification operator from the 

functional operator, namely the functional requirements the workpiece is demanded to satisfy. 

It is intended to measure the attitude of a certain workpiece, measured through a certain 

verification operator, to: 

 satisfy the functional requirements when measured as being compliant with 

geometrical specifications; 

 do not satisfy the functional requirements when measured as being non compliant with 

geometrical specifications. 
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For this reason total uncertainty takes into account the uncertainty related with the verification 

process (measurement uncertainty), the possible interpretations of the geometrical 

specification (whenever this is not complete specification uncertainty arises) and the 

suitability of the geometrical specification to match the functional requirements it is intended 

for (correlation uncertainty). Total uncertainty is defined as the sum (in the sense of the word 

according to GUM) of correlation uncertainty, specification uncertainty and measurement 

uncertainty [17]. 

1.8.2 Correlation uncertainty 

Correlation uncertainty is defined as “the uncertainty arising from the difference between 

the actual specification operator and the functional operator, which defines the intended 

function of the workpiece, expressed in the terms and units of the actual specification 

operator” [17]. In other words, it measures the suitability of the geometrical specification to 

guarantee the functional requirements it has been intended for.  

Different features, or different specifications on the same feature, can be involved in the 

same functional requirement. In these circumstances, all features and/or specifications 

involved have to be taken into account together with their mutual relationships.  

Correlation uncertainty is aimed at assessing if a workpiece compliant with geometrical 

specifications is able to satisfy the functional requirements it was intended for, and vice versa. 

The difference with respect to total uncertainty is that correlation uncertainty does not care 

about the way the workpiece compliance has been assessed with. On the contrary, total 

uncertainty does. Thus the remaining part of total uncertainty, the one related with the 

compliance assessment, is defined by compliance uncertainty, which is presented in the next 

section. 

1.8.3 Compliance uncertainty 

Compliance uncertainty collects all the uncertainties related with the compliance of the 

workpiece geometry with respect to specification requirements. It quantifies the uncertainty 

with which it can be proved that a workpiece complies with every possible interpretation of a 

specification [17]. Compliance uncertainty covers both the practical aspects of measurement 

processes (actual verification operator and its measurement uncertainty) and the quality of 

specification (if specification has not a univocal interpretation, specification uncertainty 

arises). It consists of the sum (with the meaning of the word according to GUM) of 

measurement uncertainty and specification uncertainty. 

1.8.4 Specification uncertainty 

Specification uncertainty has the role of quantifying the ambiguity in specification 

operators [17]. Actually, if the actual specification operator is not complete, metrologists have 

to reconstruct the complete specification operator from which, according to the duality 

principle, the perfect verification operator is derived. The reconstruction of the complete 
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specification operator is obtained by adding operations, or parts of operations, missing in the 

incomplete specification and consistent with it. But this reconstruction cannot be univocal, as 

there may be several operations equally suitable to complete an incomplete specification 

operator. Specification uncertainty can be easily eliminated using complete specification 

operators. 

1.8.5 Measurement uncertainty 

Measurement uncertainty collects all the uncertainties generated by the use of an actual 

verification operator. It corresponds to the classical concept of measurement uncertainty and 

consists of the sum (in the sense of the word intended by GUM) of method uncertainty and 

implementation uncertainty [17]. It takes into account the non-idealities of the instrumentation 

as well as the intentional deviations from the perfect verification operator introduced to 

facilitate its practical use. 

1.8.6  Method uncertainty 

Method uncertainty “arises from the differences between the actual specification operator 

and the actual verification operator, disregarding the metrological characteristic deviations of 

the actual verification operator” [17]. Method uncertainty collects the effects of verification 

operations different from those required by the actual verification operator, which is derived 

from the actual specification according to duality principle. 

1.8.7 Implementation uncertainty 

Implementation uncertainty arises from the divergence of the metrological characteristic 

of the actual verification operator from the ideal metrological characteristic defined by the 

perfect verification operator [17]. It collects the effects of the non-idealities (deviations) of 

actual verification operators from the perfect verification operator. 

The magnitude of the part of implementation uncertainty introduced by measuring 

instrument can be estimated through calibration. Other components due to environmental 

effects, not directly related to the measuring equipment, have to be taken into account and, if 

possible, compensated [18, 19]. 

1.9 Decision rules for workpieces acceptance 

As presented in last sections ISO GPS standards provide a new language for the definition 

of products characteristics along the product lifecycle together with the definition of 

uncertainty components suitable for describing every possible deviation from the perfect 

verification operator.  

Calculation of measurement uncertainty is of primary importance in assessing the 

compliance of workpiece geometry with respect to the geometrical specifications. This 

uncertainty contains all the deviations of the actual verification operator with respect to the 
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perfect verification operator, thus expresses the goodness of the verification operator used for 

the measurement mission. GPS standards provide also a decision rule to guide the 

acceptance/rejection of workpieces according to the results of measurement processes and 

their uncertainties.  

The aim of ISO/TS 14253, a standard made of five parts up to now, is to provide an 

acceptance rule to be used to avoid or resolve disputes between suppliers (manufacturers or 

metrology laboratories) and customers on the conformance of manufactured or traded parts. 

The first part of ISO/TS 14253 [20] provides the rule for proving conformance or non-

conformance. It states that a workpiece can be defined compliant or non-compliant with 

specification only if the interval that completely expresses the measurement result is, 

respectively, completely inside or completely outside the specification interval (Figure 1.17). 

The interval that completely expresses the measurement result is defined as the measured 

value together with its expanded uncertainty: interval y’ in Figure 1.17. In case the interval y’ 

includes one of the specification limits neither conformance nor non-conformance can be 

proved.  

 

Figure 1.17 - Rule for proving conformance or non-conformance with specifications 

according to ISO/TS 14253-1. 

The principle behind this decision rule is that measurement uncertainty always counts 

against the party who makes the measurement in order to provide the proof of conformance or 

non-conformance. In this way, the party who makes measurements is incentivized to reduce 

measurement uncertainty as much as possible. 

The second part of ISO/TS 14253 [18] wants to guide the implementation of concepts 

introduced by the “Guide to the estimation of  uncertainty in measurement” (GUM) [15] to 

foster their application in industry for the design of verification processes, calibration of 

verification instruments and measurement of workpiece GPS characteristics. The aim is to 

improve communication between purchasers and suppliers providing full information on how 
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to achieve uncertainty statements and the basis for international comparison of measurement 

results and their uncertainties.  

It is becoming always more common for suppliers to provide customers with a detailed 

perspective on their quality system in order to give them a satisfactory insurance that the 

workpiece they are receiving conforms with specifications. This practice avoids costly 

duplicate inspections and can benefit from ISO/TS 14253-2 that, basically, provides 

instructions for preparing budgets of measurement uncertainty as defined in the GUM. 

However, there is still the possibility that customers and suppliers can disagree on the 

measurement uncertainty estimation. If this happens, and if the uncertainty estimation has 

been performed in accordance with ISO/TS 14253-1, the third part of ISO/TS 14253 provides 

guidelines and procedures to help customer and supplier to reach amicable agreements  and 

avoid costly and time-consuming disputes [21]. 

The fourth part of ISO/TS 14253 outlines the main assumptions behind the decision rules 

established in ISO/TS 14253-1. It discusses why these rules have to be the default rules and 

the considerations that should be taken into account before applying different decision rules 

[22]. ISO/TS 14253-4 defines the meaning of specification limits and provides definitions and 

guidelines to transform functional limits in specification limits. Functional limits are defined, 

on the functional level degradation curve of the workpiece characteristic, in order to guarantee 

a certain level of functionality. This standard identifies different shapes of functional level 

degradation-curves and defines the rules to set functional limits and choose the adequate 

specification limits even in the complex circumstance where different characteristics combine 

in the same performance.  

1.10 Conclusions 

Geometrical Product Specification and Verification (GPS) is an international standard 

system covering all the issues related with products manufacturing, ranging from the first 

design phase to the metrological principles and practices for their verification [12]. 

The aim of GPS standards framework is to grant coherence to all the data generated along 

product lifecycle in order to enable the information age industry to be more cost effective [1]. 

This aim is pursued through the definition of a new rigorous language, based on mathematics, 

that relying on the concepts of operations, operators and uncertainties enables the 

harmonization of information throughout a global scale manufacturing industry [23]. Such a 

language, completely based on mathematics, enables information consistency but still needs 

to be encapsulated into an integrated information system to spread into industrial practice, as 

it often turns out to be too complicated to be used directly. GPS language allows the 

development of next generation PLM softwares that are intended to fully exploit the potential 

provided by improvements in the field of measuring instruments and informatics for 

management of production [24]. 
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In this context, the ISO/TC 213 (which has the aim of standardization in the field of 

Geometrical Product Specifications and Verification) focuses on the improvement of 

specification and verification phases and tries to match them postulating the “principle of 

duality” [25, 26]. This principle establishes that the sets of operations used in the specification 

phase to address variability limits are in biunivocal relationship with the same sets of 

operations used in the verification phase to identify the element subject to the specification 

and to evaluate its conformity. 

According to duality principle specifications and their verification are defined on the skin 

model: the designers’ or metrologists’ mental representation of the possible workpiece 

geometrical deviations. For its nature, skin model is continuous and its continuity deeply 

characterizes the whole GPS framework. In order to define the domain of different tolerances 

(to distinguish among errors of form, undulation, roughness or lay) geometry is considered 

and treated as a continuous signal to be decomposed and analyzed into its different 

wavelengths. 

This approach based on continuity of information is justified by the direction in the 

evolution of measuring instruments, which tends towards three-dimensional surface 

acquisition by means of optical devices. These instruments provide good or excellent 

accuracy together with contained measurement times and, the most important, enable the 

achievement of a knowledge level of the actual surface geometry that is very similar to a 

continuous model. Optical instruments allow the measurement of dense clouds of points and 

the reconstruction of the actual surface geometry with a mesh so fine to enable also the 

reconstruction of the smaller wavelength form errors. A case study [27] shows that a 

specification over a flatness error characterized by a wavelength greater than 2.5 mm requires, 

for the correct reconstruction of the actual surface geometry, a sampling of the surface with a 

distance lower or equal than 0.35 mm. Such a sampling distance implies a massive amount of 

points to be measured but does not represent a problem for optical instruments.  

The main problem in the application of GPS standards is represented by the traditional 

measuring instruments that populate most of metrology laboratories around the world. Thanks 

to their accuracy and flexibility Coordinate Measuring Machines (CMM) are the most popular 

measuring instrument, preferred every time there is the need to measure few points with high 

accuracy. CMMs are not competitive when specification requires the measurement of 

thousands of points but, many times, they are the only available instrument and are used 

anyway, introducing important deviations with respect to the perfect verification operator. 

The flexibility and widespread of CMMs means that these instruments will continue to 

dominate in the field of metrology for a long time to come. The aim of this thesis is to 

investigate the issues related with inspection of workpieces performed by means of CMMs 

and compliant with GPS standards. The main drawbacks will be pointed out and an operative 

strategy will be proposed to assess the uncertainty generated during their use by deviations 

from the perfect verification operator. 
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A data model is proposed to deal with the management of information during the 

inspection phase and is implemented into a category-based software enabling the assessment 

of uncertainty according to GPS standards and cost of measurement missions. Further, the 

problem of form error assessment is afforded, from a perspective that is not considered by 

ISO standards yet, presenting an adaptive inspection strategy able to maximize the efficiency 

of CMM measurements by taking into account the information about the actual surface that 

has been collected during the measurement mission already performed. 
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2 Uncertainty estimation in CMM verification operations 

2.1 Introduction 

Three-dimensional metrology has brought a significant change in dimensional 

measurement if compared to the traditional two point distance measurements. Instead of 

measuring dimensions, it returns the coordinates of points sampled from the measurand 

surface, providing more comprehensive information about the measurand geometry. The 

output of the measurement process is a collection of coordinates of surface points, whose 

analysis allows the observation of surface shape details, the evaluation of feature 

characteristics (sizes and distances) and their deviations from nominal values. Usually data 

analysis is completely independent from the data acquisition process. The former is a software 

procedure while the latter a hardware procedure traditionally based on the contact of a 

probing stylus with the measurand (CMMs). More recently, probing styli are often substituted 

with optical (non-contact) measurement devices that, when deployable, avoid the 

morphological filtration introduced by stylus tip geometry. 

Most of literature deals with traditional CMM verification processes where data analysis 

is performed, after the extraction phase (measurement), through the LS association criterion. 

This is the most widespread measurement approach and is also coherent with the direction of 

ISO standards development. If there is no transversal knowledge about the workpiece history, 

there is no reason to expect geometrical defects in particular locations and a blind approach is 

necessary to explore the whole feature with the same level of accuracy. However, if the 

manufacturing process is characterized by a known signature (geometry presents systematic 

errors) the sampling strategy can be designed ad hoc in order to identify the signature 

characteristics (magnitude of defects) by sampling the lowest possible number of points.  

Measurement data analysis can be performed by means of several different numerical 

algorithms. In terms of GPS language [1] the algorithm used to analyze the measurement data, 

to infer about the real feature characteristics, is named “association criterion” and must be 

defined by the specification on the part drawing. Many association criteria are already 

implemented in CMMs software in order to provide measurement outputs consistent with the 

characteristic to be measured and avoid off-line data analysis. Association algorithms can be 

classified, according to their nature, in:  

 Statistical algorithms, such as Least Squares, that are able to associate to the 

coordinates of all measurement points the maximum likelihood nominal feature. 

 Extreme fit algorithms (such as Minimum Zone, Maximum Inscribed, Minimum 

Circumscribed etc.) that, according to the envelop of all measurement points, define an 

ideal feature on the basis of extreme points only. 
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For both kinds of association criteria, the uncertainty assessment can be either analytic or 

experimental. The analytic formulation is more suitable for statistical algorithms, as it is a 

natural derivation of the statistical formulation of maximum likelihood algorithms, while 

experimental approach is the best solution to deal with extreme fit association criteria. 

Regardless the association criterion used to fit the nominal feature and evaluate real 

feature deviations, CMM verification operations are strongly affected by sampling strategy: 

the number of sampling points and their distribution over the measurand surface. 

This chapter investigates the main issues related with CMM-based verification and the 

assessment of the uncertainty deriving from the selected association criterion. Particularly, the 

investigation is focused on flatness tolerance, as it is one of the most popular tolerances both 

in industrial practice and in literature studies. However, despite the simple formulation that 

makes it so suitable for research purposes, findings can be easily extended to most of 

geometrical form tolerances. 

2.2 State of the art in CMM sampling strategies 

Parameters of sampling strategy have been extensively studied in CMM literature in the 

last decades. However, the majority of studies are characterized for being oriented at 

statistical evaluation due to the widespread implementation of LS association criterion in 

CMM softwares. Two different branches of research can be identified: one aimed at 

optimizing sample size and another dealing with the optimization of measurement points 

location. 

The definition of sample size depends on factors such as the feature size, the transmission 

band of tolerance specification, the machining process capability and the measurement 

uncertainty [2-4]. The state of the art for defining sample size is reviewed in §2.2.1. 

The situation is even more complex from the point of view of location of measurement 

points on the measurand surface. The literature dealing with this issue is analyzed in §2.2.2 

with a particular highlight on the main advances in sampling strategies aimed at reducing 

verification costs by improving sampling performance. 

2.2.1 Sample size 

CMM inspection is characterized by a discrete measurement which essentially results in 

an approximation process: if the sample size is infinite the approximation error is zero while, 

in any real case with a finite sample size, it is non-zero [5]. The sample size directly affects 

measurement time (they are directly proportional), thus the whole cost of verification 

processes that should be always minimized [6]. The great economic impact of sample size has 

justified an intense research aimed at getting the best reports of form deviation with the lowest 

possible number of points. Yau and Menq were among the first to work in this direction and 

proposed to relate the sample size to process capability through a statistical approach [7]. 
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Weckenmann et al. [8] recognized the influence of verification operations (sampling 

strategy, fitting algorithm and evaluation of deviations from the nominal fitted feature) on the 

correct verification of the geometrical specifications that are intended to guarantee the 

functional requirements. They recommended the use of functionality-oriented verification 

strategies, anticipating the evolution of ISO standards that actually ask for the complete 

definition of verification operations in design phase; particularly through the complete 

definition of the specification operator and the application of duality principle. They also 

showed that, as the number of measurement points increases, the estimated values converge to 

the “true” value of form error and the sampling strategy dispersion converges to zero.  

Lin and Chen [9] noticed that sample size was a function of the pattern elements in a 

feature based solid model. Later on, Fan and Leu [10] studied how sample size should be 

selected according to the shape of the planar surface and the ratio between the length and 

width of the actually sampled area.  

Hurt [11], comparing different plane fit algorithms, noticed that the accuracy of the LS 

estimate improves by increasing the number of measurement points. He recommended the 

sampling of at least 20 measurement points in order to have an accurate report of flatness. 

Hocken et al. [12] suggest a larger number of points to obtain the convergence of form error 

evaluation. Working on a straightness line 1000 mm long and on a flatness feature 500 x 500 

mm wide, they described that, in both cases, at least 50 points are needed to obtain the 

convergence of parameters describing the fitted line and plane. A similar conclusion, for the 

case of plane fit, was made by Caskey et al. too [13]. 

All these studies about sample size have been performed without taking into account the 

uncertainty arising in the different verification scenarios. At this point, it is clear that sample 

size is affected by the measuring equipment at hand, the type of feature to be checked, and the 

details of the tolerance definition. In other words, it is not possible to define a sample size 

suitable for every kind of feature a-priori. Often the same feature presents different shapes 

(defects) even for workpieces manufactured on the same machine, in different moments, just 

for the variability of the machining process itself (e.g. different tool wear). Therefore, tailored 

samplings should be used in order to correctly detect the actual surface geometry [9]. 

The first study on sample size that tries to address the problem of uncertainty evaluation 

is provided by Zhang et al. [4]. They propose a neural network approach to bypass the 

complexity of relationships between sampling size and all the variables of manufacturing and 

inspection processes. An adequate training set allows the neural network to build an effective 

model able to estimate the uncertainty of the form error evaluation, for the feature on which 

the network has been trained. The main advantage of neural networks is that they are able to 

build models according to the training sets provided, without requiring users to deeply 

understand all problem details. Obviously, users need to have an overall perspective of the 

problem in order to provide adequate training sets. 
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The intricate bundle of factors and variables affecting the determination of proper sample 

size for the evaluation of form errors has been afforded by Hwang et al. [14] with a hybrid 

neuro-fuzzy approach where the tolerance and feature geometry are considered as factors. 

Raghunandan and Venkateswara Rao [15] classify the effects of manufacturing processes 

for the purpose of sample size definition using the information carried by roughness tests. 

Roughness specifications are usually combined with form tolerances. They require very fine, 

small-scale, measurements and are particularly suitable to identify the technological signature 

of the manufacturing process; a precious information for the design of the best sampling 

strategy. As a small-scale local characteristic, roughness is particularly suitable to detect the 

surface variations at different locations and identify those more critical for the correct form 

error evaluation. The study established that surface finish plays an important role and shall be 

considered one of the parameters for sample size definition. Poor quality surfaces, with high 

Ra values, require a sample size greater than well-finished surfaces to obtain the same 

accuracy of error evaluation. 

2.2.2 Position of measurement points 

Concerning the location of measurement points on the feature to be inspected, the CMM 

literature offers several studies on the application of statistical methods like uniform, random 

or stratified sampling [10], rather than grid extraction strategies compliant with GPS 

standards [16], particular sequences for low density extractions [5, 17, 18] or adaptive 

strategies [19-21]. 

The most popular extraction strategies are random sampling, uniform sampling and 

stratified sampling. Particularly, the last one is necessary whenever the surface consists of 

multiple features forming strata [10].  

Other sampling strategies have been presented, mainly for flatness features, aimed at 

reducing the number of sampling points necessary to reach a predefined accuracy level. Woo 

and Liang [5], introducing the application of Hammersley sequence, achieved a nearly 

quadratic reduction of the sample size with respect to the sample size necessary to guarantee 

the same accuracy with random sampling or uniform sampling. They further compared 

Hammersley sequence with Halton-Zembra sequence on simulated surfaces but they did not 

find significant differences of performance. The choice is a matter of convenience mainly, as 

the Halton-Zembra sequence suffers from the limitation that sample size has to be a power of 

2. The efficiency of Hammersley sequence has been proven also by Lee et al. [18]. They 

integrated the Hammersley sequence together with stratified sampling to obtain an improved 

feature-based inspection technique. This was tested and compared with random and uniform 

samplings on a set of stratified features obtained with numerical simulations. It was proved 

also that Hammersley sequence is more accurate than random sampling and that, when 

dealing with stratified features, stratified Hammersley sequence is more robust than stratified 

random or stratified uniform sampling [18]. 
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Scattering measurement points over a feature in order to cover the whole surface is very 

useful but does not guarantee to detect the peaks and valleys of form deviation. Form error 

evaluation completely relies on the identification of these points, thus modelling approaches 

are necessary in order to guess the location of these points and reduce the sample size the 

most possible. Different studies in literature proposed adaptive sampling strategies based on 

the knowledge of manufacturing processes and their technological signature. 

The first work in this direction was made by Badar et al. [19]. They presented an adaptive 

sampling that uses manufacturing error patterns (technological signature) and optimization 

search techniques to check straightness and flatness tolerances with LS association criterion. 

This adaptive sampling requires the inspection of some arbitrary located points in order to be 

started. 

In a further work, Badar et al. identified the location of sample points relying on the 

surface error pattern left by the manufacturing process [22]. Then, they proposed to decide the 

initial inspection locations according to the form error profile (the signature of manufacturing 

process) and the workpiece geometry [20]. Surface profile guides the inspection of the initial 

points only; the additional ones are measured according to the search heuristics. This adaptive 

sampling was tested on a set of face-milled and end-milled plates, made respectively of cast-

iron and 7075-T6 aluminium alloy [20]. It was compared with other non adaptive samplings 

and resulted to be the most reliable and effective [20]. This approach requires the availability 

of models for surface error patterns, which may be not available for every manufacturing 

process. In this case important information about the manufacturing process may be obtained 

from the analysis of surface roughness [15]. 

This thesis presents, in Chapter 6, a Kriging-based adaptive sampling that relies almost 

exclusively on the information collected through measurement points. Particularly the Kriging 

model (that is an interpolatory model) improves with the sampling of each measurement point 

(as the actual knowledge of the measurand does) and is used to focus the sampling in areas 

that are likely to be more significant for the form error evaluation: namely where peaks or 

valleys are expected  [21, 23]. 

The approach of ISO-GPS standards is quite different from those previously mentioned. 

In order to enable the correct implementation of verification operators, sampling (that in terms 

of GPS language is an extraction operation) has to be defined directly from specifications. 

Number and position of sampling points are defined according to the tolerance specification 

band (upper and lower cut-off wavelengths). The form of features profiles is regarded as a 

signal. In this sense the lower cut-off wavelength represents a limit on the signal bandwidth 

that, according to Nyquist criterion, poses a constraint for correct signal reconstruction. 

Nyquist theorem states:  

“If it is known that an infinitely long signal contains no wavelengths shorter than a 

specified wavelength, then the signal can be reconstructed from the values of the signal at 
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regularly spaced intervals provided that the interval is smaller than half of the specified 

wavelength”. 

Then, in order to avoid aliasing, sampling distance must be shorter than one seventh of 

the smallest wavelength to be reconstructed: namely the lower cut-off wavelength [24]. 

 

Figure 2.1 - Aliasing example: sampling distance is too large to define the true shape of the 

signal [24]. 

The ISO-GPS approach requires a massive amount of points to be measured. It can be 

easily implemented with new generation measuring instruments, mainly those based on 

optical acquisition of three-dimensional surfaces, that are able to acquire the coordinates of 

thousands of points pour second. However, these instruments are not currently available in 

most of metrology laboratories where the dominant instrument is represented by CMM that, 

usually, is recommended for measuring few points only. ISO-GPS standards recognize that 

sample size could be a critical aspect for the correct implementation of perfect verification 

operators, and suggest the use of grid extraction strategies based on the measurement of 

profiles (checked according to perfect verification operator) arranged in grids in order to 

properly cover the whole surface [16]. Besides different grid extraction strategies, ISO 

standards recognize also the random sampling. Anyway, GPS standards do not allow the 

specification of the parameters necessary to completely define grids, and this possibility is 

neither considered in future amendments. Therefore grids cannot be defined univocally in 

design phase and, unless dedicate notes are used, their use will always generate method 

uncertainty. 

2.3 Algorithms for form error assessment 

2.3.1 Statistical algorithms 

Thanks to its analytical formulation and the possibility to be implemented with fast 

algorithms, Least Squares (LS) is the association criterion most widely embedded in CMM 
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softwares. Usually, when a CMM does not offer the possibility to choose among different 

association criteria, LS is the one implemented by default.  

LS is the most traditional among the direct best fitting methods. As the name says, these 

methods try to best fit a nominal feature to a set of measurement points. LS, in particular, is 

based on the minimization of the sum of squared distances of measurement points from the 

fitting nominal feature. 

With respect to flatness tolerance, the definition of the LS problem is the following. 

Given a dataset of sampling points 
1

( , , )
n

i i i i
x y z where xi and yi are independent variables and 

zi is a dependent variable whose value is found by observation (the height of sampling points). 

The model function has the form f(x, y, β), where the m adjustable parameters are held in the 

vector β. The goal is to find the parameter values for the model which "best" fits the data. The 

least squares method finds its optimum when the sum, S, of squared residuals (2.1) is 

minimized. 
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A residual is defined as the difference between the actual value of the dependent variable and 

the value predicted by the model: ( , , ).i i i ir z f x y β  Particularly for the solution of a 

flatness problem, the equation of a nominal plane has to be fitted to the set of measurement 

points. Denoting the intercept as β0 and the slope with respect to x and y direction as β1 and β2 

respectively, the model function is given by: ( , , ) 0 1 2f x y + x+ y.β  

LS method does not comply with the mathematical definition of tolerance zone. It is able 

to define an envelop volume that contains all measurement points, but this envelop is not of 

minimal size. Therefore it generally overestimates form errors [25] and can lead to rejection 

of good parts that would be in specification under a Minimum Zone (MZ) evaluation. 

However, LS association criterion is often preferred to MZ because of its easier and faster 

implementation, because it allows the analytic estimation of evaluation uncertainty and 

because the form error overestimation can be regarded as an additional safety with respect to 

the real compliance with functional requirements. On the other hand it introduces a restriction 

on the error actually allowed by specification, restricting manufacturability. 

An alternative to the traditional LS algorithm has been proposed by Zhu et al. [26]. The 

method relies on an ‘Iterative Reweighted Least Squares’ (IRLS) algorithm that allows the 

approximate estimation of form deviation through the iterative solution of a series of weighted 

least squares problems. The weight parameters are updated, for each iteration, to minimize the 

squared maximum deviation. Anyway, the form error is usually overestimated if the 

measurement points are not well aligned. 
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2.3.2 Extreme fit algorithms 

Extreme fit association criteria are more consistent with the geometrical definition of 

tolerance zones (see for example the definition of flatness tolerance zone [27] or roundness 

tolerance zone [28]) thus more suitable for functional verification. On the other hand extreme 

fit algorithms are more sensitive to sampling and do not allow a straightforward assessment of 

the uncertainty associated with the form error estimation. 

The most popular extreme fit association criterion is doubtless Minimum Zone. It 

naturally descends from the definition of tolerance zone (according to both ISO [29] and 

ASME [30] standards) and several algorithms are available for its computation on most of 

features. Other feature-dedicated extreme fit association criteria are available for features 

presenting revolute symmetry. E.g. maximum inscribed and minimum circumscribed 

association criteria can be used on circular [28], cylindrical [31] and spherical features; their 

use should be related with the feature functional requirements. 

The algorithms developed for MZ error evaluation can be classified in two different 

families according to the nature of the method used to solve the MZ problem. On one hand 

there are numerical methods (§2.3.2.1) based on Monte Carlo, simplex and spiral search, 

Chebyshev approximations, non-linear optimization and conversion from non-linear to linear 

optimization. On the other hand there are computational-geometry-based techniques 

(§2.3.2.2) that rely on the computation of a convex hull for the given finite set of 

measurement points. 

2.3.2.1 Numerical methods 

In the initial works by Murthy and Abdin [32] the MZ evaluation problem has been 

afforded through methods based on Monte Carlo, simplex and spiral search. These methods 

formulate the problem as an optimization model to minimize the maximum distance from an 

ideal reference feature or the difference between the maximum and minimum distance from a 

given reference. Different approaches have been followed to solve these optimization models 

and will be briefly analysed in this section. The first possible approach consists of direct 

solution of optimization problems. Shunmugam [33] tested the simplex search to minimize an 

average deviation, then he proposed a simple approach, called the Median technique, which 

obtains the minimum value of errors [34]. A different approach was followed by Kanada and 

Suzuki [35], and Hossein et al [36], who used non-linear optimization techniques to calculate 

the exact values of straightness and flatness errors. 

Instead of directly solving the optimization problem, several approximated ways have 

been searched to enhance the computational efficiency and easiness of implementation. 

Obviously, the introduction of approximations is paid with a reduction of the evaluation 

accuracy. Chetwynd [37] has been the first to propose linear programming techniques for 

approximating the simplex search in flatness error assessment. The linear programming 

approach was then standardized by Portman et al. [38] for the evaluation of straightness, 
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flatness, cylindricity and sphericity form errors. Other approximation methods were presented 

by Fakuda and Shimakohbe [39] who used a minimax approximation method. However, the 

minimum zone values were reached by Shunmugam and Danish with the use of discrete 

Chebyshev approximations [40]. On the other hand Carr and Ferreira [41] converted the non-

linear problem of MZ solution into a linear optimization problem through a combination of 

coordinate and scaling transformations. Anyway, search-based numerical methods require 

long computational times as they need a large number of trials in order to satisfy the 

convergence criteria [25]. 

Another family of numerical methods is based on exchange techniques. These methods 

sequentially exchange some points from the current set of interested points with other from 

the remaining set according to precise criteria [39, 42]. Huang et al. developed an algorithm 

for the evaluation of straightness [43] and flatness [44] errors called the Control Plane 

Rotation Scheme. The algorithm is based on the criteria for MZ solution and strict rules for 

data exchange. 

The last family of methods for solving MZ problems relies on the use of meta-heuristics 

such as tabu search, simulated annealing and genetic algorithms (GAs). A genetic algorithm 

had been proposed by Sharma et al. [45] to solve generalized minimax problems that can be 

applied for the assessment of various form errors. Then, a generalized but simplified version 

of Sharma et al.’s GA has been presented by Cui et al. [46]. On the other hand Liu et al. 

proposed the hybridization of GA with the geometric characterization method used for the 

rapid convergence of solution [47]. GA-based techniques have several drawbacks represented 

by the possibility of non-convergence to an exact optimal solution (due to their nature of 

probabilistic processes) and the computational burden associated with large datasets. 

2.3.2.2 Computational-geometry-based techniques 

After the first efforts to solve the MZ problem with numerical methods, researchers 

started exploring more promising techniques based on computational geometry [48, 49]. 

These techniques are based on the analysis of the convex-hull containing the whole set of 

measurement points. The convex-hull of a set of points in the Euclidean space is the boundary 

of the smallest convex domain containing all the points of the set. A domain is said to be 

convex if the segment connecting any pair of points is entirely contained in the domain. In a 

three dimensional space, the convex-hull takes the shape of an elastic wrap tightened to close 

all points inside [50]. 

Traband et al. [48] performed the MZ evaluation of straightness and flatness tolerance 

using, for the first time, the concept of the convex-hull applied on measurement datasets. Lee 

[51] proposed a new method called the “convex-hull edge method”, a comprehensive search 

algorithm that is able to find the MZ form error working with the edges of the convex-hull.  

Samuel and Shunmugam [25] noticed that MZ evaluation criteria are often applied 

regardless the origin of measurement data and the feature functional requirements. Literature 
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had shown the importance of function-oriented verification strategies [8, 52] as the contact 

between engineering parts occurs at their extreme functional boundaries [53]. Moreover, the 

measurement data analysis cannot neglect the bias introduced by measurement processes, as 

the data obtained by using form measuring instrument/setups are affected by orientation 

issues that are easily avoidable with CMM measurements. Data from different measuring 

instruments need different types of analysis. These have been studied in detail for the case of 

form error evaluations based on computational geometric techniques [25]. 

The convex-hull edge method has been recently enhanced by Lee [54] with the 

decomposition of the three-dimensional flatness problem in a set of two-dimensional 

straightness evaluations. A straightness analysis is associated to every face of the convex-hull 

and the face presenting the lowest straightness deviation defines the orientation of the MZ 

envelop. This approach allows hundreds of points to be analyzed in a negligible time even 

with a normal personal computer [54]. Particularly, this method will be used every time a MZ 

flatness deviation is assessed in this thesis. 

2.4 Uncertainty evaluation for statistical association criteria 

Several researches have been investigating the aspects related with CMM sampling and 

the assessment of the uncertainty associated with the whole verification process (sampling of 

measurement points together with their analysis by means of an association criterion). Most of 

literature deals with the traditional CMM verification process where the data analysis is 

performed at the end of the extraction phase (measurement) through the LS association 

criterion.  

LS is the most popular association criterion and, being a statistical method, it allows the 

analytic determination of the uncertainty associated with the form error evaluation. It 

determines the fitting geometry using a maximum likelihood method on all the measured 

points: every point participates into the equation that defines the reference plane. Therefore, it 

is possible to determine the uncertainty of the evaluation starting from the reference plane 

equation, the definition of flatness deviation and the instrument measurement uncertainty (see 

§2.4.1).  

The situation is more complex if the uncertainty to be assessed is that of the whole 

verification process. Many variables affecting measurement results cannot be taken into 

account in analytic form. For example uncertainty contributions can be generated by: the 

measuring equipment [55, 56], the evaluation criterion [57, 58], the density and location of 

sampling points with respect to the actual form deviation, and form error patterns [8, 59]. 

Usually the verification process cannot be completely expressed with a function (because the 

influence of many input variables is unknown) and the analytic approach is limited to the 

effect of the association criterion [60]. In this case, approaches based on experimental models 

and Monte Carlo simulations are adopted [60, 61]. These are briefly presented in §2.4.2 
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2.4.1 Analytic evaluation 

Yau [58], dealing with best fit algorithms, proposed the analytical determination of the 

evaluation uncertainty due to the fit algorithm. He defined the measurand Y as the output of a 

function f depending on a number of input quantities Xi (i = 1, 2, …, m): 

mXXXfY ,...,, 21  

Usually the exact values of quantities Xi are not known and are substituted by the estimated 

values xi. Under the hypothesis of uncorrelated input variables, the uncertainty on the 

estimation of value Y can be expressed as: 
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The partial derivatives 
if x describe the sensitivity of the algorithm output (Y) with respect 

to each input variable. They are the weights for the sum of all input uncertainties: the 

uncertainties on the measurement of sampling points coordinates and the uncertainties on the 

coefficients describing the orientation of the LS tolerance zone (see §3.5.1 for an example and 

further details). 

According to this idea, Cui, Fu and Huang [57] perform a systematic analysis of 

uncertainty estimation in measurements involving LS association criterion. Starting from the 

nominal feature equation, under the hypothesis of sampling points normally distributed with 

respect to the fitting plane, they develop equations for estimating the uncertainty of LS 

algorithm applied for the main form tolerances. The nominal feature equation is used, together 

with the definition of the tolerance zone, to determine the partial derivatives that give the 

sensitivity coefficients of model variables. 

This uncertainty evaluation approach has been validated through the use in several works 

and researches [62-64]. Usually flatness tolerance is the most analyzed due to its popularity 

and to the fact that every surface to be used as a datum feature needs to be qualified at least 

with a form tolerance (flatness for instance). 

2.4.2 Experimental evaluation 

The analytic approach for estimating the uncertainty of a certain association criterion is 

quite straightforward, especially if this is a statistical criterion. It becomes trickier when 

dealing with the estimation of the uncertainty of the whole verification process. The equation 

relating all the verification process variables to the measurement output is never known. For 

example the influence of sampling strategy can be negligible or important according to the 

shape and magnitude of form deviation, that is unknown when the workpiece first enter the 

measurement process [61].  

Balsamo et al. [65] proposed Monte Carlo simulation to evaluate the combined effect of 

all the task specific uncertainties related with CMM verification processes. This kind of 

simulation is based on the generation of a population of output variables given the probability 
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density function of input parameters. The output variable can then be characterized according 

to the population of simulated output variables. Schwenke et al. [66] translated this approach 

into a modular and visual software to be used in combination with CMM verification 

operations to assess the different contributions to measurements uncertainty. Wübbeler et al. 

[60] proposed a numerical method to evaluate the measurement uncertainty based on Monte 

Carlo simulation. Kruth et al. [61] improved the performance of Monte Carlo simulation 

approach by taking into account the technological signature that strongly characterizes the 

feature shape and affects the performance of sampling strategy (density and location of 

sampling points). 

Gao [67] suggests a different method for uncertainty estimation that has been further 

developed by Qin et al. [68]. They discuss the estimation of non statistical uncertainty in 

precision measurements using grey system theory [69]. Particularly they deal with the 

problem of uncertainty assessment when the sample size is small and the distribution of the 

data is unknown. They use a cumulated true size vector and a cumulated measurement data 

vector in order to reduce the effects of errors occurring in measurement and numerical 

calculation. The uncertainty assessment is based on the l∞ norm of the difference between the 

two vectors. 

Another approach, based on Bootstrap methodology [70, 71], estimates the uncertainty 

due to the sampling and the use of a certain association criterion through the construction of a 

set of simulated samples extracted from the nominal measurement dataset [64]. As it is based 

on an operation of extraction with reintroduction, this system has the drawback of a poor 

performance if applied on too small datasets. This approach will be further described from a 

theoretical point of view in §2.6 and will be applied on a flatness error assessment in Chapter 

3. Its performance will be analyzed with respect to statistical and extreme fit association 

criteria. 

2.5 Uncertainty evaluation for extreme fit association criteria 

The problem of uncertainty estimation for verification processes involving extreme fit 

association criteria is quite new and few researches deal with it. The main efforts in the last 

decades have been addressed to the improvement of extreme fit association criteria and at 

researching efficient algorithms for an effective implementation. Due to the non linearity of 

the numerical methods traditionally used to solve the extreme fit problem, it is not possible to 

estimate uncertainty in analytic way (§2.5.1). The analytical estimation is neither allowed by 

the computational-geometry-based techniques. Despite the unavailability of analytic 

approaches, a semi-analytic approach has been proposed, with different nuances, that is 

presented in §2.5.2. 
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2.5.1 Semi-analytic evaluation 

Wen et al. [72] propose to estimate the uncertainty of MZ evaluation starting from the 

equation of the MZ reference plane and applying equation (2.2) to extract the uncertainty 

model. The approach is the same of the one used for the LS method (see theory in §2.4.1 and 

the flatness example in §3.5.1). However, the big difference with respect to statistical methods 

is that there are no statistics for the MZ reference plane. The equation of the reference plane is 

deterministic (determined on the extreme points of the convex-hull only) and there is no 

estimation of the uncertainties of the reference plane coefficients: fundamental elements 

among the uncertainty model inputs. While for the LS method the statistics of the reference 

plane are an intrinsic characteristic of the method itself, for extreme fit association criteria, 

such as MZ, they can be estimated only by replicating the verification operator. Therefore, the 

approach suggested by Wen et al. is classified as semi-analytic because it partially relies on 

experiments. 

In order to have an uncertainty assessment that does not require any further measurement, 

an alternative approach is presented in this thesis that relies on bootstrap method for 

estimating the statistics of the MZ reference plane. The method is detailed in §3.6.1 for the 

case of a flatness tolerance verification. 

2.5.2 Experimental evaluation 

Choi et al. [73] investigated the relationship between form error evaluation and the 

number of sampling points. They recognize that the uncertainty of the evaluation is largely 

affected by the shape of the feature surface and the ability of measurement points (those on 

which the form error evaluation is based) to detect the extreme points: peaks and valleys.  For 

better describing the probability of detecting those points on engineering surfaces with non-

random error patterns, they use beta density probability functions (Figure 2.2). These kinds of 

probability density functions are quite common as the normal one is suitable to describe 

small-magnitude random errors only. 

 

Figure 2.2 - Example of non-normal form error (left) and of the beta probability density 

function (right) which describes it [73]. 

They explore an analytical approximation method based on the use of order statistics to 

model the flatness evaluation and obtain statistical properties of ranked elements, included the 

maximum and minimum points. However, the analytic derivation of the uncertainty function 

is too complex, so they propose an experimental approach based on the use of neural 

networks. In this way, the phase of interpreting the variables affecting the uncertainty model 
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can be avoided. They find that, if points are sampled uniformly on the feature surface, the 

evaluation uncertainty does not depend on their density but on their number only. The neural 

network approach is the method proposed for practical implementation. However it is not 

suitable for everyday measurements because its performance heavily relies on the goodness of 

the training sets. 

As suggested for the experimental estimation of the uncertainty of statistical-algorithms-

based verification processes (§2.4.2), other experimental methods can be applied. Particularly 

Monte Carlo simulations, grey system theory and bootstrap methodology are suitable also for 

extreme fit association criteria. In this thesis, bootstrap method is preferred and will be 

applied on both the LS and MZ evaluation of a case study flatness deviation (see §3.5.2 and 

§3.6.2 respectively). 

2.6 Bootstrap 

Bootstrap methodology has been introduced by Efron [70] as a more primitive 

representation of Quenouille-Tukey jackknife. Jackknife is a nonparametric method for the 

estimation of the bias and variance of a statistic of interest, and for testing the null hypothesis 

that the distribution of a statistic is centered at a certain point [74]. Being more general, 

bootstrap is able to clarify the theoretical basis of jackknife, which can be thought as a linear 

expansion method for approximating the bootstrap. The bootstrap method will be briefly 

presented, according to Efron formulation [70], for the one-sample situation dealing with a 

sample of size n from a completely unspecified probability distribution F. 

Let’s denote the random sample and its observation as 1 2, , , nX X XX and 

1 2, , , nx x xx  respectively. Given a specified random variable R(X, F), the problem 

solved by bootstrap is the estimation of the sampling distribution of R on the basis of the 

observed data x. Traditional jackknife theory focuses on two particular choices of R: 

 ( , ) ( ) ( )R F t FX X  (2.3)  

 
1

2

( ) Bias( ) ( )
( , )

Var( )

t t F
R F

t

X
X  (2.4) 

where θ(F) is the parameter of interest, e.g. the mean or correlation of F, and t(X) is an 

estimator of θ(F), respectively the sample mean or sample correlation. The sampling 

distribution of R(X, F) from equation (2.3), or more exactly its mean (the bias of t) and 

variance, is estimated using the standard jackknife theory. The estimates of bias and variance, 

Bias( )t and Var( )t , are functions of X obtained by recomputing t(·) n times, each time 

removing one component of X from consideration.  
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Equation (2.4) is the second traditional choice of R. According to Tukey’s original 

suggestion [74] it should be treated as having a standard Student’s t distribution with n-1 

degrees of freedom. 

The bootstrap method for the one-sample problem consists of three main steps: 

1. The sample probability distribution F  is constructed putting mass n1  at each point

nxxx ,,, 21  . 

2. With F  fixed, a sample of size n has to be drawn from F . 

 
* * *,                 1, 2, ,indi i iX x X F i n   (2.5) 

Then * * *

1 2( , , , )nX X X*
X and * * *

1 2( , , , )nx x x*
x are called the bootstrap samples. 

These samples are not permutations of the original distribution F  since the values are 

selected with replacement from the set
nxxx ,,, 21  . The ordinary jackknife 

corresponds to the extraction without replacement of samples of size n-1. 

3. The sampling distribution of R(X, F) is approximated by the bootstrap distribution of

*( , )R F*
X . An example is represented by the distribution of R

*
 induced by the 

random mechanism (2.5), with F  fixed at his observed value. The distribution of R
*
 

equals the desired distribution of R if F F . The goodness of approximation of R
 *

 

depends on the form of R. 

Three different methods are available for calculating the bootstrap distribution.  

 Method 1: direct theoretical calculation, that is available for the two random variables 

R traditionally chosen by jackknife. 

 Method 2: Monte Carlo simulation, to approximate the bootstrap distribution, through 

repeated realizations of X
*
 generated by taking random samples of size n from F . If 

*1 *2 *,  ,  ,  Nx x x are the random samples, the histogram of the corresponding values 

1 2( , ),  ( , ),  ,  ( , )NR x F R x F R x F is taken as an approximation of the actual 

bootstrap distribution. 

 Method 3: Taylor series expansion methods used to obtain the approximate mean and 

variance of the bootstrap distribution of R
*
. This method goes under the name of delta 

method also and is the same of the usual jackknife theory.  

Bootstrap is then a general computer-based methodology able to substitute theoretical 

analysis with intense computation. One of the main problems in applied statistics is the 

estimation of unknown parameters: it is necessary to choose the adequate estimator θ and, 

once it has been chosen, it is necessary to evaluate its accuracy. Bootstrap is particularly 

useful for the estimation of estimators accuracy and can routinely answer questions that are 

too complicated for traditional statistical analysis. 
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Bootstrap will be used in this work using the Monte Carlo based evaluation of the 

bootstrap distribution. This approach requires only minor modifications of the problem 

formulation as it reiterates the original algorithm used for computing R. The amount of time 

required is just about N times the time necessary for the original computation [71]. 

2.7 Conclusions 

This chapter presented a systematic review for the evaluation of form deviations in 

CMM-based verification operations. The evolution of the algorithms for evaluating geometric 

characteristics and for assessing the uncertainty of these evaluations has been analyzed. 

Particularly the systematic review allowed pointing out a gap between statistical and extreme 

fit association criteria, about the estimation of implementation uncertainty. For extreme fit 

criteria there is no way to assess the implementation uncertainty with a fully analytic 

approach. One method has been found in literature, but it requires measurements replication 

and does not allow a definition of the uncertainty based on the dataset at hand only.  

With respects to the assessment of geometric characteristics (form errors), two families of 

algorithms have been identified: statistical (e.g. LS) and extreme fit (e.g. MZ) association 

criteria. On the other hand, also the approaches for uncertainty estimation have been classified 

in two different families: analytic or experimental. Particularly, analytic approaches are 

preferable with statistical association criteria while the experimental ones with extreme fit. 

None of these methods can be preferred a-priori and pros and cons have to be carefully 

analyzed. Both the association criteria and the approaches for uncertainty estimation (both for 

each association criterion) will be tested and compared on a flatness case study in Chapter 3. 

Particularly, among all the experimental methods for uncertainty estimation the bootstrap 

method will be preferred. 

A further novelty is provided by the semi-analytic approach proposed for the assessment 

of MZ implementation uncertainty. This approach bridges the gap with the LS method 

providing a method, suitable to cope with extreme fit algorithms, which carries all the benefits 

of the analytic approach. 
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3 Flatness verification case study 

3.1 Introduction 

The main aspects of form error verification by means of CMM are analyzed in this 

chapter through a case study based on flatness verification. The analyzed flatness tolerance is 

used to control the form error of the primary datum feature of a clamp that is used to close the 

extremities of an air cushion guide and position it (Figure 3.1). 

 

Figure 3.1 - Flatness case study: clamp drawing according to ISO (ante GPS) GD&T 

standards [1]. The primary datum feature A is controlled by the highlighted flatness 

tolerance. 

Among the different form tolerances, the analysis has been focused on flatness because it 

is one of the most popular specifications: it is able to satisfy many industrial requirements 

such as orientation of mating parts, sealing, sliding and in some cases even positioning. Even 

if the shape of flatness tolerance zone is very simple, conclusions are quite general and apply 

for most of the form error evaluations, mainly with regards of the aspects associated with the 

assessment of the evaluation uncertainty. 

The traditional best practice for flatness tolerance evaluation relies on the control of 

several straightness profiles by means of dial gauges. Both the verification method and the 

technical language evolved in symbiosis in the old GD&T standards [1, 2].  The dial-gauge-

based method is still correct and valid, however it is not the most effective as the dial gauge 

needs to be perfectly positioned with respect to the flatness surface in order to measure the 

form error while disregarding the error of its orientation. On the other hand, CMMs offer a 
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more flexible and versatile control, so there is the tendency to use them for the verification of 

every characteristic. Moreover CMM measurement output is completely different from that of 

dial gauge. While the latter bases the measurement on the orientation of the instrument with 

respect to the feature to be inspected, the former offers the possibility to obtain measurement 

data which are independent from the measurand orientation. Adequate data analysis must be 

performed according to the different circumstances [3].  

When a dial gauge is used, its reference plane, supposed to be perfectly flat, matches the 

feature to be inspected by touching the peaks of form deviation: it is oriented by the feature to 

be inspected. In this way it simulates the outmost plane of the flatness tolerance zone and the 

measurements of the actual surface are interpreted as the form deviations, which have to be 

minor than the tolerance value. In GPS words, most of traditional equipment for form error 

verification embeds an association criterion. On the contrary, the assessment of form 

deviation based on CMM measurement does not embed any association operation: 

measurement point coordinates are expressed with respect to a reference frame which can be 

completely independent from the orientation of the measured feature. Thus the full GPS 

operator shall be employed to guide the measurement process as well as the measurement data 

interpretation. 

The aim of this chapter is to investigate the industrial procedures used to specify and 

verify flatness tolerance and to highlight the improvements achievable using the mathematical 

concepts introduced by ISO GPS standards. 

3.2 Perfect specification operator 

The flatness tolerance highlighted in Figure 3.1 is compliant with GD&T standards 

(ASME 14.5 or ISO 1101 ante GPS) but does not contain enough information to comply with 

GPS standards too. As a matter of fact it does not contain any information about the 

bandwidth limitations (upper and lower cut-off wavelengths), the filter and the association 

criterion to be used.  

The design of a verification process, according to GPS standards, requires the definition 

of the complete specification operator as a first step. Then the corresponding verification 

operator is derived from it according to the duality principle [4, 5]. 

When the specification reported in product documentation is not complete, metrologist 

has to complete the specification operator according to his experience, the eventual 

knowledge of the workpiece functional requirements or the manufacturing process that has 

been used. This operation is necessary because the definition of the complete verification 

operator relies entirely on the definition of a complete specification operator, according to 

duality principle [4]. Obviously, when the specification reported on the drawing is not 

complete, the complete specification operator reconstructed by metrologists can introduce 

deviations from the original designer intent. All the possible interpretations allowed by the 
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incompleteness of specification are synonymous of specification uncertainty. To be 

unambiguous, the specification operator must be complete. 

However, all the information necessary to define the complete specification operator 

cannot be expressed through the GD&T syntax, with the tolerance cartouches defined by ISO 

and ASME standards [6, 7]. TC 213 is going to introduce a new larger tolerance cartouche in 

the amendments to the new version of ISO 1101. The new cartouche presents dedicate fields 

for containing all the information necessary to define each operation of the specification 

operator; an example is shown in Figure 3.2. This is not the most general and complete 

cartouche as it presents the fields necessary to define flatness tolerance only. 

 

Figure 3.2 - Complete specification for flatness tolerance. The position of different elements 

does not respect the proposal of ISO 1101 AMD2. 

For this case study, the complete specification operator has been defined during the 

design phase, by designers. This allows the best protection of functional requirements through 

the choice of the most adequate specification, then the minimization of correlation 

uncertainty. In particular the datum feature A is demanded to guarantee the sealing of the air 

cushion guide by means of a rubber gasket and participates to the orientation of the whole 

assembly when it is mounted on the machine/laboratory bench. 

The bandwidth limitation on flatness tolerance is set according to the elastic behaviour of 

the rubber gasket which the surface has to mate with. As a matter of fact the elastic 

deformation of the gasket is not able to compensate form deviations shorter than 2.5 mm and 

deeper than the acceptable form error (the flatness tolerance). Thus the lower cut-off 

wavelength is set equal to 2.5 mm while the upper cut-off wavelength is infinite, because of 

the definition of form error: all the harmonics of the form deviation with a wavelength higher 

than a given threshold (the lower cut-off wavelength) [8]. 

According to the association criterion, MZ has been chosen in order to enlarge the 

effective compliance range and improve manufacturability [9, 10]. As a matter of fact, if 

applied on the same measurement dataset, the MZ evaluation ends up in the lowest form error 

estimation. MZ does not overestimate the form error as it exactly corresponds to the 

mathematical definition of flatness tolerance zone. The difference between the value of 

flatness error estimated with MZ and those estimated with other association criteria represents 

the possible increase in manufacturing errors (form deviation) that would not result in an out-

of-specification workpiece. From the point of view of manufacturing, it represents an increase 

in manufacturability (and an obvious saving of money).  

In Figure 3.2 it is shown the complete specification operator for the case study’s flatness 

tolerance. This cartouche resembles the one proposed for the amendment 2 of ISO 1101, 

which is the GD&T standard actually designated to define the drawing syntax and semantics 

[6]. The part regarding filtration is not considered in this work in order to contain the number 
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of variables to be analyzed. Moreover, CMM measurement is performed using the minimum 

number of points compliant with the tolerance bandwidth limitation, therefore filtration would 

not be very effective for the lower wavelengths, as there is very few information from which 

to filter. Particularly, filtration can hardly be used when CMMs are used in the touch trigger 

inspection mode: in this case they are usually deployed to measure only few points.  

3.3 Perfect verification operator 

According to the duality principle, the definition of the complete specification operator 

implies the definition of the perfect verification operator. This passage is natural and 

straightforward from a theoretical point of view but it may present several issues when the 

actual feature cannot be known with the same level of detail that can be associated to the skin 

model. As a matter of fact the skin model is continuous and allows the easy definition of 

verification operations through mathematical functions based on signal processing theory (this 

is true for extraction and filtration operations mainly).  

However, when dealing with the verification of actual features, the whole performance of 

the verification operator is strongly conditioned by the measuring instrument at hand. Every 

measurement process relies on the sampling of a certain number of points from the measurand 

surface and can be classified as continuous or discrete according to the type of output data. 

 Continuous measurements: they are those measurements whose output consists of a 

continuous or nearly-continuous dataset. Continuous datasets are generated by 

continuous scanning devices (which can be contact or non-contact devices) while 

nearly-continuous datasets are usually obtained with optical instruments able to 

acquire dense clouds of points at each measurement. A measurement dataset can be 

considered nearly-continuous if the density of sampling points is higher than the 

requirement set by the lower cut-off wavelength of the tolerance. 

 Discrete measurements: they are characterized by the measurement (extraction) of 

single points, then by a cost function directly related to the number of sampled points. 

In order to contain costs, there is the need to extract from the workpiece the minimal 

information only. Nevertheless, for the correct implementation of verification 

operators, we should be able to oversample and extract the information about the 

harmonics of the form error we are interest in, by means of filtration. The main 

problem in case of downsampling is represented by aliasing, which can be avoided by 

sampling at least the minimum number of points required by the Nyquist criterion for 

the specified lower cut-off wavelength [8]. 

In this work only discrete measurements will be considered, as they introduce important 

issues for the implementation of verification operators and represent the most common 

practice in metrology laboratories. One of the aims of this work is to allow the definition of a 

measurement process, based on CMM, compliant with GPS standards. 
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When dealing with the classical CMM-based measurement, which relies on the 

exploration of measurand by means of a touch probe (a stylus), particular care has to be 

dedicated to the choice of the probe tip dimension. According to ISO 3274 the theoretically 

exact stylus tip geometry is a sphere whose radius has to be carefully chosen according to the 

bandwidth limitations on the feature to be inspected [11]. As a matter of fact this kind of 

measurement introduces a morphological filtration [12] through the contact of the stylus tip 

with the feature surface asperities. The form profile actually measured by the stylus is that 

produced by a discrete closing filter, with the same geometrical characteristics of the stylus 

tip, applied on the actual feature surface (see example in Figure 3.3). 

 

Figure 3.3 - Example of discrete closing filter with the filtered result (1) reported above the 

input function (2). The input function is sampled at 0,5 m intervals with a circular disk of 

50 m radius [13]. 

As previously mentioned, ISO standards offer the possibility to use limited extraction 

strategies (simplified verification operators) in order to save on verification cost. For flatness 

verification, these limited extraction strategies consist of dense straightness profiles arranged 

in different typologies of grids [8]. Considering that there is no recommendation about the 

spacing of straightness profiles but only about their arrangement in grids, the best surface 

inspection can be achieved by spacing profiles of the same distance used to space sampling 

points along each profile. 

For the flatness tolerance analyzed in this work, the lower cut-off wavelength of 2.5 mm 

implies that the stylus tip radius has to be smaller than 1.5 mm [14]; then a stylus with 1mm 

tip radius has been chosen. According to sampling density ISO/TS 12780-2, in accordance 

with Nyquist criterion, requires the sampling distance to be minor than 0.357 mm. The 

constraints on maximum stylus tip radius and maximum sampling distance induced by the 

choice of the tolerance lower cut-off wavelength are reported in Table 3.1. This table is 
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referred to straightness tolerance, and not to flatness, because flatness verification can be 

regarded as the simultaneous verification of straightness profiles [8]. 

Thus, chosen a probe with 1 mm tip radius, and taking into account the maximum spacing 

between sampling points recommended by ISO/TS 12780-2, the complete specification 

operator consists of a uniform sampling with points spaced 0.35 mm and arranged in 

straightness profiles which are 0.35 mm apart and parallel to the surface external edges. Such 

a perfect verification operator requires the measurement of 17575 points, an inspection time 

that cannot be justified in industrial practice. 

Longwave-pass filters 

Filter transmitting from 

infinite wavelength down to* 

Maximum sample 

point spacing* 

Maximum stylus tip 

radius* 

8 1,14 5 

2,5 0,357 1,5 

0,8 0,114 0,5 

0,25 0,0357 0,15 

0,08 0,0114 0,05 

*Measures in millimeters 

Table 3.1 – Verification constraints induced by the tolerance cut-off wavelength [14]. 

 

Figure 3.4 - Feature extraction with the perfect verification operator (dataset of 17575 

points). 

After sampling (Figure 3.4), the assessment of form error deviation with the MZ 

association criterion ends up in the estimation of a flatness error of 0.01897 mm (Table A.2) 

against a specification of 0.05 mm. Considering that two different methods have been used for 

assessing the implementation uncertainty of the verification operator, in the worst case, the 

standard deviation of the form error evaluation is 0.00097 mm (see Table A.3) thus, according 

to the acceptance rule suggested by GPS standards [15], the workpiece complies with 

specification for any reasonable coverage factor. 
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3.4 Simulation of simplified verification operators 

Designers, at specification level, cannot define the limited extraction strategies suggested 

by ISO/TS 12781-2 so their use can generate different verification operators according to the 

choices made by metrologists. As one of the main drivers in industry is the reduction of costs, 

in metrology the number of sampling points is kept the lowest possible and many times more 

than possible. 

Different sampling densities have been tested, starting from the 17575 points compliant 

with the GPS perfect verification operator and going down to the about ten used in most of 

metrology laboratories. The different sampling densities have been simulated by varying the 

parameters used to characterize the GPS grids (see Figure 3.5) according to the Design of 

Experiment (DoE) summarized in Table 3.2. In particular all the grid extraction strategies but 

the polar one (suitable only for flatness features with revolute symmetry [8]) have been 

explored (see Figure 3.6). Grids have been generated only when D ≥ d, for a total of 60 

different grids, and on each grid all the association criteria have been applied, for a total of 

300 verification operators (1 perfect verification operator + 299 simplified verification 

operators). 

 

Figure 3.5 – Example of rectangular grid for flatness verification. Parameters defining the 

grid are the distance between straightness profiles (D) and the sampling distance along 

profiles (d). 

FACTORS 
LEVELS 

1 2 3 4 5 

Grid 
Rectangular 

(Rec) 

Parallel to x 

(Px) 

Parallel to y 

(Py) 

Union Jack 

(UJ) 
 

D [mm] 0.35 0.7 3.5 7 14 

d [mm] 0.35 0.7 3.5 7 14 

Method LS (FLTt) MZ (FLTt) FLTp FLTv FLTq 

Table 3.2 - Design of Experiment for analysis of simplified verification operators. 



56 

 

The main characteristic of GPS extraction grids, the density, can be easily represented 

through the combination of parameters D and d. As shown in Figure 3.5, D and d represent 

the distance between straightness profiles and the sampling distance along them, respectively. 

In order to make the definition of each point of the grid univocal, other aspects should be 

completely defined such as the origin from which the grid generates and the safety distance 

allowed from the feature edges. All these aspects are strongly related with the measuring 

equipment at hand and cannot be defined at specification level. Anyway, for the purpose of 

this work, the origin of every grid is shifted from the origin visible in Figure 3.1 of a distance 

equal to the safety distance allowed from the feature edges (see Figure 3.6). The safety 

distance from feature edges has to take into account the stylus tip radius (1 mm) and possible 

misalignments (0.5 mm have been allowed for this purpose), thus amounting to a total of 1.5 

mm. With these boundary conditions and a sampling distance of 0.35 mm, the perfect 

verification operator consists of 17575 measurement points.  

Simplified verification operators have been obtained as subsamples of the 17575 points 

dataset measured for the perfect verification operator. In order to allow this operation, the 

distances D and d explored with the experiment have been chosen as exact multiples of 0.35 

mm, as reported in the briefing scheme of Table 3.2. This kind of approach forces an 

approximation for the Union Jack grid: the sampling of diagonal straightness profiles with a 

sampling distance slightly larger than 0.35mm (exactly 2 0.35 0.495 mm ). Anyway, this 

approximation does not affect the form error assessment as the main component of form 

deviation has a wavelength much larger than the lower cut-off wavelength and, according to 

the manufacturing process undergone, there is no reason to expect particular form deviations 

along the diagonals directions. 

Moreover, the approach of extracting the grids of simplified verification operators from 

the 17575 points dataset does not introduce any bias in the evaluation of the performance of 

verification operators. As a matter of fact this work is aimed at understanding the goodness of 

form error evaluation (then the quality of the knowledge of the actual surface geometry 

achieved through measurement) when intentional deviations from the perfect verification 

operator are introduced. We are not interested in the possible error that could be detected 

reiterating measurements but in the error that is introduced if some point is not measured at 

all, if some piece of information is missing. The aspects related with the accuracy of 

measuring instrument and repeatability of measurement process will be dealt with by 

considering the instrument Maximum Permissible Error (MPE) and supposing that the 

measurement process is performed under a six-sigma quality control. 

The last aspect to be considered in order to simulate all the possible deviations from the 

perfect verification operator is the form-fitting criterion (association criterion) used for the 

form error evaluation. The substitution of MZ with the more popular LS criterion is not 

unlikely, as the latter is embedded in most of CMMs. Moreover, LS criterion introduces a 

form error overestimation that may not be negligible. According to the 17575 points dataset, 
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for example, if the form error assessment is based on LS, the resulting flatness error is 

0.02410 mm against the 0.01897 mm of the MZ evaluation required by specification (see 

Table A.1 and Table A.2). This difference in form error evaluation depends on the different 

orientation of the tolerance reference plane: for MZ it is conditioned by the extreme points 

only, while for LS it reflects the actual position of all measurement points (see Figure 3.7). 

 

Figure 3.6 - Examples of simplified sampling grids on the flatness feature of the case study. 

Sampling grids do not cover the whole feature surface but keep a safety distance from the 

edges to avoid collisions of the touch probe. 

 

Figure 3.7 - Different orientations of the flatness feature according to LS (plane in the 

middle) and MZ (symmetry plane of the two outmost planes) association criteria. 
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Note that, according to ISO/TS 12781-1, the flatness specification could be tightened in 

some particular area of the tolerance zone by setting restrictions on particular parameters: 

 FLTt: peak-to-valley flatness deviation. It can be defined for both MZ and LS 

association criteria and corresponds to the whole tolerance zone. 

 FLTp: peak-to-reference flatness deviation. For LS only, it restricts the control to the 

volume above the LS reference plane. It is recommended for controlling the entity of 

peaks and guaranteeing a uniform contact surface. 

 FLTv: peak-to-valley flatness deviation. For LS only, it restricts the control to the 

volume below the LS reference plane and is particularly suitable to control the entity 

of grooves and valleys. 

 FLTq: root mean square flatness deviation. It is defined for LS only according to 

equation (3.1), where LFD is the Local Flatness Deviation and A is the surface area of 

the flatness feature. 

 
1

2 21 1 i

iA
N

FLTq LFD dA LFD
A N

 (3.1) 

The three parameters FLTp, FLTv and FLTq, which are associated only with LS 

association criterion, should be regarded and studied as independent association criteria. 

These parameters do not represent any tolerance zone, but are used only to set restrictions on 

some particular area of the tolerance zone. When they are used, they always follow a flatness 

specification in order to characterize the shape of form deviation inside the boundary already 

fixed by the flatness tolerance. Anyway, even if they are not suitable candidates to substitute 

the flatness LS or MZ evaluation (that represented by parameter FLTt) they will be analyzed 

aside in order to cover all possible verification scenarios. They are beyond the possible 

simplifications that could affect the verification operator, as their semantic is quite different 

from the definition of flatness tolerance zone. However, their semantic is not different enough 

to avoid that they are erroneously replaced by the FLTt parameter or used to replace it as well. 

Therefore, the analysis of their performance is necessary in order to be able to cope with these 

situations too.  

In this chapter, only the results related to the FLTt parameter, evaluated with both the LS 

and MZ method, will be discussed. This because all the LS evaluated parameters are defined 

with respect to the same LS reference plane which, moreover, is the main player in the 

estimation of the implementation uncertainty related with the evaluation operations (see 

Annex B for further remarks). Thus, FLTt represents very well the other parameters too and 

each consideration on its performance similarly applies for the others. 

3.5 FLTt with LS association criterion 

For each of the 60 sampling grids generated by the experiment, the LS flatness deviation 

and its uncertainty have been evaluated and the computational time has been registered in 
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order to compare the performance of analytic and experimental approaches for uncertainty 

estimation (see Table A.1). The results are here analyzed as a function of sample size and 

with a particular highlight on the typology of extraction grid they are related to. 

Figure 3.8 shows the trend of flatness error evaluation according to sample size. In 

particular, the true flatness error for LS association criterion is that associated with the 17575 

points dataset (the circled point where the points of all grids correspond). Almost all sampling 

grids show a good evaluation performance even with relatively small samples: a horizontal 

line can be distinguished that corresponds to the true LS flatness value and obviously 

increases its width when approaching the vertical axis, as the uncertainty increases when the 

sample size reduces (see Figure 3.11 or Figure 3.14). 

Actually, another cluster of points, quite far from the true form deviation, can be 

identified in the left bottom of Figure 3.8. In general, this cluster corresponds to particularly 

poor verification operators that are not able to detect the peaks and valleys of form deviation. 

These operators easily occur when the sample is too small; however, the grids with 

straightness profiles parallel to y-axes show a poor performance for sampling size of up to 

5000 points. The reason of this poor performance is not related with the sample size itself but 

with D parameter as, for D ≥ 0.7 mm, the Py grid is not able to detect a form defect located on 

a corner of the workpiece.  Figure 3.9 shows evidence of that. 

From the point of view of computational performance, Figure 3.10 shows that the 

computation time increases linearly with respect to sample size and goes up to 0.015 seconds 

about for the 17575 points dataset; an acceptable time for industrial applications. Few points 

slightly detach from the main linear trend, but they simply correspond to fluctuations in the 

computer performance during the experiment simulation. 

 

Figure 3.8 - Flatness error as a function of sample size. All grids but Py are able to maintain 

a good evaluation performance even with low sample size. The circled point can be 

considered the true LS flatness deviation, as it corresponds to the more detailed sampling 

compliant with the lower cut-off wavelength of specification. 
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Figure 3.9 - Py grid is not able to detect the defect (corresponding to the mill exit) 

highlighted in the right picture when D ≥ 0.7 mm, leading to poor inspection performances. 

 

Figure 3.10 - The computation time for LS flatness evaluation increases linearly with the 

increase of sample size. 

As it has been introduced in §1.9 the form error assessment, as every measurement result, 

has to be accompanied by the measurement uncertainty in order to allow decisions about 

compliance with specifications. In next subsections the aspects related with the use of LS 

association criterion will be analyzed in order to evaluate what, according to GPS standards, 

is classified as implementation uncertainty [4]. 

The uncertainty due to the algorithm used for error evaluation depends on the distribution 

of the points used for error evaluation (the algorithm input) and on the performance of the 

algorithm itself. Different approaches are available to cope with the different association 

criteria and user requirements (§2.4, §2.5, §2.6). Let us explore those actually available from 

the state of the art and commonly used by practitioners. 

3.5.1 LS implementation uncertainty with analytic approach 

LS based association criteria (all but FLTq parameter) allow the definitions of the form 

error with a linear equation based on the orientation of the LS reference plane and on the 

position of the farthest points. These LS based criteria allow the determination of the partial 
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derivatives of the measurand with respect to every measured point, thus enabling the use of 

the transparent box model for uncertainty estimation [16]. 

Writing the LS reference plane in the form “z = ax + by + c”, the distance of a given 

sampling point (xi, yi, zi) from it (usually called residual) can be expressed as: 
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 (3.2) 

The LS flatness is then defined as the difference between the maximum and minimum of 

residuals and can be written as:  δ = max(di) - min(di). If the maximum and minimum 

residuals occur at the point (x1, y1, z1) and (x2, y2, z2) respectively, the flatness error can be 

also written as follows: 
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According to the propagation formula given by ISO 14253-2 to calculate the uncertainty 

of δ, it is necessary to determine the uncertainty and propagation coefficients of each of the 

elements  x1, y1, z1, x2, y2, z2, a, b. Therefore the implementation uncertainty of flatness error δ 

can be expressed as in equation (3.4) where: uxi, uyi and uzi represent the instrument accuracy 

(uncertainties due to the instrument and to the effects of environmental conditions on 

instrument and measurand) while ua, ub and ab represent the goodness of the association 

criterion. In particular, supposing that the verification process is managed under a six-sigma 

quality control, the uncertainty on the measurement of each point can be assumed as the sixth 

part of the instrument Maximum Permissible Error (MPE). Parameters ua, ub and ab, on the 

other hand, are extracted from the statistics of LS solution, particularly from the covariance 

matrix. 
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 (3.4) 

This formulation of the implementation uncertainty mixes the effects of the association 

criterion (how the measurement points are considered as a whole dataset) together with the 

effect of the accuracy of measuring instrument (possibility of variation for the coordinates of 

each measuring point). Looking at equation (3.4) it is easy to notice that most of the terms of 

implementation uncertainty come from the accuracy of the measuring instrument (all the 

terms containing uxi, uyi and uzi) while only the last three addendums are related to the 

performance of the association criterion. 
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Then, for every LS verification operation used in each of the 60 sampling grids generated 

by the experiment, the implementation uncertainty has been evaluated and the computation 

time has been registered in order to compare the performance of analytic and experimental 

approaches (Table A.1). The results are here analyzed as a function of the sample size and 

with a particular highlight on the typology of extraction grid they are related to. 

 Figure 3.11 shows that the implementation uncertainty decreases hyperbolically as the 

sample size increases. In particular, for a sample size slightly larger than 100 points, 

implementation uncertainty almost reaches the lower asymptote of 1 µm about and further 

increases in sampling density do not provide significant improvements. Looking at Figure 

3.11, no particular difference can be noticed in the performance of different grids even if we 

know that Py grids, particularly, are responsible of very poor error assessments when D ≥ 0.7 

mm. Due to this inconvenience, a separate cluster of points could be expected, similarly to 

that noticed in Figure 3.8, but nothing can be seen. The reason has to be searched in the 

analytic formulation of LS implementation uncertainty, as it reflects the stability of the 

orientation of the LS reference plane mainly (see Annex B). This stability can be regarded as 

the inertia of the LS reference plane with respect to the addition of a new measurement point. 

Then, provided that all grids guarantee a uniform coverage of the flatness feature and that the 

increase of sample size is based on the increase of sampling density (and not on an increase of 

the extension of  the inspected area) the inertia of some hundreds of points, on a feature of this 

size, is already very near to the asymptote. On the other hand, the asymptote value is strictly 

related with the instrument MPE (see Annex B). 

 

Figure 3.11 - The implementation uncertainty of LS error evaluation decreases 

hyperbolically as the sample size increases. The minimum uncertainty corresponds to the 

four grids sampled with the maximum density (circled point). 

From the computational point of view, the analytic approach for the estimation of 

implementation uncertainty is almost independent from sample size (see Figure 3.12). The 

parameters used to estimate uncertainty are calculated during the solution of the LS problem, 
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thus their computation time is not considered when assessing the computational performance 

of uncertainty evaluation. Computation time is half a second about. 

 

Figure 3.12 - The computation time for the estimation of implementation uncertainty is 

almost independent from sample size. 

3.5.2 LS implementation uncertainty with experimental approach 

Apart the analytical approach (§3.5.1), the uncertainty of LS form fitting can be estimated 

by means of experimental methods too. In particular, it will be estimated with bootstrap 

method, whose use is unavoidable for the MZ evaluation, and the different performances will 

be compared in order to choose the most effective (§3.5.3). 

The implementation uncertainty has been evaluated through the combination of bootstrap 

method with Monte Carlo simulation. 100 bootstrap samples have been generated and 

analyzed with the LS method; then the bootstrap implementation uncertainty has been 

calculated as the standard deviation of the 100 evaluations (for the details of bootstrap 

samples generation see §2.6). This leads to the immediate consideration that the time 

necessary to estimate the uncertainty is expected to be 100 times the time necessary to 

perform a single evaluation of the LS flatness deviation (Figure 3.13 confirms). 

Figure 3.14 shows a hyperbolical decrease of implementation uncertainty with respect to 

sample size. In particular, two trend functions can be distinguished. The first trend function, 

located near the origin, corresponds to the cluster of points, identified in Figure 3.8, that are 

not able to detect the main form defect (as shown in Figure 3.9). The second one collects the 

results of all the verification operators that are able to detect most of the form deviation even 

with small samplings. Both trend functions widen when the sample size reduces because the 

smaller is the sample size and the more probable is that some important point is lost during 

the extraction of bootstrap samples (more variability affects the results). This is also the 

reason that explains why the group of poor verification operators, which are unable to detect 

the main part of form defect, apparently has a lower estimation uncertainty: for these samples 
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most of the form error is missed systematically, thus bootstrapping from the measurement 

dataset cannot generate much variability in results. 

  

Figure 3.13 - The computation time increases linearly with sample size. Due to the number 

of bootstrap samples analyzed it is about 100 times the time necessary for one LS error 

evaluation. 

 

Figure 3.14 - The implementation uncertainty of LS evaluation decreases hyperbolically as 

sample size increases. The minimum uncertainty corresponds to the perfect verification 

operator (circled point). 

3.5.3 Analytic VS experimental uncertainty estimation 

The choice of the analytic or experimental approach for assessing the LS implementation 

uncertainty can now be performed on the basis of the different observed performances. 

A first consideration is about the direct cost of verification: the time spent to analyze 

results is almost constant and independent from sample size for the analytic method, while it 

increases linearly for the experimental approach (Figure 3.15). Thus, the analytic approach 

should be preferred if large samples are expected or if the number of bootstrap samples is too 
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large. For very small samples the bootstrap results to be much faster but, on the other hand, 

the uncertainty estimated is more variable. 

 

Figure 3.15 - Comparison of the computation time necessary for the evaluation of LS 

implementation uncertainty with the analytic and experimental approach. 

If the main concern is the best estimation of uncertainty, then Figure 3.16 has to be taken 

into larger consideration. For small samples the bootstrap method seems to favour safety, as it 

estimates an uncertainty larger than the analytic method. However, this is true only when the 

verification operator is able to detect the real form deviation, as shown in Figure 3.16. The 

same figure shows also that the uncertainty of error evaluation may result to be lower than the 

analytic one if the shape of the actual flatness feature is not measured properly.  

 

Figure 3.16 - Comparison of the implementation uncertainties calculated with the analytic 

and experimental approach. 

As a matter of fact, it seems that the experimental evaluation of uncertainty is mainly 

affected by the magnitude of the form deviation that is actually detected by a certain sampling 

grid. It is clearly unable to understand if the sampling grid at hand is suitable to correctly 

explore the flatness feature. The uncertainty decreases when the sampling size increases, but 
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this process is faster when the defect actually measured is smaller. Thus, the lower is the 

defect detected by a certain grid and the lower will be the uncertainty of the error evaluation. 

Uncertainty seems to be a function of the sample size, but also of the magnitude of the error 

actually sampled. 

On the other hand, the uncertainty of the analytic evaluation is a function of the sample 

size only (or better of the sample density once the sampling area has been fixed). The value of 

analytic uncertainty is affected more by the position of sampling points and the uncertainty in 

their measurement (see Annex B), than by the values of deviation actually sampled. 

Then, to resume, bootstrap method is limited by the actual sample it is applied to, but is 

particularly sensitive to the form error contained on that sample. On the other hand, the 

analytic evaluation is less sensitive to the form error contained in each sample, but provides 

an evaluation of the verification operator that goes beyond the information contained in the 

sample at hand, by taking into account the geometrical characteristics of measurand. Thus the 

former seems to suite more data analysis requirements while the latter measurement planning: 

the decision about the sample size necessary for estimating the LS reference plane with a 

given robustness (uncertainty). Moreover, the experimental approach has an uncertainty 

asymptote that approaches 0.3 µm, while that of the analytic approach is 1 µm about (Figure 

3.16). The reasons of such a difference will be investigated by simulating measurement on a 

virtual surface (§4) and analyzing in details the different terms of equation (3.4) for the 

different verification operators (Annex B).  

3.6 FLTt with MZ association criterion 

The MZ flatness error has been calculated with the computational geometry based 

technique of convex-hull. For each measurement dataset, the convex-hull of all measurement 

points has been calculated and its edges have been analyzed according to the method 

introduced by Lee in [17]. Then, the 60 flatness errors, one for each of the 60 grids generated 

by the design of experiment, have been registered in Table A.2 together with the estimated 

uncertainties and the time necessary for their computation. 

The results of form error evaluation are very similar to those obtained with the LS 

association criterion and two different groups of data can be identified (see Figure 3.17). The 

first group is disposed along a horizontal line corresponding to the true value of MZ flatness 

deviation, 19 μm about, and lumps together all the sampling grids which are able to detect the 

main component of form deviation that is concentrated in one corner of the flatness feature 

(see Figure 3.9). This horizontal line widen as the sample size decreases because the 

uncertainty of the error evaluation increases (see Figure 3.19 and Figure 3.21). The second 

group of points corresponds to the cluster in the left bottom of Figure 3.17. This cluster, 

similarly to that of Figure 3.8, represents the extraction grids (mainly Py grids) that are not 

able to detect the main form defect because they do not cover the surface densely enough (D ≥ 

0.7 mm). 
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Differently from the LS association criterion, the computation time increases, with the 

increase of sample size, according to a logarithmic trend (see Figure 3.18). For the perfect 

verification operator, which consists of 17575 points, it takes almost 2 seconds: a time much 

larger than that required by LS method but that could be still suitable for many industrial 

applications. 

 

Figure 3.17 - Flatness error as a function of sample size. All the grids but Py achieve good 

evaluation performances even with small samples. The circled point can be regarded as the 

true MZ flatness deviation, as it corresponds to the result of the perfect verification operator. 

 

Figure 3.18 – The computation time required by the convex-hull edge method, for the 

evaluation of MZ flatness deviation, increases logarithmically with respect to sample size. 

One of the main problems for the MZ association criterion is that, at the state of the art, 

there is no analytic method suitable for evaluating the uncertainty that has to quantify the 

quality of the form error assessment. Some attempts have been tried, by using neural networks 

[18], but the proposed approach relies too much on the quality of the training dataset to 

achieve reasonable performances and is not suitable for use in everyday measurements. 

Another approach, which can be only partially considered analytic, has been proposed more 

recently by Wen et al. [19]. This approach relies on the same analytic model that has been 
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presented for the LS method, but proposes to replicate measurements (and then the 

application of the evaluation criterion) in order to find the statistics that for the LS method are 

associated with the regression model. 

However, in this work an attempt to use analytic uncertainty evaluation has been done on 

the line of the considerations that are valid for statistical association criteria (§3.5.1) and that 

have been used by Wen et al. The result is a semi-analytic method that, differently from the 

one proposed by Wen et al., can be defined for each verification operator, without demanding 

for measurement replications, as relies on bootstrap methodology for estimating the statistics 

of the MZ reference plane. The details and results of this method will be presented (§3.6.1) 

and compared with the experimental evaluation approach (§3.6.3). 

3.6.1 MZ implementation uncertainty with semi-analytic approach 

According to the MZ association criterion, at the state of the art there is not a purely 

analytic approach allowing the assessment of implementation uncertainty. An analytic 

approach has been proposed by Wen et al. [19], but it relies on the same formulation 

presented for the LS method, with the only difference that the statistics of the reference plane, 

which are not available for extreme fit association criteria, should be determined by 

replicating measurements. In order to have robust statistics, the verification operator should 

be replicated several times, requiring a verification effort that cannot be easily afforded. If the 

measurement cannot be replicated, bootstrapping is the best alternative. In this section a semi-

analytic approach is proposed which relies on bootstrap for the estimation of the MZ 

reference plane statistics. 

Once the MZ reference plane has been identified and written in the form “z = ax + by + 

c”, the distance of a point (xi, yi, zi) from it can be calculated according to equation (3.2). If 

points (x1, y1, z1) and (x2, y2, z2) are two points belonging to the two planes which define the 

MZ tolerance zone (they represent one of the peak points and one of the valley points 

respectively) the MZ flatness deviation “δ” can be written as the sum of the distances of these 

two points from the MZ reference plane; then according to equation (3.3). Under the same 

considerations valid for the LS method (§3.5.1), the uncertainty of δ can be assessed 

according to equation (3.4) where uxi, uyi and uzi represent the instrument accuracy 

(uncertainties due to the instrument and to the effects of environmental conditions on 

instrument and measurand) while ua, ub and ab represent the stability of the MZ reference 

plane. Under the hypothesis that the verification process is managed within a six-sigma 

quality control, the uncertainty on the measurement of each point can be assumed as the sixth 

part of the instrument Maximum Permissible Error (MPE). In order to estimate parameters ua, 

ub and ab, for each verification operator the MZ flatness plane has been estimated for 100 

bootstrap samples. Then, the 100 values of the MZ plane coefficients (a, b and c) have been 

used to estimate the uncertainties ua, and ub as the standard deviation of the coefficients a and 
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b respectively. On the other hand, the correlation ab is estimated as the correlation between 

the two vectors of parameters a and b. 

For every MZ verification operation used in each of the 60 sampling grids generated by 

the experiment, the implementation uncertainty has been assessed and the computation time 

has been registered in order to compare the performance of analytic and experimental 

approaches (Table A.2). The results are here analyzed as a function of sample size and with a 

particular highlight on the typology of extraction grid they are related to. 

Figure 3.19 shows the implementation uncertainty of MZ-based verification operators. A 

lower sill can be noticed at 1 µm about, which corresponds to the asymptote observed for the 

analytic assessment of LS implementation uncertainty (Figure 3.11). Moreover, two different 

clusters of points can be distinguished in proximity of the vertical axis, which correspond to 

the two clusters of points identified in Figure 3.17 respectively. The uncertainty is then a 

function of the instrument MPE (which is responsible for the lower sill) but also of the actual 

form deviation that is detected by the sampling strategy. The latter is the typical effect of the 

bootstrap method: it could be misleading as it estimates a lower uncertainty for sampling grids 

(such as Py when D ≥ 0.7 mm) that measure only a small part of the form deviation.  

 

Figure 3.19 – The implementation uncertainty of MZ flatness evaluation decreases 

hyperbolically with respect to sample size. The lower sill of 1µm about corresponds to the 

asymptote of analytic estimation of LS uncertainty (Figure 3.11), thus to the effect of the 

instrument MPE. 

With regard to the time necessary for the analytic evaluation of uncertainty, Figure 3.20 

shows the same trend that can be noticed, in Figure 3.18, for the solution of the convex-hull 

problem and calculation of MZ flatness error. However, the magnitude is magnified by the 

number of bootstrap samples for which the MZ problem has to be solved: 100 times. 
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Figure 3.20 - The computational time for the analytic assessment of MZ evaluation 

uncertainty increases logarithmically as it mainly consists of the time necessary to solve the 

MZ problem for each of the bootstrap samples. 

3.6.2 MZ implementation uncertainty with experimental approach 

The experimental evaluation of MZ implementation uncertainty relies on the bootstrap 

method combined with the Monte Carlo simulation. As for the LS association criterion 

(§3.5.2), 100 bootstrap samples have been generated, the MZ flatness error has been assessed 

for each of them and the uncertainty of the evaluation operation has been defined as the 

standard deviation of the results obtained from the 100 bootstrap samples. The results for the 

perfect verification operator and for each of the simplified verification operators are reported 

in Table A.2. 

Figure 3.21 shows that MZ evaluation uncertainty estimated by means of bootstrap has a 

behaviour very similar to that obtained for the LS association criterion. The uncertainty 

decreases when sample size increases but the rapidity of this decrease strongly depends on the 

entity of the form error that has been actually sampled by each verification operator. Thus, 

two main groups of points can be identified; one for each of the two clusters of points that can 

be distinguished in Figure 3.17. This sharp distinction is due to the fall in the ability of some 

grids to detect most of the form error when their straightness profiles are too loose. This is 

particularly true for the Py grids with D ≥ 0.7 mm. 

The main drawback of bootstrap method for the assessment of MZ evaluation uncertainty 

is represented by the computation time. MZ algorithm requires non negligible computation 

times and, if the operation has to be repeated for each bootstrap sample, the time required may 

become unacceptable. The perfect verification operator requires 2 seconds about for the 

assessment of flatness deviation and almost 3 minutes for the evaluation of uncertainty 

(Figure 3.22). Faster computers should be used in industrial practice even if, very large 

datasets, such as those generated by verification processes based on optical instruments, could 

be too demanding for this approach and actually limit its use.  
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Figure 3.21 - The MZ evaluation uncertainty is inversely proportional to the sample size and 

to the entity of form error actually detected by the verification operator. 

 

Figure 3.22 - The time required by bootstrap evaluation of MZ uncertainty increases 

logarithmically with sample size, in the same way that the time necessary for error 

evaluation does but magnified by the number of bootstrap samples generated (100 times). 

3.6.3 Semi-analytic VS experimental uncertainty estimation 

Comparing the results of analytic and experimental estimation of the uncertainty of MZ-

based verification operators, an interesting behaviour can be noticed for the semi-analytic 

approach (see Figure 3.23). From the point of view of safety, the semi-analytic approach 

seems preferable as it systematically overestimates uncertainty introducing a lower sill, at 

1μm about, that is representative of the measurement uncertainty introduced during the 

sampling of each measuring point. This sill is the effect of the first six terms of equation (3.4), 

which are almost independent from sample size and particularly representative of the 

instrument MPE only (see Annex B). However, apart the lower sill, the semi-analytic method 

shows a hyperbolical decrease with a trend very similar to the experimental method. This 

trend is due to the last three terms of equation (3.4) and particularly to their bootstrap-based 

evaluation.  
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Figure 3.23 - Comparison of semi-analytic and experimental assessment of the uncertainty of 

MZ error estimation. The semi-analytic approach favours safety as it estimates a larger 

uncertainty. Both methods are biased by the effectiveness of sampling grids in detecting the 

form error. 

As well as the fully experimental approach, the semi-analytic method is biased by the 

ability of sampling grids to properly detect all the form error. This is one of the main 

drawbacks of bootstrapping: it is limited to the sample actually available and cannot simulate 

other measurements and the occurring of different errors. It is particularly effective in 

considering the stability of fitted reference planes with respect to the spatial distribution of 

sampling points on the measurand (if the sampling is uniform), but not equally effective in 

estimating the effect of measurement errors (in this sense it is limited by the measurement 

errors contained in the sample at hand). For a deeper analysis, see Chapter 4. 

If the semi-analytic approach can be preferred from the point of view of safety, no 

different advice can be provided from considerations on the computation time required by the 

two approaches. Figure 3.24 shows the same computation time for both approaches because 

also the semi-analytic one requires a bootstrap simulation for the estimation of the MZ 

reference plane statistics. The time required for the calculation of statistics is negligible with 

respect to the one required by the replications of convex-hull calculation and solution of the 

MZ problem. Therefore, if both the approaches use the same number of bootstraps, the 

computation time is the same. 
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Figure 3.24 - Comparison of computation time for the semi-analytic and experimental 

approach. Times are undistinguishable as the main effort required by the semi-analytic 

approach is for the bootstrap estimation of the MZ reference plane statistics. 

3.7 The method uncertainty of simplified verification operators 

In order to be able to assess the measurement uncertainty, we still need to determine the 

method uncertainty. While implementation uncertainty is the expression of the uncertainty 

contained in the actual verification operator, method uncertainty evaluates the effects of using 

actual verification operators that are different from the perfect one. Intentional deviations 

from the perfect verification operator are the main responsible of method uncertainty. These 

deviations can affect the sampling strategy (density of sampling and number of measurement 

points), as well as the choice of filters or association criteria different form specification 

requirements. Anyway they are usually aimed at reducing costs or enforced by the measuring 

instruments actually available in metrology laboratories. 

GPS standards define the method uncertainty as the difference between the flatness error 

assessed with the perfect verification operator (δ
*
) and the value given by each simplified 

verification operator (δi) [4]. This definition is expressed by equation (3.5); where δ
*
 is the 

FLTt parameter evaluated with the perfect verification operator and δi is the result of the 

actual verification operator for which the uncertainty is estimated. The method uncertainty of 

each verification operator is reported in Table A.3. 

 
*

iMt iu  (3.5) 

Figure 3.25 shows the plot of method uncertainty against sample size and with the 

distinction of the association criterion that has been used. For the MZ method it can be 

noticed a marked discontinuity between the grids that are able to detect all the form deviation 

and those that are not. For large samples, the use of LS instead of MZ is responsible of the 

largest method uncertainty (by definition, for the perfect verification operator, that uses MZ, 

there is no method uncertainty). However, for very small samples, the method uncertainty of 

MZ overcomes that of LS. This is an effect of LS always overestimating the flatness error: 
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this behaviour reduces the error with respect to the perfect verification operator when the 

sampling grid is not able to detect all the form deviation (compare Figure 3.8 and Figure 3.17 

for further remarks). 

 

Figure 3.25 - Method uncertainty for all the verification operators. For the MZ method there 

is a marked discontinuity between the sampling grids that are able to detect all the form 

deviation and those that are not. 

3.8 The measurement uncertainty and compliance uncertainty 

Once the implementation uncertainty and method uncertainty have been estimated, 

measurement uncertainty can be calculated as their sum (with the meaning of the word 

according to GUM): 

 2 2

M Mt Iu u u  (3.6) 

On the other hand, the compliance uncertainty is defined as the composition of 

measurement uncertainty and specification uncertainty [4]: 

 
2 2 2 2 2

C Sp M Sp Mt Imu u u u u u  (3.7) 

This case study deals with a complete specification operator so, by definition, there is no 

specification uncertainty. In these conditions compliance uncertainty (u
C
) is equal to 

measurement uncertainty (u
M
). Moreover, if specification is the most adequate in order to 

guarantee the functional needs, correlation uncertainty is equal to zero and compliance 

uncertainty (thus measurement uncertainty also) becomes synonymous of total uncertainty. 

However, for the purpose of this work, only measurement uncertainty will be considered. 

Measurement uncertainty completes the results of flatness error verification (the value δ) and 

enables assessing the compliance of the form of the actual feature with the specification 

requirements; through the ISO-GPS acceptance rule [15]. Figure 3.26 shows the trend of 

measurement uncertainty with respect to sample size for verification operators based on both 

MZ and LS, and with an experimental assessment of the implementation uncertainty.  
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Figure 3.26 - Measurement uncertainty for verification operators based on LS and MZ 

association criteria, both with an experimental assessment of the implementation uncertainty. 

Compliance uncertainty will be no longer mentioned although, in this particular case, it 

can be considered equivalent to measurement uncertainty and there is no contraindication for 

its use.  

Specification uncertain has not been analyzed in this work, even if from a theoretical 

point of view it can be studied through a design of experiment similar to the one developed 

here. In such a case the confrontation should be between the actual (incomplete) specification 

operator and all the possible actual (simplified and not) verification operators. In case of 

incomplete specification operator the metrologist is asked to complete the specification, 

adding operations in order to obtain a complete specification operator from which to derive 

the perfect verification operator [8]. This means that, according to the scheme reported in 

Figure 3.27, for each incomplete verification operator, m possible complete specification 

operators could be reconstructed (according to the experience and knowledge of metrologists) 

and for each of them a DoE with n actual verification operators should be performed. 

Considering that the incomplete specification operator is not unique, l possibilities may occur 

and the study could hardly be handled. Thus it has been limited to the case of complete 

specification; in different cases (incomplete specifications) the analysis should be started from 

the complete specification operator generated by the metrologist. 

For the total uncertainty the question is more complex as there is no way to estimate it, at 

the state of the art, and there is no way to detect it until the actual specification does not show 

any drawback. The only system available to try to contain it, is an accurate rationale design 

combined with the simulation of the best design solutions. 
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Figure 3.27 - Scheme of the DoE necessary to analyze the specification uncertainty of an 

incomplete specification operator. 

3.9 Compliance test 

In order to assess the compliance of the flatness feature with geometrical specifications on 

the part drawing, the acceptance rule presented in §1.9 has been used. Particularly, for an 

easier representation, the measurement uncertainty has been added to the value of form 

deviation assessed through each verification operator, instead of being represented as a grey 

zone around the specification limit. This is just a convention to allow the comparison of 

different verification operators at the same time, as each of them is characterized by its own 

measurement uncertainty.  Particularly each point in Figure 3.28 and Figure 3.29 consists of: 

t t .M MFLT U FLT k u  

Figure 3.28 shows the acceptance test with a coverage factor k = 2. This is the value most 

widely used in metrology and usually adopted when not explicitly stated. The flatness feature 

is compliant with specification according to all verification operators. It is easy to notice how 

the MZ based verification operators allow a higher manufacturability, as they do not 

overestimates flatness deviation as the LS method does. Moreover the measurement result is 

not very sensitive to sample size, as the increase in measured flatness error is almost balanced 

by a reduction of measurement uncertainty. 

Also for a coverage factor k = 3, the flatness feature is compliant for all verification 

operators (Figure 3.29). However, mainly for rather small samples, the measurement result is 

particularly near to the specification limit. It means that both the acceptable limits of flatness 

deviation and uncertainty of the measurement process have been completely exploited: no 

further error can be accepted (it is neither a manufacturing nor a measuring error). Particularly 

when the sample is very large, MZ maintains a larger margin and the difference with respect 
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to LS depends mainly on method uncertainty. This is a further remark of the importance of 

using the perfect verification operator before using simplified ones. Obviously it would not 

make sense to apply simplified verification operators after a perfect one but, it could be very 

useful to apply the perfect verification operator on a sample from a mass production and use 

simplified verification operators to verify the remaining (provided that both manufacturing 

and verification process are kept under control). 

 

Figure 3.28 - Compliance test using coverage factor k = 2. Each dot represents the complete 

result of a verification operator: flatness deviation plus the expanded measurement 

uncertainty. Measurement uncertainty contains u
Im

 estimated experimentally. 

 

Figure 3.29 - Compliance test using coverage factor k = 3. Each dot represents the complete 

result of a verification operator: flatness deviation plus the expanded measurement 

uncertainty. Measurement uncertainty contains u
Im

 estimated experimentally. 

The results presented in Figure 3.28 and Figure 3.29 report estimations of the 

measurement uncertainty in which implementation uncertainty has been assessed 

experimentally. The results for verification operators based on the analytic assessment of 
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implementation uncertainty are not much different and, for the sake of brevity, their plots are 

omitted; numerical values, however, are available in Table A.3. 

3.10 Surface response regressions 

The effects of single factors and their interactions have been assessed using a response 

surface method. Particularly, a Quadratic Response Surface has been used to analyze the 

different terms of uncertainty (measurement uncertainty, method uncertainty and 

implementation uncertainty) versus factors D, d, Grid and Association method.  

Given that the implementation uncertainty can be estimated both analytically and 

experimentally, the analysis has been performed twice: one time for verification operators 

based on the analytic approach (§3.10.1) and another time for those based on the experimental 

one (§3.10.2). Method uncertainty is completely independent from the approach used for 

assessing the implementation uncertainty, therefore it has been analyzed only once (§3.10.3). 

All the results have been compared in §3.10.4. As a rule, useful for the interpretation of 

results, the observation order corresponds to the row index of the results table on which the 

surface response is built. 

3.10.1 Verification operators based on analytic uncertainty estimation 

3.10.1.1 Measurement uncertainty 

The Quadratic Response Surface of measurement uncertainty shows that the most 

significant factors are the sampling Grid together with the Association criterion and the 

interaction effect of sampling Grid and d. The interaction of factors D and Association 

criterion (sampling grids that are inadequate to detect all the form deviation) is secondary 

because in measurement uncertainty (see Figure 3.28 or Figure 3.29) there is not the split 

trend noticed for the implementation uncertainty every time an experimental method is used 

for its assessment (see Figure 3.14 and Figure 3.21). 

Term Coef SE Coef T    P 
Constant 27.8353 8.08529 3.443 0.001*** 

D -1.9311 0.78688 -2.454 0.016** 

Grid 2.9965 1.11016 2.699 0.008*** 

ASS -17.2385 3.14426 -5.483 0.000*** 

d*d 0.0594 0.03049 1.947 0.054* 

Grid*Grid -0.2440 0.06046 -4.035 0.000*** 

D*ASS 0.6405 0.25189 2.543 0.012** 

d*ASS 0.9966 0.25189 3.956 0.000*** 

S = 1.49021 

R-Sq = 79.69%  R-Sq(pred) = 74.18%  R-Sq(adj) = 77.20% 

Table 3.3 - Significant terms in Quadratic Response Surface Regression of measurement 

uncertainty versus D, d, Grid and Association method. P-values less than 0.10 are marked 

with *, less than 0.05 with **, less than 0.01 with ***. 
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3.10.1.2 Implementation uncertainty 

With respect to the analytically assessed implementation uncertainty, the Quadratic 

Response Surface (Table 3.4) shows that all the factors reported are very significant (0.01 

level). The Grid factor only is significant at the 0.05 level (particularly in the form of the 

squared interaction with itself) because implementation uncertainty varies almost uniformly 

with respect to all the other parameters and has a particular interaction with sampling grid 

only in few cases (see Figure 3.9). Even if the response surface is able to explain only the 

46.48% (R-sq value) of the variability contained in the data, the most significant factors seem 

to be d (which influence the most the sample size) and the interaction of the association 

criterion with both d and D (namely the density of the sampling). However, given the low 

reliability of the model, any of the previous comments has to be considered carefully and 

accepted only if supported by the previous analysis (§3.5 and §3.6). 

Term Coef SE Coef T    P 
D -0.46988 0.17096 -2.749 0.007*** 

d 0.66995 0.17412 3.848 0.000*** 

ASS 1.93489 0.69578 2.781 0.006*** 

d*d 0.02042 0.00675 3.026 0.003*** 

Grid*Grid 0.02861 0.01338 2.138 0.035** 

D*Grid -0.02192 0.00831 -2.639 0.010** 

D*ASS 0.30267 0.05574 5.430 0.000*** 

d*Grid 0.02338 0.00831 2.813 0.006*** 

d*ASS -0.44198 0.05574 -7.929 0.000*** 

Grid*ASS -0.17803 0.07180 -2.480 0.015** 

S = 0.859684 

R-Sq = 46.48%  R-Sq(pred) = 32.97%  R-Sq(adj) = 39.91% 

Table 3.4 - Significant terms in Quadratic Response Surface Regression of implementation 

uncertainty versus D, d, Grid and Association method. P-values less than 0.05 are marked 

with **, less than 0.01 are marked with ***. 

3.10.2 Verification operators based on experimental uncertainty estimation 

3.10.2.1 Measurement uncertainty 

The strategy used for the assessment of implementation uncertainty (experimental rather 

than analytic) does not seem to affect the Quadratic Response Surface of measurement 

uncertainty too much (compare Table 3.3 and Table 3.5). Therefore, the same comments 

apply.  

Particularly, the experimental assessment of implementation uncertainty leads to a higher 

significance of factors d, and a lower significance of factor Grid and interaction 

D*Association method. These differences can be interpreted as an actual divergence between 

the two approaches for the assessment of implementation uncertainty, and not as an error of 

the analysis, because both models are quite reliable (R-sq ~ 80%). 
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Term Coef SE Coef T    P 
Constant 32.9487 8.24942 3.994 0.000*** 

d -2.5471 0.80286 -3.173 0.002*** 

Grid 2.5460 1.13270 2.248 0.027** 

ASS -20.0389 3.20809 -6.246 0.000*** 

Grid*Grid -0.2349 0.06169 -3.807 0.000*** 

D*ASS 0.4601 0.25701 1.790 0.076* 

d*ASS 1.3714 0.25701 5.336 0.000*** 

S = 1.52046 

R-Sq = 80.71%  R-Sq(pred) = 75.37%  R-Sq(adj) = 78.34% 

Table 3.5 - Significant terms in Quadratic Response Surface Regression of measurement 

uncertainty versus D, d, Grid and Association method. P-values less than 0.10 are marked 

with *, less than 0.05 with **, less than 0.01 with ***. 

3.10.2.2 Implementation uncertainty 

The Quadratic Response Surface of implementation uncertainty versus the factors varied 

in the experiment (Table 3.6) is rather different from that obtained when the implementation 

uncertainty is estimated with the analytic (or semi-analytic) approach: see §3.10.1.2. The most 

significant factors are D and Grid, because pure experimental assessment of implementation 

uncertainty is strongly affected by the ability of the grid to detect all the form deviation (see 

the comparison with the semi-analytic method in Figure 3.23). No further consideration can 

be done on this response surface, given the scarce validity of the model that is able to explain 

only the 46.5% of the process variability. 

Term Coef SE Coef T    P 
D 1.31731 0.44569 2.956 0.004*** 

D -0.82061 0.45394 -1.808 0.073* 

Grid -1.43616 0.64044 -2.242 0.027** 

Grid*Grid 0.10274 0.03488 2.946 0.004*** 

D*ASS -0.30541 0.14531 -2.102 0.038** 

d*ASS 0.26051 0.14531 1.793 0.076* 

S = 0.859684 

R-Sq = 46.48%  R-Sq(pred) = 32.97%  R-Sq(adj) = 39.91% 

Table 3.6 - Significant terms in Quadratic Response Surface Regression of implementation 

uncertainty versus D, d, Grid and Association method. P-values less than 0.10 are marked 

with *, less than 0.05 with **, less than 0.01 with ***. 

3.10.3 Method uncertainty 

Method uncertainty does not depend on the approach used to evaluate the implementation 

uncertainty (analytic rather than experimental), as it is defined as the difference between the 

flatness error estimated with the current verification operator and the result that would have 

been obtained with a perfect verification operator: see equation (3.5). 

The Quadratic Response Surface of method uncertainty versus factors D, d, Grid and 

Association method (Table 3.7) shows that factors d, Grid and Association criterion are 

significant at 0.01 level. The factor D is not significant here because the poor performance of 

some sampling grids (the Py grids highlighted in Figure 3.9) is interpreted as an effect of the 



 Flatness verification case study 

81 

 

sampling grid more than an effect of the distance between straightness profiles. Other grids 

with the same D work perfectly. Notice that the most important factor is represented by the 

association criterion that introduces a systematic error in flatness evaluation: thus it is the first 

source of method uncertainty in order of relevance. 

Term Coef SE Coef T     P 
Constant 33.9932 9.63817 3.527 0.001*** 

d -2.7373 0.93801 -2.918 0.004*** 

Grid 3.1800 1.32338 2.403 0.018** 

ASS -21.3423 3.74816 -5.694 0.000*** 

Grid*Grid -0.2891 0.07207 -4.011 0.001*** 

d*ASS 1.5146 0.30027 5.044 0.000*** 

S = 1.77643 

R-Sq = 77.89%  R-Sq(pred) = 71.81%  R-Sq(adj) = 75.18% 

Table 3.7 - Significant terms in Quadratic Response Surface Regression of method 

uncertainty versus D, d, Grid and Association method. P-values less than 0.05 are marked 

with **, less than 0.01 with ***. 

Residuals analysis (Figure 3.30) shows some phenomenon that is not completely 

explained by model factors. There is a linear behaviour of residuals versus fitted values 

particularly for very small flatness errors. It means that the model has a poor performance 

mainly in the asymptote area. In the plot of residuals versus observation order, the visible 

patterns are the effect of progressive order in factors variation given that the runs were not 

randomized. 

 

Figure 3.30 - Residuals analysis for the Quadratic Response Surface of method uncertainty. 
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3.10.4 Comparison 

According to the factors that are significant in each response surface there is no 

consideration that add information with respect to the analysis previously performed on each 

factor (§3.5 to §3.8). The only difference with Quadratic Response Surfaces is that the factors 

are considered all together into a numerical model, interactions are quantified, and a model is 

drawn, which allow to infer about the results of experiments that have not been actually 

performed (it is a regression model).  

The significant factors of the Quadratic Response Surfaces presented above, and the R-sq 

value of each model have been collected in Table 3.8. If we think to use these regression 

models for doing predictions within the domain explored by the experiments, the first thing to 

be considered is the model reliability: its R-sq value. The Quadratic Response Surface for 

method uncertainty is able to explain almost 80% of the variability contained in the 

experiment results, therefore the regression model obtained is quite robust. The model is quite 

reliable also for the measurement uncertainty (R-sq ~ 80%), which in most cases is made up 

by method uncertainty mainly. On the contrary, for implementation uncertainty the model is 

less reliable (R-sq < 50%). A consequence of the scarce reliability can be observed in the 

important differences in the significant factors of the two models built for implementation 

uncertainty. The two models look completely different, much more than the data they are 

made from. 
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Table 3.8 - Comparison of the significant factors of the Quadratic Response Surfaces. The 

number of stars used to classify the P-value, in each table of results, has been reported 

explicitly here (3 for ***, 2 for ** and 1 for *). 

The particular shape of the feature analyzed could explain the poor performance of the 

regression models for implementation uncertainty. The analysis presented in §3.5 and §3.6 

showed that for a value D > 0.7 mm some sampling grids are no longer able to detect all the 

form deviation. Py grid becomes particularly unsuitable and a group of verification operators 

affected by the same fault can be identified: their results are clustered and strongly separated 

from the others. These results are so far from the others that they could be considered as 

outliers and, as they are rather numerous, the model quality is very poor. Quadratic Response 
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Surfaces have been generated also for a smoother feature in order to prove this explanation 

(see §4.6). 

3.11 Conclusions 

This Chapter presents a comprehensive critical investigation of the measurement practices 

(the actual verification operators with different densities of sampling) used every day in most 

of metrology laboratories. The novelty here is in the method used to perform this 

investigation. For the first time the factors affecting the output of a measurement process have 

been investigated according to the new concepts introduced by the GPS framework. The main 

association criteria and methods for the assessment of uncertainty (of each single term of 

measurement uncertainty) have been systematically analyzed, tested on a real case study, and 

compared. Furthermore, a novel approach for the semi-analytic assessment of MZ 

implementation uncertainty has been detailed, in §3.6.1, and compared with the others 

available in literature. 

 A further content of novelty in this chapter is represented by the use of the analysis 

results. These have been used to build regression models that, in their turn, can be used to 

extend the findings of this analysis to similar cases. As a matter of fact, the surface responses 

presented in this chapter give inspiration to half of the categorical data model that is presented 

in Chapter 5. Particularly they provide the predictive capabilities necessary to cope with the 

flexibility requirements of many small metrology laboratories. 

With respect to the Quadratic Response Surfaces presented in §3.10 and with respect to 

the possibility to use them for predictive purposes, some strategic considerations are 

necessary. Among the different models, those defined for the implementation uncertainty  are 

the worst (R-sq < 50%),therefore they should be avoided. However, this consideration is not 

discouraging at all, as the implementation uncertainty can be calculated, for each verification 

operator, without any need for regression models (see §3.5 and §3.6 for a thoroughly 

presentation). On the other hand, a regression model particularly important is that for method 

uncertainty, as in practice the perfect verification operator is rarely used and it is not possible 

to assess the method uncertainty according to equation (3.5). Luckily, this model is quite 

reliable (R-sq ~ 80%) and can be used to obtain valuable estimations. Finally there are the 

models for measurement uncertainty that are quite reliable too (R-sq ~ 80%). However, 

considering that measurement uncertainty is the composition of method uncertainty and 

implementation uncertainty, the regression model for measurement uncertainty is not 

necessary and its use should be avoided in favour of the more transparent composition of its 

two components. 

The optimal strategy for handling simplified verification operators and assessing the GPS 

measurement uncertainty (or compliance uncertainty too if the specification is complete) is 

therefore provided by the following steps: 
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 estimate FLTt from the measurement dataset, using the association criterion required 

by the verification operator; 

 assess uIm, for the association criterion used at the previous step, using the 

measurement dataset at hand and one of the approaches presented in §3.5 or §3.6; 

 assess uMt with the regression model available for the feature in object; 

 calculate the measurement uncertainty 2 2
M Im Mtu u u . 

This strategy is the foundation for the branch of the categorical data model designed to 

deal with the scenario of small flexible metrology laboratories (§5.3.2). It allows to exploit the 

valuable know-how of many metrology laboratories (the experiments and derived surface 

responses should be organized into a knowledge database) in order to improve the value of 

their uncertainty statements. 
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4 Verification operators on simulated surfaces 

4.1 Introduction 

The analysis and comparison of the different methods available for estimating the 

uncertainty of verification processes has shown that there are two main sources of uncertainty 

represented by: the ability of the sampling strategy in detecting all the form deviation and the 

accuracy of the measuring instrument (the measurement uncertainty affecting the sampling of 

each measuring point). Some method shows more sensitivity to the former, some to the latter 

but, until both are present together, it is not possible to discern their effects. For this reason 

the same Design of Experiment used in Chapter 3 has been deployed also for the simulation 

of measurements on a virtual surface. Particularly, verification operations have been 

simulated in two different conditions: 

 Ideal measuring instrument, which is able to measure without introducing any error 

(§4.3). 

 Real measuring instrument, which introduces a measurement error whose probability 

density function is supposed to be normal (§4.4). It generates measurement 

uncertainty. 

Among the stimuli of this investigation there is the difference among the results produced 

by different association criteria, for the evaluation of flatness deviation, and among the 

approaches used for assessing the uncertainty of the evaluation.  

The different methods for the assessment of implementation uncertainty that have been 

used in Chapter 3 do not use the classical concept of measurement replications [1]. Bootstrap 

is the approach that more resembles the classical one, but the bootstrap samples are all 

generated from the same dataset (sampling); thus the possibility to obtain a different 

measurement of the same sampling point (because of measurement errors) is not considered. 

It is a valid method if there is not the possibility to replicate measurements and its validity 

increases in parallel with sample size.  

As the simulation of verification operators is inexpensive with respect to a real 

measurement (it is just a short computation time), the approach based on the replication of 

verification operators [1] has been explored in this chapter (§4.6.2). In this case, uncertainty is 

defined as the variability (standard deviation) of the output of the verification process over the 

number of replications.  

Particularly, each of the measurement simulations presented in this chapter is aimed at 

addressing one of the issues that are not explained by the case study: 

 The simulation of an ideal measurement (§4.3 and §4.5), based on an ideal 

measuring instrument, is aimed at highlighting the effect of sampling accuracy (the 
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measurement uncertainty on the sampling of each measurement point) on the 

performance of the verification operator (the measurement points considered as a 

whole). The results of this simulation shall be compared with a real measurement on 

the same feature and with the same verification operators. 

 The simulation of a real measurement (§4.4 and §4.6), based on the simulation of a 

real measuring instrument, is aimed at providing the benchmark for the ideal 

measurement required at the previous point.  

 100 replications of each verification operator (§4.6.2), based on a real measuring 

instrument, in order to assess the performance of the association criteria regardless the 

sample size 

The results, summarized and compared in §4.8, allow the conclusion that the analytic 

assessment of implementation uncertainty overestimates the effect of the measurement 

uncertainty which affects measurement points. Notwithstanding this behaviour, the analytical 

estimation of LS implementation uncertainty is a powerful tool to understand how much the 

selected sample size is suitable to get a robust estimation of the LS reference plane and, if the 

sampling is uniform, a robust coverage of the measurand (§4.9). Therefore, analytic and 

experimental approaches should be used consciously and, when possible, compared in order 

to exploit the best of each one (§4.9). 

4.2 Virtual surface 

In order to have a virtual surface the most useful to make comparisons with the DoE 

performed on the real flatness feature, the virtual surface used in this chapter has been defined 

as an approximation of the case study’s flatness feature. The real geometry of the case study’s 

flatness feature is known at the best only through the perfect verification operator, thus with 

all the uncertainty introduced by the measuring instrument. Therefore, the virtual surface can 

be defined as a  regression of the measurement points dataset. 

The problem of surface reconstruction form unorganized points has been widely afforded 

in literature. In particular, within the family of surface fitting problems, Hoppe et. al. [2] 

distinguish two different approaches: the function reconstruction and the surface 

reconstruction. The function reconstruction methods can be used in simple, special cases, 

where the surface to be reconstructed can be regarded as the graph of a function over a known 

domain surface (usually a plane or a sphere [2]). On the other hand, the surface reconstruction 

methods can be further classified, according to the way they represent the reconstructed 

surface, as parametric or implicit methods. Parametric reconstruction techniques represent the 

reconstructed surface as a topological embedding of a two-dimensional parameter domain into 

R
3
, but they have been developed only for very simple shapes [3, 4].  

The family of implicit reconstruction methods is aimed at interpolating the points 

1{( , , )}n

i i i ix y z with an implicitly formulated surface ( , , )f x y z . In fields nearer to CAD 
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systems, Constructive Solid Geometry (CSG) represents the leading approach and the implicit 

model is defined by primitive functions through a combination of Boolean operations and 

blending functions [5]. The implicitly reconstructed surfaces have been defined also by means 

of piecewise low-order algebraic surfaces, also known as implicit patches or semi-algebraic 

sets [6]. However, all these representations lead to a surface that is continuous and 

differentiable piecewise only.  

In order to avoid the disadvantages related with piecewise defined surfaces, Carr et. al. [5] 

propose an implicit representation based on Radial Basis Functions (RBF), which allow the 

complete definition of tree-dimensional surfaces with a single continuous and differentiable 

implicit function. The advantages of modelling surfaces with RBFs had been already 

recognized by Turk & O’Brien [7, 8] and Carr et. al. [9]. In particular, Turk & O’Brien tried 

to model laser scan data with RBFs but they were constrained to work with small datasets in 

order to keep them computationally manageable. Carr et al. used RBFs to reconstruct cranial 

bone surfaces from 3D-CT scans. The areas surrounding large irregular holes were 

represented with thin-plate spline RBFs and the surface of prosthesis was defined from these. 

This approach is restricted to the surfaces that can be expressed explicitly as a function of two 

variables, and could be suitable to deal with the case study’s flatness feature, which also 

presents several holes. Later on, the same authors use RBFs to reconstruct and represent 

three-dimensional objects starting from point-cloud data acquired with optical scanners [5]. In 

this work they introduce also RBF approximation for noisy data. The interpolatory behaviour 

is damped in order to do not exactly interpolate the measurement points, which do not exactly 

belong to the real surface but are just near it (displaced of an unknown random measurement 

error: namely the noise), and obtain a smoother function which is more representative of the 

feature shape. 

RBFs have excellent interpolatory/reconstruction performance, but require a 

computational effort that is not justified by the purpose of the virtual surface we need to 

define. For this reason, and considering that the main content of flatness deviation has the 

shape of a horse saddle, a polynomial function has been chosen which minimizes the 

quadratic distance from measured points. The best performance (Figure 4.1) has been 

obtained with the following type of regression function: 

 

3 2 3 2a b c d * l m n pz x x x y y y
 

Figure 4.2 proves the goodness of the regression surface with a projection of Figure 4.1 

on the X-Y plane. Only the measurement points above the regression surface are visible in 

this view and they draw some patterns that, to use the GPS language, are lower wavelength 

defects. These patterns have been clearly produced by the interaction of tool (end mill) 

trajectories.  
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Figure 4.1 - Polynomial regression function (blue) interpolating the cloud-data points (red) 

of perfect verification operator. The regression function is able to grasp the main content of 

form deviation but the defect in the right corner and lower wavelength form defects 

highlighted in Figure 4.2. 

 

Figure 4.2 - (X-Y) projection of Figure 4.1. The pattern of red points (measurement points 

above regression function) shows the lower wavelenth defects produced by the overlapping 

of tool trajectories.  
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4.3 Simulation of ideal measuring instrument 

A measuring instrument is defined ideal if it is able to measure the exact coordinates of 

any point on the measurand surface. Obviously such an instrument cannot exist in practice but 

represents the ideal, utopian, target aiming the evolution of measuring instruments. An ideal 

measurement does not introduce any error and is perfectly repeatable. Measured coordinates 

and nominal coordinates are the same thing, therefore the measurement dataset corresponding 

to a certain extraction grid can be easily obtained by evaluating the function of the surface 

geometry (that in our case is known, as we are dealing with a virtual surface) over the 

extraction grid.  

As a matter of fact, for flatness features, an extraction grid is defined as a set of points 

identified by their (x, y) coordinates, with the identification of the z coordinate being the 

purpose of the measurement process. Provided that the geometry of a three-dimensional 

surface can be expressed in the form z=f(x, y), the measurement of a generic point Pi(xi, yi, zi) 

can be regarded as the evaluation of zi=f(xi, yi).  

The ideal measuring instrument allows us to perform verification operators that are not 

affected by sampling induced errors. Comparing verification operators based on ideal 

instruments with those based on real (simulated) instruments, we should be able to discern the 

amount of flatness deviation that is actually due to the feature shape (result of ideal 

measurement) from the one due to the accuracy of real (simulated) samplings. 

 

Figure 4.3 - Sampling with an ideal instrument can be easily simulated by projecting the 

sampling grid (green points) onto the feature surface along the touch probe approach 

direction (yellow lines). Sampling grid presents some discontinuities in correspondence to 

the position of holes or pin of the real feature. 
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4.4 Simulation of real measuring instrument 

For a general virtual surface we are able to simulate ideal verification operations 

according to §4.3, thus to extract the nominal coordinates of sampling points from the virtual 

flatness surface. From these nominal sampling datasets, measurement by means of CMMs can 

be easily simulated under the hypothesis that the measurement errors introduced by the 

instrument are randomly distributed within a Gaussian probability density function. In 

particular the standard deviation of this Gaussian distribution is assumed to be one sixth of the 

instrument maximum permissible error (MPE). This assumption can be supported by a 6 

sigma quality management [10].  

The measurement simulation is then obtained by adding to the nominal coordinates of 

sampling points an error randomly extracted from a Gaussian population with σ = MPE/6. An 

example of the MATLAB® code performing the measurement simulation is the following: 

%% Instrument accuracy 

MPE=0.004; % CMM Maximum Permissible Error 

sX=MPE/6; % Standard deviation of sampling error along x, y and z  

sY=MPE/6; % directions (under the hypothesis of 6 SIGMA quality control) 

sZ=MPE/6; 

 

%% Vectors with nominal coordinates of sampling points (X_nom) 

x=P_nom(:,1); y=P_nom(:,2); z=P_nom(:,3);  

  

%% Simulation of measurement adding Gaussian error on nominal coordinates 

x_sim=normrnd(x,sX);  % Simulation of measurement process realized by 

y_sim=normrnd(y,sY);  % adding to the nominal coordinates an error normally  

z_sim=normrnd(z,sZ);  % distributed and with standard deviation = MPE/6 

P_sim=[x_sim y_sim z_sim]; % Simulated measurement dataset 

4.5 Analysis of ideal measurements 

The purpose of these experiments is to understand the actual capability of sampling grids 

in detecting flatness deviations and the effects of the measurement uncertainty affecting 

sampling points. The same experimental campaign performed for the case study’s flatness 

feature (§3.4) has been repeated for a virtual surface sampled with an ideal instrument. This 

allows reasoning on grids performance regardless the uncertainties that, in the real practice, 

are introduced by measurement errors. The results are reported in Annex C with the same 

criterion used to organize the case study’s results: Table C.1 contains the flatness values and 

implementation uncertainties calculated with LS criterion, Table C.2 those obtained with MZ 

criterion, and Table C.3 the method and measurement uncertainties. 

Figure 4.4 compares the estimation of flatness deviation with LS and MZ association 

criteria. In particular LS association criterion systematically ends up with a higher estimation 

(this is expected by definition) and several sampling grids, even with samples of several 

hundreds of points, estimate a flatness deviation particularly large (about 2 or 3 µm more than 

the true value estimated by MZ). 
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Figure 4.4 - Estimation of flatness error regardless instrument accuracy. LS systematically 

overestimates. 

For the experimental estimation of the flatness evaluation uncertainty (by means of the 

bootstrap method), Figure 4.5 shows very similar trends for both MZ and LS association 

criteria, with the only difference in the asymptote values. For LS method it is about 0.1 µm 

while for MZ it is 0.001 µm. The excellent performance of MZ method is a consequence of 

the feature shape being particularly smooth: if the actual extreme points are not contained in 

some bootstrap sample then the extreme point will be some of its neighbours that, because of 

the very smooth shape, have a very similar height (z coordinate). Hence, the actual variability 

of MZ estimation over the bootstrap samples (the standard deviation used to estimate 

uncertainty) is very low. For the LS method the effect is rather different because it is not just a 

matter of getting the right extreme points; or some very similar to these. Even if from the 

point of view of MZ criterion a bootstrap sample may seem to be equal to the original dataset 

(the actual extreme points are contained at least once), from the point of view of LS method it 

is almost certainly different. Some points of the original dataset may not be present at all 

while others may be present more than once. This means that the LS reference plane is every 

time different and a slightly different flatness error is evaluated. The greater uncertainty is 

then explained by the effect of bootstrapping on the uniformity of sampling, therefore on the 

coefficients of LS reference plane. This idea can be proved by comparing the results of 

bootstrap and analytic estimation of LS uncertainty (see Figure 4.6). 

The analytic and the experimental (bootstrap) approach for assessing the implementation 

uncertainty are very different in nature. The former starts from the problem formulation and 

uses partial derivatives to express the sensitivity of the output with respect to perturbations on 

each input variable, and then composes their effects: it is a clear-box approach. On the other 

hand, the latter introduces small perturbations to the inputs to observe the variability of the 

output: it is a black-box approach. However, despite the different nature, both approaches 

agree on the assessment of the implementation uncertainty of LS-based verification operators 

(Figure 4.6) that, in this case, reflects the density of sampling strategy and the position of 

measurement points only.  
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Particularly, for an infinite accurate sampling (MPE = 0), the LS implementation 

uncertainty is represented by the uncertainty related with the estimation of the parameters 

describing the equation of the LS reference plane only. The first six terms of equation (3.4) 

equal zero and the implementation uncertainty can be simplified according to equation (4.1) 

that, in other words, represents the stability of the LS reference plane with respect to the 

spatial distribution of sampling points. 
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Figure 4.5 - Comparing the experimental estimation of implementation uncertainty we find a 

slightly higher uncertainty for LS method: 0.1μm against the 0.001μm of MZ. 

 

Figure 4.6 - In case of infinite sampling accuracy (MPE=0), experimental and analytic 

estimation of LS evaluation uncertainty are almost identical. Both are considering the effect 

of spatial distribution of sampling points on the stability of the LS reference plane; the 

former with a black-box approach while the latter with a clear-box approach. 
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According to the initial purpose to understand the capability of sampling grids in 

detecting form deviation, no remarkable difference can be noticed. In Figure 4.4, for both 

association criteria, there are continuous trends that are, in the two extreme regions (near the 

origin and at the asymptote), very similar to those of the case study (Figure 3.8 or Figure 

3.17). However, for the simulated measurement, there is no discontinuity in the central area of 

the graph. Obviously this is a consequence of the very smooth geometry of the virtual surface 

that has been used to simulate the measurement, and of the absence of form defects with a 

wavelength shorter than the distance between the straightness profiles that have been used to 

build the sampling grids. This observation confirms the recommendation of GPS standards to 

pay particular attention to the selection of the sampling grid whenever particular form errors 

can be expected along some preferential direction [11]. 

4.6 Analysis of real (simulated) measurements 

The purpose of this experimental campaign is to have the simulation of verification 

operators based on real measuring instruments: an experiment dual to the one presented in 

Chapter 3, to be compared with the one presented in §4.5. Such a comparison allows pointing 

out the effects of instrument accuracy (measurement uncertainty in each sampling point) on 

the flatness error evaluation. To respect the same construction of the experiment used in §3.4, 

measurement has been simulated once for the perfect verification operator (according to §4.4) 

and all the simplified verification operators have then been obtained as subsamples. The 

results are summarized in Annex D using the same logic used for the case study. 

Figure 4.7 shows the results of flatness error assessment for both LS and MZ criteria 

(Table D.1 and Table D.3). As expected, LS slightly overestimates the flatness error but the 

trends are very similar to those observed for the ideal-instrument-based verification operators 

(Figure 4.4). However, in Figure 4.7, both curves are shifted towards larger values of form 

error and their shape is more resembling of a Gaussian cumulate function. 

 

Figure 4.7 - For the simulated measurement dataset LS and MZ association criteria show 

very similar performances. 
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According to the uncertainty of the evaluation (implementation uncertainty), reported in 

Figure 4.8, both the association criteria show the same trend but with LS method being shifted 

towards higher values of uncertainty. This is a consequence of LS estimation being affected 

simultaneously by: the presence of the real extreme points (or of neighbours with very similar 

height) in the bootstrap sample, and the statistics of all the points included in each bootstrap 

sample (stability of the LS reference plane). The latter being the main difference between 

statistical and extreme fit association criteria. This aspect has already been explained, more in 

detail, in §4.5. 

 

Figure 4.8 - Experimental assessment of the uncertainty of flatness evaluation for LS and 

MZ criteria. Trends are similar but with LS showing higher uncertainty. 

Particularly interesting is the difference between the assessment of LS evaluation 

uncertainty with the experimental and analytic method (Figure 4.9). The result of the analytic 

assessment is the same observed for the case study (Figure 3.11) because the measurement 

uncertainty introduced by the instrument during sampling is the same. However, for the ideal-

instrument-based verification operators, the experimental and analytic approaches agree, with 

respect to the uncertainty associated with the density and distribution of sampling points 

(Figure 4.6). Therefore, the difference between the two curves plotted in Figure 4.9 can be 

interpreted only as an effect of the measurement uncertainty associated with sampling points. 

Finally, in order to test the hypothesis that the particularly poor performance of the 

Quadratic Response Surface Regression for implementation uncertainty (§3.10.4) is a 

consequence of the particular shape of the case study’s flatness feature, the same kind of 

model has been determined also for the experiment at hand. The Quadratic Response Surface 

Regressions have been determined for the measurement uncertainty (§4.6.1), the method 

uncertainty (§4.6.2) and the implementation uncertainty (§4.6.3), particularly for the case in 

which implementation is assessed with an analytic approach. 
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Figure 4.9 - LS analytic uncertainty estimation shows the same trend noticed for the case 

study's real surface (Figure 3.11): asymptotes are the same because both the real and 

simulated instrument have the same MPE. 

4.6.1 Quadratic Response Surface Regression for measurement uncertainty 

The response surface for measurement uncertainty (Table 4.1) shows that only factors d 

and Grid are significant for the verification of the virtual surface. There is not a marked form 

error with a short wavelength, such as the signature of the mill exit point on the case study’s 

surface. Therefore, parameter D is no longer significant and sampling density becomes the 

most important factor. Parameters d and sampling Grid represent the sample density more 

than D. As a matter of fact, if for a fixed couple d-D the extraction Grid is changed (for 

example Union Jack is chosen instead of Py or Px) the number of sampling points is nearly 

doubled, and vice versa. Therefore, factor Grid is more important than D. Furthermore, the 

reliability of the regression model obtained is very remarkable. With an R-sq value of 90% 

about, it is able to explain almost all the variability contained in the experiment results. 

Figure 4.10 shows the residuals analysis for the Quadratic Response Surface Regression 

of Table 4.1. Residuals satisfy the assumption on the normality of their distribution but, from 

their plot against the fitted value, it seems that there is some phenomenon not completely 

explained. The linear trend visible for fitted values minor than 2 (μm in this case) highlights 

some difficulty for the model in reproducing the asymptotic trend corresponding to very large 

samples. Some fluctuation can be noticed also in the plot of residuals against the observation 

order, however this is an effect of the progressive order in factors variation given that the runs 

were not randomized.  

The effects of different factors on measurement uncertainty are graphically illustrated in 

Figure 4.11. On a wider perspective, all verification operations represented by at least a 

turquoise colour in Figure 4.11 are good candidates for verifying the compliance of our 

flatness requirement. 

 

 



 Verification operators on simulated surfaces 

97 

 

Term Coef SE Coef T    P 
Grid 2.20513 0.33472 6.588 0.000*** 

d*d 0.20198 0.04739 4.262 0.000*** 

Grid*Grid -0.42869 0.05287 -8.109 0.000*** 

S = 0.579135 

R-Sq = 90.13%  R-Sq(pred) = 87.03%  R-Sq(adj) = 88.91% 

Table 4.1 - Significant terms in Quadratic Response Surface Regression of measurement 

uncertainty versus D, d, Grid and Association method. P-values less than 0.01 are marked 

with ***. 

 

Figure 4.10 - Residuals analysis for the Quadratic Response Surface Regression of 

measurement uncertainty. 

 

Figure 4.11 - Contour plot with the effect of different factors on measurement uncertainty. 
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4.6.2 Quadratic Response Surface Regression for method uncertainty 

The response surface of method uncertainty, presented in Table 4.2, has the same 

reliability of the response surface for measurement uncertainty. The association criterion 

becomes significant as it introduces a systematic overestimation if LS is used instead of MZ. 

Term Coef SE Coef T    P 
Constant -2.07548 0.95836 -2.166 0.033** 

Grid 2.62147 0.37471 6.996 0.000*** 

d*d 0.18397 0.05305 3.468 0.001*** 

Grid*Grid -0.49547 0.05918 -8.372 0.000*** 

D*ASS 0.19816 0.10959 1.808 0.073* 

S = 0.648323 

R-Sq = 90.01%  R-Sq(pred) = 86.84%  R-Sq(adj) = 88.78% 

Table 4.2 - Significant terms in Quadratic Response Surface Regression of method 

uncertainty versus D, d, Grid and Association method. P-values less than 0.10 are marked 

with *, less than 0.05 with **, less than 0.01 with ***. 

4.6.3 Quadratic Response Surface Regression for implementation uncertainty 

The response surface for implementation uncertainty presented in Table 4.3 is much more 

reliable than the analogous response surface calculated for the case study (Table 3.4). R-sq is 

now 83% about therefore the model is much more likely to correctly interpolate the 

experiment results. 

Term Coef SE Coef T    P 
Constant 0.872616 0.141431 6.170 0.000*** 

ASS 0.158755 0.067331 2.358 0.020** 

d*d 0.045735 0.007829 5.841 0.000*** 

d*ASS -0.099240 0.016172 -6.136 0.000*** 

S = 0.0956770 

R-Sq = 83.14%  R-Sq(pred) = 75.41%  R-Sq(adj) = 81.07% 

Table 4.3 - Significant terms in Quadratic Response Surface Regression of implementation 

uncertainty versus D, d, Grid and Association method. P-values less than 0.05 are marked 

with **, less than 0.01 with ***. 

4.7 Replication of verification operators 

For a virtual surface the form error is perfectly known as it is defined by the equation that 

defines the surface geometry. Measurement can be simulated according to §4.4, a completely 

inexpensive operation with respect to a real CMM sampling. Inexpensive simulated 

measurements can be used to estimate the uncertainty of verification operators through the 

Monte Carlo method: by simulating verification operators for a number of times large enough 

for doing statistical inference. Particularly, measurement simulation has been repeated 100 

times for each verification operator, and flatness error has been evaluated with both LS and 

MZ association criteria. Then, the flatness deviation and uncertainty of its evaluation have 

been defined, starting from the statistics of the 100 repetitions, as the average (4.2) and 

standard deviation (4.3) respectively. 
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The results of simulations are summarized in Table E.1, and briefly analysed through the 

aid of some pictures. With respect to MZ association criterion, Figure 4.12 compares the 

average result of the 100 real-instrument-based verification operators with the real flatness 

deviation (named true deviation) that would be measured performing the same operators with 

an ideal instrument. Both for the true and measured flatness deviation there is an asymptotic 

convergence. The distance between the two asymptotes represents the effect of sampling 

accuracy. All grids but Py show consistent results due to the fact that the virtual surface has 

been defined as a regression of the case study’s one, thus similar problems, even if with lower 

magnitude, affect Py grids.  

 

Figure 4.12 - Average of the 100 measurements of MZ flatness error (filled dots) compared 

with the true form error measured with the ideal instrument (unfilled dots). 

Figure 4.13 performs the same comparison just explained above, but for verification 

operators based on LS association. It is interesting to point out how small samples of nominal 

points end up with estimations of LS flatness deviation even higher than the asymptote. It is 

just a consequence of the orientation of the LS reference plane that, with few points, can be 

very unstable. However, both for the evaluation of true error and the estimation from 

simulated measurement, LS method leads to an overestimation with respect to MZ (Figure 

4.14). The overestimation is the same in both cases because it is a consequence of the 

evaluation algorithm only, and not of the measurement uncertainty that affects sampling 

points. 

Looking at Figure 4.14 it can be noticed also that the simulated estimations of flatness 

error (filled dots) plotted against the sample size resemble, for both association criteria, a 

cumulative Gaussian trend. This trend is absent for the true error detection. It clearly means 
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that it is an effect induced by sampling errors (which are defined as a Gaussian distributed 

phenomenon) whose effect is stressed by the number of points on which the average is based 

(the sample size multiplied by the 100 repetitions). Figure 4.15 provides a further clearer 

proof. 

 

Figure 4.13 - Average of the 100 measurements of LS flatness error (filled dots) compared 

with the true form error measured with the ideal instrument (unfilled dots). 

 

Figure 4.14 - Comparison of MZ and LS flatness deviation on both the nominal 

measurement points (unfilled dots) and simulated measurement datasets (filled dots). LS 

systematically overestimates. 

The difference between the true form error and the one estimated through simulated 

measurements has been plotted, in Figure 4.15, after normalizing with respect to the standard 

deviation of the Gaussian distribution used to simulate the instrument accuracy (σ = MPE/6 = 

4/6µm). This normalization is chosen in order to relate the uncertainty introduced by the 

instrument over the sampling of each measuring point, with the effect perceived (in terms of 

form error evaluation) after the application of an association criterion. Figure 4.14 already 

showed that with the increase of sample size, also the understanding of the actual surface 

geometry improves. However, Figure 4.15 shows that while the measurand knowledge 

improves, by measuring more points, a broader range of sampling errors is experienced. 
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These are processed by the association criterion and affect the evaluation result. Looking at 

the way sampling accuracy affects flatness estimation (Figure 4.15) it can be noticed that, 

towards the asymptote, the flatness error is overestimated, in average, of a quantity that is 

slightly minor than the instrument MPE (5/6 of it). The trend is the same for both association 

criteria, as it is a function of the number of points on which the average is based. 

 

Figure 4.15 - Deviation of estimated flatness error from the true one. Values are normalized 

with respect to MPE/6, the standard deviation of sampling error. 

Reasoning in terms of uncertainty of the whole flatness verification operator, Figure 4.16 

shows that it steadily decreases when sample size increases, following an hyperbolical trend: 

the knowledge of the feature geometry and of sampling errors population both improve. In 

particular, LS uncertainty is always slightly larger than MZ one because of the form error 

overestimation introduced by the LS itself. 

 

Figure 4.16 - Comparison of implementation uncertainty for MZ and LS based verification 

operators. MZ method systematically performs slightly better. 

According to the results presented in this section, the only difference between MZ and LS 

association criteria is in the overestimation introduced by LS. This difference apart and not 

taking into account the computation time, there is no element to distinguish different 

behaviours with respect to the measurement uncertainty affecting the sampling points. 
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The possibility to replicate measurements gives the opportunity to point out the 

uncertainty introduced by the measuring instrument during sampling, disregarding the 

uncertainty associated with the actual knowledge of the measurand surface (see Figure 4.17). 

Therefore, the reduction of the uncertainty caused by replications has to be interpreted as a 

better understanding of the measurement uncertainty affecting the sampling of measurement 

points. This better understanding is then translated into a higher form error estimation (with a 

lower standard deviation), as the effect of measurement uncertainty cannot be separated from 

the actual form error. Replication allows the reduction of the implementation uncertainty of 

verification operators relying on small samples (see Figure 4.18) however, if these are not 

compliant with specifications, it does not allow any improvement in the accomplishment of 

the designer intent. This objective can be reached only reducing method uncertainty: the 

divergence between the used verification operator and that intended by the designer (the 

perfect verification operator). 

4.8 Comparisons 

The main results of the experiments presented in this chapter have been resumed in Table 

4.4. Some comparisons have already been done during the analysis of each experiment, in 

order to fully understand the results, others will be presented in this section for the first time. 

Simulation 

Flatness error [μm] Implementation uncertainty [μm] 

MZ LS MZ LS Method 

Ideal 

instrument 
~11 ~11.5 

~0.001 ~0.1 Bootstrap 

~0.001 ~0.1 Analytic 

Real 

instrument 
~13.8 ~14.2 

~0.1 ~0.2 Bootstrap 

~1 ~1 Analytic 

100 

replications 
~14 ~14.5 ~0.3 ~0.4 σδ 

Table 4.4 - Resume of the results from simulations of verification operators. The values 

shown in this table are the asymptotic trends of each experiment. 

One of the first considerations that could be done looking at Table 4.4 is that MZ method 

always outperforms LS, from the point of view of the estimated form error but also from that 

of the estimation uncertainty (uIm). However, the values reported in Table 4.4 are referred to 

the asymptotic behaviours of different methods, and considerations valid in the asymptote 

area do not necessary apply equally near the origin.  

Simulations of verification operators based on the ideal instrument show that MZ and LS 

evaluations have different magnitudes of uncertainty. The effect, as explained in §4.3, is due 

to the different nature of the two methods. For extreme fit association criteria the uncertainty 

is associated only with the probability of getting extreme points corresponding, or very 

similar, to the actual extremes. Thus, if the surface is smooth, and the sampling uniform, 

uncertainty is very low. On the other hand, for statistical association criteria, the component 
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of uncertainty associated to the sampling of the actual extreme points, or to some more or less 

similar to them, is accompanied by a further uncertainty on the estimation of the method 

statistics (e.g. coefficients of the LS reference plane). The results obtained for the bootstrap 

estimation are confirmed also by the analytic estimation (see Table 4.4 and the detailed 

analysis in §4.3), suggesting that both methods deal in the same way with the uncertainty 

associated with the sampling density and the distribution of points over the measurand 

surface. 

The congruence between analytic evaluation and bootstrap method, which is valid for the 

ideal instrument, is lost if we suppose the verification process to be affected by some 

measurement uncertainty. With reference to the bootstrap assessment of LS implementation 

uncertainty, for the particular surface taken into account, there is a difference of 0.1 μm 

between the two measurements. Comparing the results with those obtained for the ideal 

instrument, it is possible to notice that measurement uncertainty (intended as the standard 

deviation of the measurement error affecting each sampling point: σ = MPE/6) has been 

largely propagated into the uncertainty of the evaluation result (uIm). Moreover, a form error 

much larger than the actual one has been measured. For very large samples, the effect of 

sampling errors results in an overestimation of the flatness error of 3 μm about. This is a 

consequence of the sample size only and of the phenomenon clearly explained in §4.6.2 and 

by Figure 4.15: an increase in sample size improves also the knowledge of the population of 

measurement errors. Therefore, increasing the number of points considered by the statistics, 

we expect to find out all the range of possible measurement errors: the instrument MPE. An 

asymptotic situation in this sense can be represented by the 100 replications of the verification 

operator. As a matter of fact, the central row of Table 4.4 (the results of the single simulation 

of verification operators based on a real instrument) is included between the two utopian 

verification processes: the one based on an ideal instrument and the other inexpensive that can 

be replicated a number of times large enough to allow a good statistical inference. In order to 

prove this last statement, the uncertainties of some more simulations of the verification 

operator have been plotted, for the LS method, together with the boundaries represented by 

the two utopian conditions (see Figure 4.17). The dispersion of results narrows with the 

increase of sample size, because the robustness of the estimation of standard deviation 

increases with sample size. On the other hand, a higher uncertainty can be observed for 

smaller samples (Figure 4.18) where the trend of uncertainty assessment on 100 replications 

becomes no longer representative of the implementation uncertainty associated with the single 

verification operator.  

Replication can be a useful tool to reduce implementation uncertainty, but it does not 

allow the reduction of method uncertainty that takes into account the divergence of the actual 

verification operator from the perfect one. Method uncertainty accounts for the effects of 

simplified sampling strategies (fewer points) or the use of association criteria different from 

requirements.  
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Figure 4.17 - The uncertainty of some verification operators based on a real instrument is 

compared against the two extreme conditions represented by an ideal instrument and the 

possibility to obtain 100 replications. 

 

Figure 4.18 - Zoom on Figure 4.17 to highlight that the possibility to replicate verification 

operators allows the reduction of uncertainty when the sample size is small (minor than 100 

points). 

Things are a little different if the analytic approach is used in order to assess the 

uncertainty of statistical methods (LS in this case). The analytic assessment agrees with the 

bootstrap method only for verification processes based on the ideal instrument (§4.3). When 

some error (uncertainty) is supposed for the sampling of measurement points, the analytic 

approach rapidly overestimates the actual uncertainty of the LS method (that assessed through 

the 100 replications). According to this study, the value estimated with 100 replications of the 

verification operator can be considered as the best estimation of the actual uncertainty of the 

LS method. At the same time, mainly for large sample sizes, this value is quite lower than the 

one obtained through the analytic computation. It seems clear that the analytical assessment is 

introducing some overestimation of the effect of the measurement errors occurring during 

sampling, over the stability of the LS reference plane. However, this approach, staying on the 

side of safety, is really likely to be preferred by most of practitioners. 



 Verification operators on simulated surfaces 

105 

 

4.9 Conclusions 

The set of experiments presented in this chapter allowed understanding the different 

results generated by the approaches available for the assessment of measurement uncertainty 

(analytical VS experimental) in cases where the measurement consists of a complex set of 

operations. One of the main results of this research regards the analytic assessment of the 

uncertainty of LS based verification operators; the most consolidated approach in literature 

and the only one to be justified by a theoretical formulation. This approach overestimates the 

propagation effect of the uncertainty affecting the sampling of measurement points. The terms 

of equation (4.1) dealing with the stability of the LS reference plane are proved to be effective 

by experimental analysis (§4.3) while the remaining terms, those entrusted to deal with the 

uncertainty associated with the selection of particular extreme points and with their 

measurement uncertainty, are proved to return a systematic overestimation (§4.6). The result 

is a function that usually reflects only the sample size and shows a lower sill determined by 

the uncertainty on measurement points only (a function of the instruments MPE); see Figure 

3.11 or Figure 4.9 for a graphical evidence and Appendix B for a thorough examination. 

On the other hand, experimental approaches are more representative of the whole 

measurement process but, mainly if based on bootstrap methodology and relying on a single 

measurement, are limited by the information collected with the verification operator at hand. 

If, as it happened for the case study (see Figure 3.21), the sampling strategy is not adequate to 

detect all the form error, the result can be an implementation uncertainty lower than expected 

and the illusion that the verification operator is very good. However, if this verification 

operator is different from the perfect verification operator, a very high method uncertainty 

will be associated. For this reason, if an analogous analytical method is available, it should be 

used in parallel to the experimental one and the results of the latter should be used only if 

more conservative. This could be a gold rule mainly for small samples: those with a size 

lower than the one corresponding to the knee in the trend of analytical estimation (few 

hundreds of points for the analyzed examples). 
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5 Encapsulating GPS for effective design and verification 

5.1 Introduction 

The aim of the GPS standards framework is to grant coherence to all the data generated in 

a product’s lifecycle in order to enable the information age industry to be more cost effective 

[1]. This aim is pursued through the definition of a new rigorous language, based on 

mathematics, that, relying on the concepts of operations, operators and uncertainties [2], 

enables the harmonization of information throughout a global scale manufacturing industry 

[3]. Such a language, completely based on mathematics, enables the information consistency 

but still needs to be encapsulated into an integrated information system to spread into 

industrial practice, as it often turns out to be too complicated to be used directly [4]. 

Among the different modelling techniques available at the state of the art, category-based 

design (named also categorical design) has been identified as the most promising [5]. It relies 

on Category Theory (CT), a branch of pure mathematics, stemming from algebraic topology, 

which has strongly influenced computer science enabling the modelling and study of 

relationships of complex systems in a compact and effective manner [6]. Some categorical 

data models have been proposed to manage surface roughness [5] and cylindricity 

specifications [7] but, until now, there has been no research offering a model able to cope 

with uncertainty and cost evaluations.  

This chapter presents a novel categorical model able to manage the processes of 

specification and verification of a flatness tolerance and able to evaluate the uncertainty and 

cost of the whole verification process. Two different scenarios have been identified for 

dealing with uncertainty estimation: one based on an experimental model, which can be built 

ad hoc or based on information available from the literature, and another based on the 

definition of a “verification master” to be used as benchmark for simplified verification 

operations. The details are discussed in §5.3. 

A software demonstrator has then been developed (§5.6) translating the categorical data 

model for flatness verification into an object-oriented programming language [8]. This 

software is able to translate specification requirements into verification instructions, estimate 

the uncertainty introduced by simplified verification operations and evaluate costs and risks of 

verification operations. It provides an important tool for designers, as it allows a responsible 

definition of specifications (designer can simulate the interpretation of specifications and have 

an idea of the costs related with their verification), and for metrologists, as it can be a guide 

for designing GPS compliant verification missions or handling the usual verification 

procedures according to the GPS standards. 
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5.2 Category theory 

CT is a basic conceptual and notational framework, as is set theory or graph theory, 

though it results in more abstract constructions. It is an abstract way to handle mathematical 

structures and the relationships between them, a high-level language focusing on how things 

behave rather than on their internal details [6], thus it is particularly suitable to model real-

world objects and to grasp their internal links at any level of complexity. Since its first 

introduction in 1945 CT has been in continuous development and in the last decades, thanks 

to its sound mathematical bases, has provided important applications for algebra, computer 

sciences, and database design and management [9].  

As a mathematical formalism, CT is essentially graphical in nature: its two fundamental 

concepts are arrows and internal objects. The classical example is that of Figure 5.1, where 

category P consists of three internal objects A, B and C together with arrows f, g, the 

associated arrow h = g ◦ f and the identity arrows IA, IB and IC. Composition operator on 

arrows f and g satisfies cod(f) = dom(g) and so the associated arrow h = g ◦ f : dom(f) → 

cod(g).  

P: CBA
f g

IA ICIB

h

f: A B g: B C h: A C
 

Figure 5.1 - Example of a category P. 

Thanks to various constructs (functors, pullbacks, natural transforms etc.) CT can easily 

describe complex structures, including also modelling hierarchies of categories of categories. 

Among these constructs, pullbacks will be briefly introduced, which will be used in this work 

mainly to model relationships [5]. A pullback of the pair of arrows f : A → C and g : B → C 

is a triple P, ,g f , where P is an object and g’ : P → A and f’ : P → B are two arrows such 

that f ◦g’ = g ◦ f’ (see Figure 5.2). If i : X → A and j : X → B are such that f ◦ i = g ◦ j then 

there is a unique k : X → A such that i =g’ ◦ k and j = f’ ◦ k. In this situation f’ is said to be a 

pullback of f along g and that g’ is a pullback of g along f [6].  

P B

CA
f

gg’

f’

X
k

 

Figure 5.2 - Pullback scheme [6]. 
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5.3 Scenarios of verification 

One of the main aims of this work is to introduce an approach for estimating the 

uncertainty of the verification processes with respect to the design specification. The approach 

is presented and detailed for a flatness requirement; nevertheless it has general validity and 

can be applied to the assessment of any geometrical tolerance.  

For several reasons, in practice, verification operations are often performed with 

important deviations from the perfect verification operator. The equipment available in 

metrology laboratories and the sampling strategies adopted are often the result of a 

compromise between the company needs for flexibility and the actual verification 

requirements. The instrument accuracy can be inadequate or the time required for a sampling 

compliant with the perfect verification operator can be too long if performed with the 

instruments available. Hence, simplified sampling strategies are adopted.  

Anyway, despite the nature of the used verification operator, the acceptance rule 

introduced by ISO 14253-1 requires the estimation of the uncertainty related with the form 

error assessment, in order to compare the verification result with the specification limits. The 

uncertainty to be used when dealing with form error evaluations is the compliance 

uncertainty, which contains the effects of the actual verification operator, the measurement 

instrument accuracy, the deviations from the perfect specification operator and the eventual 

ambiguities caused by a non-clear specification. If the specification is fully adequate to 

guarantee the workpiece functional requirements, then the correlation uncertainty is null and 

the compliance uncertainty becomes synonymous with the total uncertainty. 

Two different approaches have been formalized to estimate the uncertainty of form error 

evaluation in each of the two main scenarios occurring in metrology laboratories. The two 

scenarios correspond to the serial inspection of mass productions and the work of small 

flexible metrology laboratories. Both will be detailed in §5.3.1 and §5.3.2 respectively. 

5.3.1 Scenario 1: serial inspection of mass productions 

This scenario usually corresponds to the manufacturing of high precision components 

that, it is particularly common in the aerospace field, demand for the verification of every 

workpiece. This scenario can justify the use of the perfect verification operator on a few 

workpieces, to make sure that the manufacturing process (and obviously also the verification 

process used for checking the compliance with specifications) is under control, but not on all 

production workpieces.  

If the perfect verification operators (over a set of workpieces randomly sampled from the 

whole of production) show a stable average value together with a contained variability and 

uncertainty, then verification processes with a higher degree of uncertainty can be used while 

being confident to be able to assess the correct workpiece compliance. The grey zone of the 

acceptance test can be enlarged [10] until there is still confidence that compliant workpieces 

are not discarded.  
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In this case, a reference error value  can be defined as the average of all the estimations 

performed with the perfect operator and the stability of both the manufacturing and 

verification process is well represented by the standard deviation  of these estimations. 

The majority of production can then be inspected with a simplified verification operator 

(based on a small number of sampling points) and the method uncertainty ‘uMt’ can be 

defined, according to (5.1); where δj is the error estimated with the actual verification operator 

[11]. 

 Mt ju  (5.1) 

Compliance uncertainty (that in case of complete specifications is equal to the 

measurement uncertainty ‘uM’) can then be estimated, adding (in the sense of the word 

according to GUM [12]) the implementation uncertainty for the verification operator at hand 

‘uI’ to the method uncertainty: 

 2 2
C M Mt Iu u u +u  (5.2) 

The different methods available for the evaluation of implementation uncertainty, 

according to the association criterion selected, are those presented and analysed in §3.5 and 

§3.6. Note that this kind of approach will never generate a rejection, according to ISO 14253-

1, because, at the first instance, a deviation from the expected form error is attributed to the 

uncertainty of the verification process (it is accounted as method uncertainty) enlarging the 

grey zone of acceptance test (Figure 5.3). In the worst case, the error evaluation result will fall 

in the grey zone and it will not be possible to complete the acceptance test with the actual 

verification operator. Metrologists should improve the verification process until uI is small 

enough or until, after the implementation of the perfect verification operator, the workpiece is 

proved to be not acceptable.  

Particularly, Figure 5.3-b shows the case of a workpiece whose flatness deviation δj is 

within the specification limits but is far enough from the reference error to generate a grey 

zone that prevents a reliable decision (the grey zone includes the specification limit). In this 

case, the rejection is caused by method uncertainty mainly and the only way to decide if the 

workpiece is actually compliant is to use a perfect verification operator. By doing so, the 

method uncertainty is eliminated by definition, the workpiece can be considered regardless 

the verification master, and any difference between δj and  is interpreted as an actual 

difference of the feature shape. A similar circumstance occurs in Figure 5.3-c where the 

measurement result δj is outside the specification limits. However at a first instance the 

responsibility of this result is attributed to the actual verification operator (therefore accounted 

as method uncertainty) because, by hypothesis, the manufacturing process is under control. 

This kind of situation is an alarm signal about the stability of the verification or 

manufacturing process. However, neither the former nor the latter can be blamed without a 
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wise investigation. The responsible for quality insurance shall consider the actual 

manufacturing and verification process and address investigation towards a perfect 

verification operator (combined with a recalibration of the instrument) or towards a control of 

the process parameters. The former avoids any doubt that the problem may be related with the 

verification phase while the latter verifies if the manufacturing process is actually under 

control. 

 

Figure 5.3 – In the “serial inspection of mass productions” scenario, non-compliance cannot 

be assessed unless a perfect verification operator is used (uMt = 0). Otherwise, any deviation 

from the reference value is interpreted, at a first instance, as a bias of the simplified 

verification operator (as method uncertainty). 

5.3.2 Scenario 2: small flexible verification laboratories 

The second scenario occurs frequently in metrology laboratories where CMMs are usually 

deployed in order to guarantee the necessary level of flexibility and accuracy. In these 

circumstances, the GPS perfect verification would result in a sampling strategy that is too 

expensive and there is no way to estimate the uncertainty introduced by the eventual 

simplification in a direct way.  

In this case, the idea is to use a Design of Experiment (DoE) based approach to 

extrapolate the mathematical model behind the uncertainties associated with a certain 
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verification operator (sampling grid, sampling distance, profiles spacing, association criterion) 

applied to a certain type of feature (e.g. flatness feature of a workpiece of a given material 

obtained with a given manufacturing process). Namely the Surface Response Regressions 

obtained in §3.10, if we want to contextualize to this thesis. 

The validity of this model is limited to the range of verification variables actually 

explored by the experiments but extends to any feature belonging to the same class in terms of 

material, size and manufacturing process [13]. For each class the inspection of several 

workpieces is required, in order to calibrate the model. These inspections should be performed 

with a perfect verification operator and possibly with an instrument whose maximum 

permissible error (MPE) is negligible with respect to the error to be detected. In this way all 

the simplified verification operators can be simulated from the complete measurement dataset 

decimating measurement points as would happen with simplified verifications (the same 

approach used in §3.4). The final aim is to allow a reasonable estimation of measurement 

uncertainty (therefore of compliance uncertainty if the specification is complete) even in the 

preliminary phases of the verification design.  

The uncertainty introduced by the extraction operation and association criterion, 

regardless of the accuracy of the instrument actually used, is the combination of method 

uncertainty (the effect of the extraction grid) together with the component of implementation 

uncertainty due to the association criterion. Therefore, this term of uncertainty is named 

method and implementation uncertainty ‘uMt&I’ and is defined according to (5.3), where f 

represents the regression function of the experimental model. 

 & ,Mt I para parau f Spec Verif  (5.3) 

To obtain the compliance uncertainty (in case of complete specification it is equal to the 

measurement uncertainty) the accuracy of the measuring equipment has still to be taken into 

account. Under the hypothesis of Gaussian distribution of errors, it can be roughly considered 

as the sixth part of the instrument MPE; see (5.4). 

 
2

2
& 6C M Mt I

MPEu u u  (5.4) 

5.4 Model for cost management 

A cost model is built to assess the effect of verification parameters on budgeting. 

Verification cost ‘CV’ obviously depends on the time taken by probing or scanning a surface 

‘g1(PtNr)’ (thus on the inspection instrument in use and on its depreciation) and on time 

required for data elaboration ‘g2(ElabTime)’. The latter is often directly related to the amount of 

measurement data to be treated, thus to the number of points. 

 1 2g gV Nr TimeC Pt Elab  (5.5) 
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Further, the total cost related to the complete inspection plan of a workpiece ‘CTOT’ 

should take into account also the cost related to the possibility of accepting a non-compliant 

workpiece (and vice versa):  

 hTOT VC C u  (5.6) 

The cost function ‘h(u)’ calculates the Expected Cost of an Error (ECE) [14] simply relating 

the uncertainty of the verification process to the cost, to the company, of having workpieces 

discarded or undergoing disputes if they deliver a non compliant one. The coefficients of 

functions g1, g2 and h, in equations (5.5) and (5.6), have to be properly defined by each 

company according to the instruments available, the value added on the workpiece through 

manufacturing operations and the general internal economic policies.  

5.5 The categorical data model to manage flatness verification 

Traditionally specification and verification environments communicate by means of 

official technical documents (drawings) in which the information necessary for the correct 

manufacture and verification of every feature are reported in a standard language. The 

drawing callout is entrusted to carry this information through manufacturing facilities 

operating on a global scale, thus it will be the bridge between specification and verification 

environments also in the categorical data model proposed in this work (Figure 5.4). In 

particular, the specification category model produces a flatness callout that becomes the input 

for the verification category model. Without taking into account the interfaces for 

specification or verification design, according to the duality principle [15, 16], the data model 

defining both flatness operators is the same.  

 

Figure 5.4 - High level scheme of the categorical data model: specification and verification 

operators share the same data structure but communicate only by means of the drawing 

callout. 
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Only the data model for the verification operator is presented in this work, as it carries the 

novelty of an engine enabling the management of uncertainty and verification costs. Every 

operation in the verification operator (partition, extraction, filtration, association and 

evaluation) corresponds to a class in the categorical model. Further classes are added to deal 

with the operations of uncertainty estimation and cost evaluation, in order to manage the 

input/output interfaces, define databases and characterize particular pieces of information (e.g. 

set of measurement points, filtered points, verification master, etc.). Each class is represented 

by a rectangular box and is named after the operation it represents.  

5.5.1 Classification of flatness features 

For the purpose of this work flatness characteristics have been classified in two different 

families according to the presence or absence of revolute symmetry. As a matter of fact, in 

many cases the presence of revolute symmetry endorses manufacturing processes with 

circular tool paths. On the other hand, the flatness feature should be measured with a sampling 

grid suitable to detect the signature eventually left by the manufacturing process. Therefore, it 

is clear that polar grids is more likely to be suitable for inspecting flatness features with 

revolute symmetry rather than features that do not present this symmetry. However, if the 

metrologist is aware of the manufacturing process undergone by the workpiece, the choice of 

the sampling grid should be tailored on that, rather than on a mere consideration of symmetry 

[17].  

In this work, in order to deal with flatness features that do not have any particular 

symmetry, the smallest circumscribed rectangle is taken into account (Figure 5.5). In this way 

we are able to identify two characteristic dimensions: a Long and a Short one.  

 

Figure 5.5 - Approximation and characteristic dimensions of a flatness surface that does not 

present rotational symmetry. 

On the other hand, if the flatness feature presents revolute symmetry, it can be easily 

approximated by means of inscribed and circumscribed circles (Figure 5.6). In this way the 

characteristic dimensions are the radii “r” and “R” of the inscribed and circumscribed circle 

respectively. 
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Figure 5.6 - Approximation and characteristic dimensions of flatness features presenting 

revolute symmetry. 

5.5.2 Input collection and partition operation 

With reference to Figure 5.7, an input class (VI) whose elements represent the main 

interfaces of the developed software activates the categorical model. In particular the element 

‘Tolerance_callout’ is defined as a category itself, to keep the consistency of the information 

it carries, and its element ‘Feature’ is defined as a further category which substitutes the 

partition operator, that has not been completely defined by GPS standards yet. All the 

elements in categories VI, TC and Fe correspond to data to be provided by the software user 

through an interface (§5.6). However, with a further integration into PLM packages, user’s 

inputs could be easily substituted by internal interfaces among CAD and metrology software.  

 

Figure 5.7 - The categorical data model for flatness verification: input collection and 

partition operation. 

The information collected by the input categories is reallocated through inheritance 

relationships, when possible (see arrows named i1 to i8), or directly used in pullbacks. Such a 

structure of input categories is suitable for any type of geometrical feature, not only flatness, 

therefore pullback 1 (the dashed arrow in Figure 5.7) has the function to start the right 

verification management model according to the tolerance symbol reported in the drawing 

callout. The system associates to each symbol the right specification type, according to the 
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main international standards [14, 18, 19]; the corresponding categorical model (in our case the 

flatness data model) is then activated. 

5.5.3 Extraction 

Extraction is the operation used to identify the coordinates of a finite number of points of 

the real workpiece surface in order to evaluate its compliance with specifications [15]. This 

operation is characterized both by the instrument and by the sampling strategy adopted, thus 

two different categories are identified to represent it (see Figure 5.8): category ‘Instrument’ 

contains all the information regarding the instrument at hand, while category ‘Sampling’ 

manages all the details about the implemented sampling strategy.  

In particular category ‘Instrument’ is strongly characterized by its element ‘Instr_type’, 

which classifies measuring instruments in 5 different families and conditions the choices of 

sampling strategies; see Table 5.1 for a schematic representation of the sampling parameters 

required by each instrument type (‘Instr_type’). With respect to category ‘Sampling’ the key 

parameters used to define the sampling strategy are the same used to define the Design of 

Experiment in §3.4 (see Table 3.2). Particularly parameter D is represented by the element 

‘D_profiles_spacing’, d by ‘d_profile_spacing’ and Grid by ‘Sampling_strategy’. 

The different pullbacks of the extraction operator (Figure 5.8 and Figure 5.9) are briefly 

explained in cases where the flatness feature does not show rotational symmetry. The actual 

feature is approximated with the smallest circumscribed rectangle in order to simplify the 

calculations and to define a simple reference system consisting of the directions of two 

adjacent edges named, after their length, as long edge and short edge (see Figure 3.5). 

• Pullback 2 -  A first selection among the sampling grids offered by standards [17] can 

be performed according to the feature invariance class ‘DOF’ and to the presence of 

particular ‘Symmetries’; e.g. a flatness feature with rotational symmetry endorses the use 

of a polar grid. 

• Pullback 3 -  In case where there is no rotational symmetry, several grids are available 

(rectangular, parallel profiles, Union Jack) and if some particular form deviation is 

expected, due to manufacturing processes or other information, the most adequate grid to 

detect this form deviation has to be selected [17]. 

• Pullback 4 -  According to ISO/TS 12780-2 [20] the maximum sampling space 

‘Samp_space’ can be calculated by dividing the lower cut-off wavelength 

‘Lower_wavelength’ (λc) by the number of cut-offs ‘Num_cutoff’. In particular 

Num_cutoff ≥ 7 to avoid aliasing [20]. 

• Pullback 5 -  If the type of instrument chosen for measurement requires a stylus to 

probe the surface, the stylus tip radius has to be selected according to λc. Table 1 in [20] 

provides the maximum values of stylus tip radii with respect to the λc of specification. If 

radii larger than recommended are used, the measurement is biased by an undesired 

morphological filtration. 
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Instrument type D d Grid 

Optical surface acquisition X X X 

Continuous contact profile scanning V X V 

Contact trigger inspection V V V 

Continuous non-contact profile scanning V X V 

Non-contact trigger inspection V V V 

Table 5.1 - Sampling parameters required by each instrument type. Required parameters are 

checked with a V, non required ones with a X. 

 

Figure 5.8 - The categorical data model for extraction operations. 

 

Figure 5.9 - The categorical data model for characterizing the sampling effort. 
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• Pullback 6 -  According to the inspection instrument at hand (‘Instr_name’ and 

‘Instr_type’) and to cost considerations (‘Others’ in category ‘Verif INPUT’) it is 

possible to define a sampling distance along the straightness profiles 

‘d_Profiles_spacing’ different from that required by the cut-off wavelength. Sampling 

can be denser, in order to have the oversampling required to perform a good filtration, or 

coarser if cost is too sensitive to the sampling operations. 

• Pullback 7 -  User can set a distance between straightness profiles ‘D_Profiles_spacing’ 

larger than the one compliant with standards, according to the same cost considerations 

driving pullback 6.  

• Pullback 8 -  The number of points ‘L_Num_point’ used to sample straightness profiles 

parallel to the long edge must be an integer value. It can be calculated taking into account 

the length of the long edge ‘Length_max’, the probe tip radius ‘Tip_radius’, a safety 

distance from feature edges ‘Safety_dist’ (where the stylus could collide with other 

adjacent surfaces), and the sampling space ‘Samp_space’ according to the following 

equation:  

 
2

floor
Length_max Tip_radius Safety_dist

L_Num_point
d_Profile_spacing

 (5.7) 

• Pullback 9 -  The length of the straightness profile sampled along the long edge 

direction is slightly shorter than the feature actual length (‘Length_max’) due to 

pullbacks 6 and 8. Thus the actually sampled length ‘Long_Samp_length’ is: 

 Long_Samp_length L_num_point d_Profile_Spacing  (5.8) 

• Pullback 10 -  The same considerations of pullback 8 apply also along the short edge 

direction and a similar equation can be used to calculate the number of points 

‘S_Num_point’ used to sample these straightness profiles: 

 
2

floor
Length_min Tip_radius Safety_dist

S_Num_point
d_Profile_spacing

 (5.9) 

• Pullback 11 -  Similarly to pullback 9, the length actually sampled along the short edge 

direction ‘Short_Samp_length’ can be calculated as: 

 Short_Samp_length S_num_point d_Profile_Spacing  (5.10) 

• Pullback 12 -  The number of profiles parallel to the long edge ‘Nr_L_profile’ is 

calculated, starting from the profile spacing ‘D_Profiles_spacing’ and the length of the 

orthogonal profile ‘Short_Samp_Length’, according to the following equation: 

 
Short_Samp_length

Nr_L_profile
D_Profiles_spacing

 (5.11) 

• Pullback 13 -  The number of profiles parallel to the short edge ‘Nr_S_profile’ can be 

calculated with an equation similar to (5.11), namely: 
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Long_Samp_length

Nr_S_profile
D_Profiles_spacing

 (5.12) 

• Pullback 14 -  The total length of straightness profiles extracted from the flatness surface 

‘Length_TOT’ can be calculated according to the following equation: 

 _Lenght ToT Nr_L_profile Long_Samp_length Nr_S_profile Short_Samp_length  (5.13) 

• Pullback 15 -  The total number of points to be inspected by instruments in trigger 

inspection mode ‘Nr_point_TOT’ can be determined, considering the total length of 

inspected profiles ‘Length_TOT’ and the sampling distance along profiles 

‘d_Profile_spacing’, as: 

 
Length_TOT

Nr_point_TOT
d_Profile_spacing

 (5.14) 

5.5.4 Filtration, association and evaluation 

Association is the operation used to fit ideal features to real measurement data by means 

of different criteria [15]. The ideal feature obtained is then used as a reference for the 

evaluation of the real feature deviations. Different association criteria are available for each 

type of geometrical feature, allowing the definition of different reference planes and the 

estimation of slightly different geometrical errors. The categorical data model to manage these 

operations is presented in Figure 5.10 and its pullbacks are briefly explained below.  

 

Figure 5.10 - The categorical data model for filtration, association and evaluation operations. 

• Pullback 16 -  According to the selected filter ‘Filt_name’ and lower cut-off wavelength 

‘Lower_wavelength’ the set of measurement points ‘Sampled_points’ is filtered and the 

resulting dataset stored in the variable ‘Filtered_points’. 

• Pullback 17 -  The association criterion equation (represented by a set of parameters and 

an objective function) is selected from a database according to the association criterion 

specified in the flatness callout or alternatively as required by the user. According to 

ISO/TS 12781-1, different flatness parameters can be calculated if LS association 

criterion is selected. Therefore, according to the scheme of Table 5.2, a total of 5 

different form error estimations could be performed. 
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ASSOCIATION 

PARAMETERS 

FLTt FLTp FLTv FLTq 
Peak to 

valley 

Peak to 

reference 

Valley to 

reference 

Root mean 

square 

MZPL  
(Minimum Zone reference planes) 

V    

LSPL  
(Least Square reference plane) 

V V V V 

Table 5.2 - Parameters for flatness assessment according to different association criteria. 

• Pullback 18 -  The equation implementing the selected association criterion is then 

applied to the set of filtered measurement points returning the form error estimation. 

5.5.5 Uncertainty management 

The categorical data model implementing the two approaches for uncertainty 

management, presented in §5.3, is shown in Figure 5.11. Pullbacks 19, 20 and 21 deal with 

the scenario of serial verification of mass productions by implementing the uncertainty 

estimation approach based on the availability of a verification master (§5.3.1). On the other 

hand, pullbacks 22, 23 and 24 handle the scenario of small flexible metrology laboratories by 

estimating the uncertainty with a DoE based approach (§5.3.2). 

• Pullback 19 -  Implementation uncertainty ‘u_I’ is estimated for the verification operator 

at hand, using the dataset of filtered points or the parameters of error evaluation. It 

depends on whether an analytic or experimental method is chosen for the estimation of 

uncertainty. 

• Pullback 20 -  Method uncertainty is determined, according to (5.1), as the difference 

between the flatness error estimated with the simplified verification operator 

‘Meas_value’ and the reference value ‘Average_ref_error’. 

• Pullback 21 -  In case of complete specification there is no specification uncertainty and 

compliance uncertainty is equal to measurement uncertainty. Compliance uncertainty can 

then be estimated as the sum, according to equation (5.2), of method and implementation 

uncertainties. 

• Pullback 22 -  A regression model is searched into the database (‘Flatness DB’) 

according to the geometrical characteristics of the flatness feature (data from category 

Fe) and to other information used to classify regression models and establish their 

validity domain (manufacturing process, workpiece material and others from category 

VI). 

• Pullback 23 -  If a suitable regression model is found, the uncertainty of the verification 

operator at hand ‘u_Mt&I’ can be estimated starting from the parameters which describe 

the verification operator. Obviously, all the regression models stored in the database have 

to be defined according to a common and consistent representation of the verification 

parameters. This is particularly important for qualitative parameters, such as association 
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criteria and sampling grids, which are represented in the regression model by integer 

numbers: e.g. LS method shall be always identified by 1, MZ by 2, etc.. 

• Pullback 24 -  This pullback finally estimates the compliance uncertainty (synonymous 

of measurement uncertainty when specification is complete) by adding the instrument 

accuracy ‘Accuracy’ (that is the measurement uncertainty introduced for the sampling of 

each measurement point) to the uncertainty embedded in the sampling strategy and 

association criterion: ‘u_Mt&I’. The two uncertainty terms are composed according to 

(5.4). 

Given that compliance uncertainty is able to represent all the deviations (intentional and 

non) of the actual verification operator from the perfect one compliant with specification, it 

can be used to accompany the estimated form error and to enable the acceptance decision rule: 

inheritance relationship i9 in Figure 5.11. 

 

Figure 5.11 - The categorical data model for uncertainty management. 

5.5.6 Cost management 

The model for cost management presented in §5.4 is now implemented in the categorical 

data model shown in Figure 5.12 and Figure 5.13. Pullback 25 selects the model for the 

evaluation of sampling cost corresponding to the instrument in use while pullbacks 26, 27 and 

28 prepare the model variables ‘SC_f_var’, consisting of times, according to the typology of 

instrument. The pullbacks modelling the cost management are briefly explained below: 
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• Pullback 25 -  An adequate cost function is loaded according to the instrument in use 

‘Instr_name’ and to the typology of measurement it performs ‘Instr_type’. For each 

instrument, the cost function is defined as a set of coefficients ‘SC_f_coeff’ to be 

combined with measurement variables to be expressed in the form of times. 

• Pullback 26 -  In cases of optical instruments, the sampling time depends on the number 

of shots (measurements) required to cover the entire flatness surface, thus it is directly 

related to the flatness feature extension, as shown in the following equation: 

 
2 [mm ]

Long_Samp_length Short_Samp_length
SC_var

Spatial_range
 (5.15) 

• Pullback 27 -  In cases of instruments capable of continuous profiles scanning the 

sampling time is given by the total length to be inspected ‘Length_TOT’ divided by the 

measurement speed ‘Measur_speed’: 

 
 [mm/s]

Length_TOT
SC_var

Measur_speed
 (5.16) 

• Pullback 28 -  In cases of instruments performing profiles extractions with a trigger 

measurement, in a first approximation, the sampling time is given by the time necessary 

to extract the points plus the time for positioning the probe along the measurement path: 

 
 [points/s]  [mm/s]

Nr_point_TOT Length_TOT
SC_var

Measr_speed Mov_speed
 (5.17) 

• Pullback 29 -  Once the cost function has been selected and the cost variable has been 

conveniently prepared it is possible to calculate the cost related to sampling ‘Samp_cost’ 

according to function g1.  

• Pullback 30 -  Elaboration cost depends on the time spent for data analysis, mainly on 

computation time for filtration operations and on that required by the algorithm 

implementing the association criterion (‘Other’ in category VI); thus it is roughly 

proportional to the total number of points ‘Nr_point_TOT’. 

• Pullback 31 -  The ECE is calculated according to the probability that an evaluation error 

occurs (‘Tot_uncertainty’ of verification operator) and function h(u). This function has to 

be tailored on the economic policy of each company and on the actual value of each 

manufactured workpiece (‘Other’ in category VI). 

• Pullback 32 -  Finally, the overall cost of verification operator is calculated by adding up 

all cost contributions. 
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Figure 5.12 - The categorical data model for cost evaluation and comparison, part I. 

 

Figure 5.13 - The categorical data model for cost evaluation and comparison, part II. 

5.5.7 Comparison 

The operation of comparison implements the acceptance rule, provided by GPS standards 

[10], consisting of a comparison of the geometrical deviation assessed on the workpiece (in 

terms of estimated form error and related uncertainty) against drawing specifications. The 

categorical data model for this operation is represented by pullback 33 in Figure 5.14. This is 

the last operation for the verification operator and the categorical model too; then all the 

results are stored in the verification output class (VO) through inheritance relationships i10, 

i11, i12 and i13. Outputs collected in VO class are then graphically displayed to the user 

(through the interface shown in Figure 5.18). 
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Figure 5.14 - Acceptance test according to ISO/TS 14253-1 and storage of results in output 

category. 

5.6 The categorical software for flatness management 

The novel categorical data model presented in §5.5 has its most innovative points in the 

capability to deal with verification operators providing an estimation of uncertainties and 

costs at stake. This capability has been used to design a software that enables also the less 

experienced metrologists to perform the verification of flatness tolerances exploiting, in the 

most effective way, the new concepts offered by GPS standards. Up to now, the software has 

been developed for flatness tolerance only because this was the categorical data model 

available (§5.5). However, both the approach used to define the data model of flatness 

verification, and that used to derive a software from it, have a general validity and can be 

developed, similarly, for any geometrical tolerance. 

Furthermore, implementing the flatness data model into a software enables a responsible 

definition of geometrical specifications. Designers could (and should) use the software to 

simulate the perfect verification operator associated with the specifications they are going to 

set. They would get a valuable perspective about the uncertainties and costs associated with 

each specification, being therefore able to combine functional and cost considerations for the 

choice of the optimal specification. 

Categorical data models find a natural software implementation in objected oriented 

programming languages [8]. As a matter of fact, the concepts of category and arrow, easily 

match with those of class and method, on which objected oriented languages are founded [8]. 

The categorical data model has been developed between an input and an output category, in 

which are concentrated the interactions with metrologists. The former, in particular, has been 

divided in 3 sequential interfaces that conceptually reproduce the development of a 

verification process and correspond to: specification operator (Figure 5.15), definition of the 

actual verification operator (Figure 5.16) and selection of the scenario in which the 

verification is performed (Figure 5.17) respectively. 
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Figure 5.15 - Interface for defining the specification operator. The information required is 

contained in the part drawing: dimensions and geometrical tolerance callout that define the 

feature to be measured. 

The interface for defining the complete specification operator (Figure 5.15) could be 

easily eliminated by integrating this software into a broader PLM package. As a matter of 

fact, the only purpose of this interface is to inform the system about the specification that is 

under verification. According to GPS standards, all the information necessary to completely 

define the specification operator must be reported in the drawing callout: thus, it shall be 

contained into the product CAD model also. Therefore, if this software is integrated aside a 

CAD system, all the information collected with this interface could be acquired automatically 

from the feature definition inside the CAD model. For example, a click on the feature to be 

verified could be enough in order to inform the software about the feature specifications. 

The second input interface, Figure 5.16, is devoted to the definition of the actual 

verification operator. Two different parts can be identified: the first one collects the 

information about the measuring instrument (type of instrument and its name, probe 

characteristics) and the operational parameters we are going to set for the measurement (speed 

during positioning movements and measurement speed); the second one specifies the 

sampling strategy to be followed. In particular, once a grid has been chosen, the user can 

select sampling parameters compliant with GPS standards (D and d), or can customize in 

order to reduce sampling time and costs. In the first case, the software proposes the maximum 

sampling distances allowed by standards with respect to the flatness specification (Table 1 in 

ISO/TS 12780-2). 
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The third input interface, Figure 5.17, is used to define the scenario in which verification 

is performed. The definition of scenario passes through the selection of the approach to be 

used for estimating the uncertainty of the whole verification process: a different method is 

associated to each scenario. If the “DoE based approach” is selected it means that scenario 2 

occurs (§5.3.2) and the software uses the specification operator, the sampling strategy defined 

for the actual verification operator and some additional inputs about the workpiece material 

and typology of manufacturing process, in order to search for a suitable regression model in 

the knowledge database. If a suitable model is found the user can select and use it, otherwise a 

new section is activated for refinement of search parameters or in order to add a new 

regression model to the database. If user ticks the option “verification master available”, he is 

specifying a scenario 1 verification (§5.3.1) and will be asked to insert the verification master 

data (reference flatness error and its standard deviation) together with the output of the actual 

verification  operator: the flatness deviation with the relative implementation uncertainty. 

 

Figure 5.16 - Input interface for defining the actual verification operator: instrument 

selection, definition of sampling grid and of measuring parameters. 
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Figure 5.17 - The scenario in which verification is performed is selected through the choice 

of the approach to be used for uncertainty estimation. 

Finally, once the verification operator has been completed and its uncertainty has been 

evaluated, it is possible to check the conformance of the workpiece geometry against 

specifications, according to the GPS acceptance rule [10]. The output of the verification 

process is displayed beside a traffic light which graphically represents the acceptance test 

result. A green light means that the feature is compliant with specification while a red one that 

it is not. A yellow light means that neither conformance nor non-conformance can be proved 

over any doubt (ambiguous result). These kind of situations could be avoided reducing the 

uncertainty of the measurement process, however if it is not possible, the uncertainty always 

counts against the part that is providing the proof of conformance [10], thus if you are a 

customer you cannot reject the part and if you are a supplier you cannot state its compliance. 
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Figure 5.18 - Output interface collecting the results of verification process in term of flatness 

deviation and uncertainty of the estimation, the assessment of compliance with respect to 

specification and the evaluation of verification costs. 

5.7 Conclusions 

This categorical data model and the derived software represent the first application 

capable to implement the GPS approach for production management that is able to handle 

uncertainty from an economic point of view. 

The software developed on the categorical model presented in this thesis allows an 

effective management of the verification processes. All process parameters are considered and 

managed according to GPS standards enabling metrologists to have a quantitative idea of the 

costs and uncertainties that are related with a certain verification operator.  

The power of this software increases if the user invests in constructing a good database of 

experimental models and exploits the predictive nature of the DoE-based approach. In this 

case, metrologists would be able to simulate different verification scenarios and choose the 

best one based on rational considerations; while, on the other hand, designers could use the 

same scenario simulation to improve their awareness about the effects of a certain 

specification when the workpiece comes to be verified. 

Further work is required to improve the software interfaces. With the integration into a 

PLM platform, many parameters could be directly imported from other softwares that manage 

design or verification instruments and procedures. 
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6 Adaptive verification strategies 

6.1 Introduction 

In the previous chapters the main effects of ISO-GPS standards on the use of CMMs for 

verification of form features have been explored. CMMs introduce a new philosophy in form 

error assessment, but open a large number of issues still far to be solved. In order to achieve 

the highest generality, the new ISO standards regard measurement issues as related to the 

filtration of information from an unknown source, the feature, following an approach inspired 

by signal processing theory.  

With respect to flatness tolerance, the flatness feature is regarded as the composition of 

several straightness profiles measured in the same reference frame [1]. This interpretation is 

consistent with the traditional verification approach suggested by ISO and ASME standards 

for verification by means of dial gauges [2-4]. Particularly, for GPS standards the straightness 

profiles shall be treated as finite length signals [5] and reconstructed from discrete samplings, 

if an instrument capable of continuous profile scanning is not available. The will to contain 

the number of sampling points leads to the definition of the minimum cut-off wavelength; a 

parameter entrusted to limit the amount of information theoretically needed [6] and that 

(according to new draft ISO 1101 amendment 2) will be added to the flatness callout in 

drawing specifications. Cut-off wavelength defines the shortest variation of shape that can be 

measured, thus defines the maximum distance between sampling points and the probe tip 

diameter. Different grid arrangements are suggested for the inspection of straightness profiles 

[5], but none is defined (set) as default and the choice is delegated to the metrologist 

according to the experience from other pieces of the same batch, or to some information 

inherited from manufacturing or previous experiences. 

However, non-standard approaches based on intelligent algorithms can potentially reach 

performances better than any blind, a priori, fixed-grid extraction strategy by fully exploiting 

the potential of CMMs. As a matter of fact, CMMs can measure points only on a sequential 

base, and with fast enough algorithms, adaptive sampling strategies may be designed which 

exploit the information contained in the points already measured in order to suggest the best 

location where to sample the next point. In this chapter, an adaptive algorithm based upon the 

use of Kriging models, and on sequential probing of the points to be inspected, is suggested 

and analyzed. In particular, different approaches to the use of Kriging models are examined 

and compared based on different experiments: different correlation functions selected taking 

into account the technological signature of the surface analyzed, different criteria for selecting 

the successive inspection point and different evaluation methods (i.e. least squares and 

minimum zone methods). 
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The Kriging modelization and the uncertainty of Kriging predictions for responses of 

physical experiments is presented in §6.2. Section 6.4 presents the application of an adaptive 

approach for generating sequential sampling plans, illustrated by a case-study based on real 

CMM measurements (the same flatness feature used in Chapter 3). A discussion, on the basis 

of experiments performed (§6.7 and §6.8), compares the operating characteristics of Kriging 

modelization using different correlation functions, selected taking into account the 

technological signature, and different criteria for selecting the successive inspection points, 

based both on least squares or minimum zone methods for tolerance estimation.  

6.2 Kriging modelization 

Kriging models were extensively used to predict spatial data in geostatistics [7]; recently, 

their use is strongly suggested to approximate the output of Computer Experiments [8, 9]. 

Once more, Kriging models have been adopted in industrial metrology to drive the online 

construction of sequential designs for inspecting industrial parts on CMM [10] because of 

their recognized ability to provide good predictions [11, 12].  

The Kriging model considers the response y(x), for x  Xd  Rd
, as a realization of a 

Gaussian random field Y(x): 

 Y x = +Zx xf  (6.1) 

where: 

 21 ... xxxx mf,,f,f=f  is a set of specified trend functions,

 21 ... mβ,,β,β=  is a set of (usually unknown) parameters,

  Z(x) is Gaussian random field. 

Let us consider a Gaussian random field Y(x) with zero mean and stationary covariance 

over a design space Xd  Rd
, i.e. 0 Y =xE and θhhxx ;Rσ=+Y,Y Y

2Cov , where 

2

Yσ  is the field variance and R is the Stationary Correlation Function (SCF) depending only on 

the displacement vector h between any pair of points in Xd and on a vector parameter 

The most popular choice for the correlation function among the practitioners of Computer 

Experiments is within the power exponential family: 

 
11

exp exp        with 0 2
d d

p p

s s s s
s=s=

R h;θ = θ h = θ h < p  (6.2) 

where = ( 1, 2,…, d,p)'; p is a common smoothing parameter and s, s = 1, 2, …, d, are 

positive scale parameters representing the rapidity of the correlation decay in direction s when 

increasing distance hs. Notice that if s=  s = 1, 2, …, d, the correlation depends only on the 

distance h  between any pair of points x and x + h, i.e. isotropic SCF. However, the use of 
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the variogram (§6.5) has been favoured, because it is very informative about the random 

process Z(x). This is also what the pioneers of the Kriging models in geostatistics do for 

predicting noisy spatial responses from a generally small number of observations [13, 14], a 

situation rather different from a computer experiment. 

For the prediction of the response Y(x
0
) at an untried point x

0
, most of the practitioners 

suggest resorting to Bayesian estimators. The prior information on the set 

1 2 ...n

n= Y ,Y , ,YY x x x of field variables at n
n ,...,, xxxx 21 , also named training 

data, is used for predicting the unknown output Y(x0). For flatness, being d = 2, the points are 

pertaining to a regular rectangular lattice: i.e. X
d 
= {1, ..., l}

2
.  

The distribution of the joint random variable nY,...,Y,Y,Y xxxx 210  is assumed to 

be normal distributed [15]: 

 2

0 , , ZN Ff  (6.3) 

with: 

 
Rr

r

0

01
 

 r0 is the correlation vector nR,...,R xxxx 010  

 R is the n n correlation matrix whose (i,  j) element is jiijR xxh  

 F is the n×m matrix 
mj
niijf

,...,1
,...,1x  of the trend functions evaluated in n,...,, xxx 21 .  

Under the assumption that no a-priori knowledge on the trend function xf  is 

available to direct the user in its choice (in fact, in §6.5, we assume that no a-priori knowledge 

on the surface error is available), the ordinary Kriging model shall be used (i.e. xf ), 

then:  

 Y = +Zx x  (6.4) 

Even if the unknown trend function of  equation (6.4) is supposed to be constant, the 

prediction fidelity is not affected [8]. 

If  is known, the conditional expectation of Y(x0) given 1 2, ,..., ,nY Y Yx x x

0 0
ˆ ( ) nY Y x YE , is the unique predictor and the Best Linear Unbiased Predictor (BLUP) of 

Y(x0): 

 
1

0 0
ˆ      with     (1,1, ,1)nY r R Y 1 1  (6.5) 

because it minimizes the Mean Squared Prediction Error (MSPE): 
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 2 2 1

0 0 0 0 0
ˆ ˆ( ( )) 1zMSPE Y Y Y x r R r  (6.6) 

MSPE, usually called Kriging variance, is a measure of the uncertainty of predictions. It 

is large when x
0
 is away from the experimental points, small when it is close to them and it 

vanishes at the experimental points, due to the interpolatory property of Kriging.  

However, equation (6.6) holds only if  and R(h; ) are known, which is hardly the case in 

experimental setting. If  is to be estimated, the BLUP is given by (6.5) with  replaced by its 

generalized least squares estimator: 

 
1

1 1ˆ n
1 R 1 1 R Y  (6.7) 

In such a case the Kriging variance (6.6) is larger because of an additional uncertainty 

component, and becomes: 

 
1

2 2 1 1

0 0 0 0 0 0
ˆ( ( )) 1zY Y '

x r R r c 1 R 1 c  (6.8) 

with 1
0 01c 1 R r . 

The unknown parameter vector  in R(h; ) can be estimated by maximum likelihood, 

cross-validation, or by the posterior mode (for a thorough reading see [15]). The predictor 

obtained by plugging the estimates )( ML00 θrr ˆˆ  and )( MLθRR ˆˆ  into (6.8) is named 

Empirical Best Linear Unbiased Predictor (EBLUP), even if the predictions are no longer 

linear in the observations as Rr ˆandˆ
0  may have a highly non-linear dependence on 

observations. Another notable consequence of using the EBLUP is that (6.8) underestimates 

prediction variance as it does not account for the extra variability transmitted to 

.ˆˆˆ,ˆ θRr byand0  A possible way to overcome this problem is to resort to an empirical 

estimate of the variance. Den Hertog et al. [16] use parametric bootstrap while Kleijnen and 

van Beers [11] use cross validation and jackknife. In this work, the correlation parameters 

have been estimated by maximum likelihood using the algorithm proposed by Lophaven [17].  

Predictions made at the experimental points have zero variance being the kriging 

predictor interpolatory. This is often unsuitable for modelling data which are affected by 

random noise, as measurement error is in physical experiments. In order to accommodate for 

it, the geostatisticians suggest to modify model (6.5) by adding a random error: 

          1, 2, … ,  i i iY Z i nx x  (6.9) 

where i are i.i.d. normal random variables with zero mean and constant variance 
2

. The 

consequence of the model modification reproduces on SCF with the so called nugget effect 

[8]:  

 , (1 ) R nugget nugget Rh;θ h;θ  (6.10) 

where  
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2

2 2
   (0 1)

z

nugget nugget . (6.11) 

This prevents predictions from exactly interpolating experimental data and results in a 

smoother prediction surface. The nugget can be estimated by maximum likelihood while 

estimating the unknown parameters of the SCF. As the estimated process variance is much 

larger, the nugget effect is indeed very small in our application and could be safely not 

considered (typical values of measurement errors variance in CMM measurements are in the 

interval [10
-8

, 10
-6

] mm
2
).  

6.3 Adaptive sampling through a case study 

The same flatness feature that has been used to delve into the effects of ISO GPS 

standards on the verification of form errors based on CMMs (§3), has been used also to test 

the adaptive sampling strategy proposed in this chapter. The flatness surface showed in Figure 

6.1 has been measured by means of a CMM (Dea Iota 0101) with a sampling strategy that 

complies with specification according to the GPS standards: namely with a perfect 

verification operator. The dataset obtained has then been used as test bench for the adaptive 

sampling algorithm. This approach has been used in order to avoid direct interfacing with 

CMM software during the test of sampling strategy. Software integration is a problem that has 

to be solved for on-line applications, but it does not affect the method itself. On the other 

hand, the computation time required by the adaptive sampling algorithm has to be small 

enough to guarantee an effective performance of the whole measurement process. However, 

at this stage, the computation time has not been taken into account yet and the focus is rather 

on the real method capabilities. 

 

Figure 6.1 – The case study's flatness feature, on the measurement bench of CMM (model: 

Dea Iota 0101), for the tolerance verification. Tolerances are reported in Figure 3.1. 
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6.3.1 The problem of flatness error estimation 

According to ISO-GPS standards, two different association criteria can be used to 

estimate the flatness error: Least Squares or Minimum Zone. 

LS method estimates the parameters of the least square plane by fitting a reference model 

(or ideal feature) to the sampled data set. The distance of each point of the data set from the 

fitted plane is calculated (it is named residual) and the sum of the highest and lowest value 

provides the estimation of the flatness error. In the case study at hand, normality of residuals, 

one of the relevant assumptions in the estimation method, is not complied (Figure 6.2-a). 

Nevertheless, LS method is still considered because its use may be required by specification 

(regardless the characteristics of measurement data) and it is widely used and implemented in 

every CMM software. 

 

Figure 6.2 - LS residuals probability plot on the left (a), and the comparison of LS and MZ 

method on the right (b). 

On the other hand, MZ method computes the equations of two parallel planes with the 

constraint of containing all the sampled points among the plane surfaces and of minimizing 

their distance. 

The two methods are of course different and end up in different estimations of the flatness 

error. Figure 6.2-b shows the difference between the two methods in terms of orientation of 

the reference plane: the LS reference plane, in the middle, has a completely different 

orientation with respect to the two MZ planes. The MZ reference plane is not represented for 

the sake of clearness, but it lays halfway between the two MZ planes, with their same 

orientation. The main aspects related with the use of LS and MZ association criteria have 

been investigated in Chapter 3 and Chapter 4. However, a consideration that is always valid is 

that LS systematically overestimates the form error. 

6.4 Sequential selection of sampled points 

In the conventional factorial designs, all the sampling points are decided prior to the 

experiment execution. On the contrary, in a sequential design approach, the points to be 

sampled are adaptively selected, at each run, relying on the information acquired from the 
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sampling points up to that time. The choice of sequential designs is motivated by their 

efficiency, as they are generally considered more efficient than one-stage designs. A 

sequential design usually starts with a space-filling design such as Latin Hypercube Sampling 

designs, distance-based designs or uniform designs (see [15] or [18] for a review) in order to 

start with an optimal coverage of the measurand.  

In the case study at hand the starting design has been a 4 Latin Hypercube design plus the 

4 points at the vertices (Figure 6.3). Among the possible selections of 4 points Latin 

Hypercube designs, it has been chosen the one which provides the lowest expected error for 

the Kriging model [19]. The idea of minimizing the uncertainty of Kriging predictions has 

been used also for the selection of the next sampling point, within more complex decision 

rules. On the other hand, the 4 points at the vertices have been suggested by experience: most 

of the form deviation is usually concentrated near the edges where transient states occur in the 

manufacturing process (e.g. transients of the forces at the interface between the tool and 

workpiece and related deformations). Moreover, the extreme points of the domain are 

included in the initial set of design points in order to avoid extrapolation when predicting with 

the Kriging model. In our case, the n0 = 8 is a reasonably low number of data needed to 

estimate the parameters  of the ordinary Kriging model, the parameters  of the correlation 

function, and 2

z
. 

 

Figure 6.3 - Selection of starting sampling points. The 4 points on the extreme corners of 

flatness feature have been selected while, in the central area, other 4 points are selected with 

Latin Hypercube. 
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Based on the initial set of points, the experimental design is iteratively built up by adding 

one point at a time. The next measurement point is selected, according to a specific criterion, 

among a set of candidate points located on a uniformly spaced and tight rectangular grid.  

The criterion for the selection of next sampling point can be based on the MSPE (6.8) of 

the Kriging model, estimated by means of the already measured points, or on the basis of an 

increase in the evaluation of flatness error. Particularly, the latter considers the candidate 

sampling points one at a time, supposing to add each of them to the current dataset of 

measured points and analyzing the result of the evaluation. If some points lead to an 

evaluation of flatness error higher than the dataset of points already measured, then the one 

generating the largest increase is selected. However, this method could be biased by a 

particularly high uncertainty of the Kriging prediction. In such a case, a refinement of the 

Kriging model itself (then the selection of the candidate point whit the maximum MSPE) 

would be preferable. The two criteria may be used individually, as presented above, or, better, 

they could be mixed according to different rules. Particularly, two rules are considered which 

have been named respectively: 

 -MSPE: if some points are expected to generate an increase in the flatness error 

evaluation, then the point that generates the maximum increase is selected, otherwise 

the point having the maximum MSPE is preferred. It means that if the actual model 

cannot detect points which would lead to an increase in the flatness error evaluation 

(that would be higher peaks or deeper valleys), a refinement of the model itself is 

preferred. 

 -MSPE average: if there are points expected to generate an increase in the estimated 

flatness error, the point which would generate the maximum increase is selected given 

that its MSPE is less than the average MSPE (with respect to the whole set of points). 

Otherwise, it means that the prediction is not reliable enough and the purpose of next 

point will be to improve it; then the next point will be sampled where the MSPE is 

maximum. 

After the winning candidate point has been selected, the measurement is performed at this 

new site and the point becomes part of the current dataset. Then, the Kriging correlation 

function is estimated by Maximum Likelihood, basing on the current dataset, and the new 

Kriging model is now used to provide new predictions. It is worthwhile to point out that, as 

the predictions are inexpensive, it is possible to predict over a convenient tight grid. Finally, 

the estimate of flatness error is computed by applying LS or MZ methods to the large points 

sample made up of both the current experimental points and the new predictions. 

6.5 Variogram and correlation function 

As stated in §6.2, the most popular choice for the correlation function among the 

practitioners of Computer Experiments is within the power exponential family (6.2). 
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However, we favour the use of the variogram in its choice because it is very informative 

about the random process Z(x). The variogram is defined as: 

 1 2 1 2 1 22 Var        ,Z Z x xx x x x Xd (6.12) 

A natural estimator of the variogram based on the method of moments [20], under the 

assumption that , is: 

 
21

2
#

i j
N

C Z Z
N h

h x x
h

 (6.13) 

where N(h) = {(xi, xj) : xi - xj = h; i, j = 1, 2, …, n} and #N(h) is the number of pairs N(h) that 

are distinct. 

If the value of the variogram depends only on the length of vector h, then the stochastic 

process underlying the variogram is isotropic; opposite the process is anisotropic. Isotropic 

processes form an inadequate basis in modelling many spatially distributed data, especially 

when the monitored manufactured part shows technological signature. 

In our case, the manufacturing process cannot be considered isotropic as the estimated 

variogram shows different trends with respect to the considered direction: see Figure 6.4. 

Particularly, variograms in x and y directions seem to be very different and, for this reason, 

exponential functions with different parameters have been chosen as correlation function in 

the Kriging method, that is: 

 
2 2

2 2

1 1 2
11

exp  exp       with 0 2s s

s s s s s
ss=

R ; = θ h θ h <h θ  (6.14) 

 

Figure 6.4 - Different variograms in the four angle direction (= 0°, 45°, 90° and 135°). 

For the case study at hand the use of variogram is allowed by the knowledge of the 

surface geometry determined with the preliminary measurement. However, even if the 

measurand is completely unknown (as it is in normal measurements) some useful information 

about the spatial correlation function could be derived from the technological signature. 

Therefore it could be supposed if the manufacturing process is known. 
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6.6 Algorithm description 

The main steps of the adaptive sampling algorithm are summarized in this section. To 

estimate the Kriging model the algorithm proposed by Lophaven et al. [17] has been used 

changing only the correlation function as described in §6.5. 

N indicates the total number of points on the grid and Nm the number of points which have 

been actually measured; i.e. the set 
1

, ,
mN

i i i i
x y z . For each iteration the following steps are 

repeated: 

1. Flatness error tm is computed on the set of measured points and, according to the 

Kriging model, the z coordinate is predicted for the grid of candidate sampling points 

in order to obtain the new set of points: 
1

ˆ, ,
mN N

i i i i
x y z . 

2. For each predicted sampling point
 

ˆ( , , )j j jx y z in
 1

ˆ, , mN N

i i i i
x y z  the flatness error

 
*

jt  and 

the ratio

 

*

j j mt t  is computed (using both LS and MZ) on the set of points
 

1
ˆ, , , ,

mN

i i i i i ii
x y z x y z : namely adding the predicted measurement point to the set 

of points actually measured. 

3. The next sampling point is selected by implementing one of the two decision rules 

presented in §6.4: 

 -MSPE: 

3.1. Find j
*
 such that *

(1... )
max ( )

m

ij i N N
. 

3.2. Find j
**

 such that **
(1... )
max ( )

m

ij i N N
MSPE MSPE where MSPEi is the Kriging 

model error in the i
th

 point. 

3.3. If * 1
j

, then * **( , , )jj j
x y z  is the next point to be measured: else ** ** **( , , )

j j j
x y z

is the next point. 

 -MSPE average 

3.1. Find j
*
 such that *

(1... )
max ( )

m

ij i N N
. 

3.2. Find j
**

 such that **
(1... )
max ( )

m

ij i N N
MSPE MSPE  where MSPEi is the Kriging 

model error in the i
th

 point. 

3.3. If * *

1

1 and 
mN N

i
jj

i m

MSPE
MSPE

N N
, then * **( , , )jj j

x y z  is the next point; else 

** ** **( , , )
j j j

x y z  is the next point. 

4. The algorithm has two different outputs: 

 Flatness error computed on the set of measured points 
1

, , mN

i i i i
x y z  referred to as dm. 

 Flatness error computed on 
1 1

ˆ, , , ,m mN N N

i i i i i ii i
x y z x y z  referred to as ds. 
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While testing this model, no stopping rule has been applied either based on the quality of 

regression model or convergence of flatness estimation results. However, stopping rules could 

be useful in different experimental contexts and are necessary for effective implementation in 

industrial practice. The algorithm has been stopped when N = 40 thus, if taking into account 

also the initial 8 points dataset, with a total of 48 measured points. 40 iterations have proved 

to go further the stopping point that could be established by reasonable rules. This allows to 

check the algorithm evolution also after the point where it should have stopped, thus to verify 

the goodness of stopping rules. 

6.7 Test of the adaptive sampling algorithm 

In the following, the results of the adaptive sampling strategy based on the Kriging 

modelization are reported according to different association methods (LS or MZ) and 

different criteria for the selection of the next sampling point: see Figure 6.5. 

 

Figure 6.5 - Results for different selection criteria and different association methods. 

As it can be noticed from Figure 6.5, in 15 iterations (23 sampled points) the method with 

MZ association criterion computes the right flatness error both using only the set of measured 

points (dm line) and using the measured points together with those estimated with the Kriging 

model (ds line). 

On the other hand, the LS method overestimates the flatness error if the form error 

estimation is based only on the actually measured points. On the contrary, if it is computed 

using the whole set of data (estimated and measured points) then a more precise evaluation 

can be obtained in few iterations. This behaviour is typical of the LS association criterion, as 

for small samples the orientation of the LS reference plane is very sensitive to the addition of 
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new measurement points and can take orientations quite different from the true one. Therefore 

taking into account the predictions on the grid of candidate sampling points helps to reduce 

the instability of the LS reference plane even if some error is introduced due to areas of the 

flatness feature where the Kriging model is not very reliable (high MSPE). However the two 

aspects combines very well as, for very small samples, the error due to the stability of the LS 

reference plane is very large but almost disappears as soon as the sample size reaches 50 

points about (see the amount of uncertainty associated with the stability of LS reference 

plane: Figure B.1). Similarly, the reliability of the Kriging prediction improves and the 

probability that some of the extreme points (the most determinant for the assessment of form 

deviation) is biased by a large MSPE reduces as the measurand is sampled with a higher 

density (larger sample size). 

According to these results, the adaptive sampling strategy based on the Kriging method 

seems to be a promising approach to evaluate the flatness error, given that both using LS and 

MZ it is possible to obtain in few iterations the right tolerance value (obviously if with LS ds 

is considered instead of dm). Nevertheless further analyses should be carried out in order to 

evaluate the method performances with other kinds of flat surfaces obtained with different 

manufacturing processes. 

6.8 Comparison with random sampling 

In this section, the results of a random sampling strategy are presented as a benchmark for 

the Kriging-based adaptive sampling. Figure 6.6 shows that the random sampling strategy is 

far from the reference value of flatness deviation even if the maximum number of points is 

considered (N = 48 points). Particularly, the random sampling strategy presented here, as a 

benchmark, consists of the random selection of the next measurement point within the set of 

candidate measurement points. It is a well established practice and is present also within the 

arrangement for sampling points (sampling grids) suggested by GPS standards for the 

verification of flatness tolerance [5]. 

 

Figure 6.6 - Results for different association criteria if a random point is added at each 

iteration. 
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6.9 Conclusion 

The Kriging-based adaptive sampling presented in this chapter showed great potential for 

the improvement of CMM based verification processes; particularly when the CMM is 

capable of touch trigger inspection only. After 15 iterations about, it has been able to detect 

almost all the workpiece form deviation (see Figure 6.5), much more effectively than a 

classical random sampling (Figure 6.6). 

However, in this study the issues related with the online implementation have not been 

considered. One of the main aspects, in this sense, is indeed represented by the computation 

time required for the construction of the Kriging interpolatory model. At the moment, this 

aspect has not been afforded jet, as the main concern was the investigation of the 

effectiveness of the method itself. Now that the effectiveness has been proved, further work is 

required for a deeper testing on other technological signatures, for addressing the verification 

of other tolerances and for optimizing the algorithms for a faster computation. 

Another aspect deserving further investigation is the relationship between variogram (thus 

the spatial correlation function) and the technological signature left on the workpiece by 

manufacturing processes. In this context variogram can be used to classify and characterize 

manufacturing processes, particularly those generating anisotropic signatures. 
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Annex A - Case study: results 

SAMPLING 
(LS) FLTt 

Error evaluation uIm ANALYTIC uIm EXPERIMENTAL 

D [mm] d [mm] Grid  points [n°] FLTt [µm] tFLTt [s]  uIm [µm] tu [s]  uIm [µm] tu [s] 

0.35 0.35 Rect 17575 24.100 0.0407 0.946 2.543 0.281 1.177 
0.35 0.35 Px 17575 24.100 0.0407 0.946 2.543 0.281 1.177 
0.35 0.35 Py 17575 24.100 0.0407 0.946 2.543 0.281 1.177 
0.35 0.35 UJ 17575 24.100 0.0407 0.946 2.543 0.281 1.177 
0.7 0.35 Rect 13323 24.160 0.0088 0.947 2.527 0.343 0.822 
0.7 0.35 Px 8915 24.028 0.0371 0.949 0.307 0.766 0.770 
0.7 0.35 Py 8949 24.360 0.0083 0.950 0.735 0.221 0.786 
0.7 0.35 UJ 17575 24.100 0.0144 0.946 0.722 0.248 1.585 
0.7 0.7 Rect 4540 24.282 0.0034 0.956 0.690 0.869 0.426 
0.7 0.7 Px 4459 24.073 0.0034 0.956 0.728 0.695 0.439 
0.7 0.7 Py 4473 24.509 0.0034 0.956 0.733 0.727 0.439 
0.7 0.7 UJ 4540 24.282 0.0034 0.956 0.727 0.631 0.437 
3.5 0.35 Rect 3529 24.372 0.0032 0.959 0.765 2.346 0.218 
3.5 0.35 Px 1870 23.734 0.0018 0.953 0.744 2.285 0.150 
3.5 0.35 Py 1856 13.404 0.0018 0.956 0.724 0.185 0.151 
3.5 0.35 UJ 5089 24.328 0.0039 0.954 0.735 2.159 0.395 
3.5 0.7 Rect 1693 24.293 0.0017 0.977 0.725 3.506 0.146 
3.5 0.7 Px 933 23.630 0.0014 1.002 0.706 3.125 0.096 
3.5 0.7 Py 927 13.391 0.0012 0.971 0.734 0.302 0.102 
3.5 0.7 UJ 2405 24.390 0.0026 0.967 0.721 2.839 0.214 
3.5 3.5 Rect 196 12.567 0.0009 1.146 1.310 0.731 0.049 
3.5 3.5 Px 180 12.641 0.0008 1.067 1.886 0.773 0.051 
3.5 3.5 Py 183 12.474 0.0008 1.159 0.520 0.724 0.051 
3.5 3.5 UJ 196 12.567 0.0008 1.146 0.473 0.729 0.051 
7 0.35 Rect 1897 24.756 0.0041 0.952 4.978 2.924 0.155 
7 0.35 Px 1035 23.601 0.0014 0.960 0.430 2.548 0.094 
7 0.35 Py 917 12.123 0.0013 0.972 0.432 0.388 0.087 
7 0.35 UJ 2714 24.648 0.0028 0.962 0.439 2.958 0.227 
7 0.7 Rect 935 24.707 0.0014 1.003 0.440 3.020 0.095 
7 0.7 Px 517 23.440 0.0010 1.038 0.443 3.214 0.065 
7 0.7 Py 458 12.244 0.0010 1.001 0.434 0.461 0.062 
7 0.7 UJ 1334 24.673 0.0017 0.985 0.455 4.163 0.111 
7 3.5 Rect 150 12.246 0.0008 1.165 0.435 0.702 0.047 
7 3.5 Px 100 11.814 0.0008 1.079 0.429 0.726 0.046 
7 3.5 Py 90 11.971 0.0008 1.190 0.436 1.108 0.045 
7 3.5 UJ 196 12.567 0.0008 1.146 0.434 0.756 0.050 
7 7 Rect 54 10.417 0.0007 1.339 0.445 0.812 0.043 
7 7 Px 46 8.390 0.0007 1.185 0.431 0.805 0.043 
7 7 Py 48 8.936 0.0007 1.298 0.421 0.761 0.043 
7 7 UJ 54 10.417 0.0007 1.339 0.431 0.619 0.043 

14 0.35 Rect 1184 25.038 0.0018 0.959 0.439 3.461 0.097 
14 0.35 Px 631 23.542 0.0011 0.974 0.433 3.242 0.067 
14 0.35 Py 572 11.526 0.0011 0.984 0.441 0.321 0.065 
14 0.35 UJ 1576 24.712 0.0017 0.955 0.464 3.785 0.113 
14 0.7 Rect 590 24.829 0.0017 1.038 0.436 4.682 0.064 
14 0.7 Px 315 23.234 0.0009 1.085 0.428 4.436 0.056 
14 0.7 Py 286 11.618 0.0009 1.024 0.435 0.474 0.052 
14 0.7 UJ 786 24.608 0.0013 1.013 0.429 4.954 0.076 
14 3.5 Rect 106 12.529 0.0008 1.244 0.425 0.798 0.044 
14 3.5 Px 61 11.299 0.0007 1.133 0.436 0.757 0.045 
14 3.5 Py 56 11.221 0.0007 1.276 0.458 1.082 0.043 
14 3.5 UJ 136 12.879 0.0010 1.215 0.470 0.836 0.048 
14 7 Rect 46 10.423 0.0007 1.420 0.494 0.822 0.040 
14 7 Px 28 7.612 0.0007 1.408 0.449 0.766 0.041 
14 7 Py 29 9.171 0.0007 1.560 0.461 0.911 0.043 
14 7 UJ 54 10.417 0.0007 1.339 0.453 0.830 0.043 
14 14 Rect 18 9.157 0.0007 2.181 0.441 1.144 0.039 
14 14 Px 14 7.436 0.0007 1.489 0.442 1.123 0.040 
14 14 Py 15 8.238 0.0007 1.838 0.447 1.168 0.041 
14 14 UJ 18 9.157 0.0007 2.181 0.448 1.380 0.041 

Table A.1 - Evaluation of FLTt error with LS method for all the possible simplified grids. 
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SAMPLING 
(MZ) FLTt 

Error evaluation uIm ANALYTIC uIm EXPERIMENTAL 

D [mm] d [mm] Grid  points [n°] FLTt [µm] tFLTt [s]  uIm [µm] tu [s]  uIm [µm] tu [s] 

0.35 0.35 Rect 17575 18.967 3.63 0.967 200.07 0.219 202.49 
0.35 0.35 Px 17575 18.967 3.63 0.967 200.07 0.219 202.49 
0.35 0.35 Py 17575 18.967 3.63 0.967 200.07 0.219 202.49 
0.35 0.35 UJ 17575 18.967 3.63 0.967 200.07 0.219 202.49 
0.7 0.35 Rect 13323 18.967 2.04 0.980 184.94 0.174 189.07 
0.7 0.35 Px 8915 18.964 1.46 0.955 138.73 0.668 138.03 
0.7 0.35 Py 8949 18.602 1.76 0.970 162.93 0.174 162.55 
0.7 0.35 UJ 17575 18.967 2.08 0.967 197.68 0.203 196.86 
0.7 0.7 Rect 4540 18.508 1.18 1.005 115.29 0.381 111.53 
0.7 0.7 Px 4459 18.448 1.13 1.004 105.20 0.382 105.08 
0.7 0.7 Py 4473 18.508 1.06 1.019 100.62 0.426 99.11 
0.7 0.7 UJ 4540 18.508 1.18 0.992 114.29 0.387 111.63 
3.5 0.35 Rect 3529 18.807 1.15 1.838 98.82 1.521 100.05 
3.5 0.35 Px 1870 18.743 0.75 1.710 65.32 1.334 62.70 
3.5 0.35 Py 1856 12.518 1.29 0.950 100.66 0.111 99.70 
3.5 0.35 UJ 5089 18.872 1.50 1.556 125.59 1.219 125.27 
3.5 0.7 Rect 1693 18.125 0.85 2.167 75.98 1.932 74.60 
3.5 0.7 Px 933 17.977 0.59 1.718 53.16 1.780 52.26 
3.5 0.7 Py 927 12.433 0.63 0.968 57.77 0.166 55.35 
3.5 0.7 UJ 2405 18.240 1.07 1.796 90.08 1.223 88.50 
3.5 3.5 Rect 196 11.217 0.42 0.982 31.87 0.262 31.66 
3.5 3.5 Px 180 10.905 0.34 0.953 25.78 0.214 25.14 
3.5 3.5 Py 183 10.874 0.40 1.004 29.01 0.209 28.35 
3.5 3.5 UJ 196 11.217 0.42 0.991 32.24 0.259 31.48 
7 0.35 Rect 1897 18.807 0.94 2.421 81.02 1.380 79.10 
7 0.35 Px 1035 18.659 0.59 1.909 50.21 1.753 49.06 
7 0.35 Py 917 10.975 0.81 0.954 64.30 0.168 62.63 
7 0.35 UJ 2714 18.872 1.23 1.590 100.30 1.333 99.31 
7 0.7 Rect 935 18.094 0.68 2.036 54.51 1.758 54.14 
7 0.7 Px 517 17.370 0.47 2.097 40.65 1.764 39.26 
7 0.7 Py 458 10.975 0.43 0.962 39.24 0.232 38.56 
7 0.7 UJ 1334 18.240 0.92 1.926 69.92 1.888 68.14 
7 3.5 Rect 150 10.899 0.33 1.015 24.78 0.308 24.02 
7 3.5 Px 100 10.216 0.25 1.047 15.60 0.460 14.94 
7 3.5 Py 90 9.914 0.21 1.306 15.17 0.452 14.02 
7 3.5 UJ 196 11.217 0.42 0.985 31.94 0.253 30.99 
7 7 Rect 54 9.718 0.13 1.085 8.85 0.402 8.08 
7 7 Px 46 7.222 0.13 1.081 7.82 0.342 7.55 
7 7 Py 48 8.021 0.15 1.016 10.90 0.327 9.82 
7 7 UJ 54 9.718 0.13 1.096 9.16 0.543 8.68 

14 0.35 Rect 1184 18.807 0.80 3.461 67.79 1.863 66.88 
14 0.35 Px 631 18.659 0.46 3.271 41.15 1.930 40.13 
14 0.35 Py 572 10.452 0.53 0.947 45.24 0.094 44.79 
14 0.35 UJ 1576 18.872 0.95 1.921 82.45 1.860 80.12 
14 0.7 Rect 590 18.094 0.54 3.078 45.11 2.688 44.55 
14 0.7 Px 315 17.370 0.37 2.595 32.11 2.393 29.40 
14 0.7 Py 286 10.450 0.31 0.953 27.88 0.137 26.78 
14 0.7 UJ 786 18.240 0.66 2.302 52.14 2.651 51.19 
14 3.5 Rect 106 10.899 0.29 1.037 21.37 0.424 20.48 
14 3.5 Px 61 10.151 0.20 1.095 12.47 0.559 11.63 
14 3.5 Py 56 9.575 0.15 1.439 10.43 0.546 9.86 
14 3.5 UJ 136 11.191 0.32 1.038 25.69 0.353 24.99 
14 7 Rect 46 9.718 0.13 1.050 9.21 0.449 8.57 
14 7 Px 28 6.682 0.11 0.985 6.38 0.415 5.77 
14 7 Py 29 7.839 0.09 1.009 6.26 0.436 5.61 
14 7 UJ 54 9.718 0.14 1.069 9.24 0.483 8.61 
14 14 Rect 18 9.024 0.06 1.819 3.71 0.753 3.21 
14 14 Px 14 6.152 0.05 1.450 3.25 0.845 2.64 
14 14 Py 15 7.280 0.06 1.539 3.64 0.732 3.01 
14 14 UJ 18 9.024 0.06 1.448 3.83 0.884 3.30 

Table A.2 - Evaluation of FLTt error with MZ method for all the possible simplified grids.  
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SAMPLING MZ uIm An. uIm Exp. LS uIm An. uIm Exp. 

D [mm] d [mm] Grid FLTt [µm] uMt[µm] uM [µm] uM [µm] FLTt [µm] uMt[µm] uM [µm] uM [µm] 

0.35 0.35 Rect 18.967 0.000 0.967 0.219 24.100 5.132 5.219 5.140 
0.35 0.35 Px 18.967 0.000 0.967 0.219 24.100 5.132 5.219 5.140 
0.35 0.35 Py 18.967 0.000 0.967 0.219 24.100 5.132 5.219 5.140 
0.35 0.35 UJ 18.967 0.000 0.967 0.219 24.100 5.132 5.219 5.140 
0.7 0.35 Rect 18.967 0.000 0.980 0.174 24.160 5.192 5.278 5.204 
0.7 0.35 Px 18.964 0.003 0.955 0.668 24.028 5.061 5.149 5.118 
0.7 0.35 Py 18.602 0.366 1.037 0.405 24.360 5.393 5.476 5.397 
0.7 0.35 UJ 18.967 0.000 0.967 0.203 24.100 5.132 5.219 5.138 
0.7 0.7 Rect 18.508 0.459 1.105 0.597 24.282 5.315 5.400 5.386 
0.7 0.7 Px 18.448 0.519 1.130 0.644 24.073 5.106 5.195 5.153 
0.7 0.7 Py 18.508 0.459 1.118 0.627 24.509 5.542 5.623 5.589 
0.7 0.7 UJ 18.508 0.459 1.093 0.601 24.282 5.315 5.400 5.353 
3.5 0.35 Rect 18.807 0.160 1.845 1.530 24.372 5.405 5.489 5.892 
3.5 0.35 Px 18.743 0.224 1.725 1.353 23.734 4.767 4.861 5.286 
3.5 0.35 Py 12.518 6.450 6.519 6.451 13.404 5.563 5.645 5.566 
3.5 0.35 UJ 18.872 0.096 1.559 1.223 24.328 5.361 5.445 5.780 
3.5 0.7 Rect 18.125 0.842 2.325 2.108 24.293 5.326 5.415 6.376 
3.5 0.7 Px 17.977 0.990 1.983 2.037 23.630 4.663 4.769 5.614 
3.5 0.7 Py 12.433 6.534 6.605 6.536 13.391 5.576 5.660 5.584 
3.5 0.7 UJ 18.240 0.727 1.937 1.422 24.390 5.423 5.508 6.121 
3.5 3.5 Rect 11.217 7.750 7.812 7.754 12.567 6.400 6.502 6.442 
3.5 3.5 Px 10.905 8.062 8.118 8.065 12.641 6.326 6.416 6.373 
3.5 3.5 Py 10.874 8.093 8.155 8.096 12.474 6.493 6.595 6.533 
3.5 3.5 UJ 11.217 7.750 7.813 7.754 12.567 6.400 6.502 6.442 
7 0.35 Rect 18.807 0.160 2.426 1.389 24.756 5.789 5.867 6.486 
7 0.35 Px 18.659 0.309 1.934 1.780 23.601 4.633 4.732 5.288 
7 0.35 Py 10.975 7.992 8.049 7.994 12.123 6.845 6.913 6.856 
7 0.35 UJ 18.872 0.096 1.593 1.337 24.648 5.681 5.762 6.405 
7 0.7 Rect 18.094 0.873 2.215 1.963 24.707 5.740 5.827 6.486 
7 0.7 Px 17.370 1.597 2.636 2.380 23.440 4.473 4.591 5.507 
7 0.7 Py 10.975 7.992 8.050 7.996 12.244 6.724 6.798 6.739 
7 0.7 UJ 18.240 0.727 2.059 2.023 24.673 5.706 5.790 7.063 
7 3.5 Rect 10.899 8.068 8.132 8.074 12.246 6.721 6.821 6.758 
7 3.5 Px 10.216 8.751 8.813 8.763 11.814 7.153 7.234 7.190 
7 3.5 Py 9.914 9.053 9.147 9.064 11.971 6.996 7.096 7.083 
7 3.5 UJ 11.217 7.750 7.812 7.754 12.567 6.400 6.502 6.445 
7 7 Rect 9.718 9.250 9.313 9.258 10.417 8.550 8.655 8.589 
7 7 Px 7.222 11.745 11.795 11.750 8.390 10.577 10.643 10.608 
7 7 Py 8.021 10.946 10.993 10.951 8.936 10.031 10.115 10.060 
7 7 UJ 9.718 9.250 9.314 9.265 10.417 8.550 8.655 8.573 

14 0.35 Rect 18.807 0.160 3.464 1.870 25.038 6.070 6.146 6.988 
14 0.35 Px 18.659 0.309 3.285 1.954 23.542 4.575 4.678 5.607 
14 0.35 Py 10.452 8.516 8.568 8.516 11.526 7.441 7.506 7.448 
14 0.35 UJ 18.872 0.096 1.923 1.863 24.712 5.745 5.823 6.879 
14 0.7 Rect 18.094 0.873 3.199 2.826 24.829 5.862 5.953 7.502 
14 0.7 Px 17.370 1.597 3.047 2.877 23.234 4.267 4.403 6.155 
14 0.7 Py 10.450 8.517 8.570 8.518 11.618 7.349 7.420 7.365 
14 0.7 UJ 18.240 0.727 2.414 2.748 24.608 5.641 5.731 7.507 
14 3.5 Rect 10.899 8.068 8.135 8.079 12.529 6.439 6.558 6.488 
14 3.5 Px 10.151 8.816 8.884 8.834 11.299 7.669 7.752 7.706 
14 3.5 Py 9.575 9.393 9.502 9.408 11.221 7.746 7.851 7.821 
14 3.5 UJ 11.191 7.777 7.846 7.785 12.879 6.088 6.208 6.145 
14 7 Rect 9.718 9.250 9.309 9.260 10.423 8.545 8.662 8.584 
14 7 Px 6.682 12.285 12.325 12.292 7.612 11.355 11.442 11.381 
14 7 Py 7.839 11.129 11.174 11.137 9.171 9.796 9.919 9.838 
14 7 UJ 9.718 9.250 9.311 9.262 10.417 8.550 8.655 8.591 
14 14 Rect 9.024 9.943 10.108 9.972 9.157 9.810 10.049 9.876 
14 14 Px 6.152 12.815 12.897 12.843 7.436 11.531 11.627 11.585 
14 14 Py 7.280 11.687 11.788 11.710 8.238 10.729 10.886 10.793 
14 14 UJ 9.024 9.943 10.048 9.982 9.157 9.810 10.049 9.906 

Table A.3 - Method and measurement uncertainty of all simplified verification operators. 
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Annex B - Analysis of the LS uncertainty terms 

Starting from the formulation of the LS reference plane an analytical method has been 

defined for the assessment of implementation uncertainty in LS based verification processes 

(§3.5.1). The final equation for the assessment of LS uncertainty (3.4) is reported below in 

order to insert an identification number for each of its terms: 
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The partial derivatives of equation (B.1) are the sensitivity coefficients that are 

responsible of weighting the effect of each input uncertainty (the uncertainty affecting the 

measurement of sampling points, in terms 1 to 6, as  well as the robustness of the form fitting 

algorithm, in terms 7 to 9) on the overall implementation uncertainty. Considering the 

function which describe the form error δ, equation (3.3), the partial derivatives of equation 

(B.1) are: 
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The values of sensitivity coefficients have been registered, for each of the 60 verification 

operators, and reported in Table B.1. It is easy to notice how the most important coefficients 

are those associated with the stability of the reference plane (terms 7 to 9 of equation (B.1)). 

Soon after these, in order of relevance, we find the sensitivity coefficients associated with the 

uncertainty on the z coordinate of measurement points (terms 5 and 6 of equation (B.1)). 

These coefficients are, in average, six orders of magnitude larger than those associated with 
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the uncertainty on the x and y coordinates of measurement points (terms 1 to 4 of equation 

(B.1)). This is correct as the reference frame used for measuring the flatness surface is normal 

to it and flatness deviation, at a first instance, corresponds to the variability of the z coordinate 

of the points measured on the surface. 

Even if sensitivity coefficients are the lowest, the uncertainties associated with the 

sampling of measurement points (terms uxi, uyi and uzi in equation (B.1)) are the largest 

uncertainty inputs: MPE/6 on each coordinate of measurement points, independently from the 

sample size (see variances reported in Table B.2). On the other hand, the uncertainties 

associated with the stability of the LS reference plane (ua, ub and ρabuaub in equation (B.1)) are 

several orders of magnitude lower than the measurement uncertainty on sampling points, but 

sensitive to the sample size. Looking at Table B.2 it is easy to notice that 2

au  and 2

bu  grow of 

three orders of magnitude, going from the largest to the smallest analyzed sample, while 

ρabuaub of six orders of magnitude. 

However, in order to understand the effect of input uncertainties on the global assessment 

of LS implementation uncertainty, these have to be considered together with the relative 

sensitivity coefficient. Therefore, each term of equation (B.1) has been reported in Table B.3. 

From this table it is possible to notice that the contribution from the measurement uncertainty 

on sampling points is nearly constant and defined, almost entirely, by the uncertainty on the z 

coordinate. On the other hand the contribution from the stability of the LS reference plane 

decreases hyperbolically with the increase of sample size. In order to better understand the 

effect of these different sources of uncertainty, the contribution from measurement 

uncertainty in sampling operations (sum of terms from 1 to 6 in equation (B.1)) has been 

plotted against that from the stability of the LS reference plane (sum of terms from 7 to 9 in 

equation (B.1)); see Figure B.1. This figure clearly shows how the former overcomes the 

latter when sample size is larger than 50 points about, and explain the behaviour observed in 

Figure 3.11. 

 

Figure B.1 - Comparison of the sources of uncertainty involved in equation (B.1). The effect 

of measurement uncertainty in sampling operations (red series) overcomes the effect of LS 

reference plane stability (black series) for samples larger than 50 points about.  



 Annex B - Analysis of the LS uncertainty terms 

149 

 

SAMPLING PARTIAL DERIVATIVES (sensitivity coefficients) 

D [mm] d [mm] Grid dδ/dx1 dδ/dx2 dδ/dy1 dδ/dy2 dδ/dz1 dδ/dz2 dδ/da dδ/db 2*dδ/da*dδ/db 

0.35 0.35 Rect 8.5E-05 -8.5E-05 -7.8E-06 7.8E-06 0.999999996 -0.999999996 -19.599 55.648 -2181.3208 
0.35 0.35 Px 8.5E-05 -8.5E-05 -7.8E-06 7.8E-06 0.999999996 -0.999999996 -19.599 55.648 -2181.3208 
0.35 0.35 Py 8.5E-05 -8.5E-05 -7.8E-06 7.8E-06 0.999999996 -0.999999996 -19.599 55.648 -2181.3208 
0.35 0.35 UJ 8.5E-05 -8.5E-05 -7.8E-06 7.8E-06 0.999999996 -0.999999996 -19.599 55.648 -2181.3208 
0.7 0.35 Rect 8.6E-05 -8.6E-05 -8.4E-06 8.4E-06 0.999999996 -0.999999996 -19.599 55.648 -2181.3208 
0.7 0.35 Px 8.4E-05 -8.4E-05 -6.7E-06 6.7E-06 0.999999996 -0.999999996 -19.599 55.298 -2167.6346 
0.7 0.35 Py 8.9E-05 -8.9E-05 -1.1E-05 1.1E-05 0.999999996 -0.999999996 -19.599 55.648 -2181.3208 
0.7 0.35 UJ 8.5E-05 -8.5E-05 -7.8E-06 7.8E-06 0.999999996 -0.999999996 -19.599 55.648 -2181.3208 
0.7 0.7 Rect 8.9E-05 -8.9E-05 -9.7E-06 9.7E-06 0.999999996 -0.999999996 -19.599 55.298 -2167.6346 
0.7 0.7 Px 7.9E-05 -7.9E-05 -9.6E-06 9.6E-06 0.999999997 -0.999999997 -19.599 55.298 -2167.6346 
0.7 0.7 Py 8.9E-05 -8.9E-05 -1.4E-05 1.4E-05 0.999999996 -0.999999996 -19.599 55.298 -2167.6346 
0.7 0.7 UJ 8.9E-05 -8.9E-05 -9.7E-06 9.7E-06 0.999999996 -0.999999996 -19.599 55.298 -2167.6346 
3.5 0.35 Rect 9.8E-05 -9.8E-05 -8.9E-06 8.9E-06 0.999999995 -0.999999995 -22.399 52.848 -2367.4844 
3.5 0.35 Px 8.2E-05 -8.2E-05 -4.9E-06 4.9E-06 0.999999997 -0.999999997 -28.354 -0.008 0.4650 
3.5 0.35 Py 1.1E-04 -1.1E-04 -1.4E-05 1.4E-05 0.999999993 -0.999999993 -20.999 29.750 -1249.4117 
3.5 0.35 UJ 9.4E-05 -9.4E-05 -8.8E-06 8.8E-06 0.999999996 -0.999999996 -19.599 55.298 -2167.6346 
3.5 0.7 Rect 9.9E-05 -9.9E-05 -9.0E-06 9.0E-06 0.999999995 -0.999999995 -22.399 53.897 -2414.4712 
3.5 0.7 Px 7.7E-05 -7.7E-05 -5.8E-06 5.8E-06 0.999999997 -0.999999997 -21.000 55.648 -2337.2338 
3.5 0.7 Py 1.1E-04 -1.1E-04 -1.7E-05 1.7E-05 0.999999994 -0.999999994 -20.999 30.799 -1293.4652 
3.5 0.7 UJ 9.5E-05 -9.5E-05 -9.7E-06 9.7E-06 0.999999995 -0.999999995 -19.599 55.298 -2167.6346 
3.5 3.5 Rect 1.1E-04 -1.1E-04 -8.9E-06 8.9E-06 0.999999994 -0.999999994 -21.000 45.149 -1896.2627 
3.5 3.5 Px 6.5E-05 -6.5E-05 -9.5E-06 9.5E-06 0.999999998 -0.999999998 20.999 31.148 1308.1745 
3.5 3.5 Py 1.1E-04 -1.1E-04 -3.1E-05 3.1E-05 0.999999993 -0.999999993 -24.499 42.001 -2057.9935 
3.5 3.5 UJ 1.1E-04 -1.1E-04 -8.9E-06 8.9E-06 0.999999994 -0.999999994 -21.000 45.149 -1896.2627 
7 0.35 Rect 1.2E-04 -1.2E-04 -9.9E-06 9.9E-06 0.999999993 -0.999999993 -28.354 -0.008 0.4650 
7 0.35 Px 7.8E-05 -7.8E-05 -4.2E-06 4.2E-06 0.999999997 -0.999999997 -28.354 -0.008 0.4650 
7 0.35 Py 1.6E-04 -1.6E-04 -1.8E-05 1.8E-05 0.999999987 -0.999999987 -21.000 33.600 -1411.2023 
7 0.35 UJ 1.1E-04 -1.1E-04 -1.0E-05 1.0E-05 0.999999994 -0.999999994 -22.756 52.142 -2373.0492 
7 0.7 Rect 1.2E-04 -1.2E-04 -9.8E-06 9.8E-06 0.999999993 -0.999999993 -21.000 55.648 -2337.2337 
7 0.7 Px 7.0E-05 -7.0E-05 -4.8E-06 4.8E-06 0.999999998 -0.999999998 -21.000 55.648 -2337.2339 
7 0.7 Py 1.6E-04 -1.6E-04 -2.1E-05 2.1E-05 0.999999986 -0.999999986 -21.000 33.600 -1411.2023 
7 0.7 UJ 1.1E-04 -1.1E-04 -1.1E-05 1.1E-05 0.999999994 -0.999999994 -19.599 55.298 -2167.6345 
7 3.5 Rect 1.3E-04 -1.3E-04 -9.4E-06 9.4E-06 0.999999992 -0.999999992 -21.001 41.649 -1749.3577 
7 3.5 Px 5.9E-05 -5.9E-05 -7.3E-06 7.3E-06 0.999999998 -0.999999998 21.000 20.650 867.3165 
7 3.5 Py 1.7E-04 -1.7E-04 -3.8E-05 3.8E-05 0.999999986 -0.999999986 -20.999 31.502 -1323.0103 
7 3.5 UJ 1.1E-04 -1.1E-04 -8.9E-06 8.9E-06 0.999999994 -0.999999994 -21.000 45.149 -1896.2627 
7 7 Rect 1.5E-04 -1.5E-04 -8.3E-06 8.3E-06 0.999999989 -0.999999989 -20.999 34.650 -1455.2333 
7 7 Px 4.3E-05 -4.3E-05 -1.1E-05 1.1E-05 0.999999999 -0.999999999 -14.000 34.651 -970.2710 
7 7 Py 1.5E-04 -1.5E-04 -5.2E-05 5.2E-05 0.999999987 -0.999999987 -28.000 -20.999 1175.9831 
7 7 UJ 1.5E-04 -1.5E-04 -8.3E-06 8.3E-06 0.999999989 -0.999999989 -20.999 34.650 -1455.2333 

14 0.35 Rect 1.3E-04 -1.3E-04 -9.5E-06 9.5E-06 0.999999992 -0.999999992 -28.354 -0.008 0.4650 
14 0.35 Px 7.6E-05 -7.6E-05 -3.3E-06 3.3E-06 0.999999997 -0.999999997 -28.354 -0.008 0.4650 
14 0.35 Py 1.7E-04 -1.7E-04 -2.1E-05 2.1E-05 0.999999986 -0.999999986 -14.001 33.598 -940.8435 
14 0.35 UJ 1.2E-04 -1.2E-04 -6.8E-06 6.8E-06 0.999999993 -0.999999993 -28.354 -0.008 0.4650 
14 0.7 Rect 1.3E-04 -1.3E-04 -8.2E-06 8.2E-06 0.999999992 -0.999999992 -21.000 55.648 -2337.2337 
14 0.7 Px 6.9E-05 -6.9E-05 -1.7E-06 1.7E-06 0.999999998 -0.999999998 -21.000 55.648 -2337.2339 
14 0.7 Py 1.7E-04 -1.7E-04 -2.4E-05 2.4E-05 0.999999986 -0.999999986 -14.001 33.598 -940.8435 
14 0.7 UJ 1.2E-04 -1.2E-04 -5.7E-06 5.7E-06 0.999999993 -0.999999993 -19.599 55.298 -2167.6345 
14 3.5 Rect 1.4E-04 -1.4E-04 -1.1E-05 1.1E-05 0.999999991 -0.999999991 -21.001 41.649 -1749.3576 
14 3.5 Px 6.6E-05 -6.6E-05 -6.2E-06 6.2E-06 0.999999998 -0.999999998 21.001 13.650 573.3387 
14 3.5 Py 1.7E-04 -1.7E-04 -3.8E-05 3.8E-05 0.999999985 -0.999999985 -14.000 31.500 -882.0313 
14 3.5 UJ 1.3E-04 -1.3E-04 -9.8E-06 9.8E-06 0.999999992 -0.999999992 -21.000 45.149 -1896.2626 
14 7 Rect 1.5E-04 -1.5E-04 -7.4E-06 7.4E-06 0.999999989 -0.999999989 -20.999 34.650 -1455.2333 
14 7 Px 4.7E-05 -4.7E-05 -8.6E-06 8.6E-06 0.999999999 -0.999999999 -14.002 41.652 -1166.4031 
14 7 Py 1.6E-04 -1.6E-04 -4.7E-05 4.7E-05 0.999999987 -0.999999987 -28.000 -20.999 1175.9831 
14 7 UJ 1.5E-04 -1.5E-04 -8.3E-06 8.3E-06 0.999999989 -0.999999989 -20.999 34.650 -1455.2333 
14 14 Rect 1.5E-04 -1.5E-04 -5.6E-06 5.6E-06 0.999999989 -0.999999989 13.656 -41.991 -1146.9055 
14 14 Px -3.1E-05 3.1E-05 -1.1E-05 1.1E-05 0.999999999 -0.999999999 14.000 27.649 774.1997 
14 14 Py 1.5E-04 -1.5E-04 -7.3E-05 7.3E-05 0.999999986 -0.999999986 -28.002 -13.999 783.9804 
14 14 UJ 1.5E-04 -1.5E-04 -5.6E-06 5.6E-06 0.999999989 -0.999999989 13.656 -41.991 -1146.9055 

Table B.1 - Sensitivity coefficients for the analytic assessment of LS implementation 

uncertainty. 
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SAMPLING Measurement variance and variance of the LS model coefficients 

D [mm] d [mm] Grid n°points ux1
2 ux2

2 uy1
2 uy2

2 uz1
2 uz2

2 ua
2 ub

2 ρabuaub 

0.35 0.35 Rect 17575 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.4E-12 1.7E-12 -7.0E-16 
0.35 0.35 Px 17575 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.4E-12 1.7E-12 -7.0E-16 
0.35 0.35 Py 17575 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.4E-12 1.7E-12 -7.0E-16 
0.35 0.35 UJ 17575 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.4E-12 1.7E-12 -7.0E-16 
0.7 0.35 Rect 13323 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 3.2E-12 2.3E-12 -2.9E-16 
0.7 0.35 Px 8915 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.8E-12 3.3E-12 -1.7E-15 
0.7 0.35 Py 8949 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.8E-12 3.5E-12 -4.6E-16 
0.7 0.35 UJ 17575 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.4E-12 1.7E-12 -7.0E-16 
0.7 0.7 Rect 4540 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 9.6E-12 6.8E-12 -1.3E-14 
0.7 0.7 Px 4459 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 9.8E-12 6.7E-12 -7.1E-15 
0.7 0.7 Py 4473 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 9.6E-12 7.1E-12 -8.0E-15 
0.7 0.7 UJ 4540 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 9.6E-12 6.8E-12 -1.3E-14 
3.5 0.35 Rect 3529 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 1.2E-11 8.7E-12 -7.3E-15 
3.5 0.35 Px 1870 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.3E-11 1.5E-11 -1.9E-14 
3.5 0.35 Py 1856 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.3E-11 1.8E-11 9.0E-15 
3.5 0.35 UJ 5089 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 8.4E-12 6.0E-12 -1.9E-14 
3.5 0.7 Rect 1693 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.6E-11 1.8E-11 -4.3E-14 
3.5 0.7 Px 933 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.7E-11 3.0E-11 -5.2E-17 
3.5 0.7 Py 927 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.6E-11 3.5E-11 -3.8E-14 
3.5 0.7 UJ 2405 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 1.8E-11 1.3E-11 -8.5E-14 
3.5 3.5 Rect 196 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.2E-10 1.6E-10 -4.3E-12 
3.5 3.5 Px 180 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.5E-10 1.5E-10 -1.5E-12 
3.5 3.5 Py 183 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.2E-10 1.8E-10 -1.7E-12 
3.5 3.5 UJ 196 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.2E-10 1.6E-10 -4.3E-12 
7 0.35 Rect 1897 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.3E-11 1.5E-11 -5.4E-14 
7 0.35 Px 1035 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.2E-11 2.4E-11 -5.0E-14 
7 0.35 Py 917 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.3E-11 3.2E-11 3.1E-14 
7 0.35 UJ 2714 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 1.6E-11 1.1E-11 6.4E-15 
7 0.7 Rect 935 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.7E-11 3.1E-11 -3.0E-13 
7 0.7 Px 517 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 8.6E-11 4.9E-11 8.6E-15 
7 0.7 Py 458 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 8.8E-11 6.4E-11 -5.4E-13 
7 0.7 UJ 1334 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 3.2E-11 2.2E-11 -1.5E-13 
7 3.5 Rect 150 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.9E-10 1.9E-10 -9.1E-12 
7 3.5 Px 100 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.2E-10 2.1E-10 9.2E-15 
7 3.5 Py 90 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.2E-10 3.2E-10 -1.3E-11 
7 3.5 UJ 196 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.2E-10 1.6E-10 -4.3E-12 
7 7 Rect 54 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 7.5E-10 4.5E-10 -2.5E-11 
7 7 Px 46 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 7.4E-10 3.1E-10 4.5E-14 
7 7 Py 48 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 6.9E-10 5.4E-10 1.2E-11 
7 7 UJ 54 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 7.5E-10 4.5E-10 -2.5E-11 

14 0.35 Rect 1184 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 3.9E-11 2.4E-11 -6.2E-14 
14 0.35 Px 631 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 7.5E-11 3.5E-11 -3.1E-15 
14 0.35 Py 572 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 6.8E-11 5.8E-11 -9.8E-15 
14 0.35 UJ 1576 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.8E-11 1.9E-11 -2.9E-15 
14 0.7 Rect 590 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 7.8E-11 4.9E-11 -5.0E-13 
14 0.7 Px 315 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 1.5E-10 7.1E-11 -2.2E-16 
14 0.7 Py 286 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 1.4E-10 1.2E-10 -6.7E-13 
14 0.7 UJ 786 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 5.7E-11 3.8E-11 -4.0E-13 
14 3.5 Rect 106 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.2E-10 2.6E-10 -1.2E-11 
14 3.5 Px 61 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 7.6E-10 3.3E-10 -1.6E-14 
14 3.5 Py 56 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 6.8E-10 6.0E-10 -1.5E-11 
14 3.5 UJ 136 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 3.2E-10 2.1E-10 -8.0E-12 
14 7 Rect 46 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 9.4E-10 5.5E-10 -3.3E-11 
14 7 Px 28 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 1.3E-09 4.8E-10 -6.0E-15 
14 7 Py 29 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 1.3E-09 1.2E-09 3.2E-11 
14 7 UJ 54 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 7.5E-10 4.5E-10 -2.5E-11 
14 14 Rect 18 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.8E-09 1.7E-09 -2.4E-10 
14 14 Px 14 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.9E-09 9.9E-10 7.0E-15 
14 14 Py 15 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.5E-09 2.5E-09 3.3E-11 
14 14 UJ 18 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 4.4E-07 2.8E-09 1.7E-09 -2.4E-10 

Table B.2 - Terms of uncertainty (variances) concurring to the LS implementation 

uncertainty.  
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SAMPLING Uncertainty terms from equation (B.1) 

D [mm] d [mm] Grid  n°punti (1) (2) (3) (4) (5) (6) (7) (8) (9) 

0.35 0.35 Rect 17575 3.2E-15 3.2E-15 2.7E-17 2.7E-17 4.4E-07 4.4E-07 9.3E-10 5.3E-09 1.5E-12 
0.35 0.35 Px 17575 3.2E-15 3.2E-15 2.7E-17 2.7E-17 4.4E-07 4.4E-07 9.3E-10 5.3E-09 1.5E-12 
0.35 0.35 Py 17575 3.2E-15 3.2E-15 2.7E-17 2.7E-17 4.4E-07 4.4E-07 9.3E-10 5.3E-09 1.5E-12 
0.35 0.35 UJ 17575 3.2E-15 3.2E-15 2.7E-17 2.7E-17 4.4E-07 4.4E-07 9.3E-10 5.3E-09 1.5E-12 
0.7 0.35 Rect 13323 3.3E-15 3.3E-15 3.1E-17 3.1E-17 4.4E-07 4.4E-07 1.2E-09 7.1E-09 6.3E-13 
0.7 0.35 Px 8915 3.2E-15 3.2E-15 2.0E-17 2.0E-17 4.4E-07 4.4E-07 1.9E-09 1.0E-08 3.6E-12 
0.7 0.35 Py 8949 3.6E-15 3.6E-15 5.3E-17 5.3E-17 4.4E-07 4.4E-07 1.8E-09 1.1E-08 1.0E-12 
0.7 0.35 UJ 17575 3.2E-15 3.2E-15 2.7E-17 2.7E-17 4.4E-07 4.4E-07 9.3E-10 5.3E-09 1.5E-12 
0.7 0.7 Rect 4540 3.5E-15 3.5E-15 4.2E-17 4.2E-17 4.4E-07 4.4E-07 3.7E-09 2.1E-08 2.8E-11 
0.7 0.7 Px 4459 2.8E-15 2.8E-15 4.1E-17 4.1E-17 4.4E-07 4.4E-07 3.8E-09 2.1E-08 1.5E-11 
0.7 0.7 Py 4473 3.5E-15 3.5E-15 8.3E-17 8.3E-17 4.4E-07 4.4E-07 3.7E-09 2.2E-08 1.7E-11 
0.7 0.7 UJ 4540 3.5E-15 3.5E-15 4.2E-17 4.2E-17 4.4E-07 4.4E-07 3.7E-09 2.1E-08 2.8E-11 
3.5 0.35 Rect 3529 4.3E-15 4.3E-15 3.5E-17 3.5E-17 4.4E-07 4.4E-07 6.2E-09 2.4E-08 1.7E-11 
3.5 0.35 Px 1870 3.0E-15 3.0E-15 1.1E-17 1.1E-17 4.4E-07 4.4E-07 1.9E-08 1.0E-15 -8.6E-15 
3.5 0.35 Py 1856 5.7E-15 5.7E-15 8.8E-17 8.8E-17 4.4E-07 4.4E-07 1.0E-08 1.6E-08 -1.1E-11 
3.5 0.35 UJ 5089 3.9E-15 3.9E-15 3.5E-17 3.5E-17 4.4E-07 4.4E-07 3.2E-09 1.8E-08 4.2E-11 
3.5 0.7 Rect 1693 4.3E-15 4.3E-15 3.6E-17 3.6E-17 4.4E-07 4.4E-07 1.3E-08 5.3E-08 1.0E-10 
3.5 0.7 Px 933 2.6E-15 2.6E-15 1.5E-17 1.5E-17 4.4E-07 4.4E-07 2.1E-08 9.4E-08 1.2E-13 
3.5 0.7 Py 927 5.6E-15 5.6E-15 1.3E-16 1.3E-16 4.4E-07 4.4E-07 2.0E-08 3.3E-08 4.9E-11 
3.5 0.7 UJ 2405 4.0E-15 4.0E-15 4.1E-17 4.1E-17 4.4E-07 4.4E-07 6.9E-09 3.9E-08 1.8E-10 
3.5 3.5 Rect 196 5.6E-15 5.6E-15 3.6E-17 3.6E-17 4.4E-07 4.4E-07 9.8E-08 3.2E-07 8.2E-09 
3.5 3.5 Px 180 1.9E-15 1.9E-15 4.0E-17 4.0E-17 4.4E-07 4.4E-07 1.1E-07 1.4E-07 -2.0E-09 
3.5 3.5 Py 183 5.7E-15 5.7E-15 4.2E-16 4.2E-16 4.4E-07 4.4E-07 1.3E-07 3.2E-07 3.6E-09 
3.5 3.5 UJ 196 5.6E-15 5.6E-15 3.6E-17 3.6E-17 4.4E-07 4.4E-07 9.8E-08 3.2E-07 8.2E-09 
7 0.35 Rect 1897 6.2E-15 6.2E-15 4.4E-17 4.4E-17 4.4E-07 4.4E-07 1.8E-08 9.9E-16 -2.5E-14 
7 0.35 Px 1035 2.7E-15 2.7E-15 7.8E-18 7.8E-18 4.4E-07 4.4E-07 3.4E-08 1.6E-15 -2.3E-14 
7 0.35 Py 917 1.2E-14 1.2E-14 1.5E-16 1.5E-16 4.4E-07 4.4E-07 1.9E-08 3.6E-08 -4.3E-11 
7 0.35 UJ 2714 5.0E-15 5.0E-15 4.6E-17 4.6E-17 4.4E-07 4.4E-07 8.1E-09 2.9E-08 -1.5E-11 
7 0.7 Rect 935 6.1E-15 6.1E-15 4.2E-17 4.2E-17 4.4E-07 4.4E-07 2.1E-08 9.5E-08 7.0E-10 
7 0.7 Px 517 2.2E-15 2.2E-15 1.0E-17 1.0E-17 4.4E-07 4.4E-07 3.8E-08 1.5E-07 -2.0E-11 
7 0.7 Py 458 1.2E-14 1.2E-14 2.0E-16 2.0E-16 4.4E-07 4.4E-07 3.9E-08 7.3E-08 7.6E-10 
7 0.7 UJ 1334 5.0E-15 5.0E-15 5.2E-17 5.2E-17 4.4E-07 4.4E-07 1.2E-08 6.8E-08 3.2E-10 
7 3.5 Rect 150 7.1E-15 7.1E-15 3.9E-17 3.9E-17 4.4E-07 4.4E-07 1.3E-07 3.3E-07 1.6E-08 
7 3.5 Px 100 1.5E-15 1.5E-15 2.3E-17 2.3E-17 4.4E-07 4.4E-07 1.8E-07 9.2E-08 8.0E-12 
7 3.5 Py 90 1.2E-14 1.2E-14 6.4E-16 6.4E-16 4.4E-07 4.4E-07 1.9E-07 3.2E-07 1.7E-08 
7 3.5 UJ 196 5.6E-15 5.6E-15 3.6E-17 3.6E-17 4.4E-07 4.4E-07 9.8E-08 3.2E-07 8.2E-09 
7 7 Rect 54 9.9E-15 9.9E-15 3.0E-17 3.0E-17 4.4E-07 4.4E-07 3.3E-07 5.4E-07 3.6E-08 
7 7 Px 46 8.3E-16 8.3E-16 5.5E-17 5.5E-17 4.4E-07 4.4E-07 1.4E-07 3.7E-07 -4.3E-11 
7 7 Py 48 1.0E-14 1.0E-14 1.2E-15 1.2E-15 4.4E-07 4.4E-07 5.4E-07 2.4E-07 1.4E-08 
7 7 UJ 54 9.9E-15 9.9E-15 3.0E-17 3.0E-17 4.4E-07 4.4E-07 3.3E-07 5.4E-07 3.6E-08 

14 0.35 Rect 1184 7.3E-15 7.3E-15 4.1E-17 4.1E-17 4.4E-07 4.4E-07 3.1E-08 1.6E-15 -2.9E-14 
14 0.35 Px 631 2.5E-15 2.5E-15 4.7E-18 4.7E-18 4.4E-07 4.4E-07 6.0E-08 2.4E-15 -1.4E-15 
14 0.35 Py 572 1.2E-14 1.2E-14 2.0E-16 2.0E-16 4.4E-07 4.4E-07 1.3E-08 6.6E-08 9.2E-12 
14 0.35 UJ 1576 6.1E-15 6.1E-15 2.0E-17 2.0E-17 4.4E-07 4.4E-07 2.3E-08 1.2E-15 -1.4E-15 
14 0.7 Rect 590 7.2E-15 7.2E-15 3.0E-17 3.0E-17 4.4E-07 4.4E-07 3.4E-08 1.5E-07 1.2E-09 
14 0.7 Px 315 2.1E-15 2.1E-15 1.2E-18 1.2E-18 4.4E-07 4.4E-07 6.7E-08 2.2E-07 5.2E-13 
14 0.7 Py 286 1.2E-14 1.2E-14 2.5E-16 2.5E-16 4.4E-07 4.4E-07 2.7E-08 1.3E-07 6.3E-10 
14 0.7 UJ 786 6.1E-15 6.1E-15 1.4E-17 1.4E-17 4.4E-07 4.4E-07 2.2E-08 1.2E-07 8.7E-10 
14 3.5 Rect 106 8.4E-15 8.4E-15 5.1E-17 5.1E-17 4.4E-07 4.4E-07 1.8E-07 4.5E-07 2.2E-08 
14 3.5 Px 61 1.9E-15 1.9E-15 1.7E-17 1.7E-17 4.4E-07 4.4E-07 3.3E-07 6.2E-08 -8.9E-12 
14 3.5 Py 56 1.2E-14 1.2E-14 6.3E-16 6.3E-16 4.4E-07 4.4E-07 1.3E-07 5.9E-07 1.3E-08 
14 3.5 UJ 136 7.0E-15 7.0E-15 4.3E-17 4.3E-17 4.4E-07 4.4E-07 1.4E-07 4.3E-07 1.5E-08 
14 7 Rect 46 1.0E-14 1.0E-14 2.5E-17 2.5E-17 4.4E-07 4.4E-07 4.2E-07 6.6E-07 4.8E-08 
14 7 Px 28 9.7E-16 9.7E-16 3.3E-17 3.3E-17 4.4E-07 4.4E-07 2.6E-07 8.4E-07 7.0E-12 
14 7 Py 29 1.1E-14 1.1E-14 9.8E-16 9.8E-16 4.4E-07 4.4E-07 9.9E-07 5.1E-07 3.8E-08 
14 7 UJ 54 9.9E-15 9.9E-15 3.0E-17 3.0E-17 4.4E-07 4.4E-07 3.3E-07 5.4E-07 3.6E-08 
14 14 Rect 18 9.6E-15 9.6E-15 1.4E-17 1.4E-17 4.4E-07 4.4E-07 5.2E-07 3.1E-06 2.7E-07 
14 14 Px 14 4.2E-16 4.2E-16 5.5E-17 5.5E-17 4.4E-07 4.4E-07 5.7E-07 7.5E-07 5.4E-12 
14 14 Py 15 1.0E-14 1.0E-14 2.4E-15 2.4E-15 4.4E-07 4.4E-07 2.0E-06 4.9E-07 2.6E-08 
14 14 UJ 18 9.6E-15 9.6E-15 1.4E-17 1.4E-17 4.4E-07 4.4E-07 5.2E-07 3.1E-06 2.7E-07 

Table B.3 - Components of LS implementation uncertainty. Columns named (1) to (9) 

contains the nine components of equation (B.1) for each verification operator. 
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Annex C - Ideal measuring instrument: results 

SAMPLING 
(LS) FLTt 

Error evaluation uIm ANALYTIC uIm EXPERIMENTAL 

D [mm] d [mm] Grid  points [n°] FLTt [µm] tFLTt [s]  uIm [µm] tu [s]  uIm [µm] tu [s] 

0.35 0.35 Rect 17575 11.489 0.180 0.060 4.034 0.074 1.158 
0.35 0.35 Px 17575 11.489 0.180 0.060 4.034 0.074 1.158 
0.35 0.35 Py 17575 11.489 0.180 0.060 4.034 0.074 1.158 
0.35 0.35 UJ 17575 11.489 0.180 0.060 4.034 0.074 1.158 
0.7 0.35 Rect 13323 11.489 0.121 0.069 3.519 0.082 0.938 
0.7 0.35 Px 8915 11.401 0.117 0.084 3.467 0.087 0.653 
0.7 0.35 Py 8949 11.578 0.037 0.086 0.456 0.106 0.664 
0.7 0.35 UJ 17575 11.489 0.125 0.060 3.867 0.077 1.141 
0.7 0.7 Rect 4540 11.486 0.117 0.120 3.216 0.133 0.331 
0.7 0.7 Px 4459 11.262 0.034 0.118 0.458 0.133 0.356 
0.7 0.7 Py 4473 11.517 0.004 0.120 0.359 0.153 0.458 
0.7 0.7 UJ 4540 11.486 0.004 0.120 0.354 0.136 0.354 
3.5 0.35 Rect 3529 11.602 0.177 0.136 3.928 0.166 0.278 
3.5 0.35 Px 1870 11.215 0.031 0.182 0.484 0.169 0.160 
3.5 0.35 Py 1856 10.869 0.003 0.182 0.393 0.191 0.161 
3.5 0.35 UJ 5089 11.566 0.005 0.113 0.399 0.117 0.391 
3.5 0.7 Rect 1693 11.588 0.002 0.197 0.402 0.198 0.148 
3.5 0.7 Px 933 11.085 0.001 0.256 0.406 0.188 0.101 
3.5 0.7 Py 927 10.805 0.001 0.256 0.392 0.243 0.103 
3.5 0.7 UJ 2405 11.546 0.002 0.165 0.396 0.194 0.228 
3.5 3.5 Rect 196 10.544 0.001 0.551 0.404 0.351 0.060 
3.5 3.5 Px 180 9.857 0.001 0.450 0.399 0.358 0.048 
3.5 3.5 Py 183 10.211 0.001 0.579 0.393 0.480 0.057 
3.5 3.5 UJ 196 10.544 0.001 0.551 0.402 0.371 0.049 
7 0.35 Rect 1897 12.202 0.002 0.182 0.404 0.223 0.162 
7 0.35 Px 1035 11.145 0.001 0.237 0.396 0.223 0.112 
7 0.35 Py 917 9.746 0.001 0.207 0.399 0.254 0.101 
7 0.35 UJ 2714 11.897 0.003 0.154 0.396 0.173 0.239 
7 0.7 Rect 935 12.159 0.001 0.262 0.399 0.300 0.090 
7 0.7 Px 517 11.014 0.001 0.334 0.402 0.223 0.068 
7 0.7 Py 458 9.693 0.002 0.295 0.398 0.275 0.062 
7 0.7 UJ 1334 11.835 0.002 0.222 0.392 0.214 0.123 
7 3.5 Rect 150 10.879 0.001 0.668 0.397 0.563 0.046 
7 3.5 Px 100 9.910 0.001 0.576 0.399 0.456 0.044 
7 3.5 Py 90 9.244 0.001 0.695 0.400 0.640 0.043 
7 3.5 UJ 196 10.544 0.001 0.551 0.398 0.422 0.050 
7 7 Rect 54 9.317 0.001 0.812 0.404 0.697 0.043 
7 7 Px 46 8.126 0.001 0.803 0.407 0.644 0.040 
7 7 Py 48 8.420 0.001 0.862 0.406 0.687 0.041 
7 7 UJ 54 9.317 0.001 0.812 0.405 0.645 0.041 

14 0.35 Rect 1184 12.251 0.001 0.231 0.396 0.288 0.115 
14 0.35 Px 631 11.016 0.001 0.285 0.390 0.210 0.070 
14 0.35 Py 572 9.342 0.002 0.244 0.395 0.253 0.067 
14 0.35 UJ 1576 12.002 0.002 0.202 0.399 0.238 0.145 
14 0.7 Rect 590 12.231 0.001 0.331 0.398 0.441 0.070 
14 0.7 Px 315 10.906 0.001 0.402 0.399 0.277 0.054 
14 0.7 Py 286 9.256 0.001 0.346 0.398 0.351 0.061 
14 0.7 UJ 786 11.961 0.001 0.288 0.411 0.302 0.090 
14 3.5 Rect 106 11.141 0.001 0.780 0.397 0.559 0.044 
14 3.5 Px 61 9.689 0.001 0.795 0.390 0.632 0.041 
14 3.5 Py 56 8.563 0.001 0.825 0.408 0.711 0.041 
14 3.5 UJ 136 10.897 0.001 0.655 0.394 0.477 0.048 
14 7 Rect 46 9.338 0.001 0.882 0.414 0.801 0.040 
14 7 Px 28 8.062 0.001 1.025 0.397 0.753 0.039 
14 7 Py 29 7.906 0.001 1.235 0.403 0.850 0.039 
14 7 UJ 54 9.317 0.001 0.812 0.403 0.688 0.041 
14 14 Rect 18 8.998 0.001 1.935 0.415 1.142 0.040 
14 14 Px 14 6.980 0.001 1.110 0.399 1.214 0.038 
14 14 Py 15 7.068 0.001 1.558 0.400 1.040 0.039 
14 14 UJ 18 8.998 0.001 1.935 0.403 1.473 0.038 

Table C.1 - Evaluation of FLTt error, with LS method, using an ideal measuring instrument.  
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SAMPLING 
(MZ) FLTt 

Error evaluation uIm ANALYTIC uIm EXPERIMENTAL 

D [mm] d [mm] Grid points [n°] FLTt [µm] tFLTt [s] uIm [µm] tu [min] uIm [µm] tu [min] 

0.35 0.35 Rect 17575 11.015 267.223 0.002 153.207 0.002 157.424 
0.35 0.35 Px 17575 11.015 267.223 0.002 153.207 0.002 157.424 
0.35 0.35 Py 17575 11.015 267.223 0.002 153.207 0.002 157.424 
0.35 0.35 UJ 17575 11.015 267.223 0.002 153.207 0.002 157.424 
0.7 0.35 Rect 13323 11.015 266.684 0.001 155.765 0.001 160.208 
0.7 0.35 Px 8915 11.015 165.669 0.003 90.416 0.002 89.307 
0.7 0.35 Py 8949 11.015 109.512 0.007 61.830 0.007 62.286 
0.7 0.35 UJ 17575 11.015 266.491 0.002 156.272 0.002 158.982 
0.7 0.7 Rect 4540 11.015 53.866 0.007 28.645 0.008 29.068 
0.7 0.7 Px 4459 10.906 54.667 0.006 29.306 0.005 29.811 
0.7 0.7 Py 4473 10.952 53.581 0.006 28.652 0.006 28.556 
0.7 0.7 UJ 4540 11.015 53.839 0.006 28.874 0.009 28.684 
3.5 0.35 Rect 3529 11.009 65.395 0.036 43.585 0.047 45.981 
3.5 0.35 Px 1870 10.924 71.899 0.031 40.338 0.041 39.929 
3.5 0.35 Py 1856 10.475 27.905 0.046 19.362 0.051 19.321 
3.5 0.35 UJ 5089 11.013 80.699 0.015 50.538 0.011 50.007 
3.5 0.7 Rect 1693 11.009 16.369 0.048 11.344 0.042 12.107 
3.5 0.7 Px 933 10.814 15.627 0.043 8.362 0.043 8.544 
3.5 0.7 Py 927 10.410 8.783 0.062 5.889 0.078 5.855 
3.5 0.7 UJ 2405 11.013 22.940 0.014 13.816 0.018 14.034 
3.5 3.5 Rect 196 10.388 0.868 0.142 0.697 0.138 0.693 
3.5 3.5 Px 180 9.478 0.927 0.154 0.716 0.154 0.652 
3.5 3.5 Py 183 9.838 0.856 0.108 0.653 0.142 0.624 
3.5 3.5 UJ 196 10.388 0.873 0.157 0.713 0.144 0.636 
7 0.35 Rect 1897 11.009 73.843 0.060 53.336 0.059 55.266 
7 0.35 Px 1035 10.924 62.808 0.090 36.282 0.081 36.952 
7 0.35 Py 917 9.301 27.146 0.058 19.009 0.056 18.226 
7 0.35 UJ 2714 11.009 76.601 0.040 51.790 0.043 52.495 
7 0.7 Rect 935 11.009 17.677 0.086 13.408 0.101 12.974 
7 0.7 Px 517 10.814 12.005 0.080 6.980 0.107 6.656 
7 0.7 Py 458 9.233 7.485 0.120 4.802 0.108 4.707 
7 0.7 UJ 1334 11.009 19.454 0.042 13.100 0.058 12.693 
7 3.5 Rect 150 10.371 0.625 0.150 0.541 0.167 0.502 
7 3.5 Px 100 9.453 0.426 0.182 0.365 0.211 0.325 
7 3.5 Py 90 8.646 0.347 0.235 0.329 0.264 0.289 
7 3.5 UJ 196 10.388 0.875 0.118 0.673 0.144 0.660 
7 7 Rect 54 9.226 0.185 0.423 0.198 0.332 0.149 
7 7 Px 46 7.685 0.170 0.439 0.178 0.341 0.134 
7 7 Py 48 8.089 0.147 0.412 0.173 0.300 0.132 
7 7 UJ 54 9.226 0.184 0.531 0.192 0.400 0.160 

14 0.35 Rect 1184 10.925 101.749 0.107 67.069 0.106 69.580 
14 0.35 Px 631 10.799 58.200 0.120 32.140 0.127 33.085 
14 0.35 Py 572 8.923 23.798 0.085 15.703 0.084 15.802 
14 0.35 UJ 1576 10.925 101.773 0.043 67.053 0.059 66.836 
14 0.7 Rect 590 10.924 22.337 0.182 14.397 0.153 14.675 
14 0.7 Px 315 10.701 10.221 0.184 5.901 0.193 5.774 
14 0.7 Py 286 8.841 6.064 0.167 3.838 0.149 3.645 
14 0.7 UJ 786 10.924 23.175 0.051 14.374 0.065 14.610 
14 3.5 Rect 106 10.363 0.555 0.248 0.494 0.290 0.448 
14 3.5 Px 61 9.409 0.310 0.390 0.289 0.337 0.242 
14 3.5 Py 56 8.147 0.223 0.311 0.244 0.278 0.210 
14 3.5 UJ 136 10.388 0.665 0.163 0.564 0.138 0.517 
14 7 Rect 46 9.226 0.184 0.488 0.197 0.378 0.153 
14 7 Px 28 7.685 0.112 0.653 0.134 0.544 0.089 
14 7 Py 29 7.518 0.090 0.482 0.137 0.386 0.092 
14 7 UJ 54 9.226 0.183 0.406 0.197 0.460 0.152 
14 14 Rect 18 8.709 0.052 1.417 0.094 0.778 0.053 
14 14 Px 14 6.279 0.051 1.242 0.085 0.993 0.044 
14 14 Py 15 6.641 0.045 0.839 0.090 0.625 0.046 
14 14 UJ 18 8.709 0.052 1.772 0.096 0.914 0.053 

Table C.2 - Evaluation of FLTt error, with MZ method, for verification operators based on 

the use of an ideal measuring instrument.   
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SAMPLING MZ uIm An. uIm Exp. LS uIm An. uIm Exp. 

D [mm] d [mm] Grid FLTt [µm] uMt[µm] uM [µm] uM [µm] FLTt [µm] uMt[µm] uM [µm] uM [µm] 

0.35 0.35 Rect 11.015 0.000 0.002 0.002 11.489 0.474 0.477 0.479 
0.35 0.35 Px 11.015 0.000 0.002 0.002 11.489 0.474 0.477 0.479 
0.35 0.35 Py 11.015 0.000 0.002 0.002 11.489 0.474 0.477 0.479 
0.35 0.35 UJ 11.015 0.000 0.002 0.002 11.489 0.474 0.477 0.479 
0.7 0.35 Rect 11.015 0.000 0.001 0.001 11.489 0.473 0.478 0.480 
0.7 0.35 Px 11.015 0.000 0.003 0.002 11.401 0.386 0.395 0.395 
0.7 0.35 Py 11.015 0.000 0.007 0.007 11.578 0.562 0.569 0.572 
0.7 0.35 UJ 11.015 0.000 0.002 0.002 11.489 0.474 0.477 0.480 
0.7 0.7 Rect 11.015 0.001 0.007 0.008 11.486 0.471 0.486 0.489 
0.7 0.7 Px 10.906 0.109 0.109 0.109 11.262 0.247 0.273 0.280 
0.7 0.7 Py 10.952 0.064 0.064 0.064 11.517 0.501 0.516 0.524 
0.7 0.7 UJ 11.015 0.001 0.006 0.009 11.486 0.471 0.486 0.490 
3.5 0.35 Rect 11.009 0.006 0.036 0.047 11.602 0.586 0.602 0.609 
3.5 0.35 Px 10.924 0.091 0.096 0.100 11.215 0.200 0.270 0.262 
3.5 0.35 Py 10.475 0.540 0.542 0.543 10.869 0.147 0.234 0.241 
3.5 0.35 UJ 11.013 0.002 0.015 0.011 11.566 0.550 0.562 0.563 
3.5 0.7 Rect 11.009 0.007 0.048 0.042 11.588 0.573 0.606 0.606 
3.5 0.7 Px 10.814 0.201 0.206 0.206 11.085 0.070 0.265 0.201 
3.5 0.7 Py 10.410 0.606 0.609 0.611 10.805 0.210 0.331 0.321 
3.5 0.7 UJ 11.013 0.003 0.015 0.018 11.546 0.531 0.556 0.565 
3.5 3.5 Rect 10.388 0.627 0.643 0.642 10.544 0.471 0.725 0.587 
3.5 3.5 Px 9.478 1.537 1.545 1.545 9.857 1.158 1.242 1.212 
3.5 3.5 Py 9.838 1.178 1.183 1.186 10.211 0.804 0.991 0.936 
3.5 3.5 UJ 10.388 0.627 0.647 0.644 10.544 0.471 0.725 0.600 
7 0.35 Rect 11.009 0.006 0.061 0.059 12.202 1.187 1.201 1.208 
7 0.35 Px 10.924 0.091 0.128 0.122 11.145 0.130 0.270 0.258 
7 0.35 Py 9.301 1.714 1.715 1.715 9.746 1.270 1.287 1.295 
7 0.35 UJ 11.009 0.006 0.040 0.044 11.897 0.882 0.895 0.899 
7 0.7 Rect 11.009 0.007 0.086 0.101 12.159 1.144 1.173 1.182 
7 0.7 Px 10.814 0.201 0.217 0.228 11.014 0.001 0.334 0.223 
7 0.7 Py 9.233 1.782 1.786 1.785 9.693 1.322 1.355 1.350 
7 0.7 UJ 11.009 0.007 0.043 0.058 11.835 0.820 0.850 0.848 
7 3.5 Rect 10.371 0.645 0.662 0.666 10.879 0.136 0.682 0.579 
7 3.5 Px 9.453 1.562 1.573 1.577 9.910 1.105 1.246 1.196 
7 3.5 Py 8.646 2.369 2.381 2.384 9.244 1.772 1.903 1.884 
7 3.5 UJ 10.388 0.627 0.638 0.643 10.544 0.471 0.725 0.632 
7 7 Rect 9.226 1.789 1.839 1.820 9.317 1.698 1.882 1.836 
7 7 Px 7.685 3.330 3.359 3.348 8.126 2.889 2.999 2.960 
7 7 Py 8.089 2.926 2.955 2.942 8.420 2.595 2.735 2.685 
7 7 UJ 9.226 1.789 1.867 1.834 9.317 1.698 1.882 1.816 

14 0.35 Rect 10.925 0.091 0.140 0.140 12.251 1.236 1.257 1.269 
14 0.35 Px 10.799 0.217 0.248 0.251 11.016 0.000 0.285 0.210 
14 0.35 Py 8.923 2.092 2.094 2.094 9.342 1.673 1.691 1.692 
14 0.35 UJ 10.925 0.091 0.100 0.108 12.002 0.987 1.007 1.015 
14 0.7 Rect 10.924 0.092 0.204 0.178 12.231 1.216 1.260 1.293 
14 0.7 Px 10.701 0.315 0.365 0.369 10.906 0.109 0.417 0.298 
14 0.7 Py 8.841 2.175 2.181 2.180 9.256 1.760 1.794 1.795 
14 0.7 UJ 10.924 0.092 0.105 0.113 11.961 0.945 0.988 0.993 
14 3.5 Rect 10.363 0.652 0.698 0.713 11.141 0.126 0.790 0.573 
14 3.5 Px 9.409 1.607 1.653 1.642 9.689 1.327 1.547 1.470 
14 3.5 Py 8.147 2.869 2.886 2.882 8.563 2.452 2.587 2.553 
14 3.5 UJ 10.388 0.627 0.648 0.642 10.897 0.118 0.665 0.492 
14 7 Rect 9.226 1.789 1.855 1.829 9.338 1.677 1.895 1.859 
14 7 Px 7.685 3.330 3.394 3.375 8.062 2.953 3.126 3.047 
14 7 Py 7.518 3.498 3.531 3.519 7.906 3.110 3.346 3.224 
14 7 UJ 9.226 1.789 1.835 1.848 9.317 1.698 1.882 1.832 
14 14 Rect 8.709 2.306 2.706 2.434 8.998 2.017 2.795 2.318 
14 14 Px 6.279 4.736 4.896 4.839 6.980 4.036 4.186 4.214 
14 14 Py 6.641 4.374 4.454 4.419 7.068 3.947 4.243 4.082 
14 14 UJ 8.709 2.306 2.908 2.480 8.998 2.017 2.795 2.498 

Table C.3 - Method and measurement uncertainty for verification operators based on the use 

of an ideal measuring instrument. 
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An attentive reader could notice that for this experiment the time required for the 

assessment of the MZ flatness deviation is much higher than the time required by the same 

verification operators implemented with a real measuring instrument (MPE ≠ 0). Reader 

compares the results reported in Table C.2 and Table D.2. The time required for evaluating 

the MZ flatness error detected by the perfect verification operators is 267 seconds if the 

measurement relies on an ideal instrument (Table C.2) and 3.6 seconds if it is based on a real 

instrument (Table D.2). The difference affects also the implementation uncertainty, for both 

the analytical and the experimental assessment, and is magnified because of the bootstrap 

method embedded in both approaches. 

In order to understand the different computation times, which indeed are related with the 

convex-hull calculation and the solution of the MZ problem, it is necessary to compare the 

convex-hulls of the two measurement datasets. Convex-hulls are not plotted directly, as they 

are solid entities, but only their vertices are highlighted among the set of measurement points. 

Particularly, the convex-hull vertices of the two experiments are visible in Figure C.1 and 

Figure C.2. These figures refer to the perfect verification operator. It is easy to notice that the 

measurement based on a real instrument generates a convex-hull with fewer vertices (111 

vertices) than the measurement based on the ideal instrument (434 vertices). The latter is 

characterized also by the concentration of vertices on the feature edges, phenomenon that 

leads to narrow facets of the convex-hull and can compromise the accuracy of the MZ 

algorithm because of numerical errors. However, this effect is also a consequence of the 

particular shape of the virtual surface at hand, which indeed is very smooth and characterized 

by a wavelength of the form deviation much larger than the distance between sampling points. 

 

Figure C.1 - Perfect verification operator based on an ideal measuring instrument. Vertices 

of the convex-hull are concentrated on the feature external edges for a total of 434 points. 
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Figure C.2 - Perfect verification operator based on a real (simulated) measuring instrument. 

Convex-hull has 111 vertices not strictly concentrated along the feature external edges as in 

Figure C.1. 
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Annex D - Real (simulated) measuring instrument: results 

SAMPLING 
(LS) FLTt 

Error evaluation uIm ANALYTIC uIm EXPERIMENTAL 

D [mm] d [mm] Grid  points [n°] FLTt [µm] tFLTt [s]  uIm [µm] tu [s]  uIm [µm] tu [s] 

0.35 0.35 Rect 17575 14.186 0.2798 0.945 2.8136 0.191 1.6883 
0.35 0.35 Px 17575 14.186 0.2798 0.945 2.8136 0.191 1.6883 
0.35 0.35 Py 17575 14.186 0.2798 0.945 2.8136 0.191 1.6883 
0.35 0.35 UJ 17575 14.186 0.2798 0.945 2.8136 0.191 1.6883 
0.7 0.35 Rect 13323 14.188 0.0109 0.945 2.7601 0.191 1.3195 
0.7 0.35 Px 8915 14.100 0.0112 0.946 2.2639 0.176 0.9106 
0.7 0.35 Py 8949 14.263 0.0070 0.946 2.7421 0.211 0.8512 
0.7 0.35 UJ 17575 14.186 0.0186 0.945 2.3234 0.178 1.8398 
0.7 0.7 Rect 4540 14.160 0.0032 0.950 2.4242 0.319 0.4346 
0.7 0.7 Px 4459 13.960 0.0032 0.950 2.3986 0.312 0.3985 
0.7 0.7 Py 4473 14.315 0.0034 0.950 2.7424 0.398 0.4768 
0.7 0.7 UJ 4540 14.160 0.0043 0.950 2.5392 0.313 0.4581 
3.5 0.35 Rect 3529 14.060 0.0028 0.951 2.3293 0.267 0.3591 
3.5 0.35 Px 1870 13.465 0.0018 0.955 2.4784 0.259 0.1922 
3.5 0.35 Py 1856 14.392 0.0024 0.958 2.0266 0.514 0.2057 
3.5 0.35 UJ 5089 14.250 0.0037 0.949 2.5071 0.246 0.4665 
3.5 0.7 Rect 1693 14.048 0.0016 0.959 2.4671 0.447 0.1744 
3.5 0.7 Px 933 13.197 0.0012 0.963 2.7270 0.443 0.1159 
3.5 0.7 Py 927 14.429 0.0012 0.974 2.9791 0.724 0.1157 
3.5 0.7 UJ 2405 14.224 0.0021 0.956 2.4161 0.338 0.2449 
3.5 3.5 Rect 196 12.351 0.0188 1.018 2.5272 0.584 0.0486 
3.5 3.5 Px 180 10.767 0.0144 1.023 2.6511 0.433 0.0471 
3.5 3.5 Py 183 11.427 0.0209 1.063 2.5894 0.526 0.0567 
3.5 3.5 UJ 196 12.351 0.0007 1.018 2.4646 0.530 0.0478 
7 0.35 Rect 1897 13.977 0.0021 0.951 2.4925 0.218 0.1986 
7 0.35 Px 1035 13.460 0.0400 0.965 2.6044 0.392 0.1248 
7 0.35 Py 917 12.218 0.0287 0.974 2.4486 0.420 0.1183 
7 0.35 UJ 2714 14.267 0.0024 0.957 2.6815 0.318 0.3769 
7 0.7 Rect 935 13.633 0.0012 0.986 2.7216 0.425 0.1171 
7 0.7 Px 517 13.230 0.0192 0.978 2.9173 0.549 0.1075 
7 0.7 Py 458 11.959 0.0320 0.992 2.0425 0.506 0.0792 
7 0.7 UJ 1334 14.251 0.0267 0.972 2.6663 0.538 0.1562 
7 3.5 Rect 150 12.682 0.0233 1.162 2.6318 0.608 0.0518 
7 3.5 Px 100 10.821 0.0215 1.201 2.5424 0.618 0.0428 
7 3.5 Py 90 9.798 0.0404 1.150 2.4177 0.613 0.0406 
7 3.5 UJ 196 12.351 0.0007 1.018 2.4806 0.574 0.0572 
7 7 Rect 54 9.722 0.0006 1.356 2.3702 0.776 0.0667 
7 7 Px 46 8.905 0.0083 1.227 2.7611 0.872 0.0419 
7 7 Py 48 9.097 0.0110 1.626 2.4183 0.669 0.0569 
7 7 UJ 54 9.722 0.0006 1.356 2.4016 0.615 0.0396 

14 0.35 Rect 1184 14.082 0.0242 0.958 2.5336 0.485 0.1475 
14 0.35 Px 631 12.841 0.0264 0.970 2.3860 0.331 0.0909 
14 0.35 Py 572 12.159 0.0178 0.999 2.8704 0.555 0.0765 
14 0.35 UJ 1576 14.354 0.0016 0.954 2.6347 0.481 0.1603 
14 0.7 Rect 590 13.298 0.0009 0.994 2.4633 0.364 0.0741 
14 0.7 Px 315 12.078 0.0286 1.005 2.5106 0.322 0.0577 
14 0.7 Py 286 11.899 0.0238 1.029 2.9641 0.796 0.0744 
14 0.7 UJ 786 14.341 0.0305 0.991 2.9548 0.624 0.0974 
14 3.5 Rect 106 12.298 0.0007 1.291 2.5096 0.667 0.0436 
14 3.5 Px 61 10.690 0.0275 1.311 2.1991 0.701 0.0407 
14 3.5 Py 56 9.762 0.0007 1.276 1.9804 0.723 0.0415 
14 3.5 UJ 136 12.124 0.0240 1.047 2.4600 0.623 0.0534 
14 7 Rect 46 9.762 0.0006 1.411 2.2696 0.673 0.0403 
14 7 Px 28 7.447 0.0006 1.367 2.2462 0.775 0.0394 
14 7 Py 29 8.346 0.0006 1.541 2.5425 1.070 0.0398 
14 7 UJ 54 9.722 0.0006 1.356 2.4955 0.722 0.0427 
14 14 Rect 18 9.624 0.0103 2.136 2.4105 1.430 0.0381 
14 14 Px 14 6.929 0.0007 1.475 2.8224 1.143 0.0402 
14 14 Py 15 7.602 0.0006 1.693 2.7791 1.065 0.0629 
14 14 UJ 18 9.624 0.0006 2.136 1.1190 1.282 0.0380 

Table D.1 - Evaluation of FLTt error, with LS method, for a real measuring instrument. 
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SAMPLING 
(MZ) FLTt 

Error evaluation uIm ANALYTIC uIm EXPERIMENTAL 

D [mm] d [mm] Grid  points [n°] FLTt [µm] tFLTt [s]  uIm [µm] tu [s]  uIm [µm] tu [s] 

0.35 0.35 Rect 17575 13.758 3.629 0.950 276.040 0.108 4.270 
0.35 0.35 Px 17575 13.758 3.629 0.950 276.040 0.108 4.270 
0.35 0.35 Py 17575 13.758 3.629 0.950 276.040 0.108 4.270 
0.35 0.35 UJ 17575 13.758 3.629 0.950 276.040 0.108 4.270 
0.7 0.35 Rect 13323 13.758 2.951 0.952 240.129 0.112 4.038 
0.7 0.35 Px 8915 13.643 2.434 0.949 212.586 0.122 3.364 
0.7 0.35 Py 8949 13.756 1.934 0.966 184.410 0.195 2.998 
0.7 0.35 UJ 17575 13.758 3.166 0.950 268.840 0.105 4.340 
0.7 0.7 Rect 4540 13.508 1.340 0.972 129.785 0.192 2.214 
0.7 0.7 Px 4459 13.508 1.391 0.979 123.036 0.227 2.156 
0.7 0.7 Py 4473 13.508 1.315 0.975 122.023 0.253 2.132 
0.7 0.7 UJ 4540 13.508 1.347 0.966 128.569 0.196 2.174 
3.5 0.35 Rect 3529 13.558 1.687 0.961 132.854 0.196 2.206 
3.5 0.35 Px 1870 13.380 1.263 0.982 98.642 0.261 1.672 
3.5 0.35 Py 1856 13.125 1.244 0.982 90.349 0.288 1.534 
3.5 0.35 UJ 5089 13.642 1.936 0.950 146.770 0.150 2.529 
3.5 0.7 Rect 1693 13.229 0.987 0.996 84.268 0.320 1.500 
3.5 0.7 Px 933 12.540 0.730 0.976 58.891 0.260 0.992 
3.5 0.7 Py 927 13.125 0.539 1.077 54.629 0.483 0.937 
3.5 0.7 UJ 2405 13.508 1.150 0.972 98.033 0.213 1.703 
3.5 3.5 Rect 196 12.089 0.377 1.005 25.207 0.413 0.441 
3.5 3.5 Px 180 10.610 0.327 0.967 21.743 0.324 0.375 
3.5 3.5 Py 183 11.372 0.294 0.986 22.707 0.337 0.388 
3.5 3.5 UJ 196 12.089 0.370 1.011 24.913 0.383 0.447 
7 0.35 Rect 1897 13.220 1.302 0.960 102.558 0.213 1.759 
7 0.35 Px 1035 13.165 0.995 1.011 78.759 0.317 1.318 
7 0.35 Py 917 11.436 0.701 0.965 60.341 0.190 1.005 
7 0.35 UJ 2714 13.488 1.443 0.980 114.820 0.232 1.926 
7 0.7 Rect 935 12.673 0.741 0.967 68.419 0.172 1.224 
7 0.7 Px 517 12.527 0.641 1.028 44.714 0.338 0.775 
7 0.7 Py 458 11.235 0.478 0.979 41.904 0.335 0.705 
7 0.7 UJ 1334 13.113 0.959 0.993 79.913 0.305 1.446 
7 3.5 Rect 150 12.089 0.290 1.035 20.353 0.442 0.394 
7 3.5 Px 100 10.610 0.208 1.039 14.044 0.470 0.242 
7 3.5 Py 90 9.313 0.320 0.995 14.961 0.300 0.308 
7 3.5 UJ 196 12.089 0.376 1.018 24.679 0.421 0.452 
7 7 Rect 54 9.469 0.189 1.005 9.942 0.418 0.162 
7 7 Px 46 8.133 0.124 1.128 7.845 0.567 0.118 
7 7 Py 48 8.653 0.146 1.086 9.012 0.342 0.149 
7 7 UJ 54 9.469 0.184 0.997 10.299 0.337 0.160 

14 0.35 Rect 1184 13.184 1.052 0.979 81.241 0.273 1.377 
14 0.35 Px 631 12.609 0.856 0.973 62.988 0.240 1.068 
14 0.35 Py 572 11.426 0.430 1.056 37.126 0.273 0.622 
14 0.35 UJ 1576 13.478 1.015 0.968 85.507 0.283 1.452 
14 0.7 Rect 590 12.501 0.643 0.963 56.209 0.197 0.913 
14 0.7 Px 315 11.744 0.559 0.962 37.358 0.195 0.638 
14 0.7 Py 286 11.005 0.267 1.114 26.691 0.502 0.451 
14 0.7 UJ 786 13.083 0.615 0.999 60.150 0.314 1.020 
14 3.5 Rect 106 11.694 0.233 1.043 18.465 0.412 0.303 
14 3.5 Px 61 10.289 0.164 1.172 11.102 0.618 0.179 
14 3.5 Py 56 9.148 0.155 1.060 10.926 0.357 0.177 
14 3.5 UJ 136 11.694 0.285 1.008 22.110 0.332 0.363 
14 7 Rect 46 9.469 0.184 1.024 9.669 0.405 0.158 
14 7 Px 28 7.156 0.101 1.193 6.075 0.489 0.091 
14 7 Py 29 8.200 0.091 1.279 6.214 0.512 0.092 
14 7 UJ 54 9.469 0.184 1.018 10.627 0.382 0.159 
14 14 Rect 18 8.680 0.063 1.533 3.723 0.914 0.058 
14 14 Px 14 6.265 0.051 1.482 3.322 0.878 0.046 
14 14 Py 15 7.466 0.054 1.162 3.320 0.739 0.048 
14 14 UJ 18 8.680 0.063 1.750 3.841 0.891 0.057 

Table D.2 - Evaluation of FLTt error, with MZ method, for verification operators based on 

the use of a real (simulated) measuring instrument: MPE ≠ 0. 



 Annex D - Real (simulated) measuring instrument: results 
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SAMPLING MZ uIm An. uIm Exp. LS uIm An. uIm Exp. 

D [mm] d [mm] Grid FLTt [µm] uMt[µm] uM [µm] uM [µm] FLTt [µm] uMt[µm] uM [µm] uM [µm] 

0.35 0.35 Rect 13.758 0.000 0.950 0.108 14.186 0.427 1.037 0.468 
0.35 0.35 Px 13.758 0.000 0.950 0.108 14.186 0.427 1.037 0.468 
0.35 0.35 Py 13.758 0.000 0.950 0.108 14.186 0.427 1.037 0.468 
0.35 0.35 UJ 13.758 0.000 0.950 0.108 14.186 0.427 1.037 0.468 
0.7 0.35 Rect 13.758 0.000 0.952 0.112 14.188 0.429 1.038 0.470 
0.7 0.35 Px 13.643 0.115 0.956 0.168 14.100 0.342 1.006 0.384 
0.7 0.35 Py 13.756 0.002 0.966 0.195 14.263 0.505 1.073 0.547 
0.7 0.35 UJ 13.758 0.000 0.950 0.105 14.186 0.427 1.037 0.463 
0.7 0.7 Rect 13.508 0.251 1.004 0.316 14.160 0.401 1.031 0.513 
0.7 0.7 Px 13.508 0.251 1.011 0.338 13.960 0.202 0.971 0.371 
0.7 0.7 Py 13.508 0.251 1.007 0.356 14.315 0.557 1.101 0.684 
0.7 0.7 UJ 13.508 0.251 0.998 0.318 14.160 0.401 1.031 0.509 
3.5 0.35 Rect 13.558 0.200 0.982 0.280 14.060 0.302 0.997 0.403 
3.5 0.35 Px 13.380 0.378 1.052 0.460 13.465 0.293 0.999 0.391 
3.5 0.35 Py 13.125 0.634 1.169 0.696 14.392 0.634 1.149 0.816 
3.5 0.35 UJ 13.642 0.117 0.957 0.190 14.250 0.491 1.069 0.549 
3.5 0.7 Rect 13.229 0.529 1.128 0.618 14.048 0.290 1.002 0.533 
3.5 0.7 Px 12.540 1.218 1.561 1.245 13.197 0.561 1.114 0.715 
3.5 0.7 Py 13.125 0.634 1.250 0.797 14.429 0.670 1.182 0.986 
3.5 0.7 UJ 13.508 0.251 1.004 0.329 14.224 0.466 1.063 0.576 
3.5 3.5 Rect 12.089 1.669 1.948 1.720 12.351 1.407 1.737 1.523 
3.5 3.5 Px 10.610 3.148 3.294 3.165 10.767 2.992 3.162 3.023 
3.5 3.5 Py 11.372 2.386 2.582 2.410 11.427 2.332 2.563 2.390 
3.5 3.5 UJ 12.089 1.669 1.951 1.713 12.351 1.407 1.737 1.504 
7 0.35 Rect 13.220 0.538 1.101 0.579 13.977 0.219 0.976 0.309 
7 0.35 Px 13.165 0.594 1.172 0.673 13.460 0.299 1.010 0.493 
7 0.35 Py 11.436 2.323 2.515 2.331 12.218 1.540 1.823 1.597 
7 0.35 UJ 13.488 0.271 1.017 0.357 14.267 0.508 1.084 0.599 
7 0.7 Rect 12.673 1.085 1.453 1.098 13.633 0.125 0.994 0.443 
7 0.7 Px 12.527 1.231 1.604 1.277 13.230 0.528 1.112 0.762 
7 0.7 Py 11.235 2.523 2.706 2.545 11.959 1.799 2.055 1.869 
7 0.7 UJ 13.113 0.646 1.184 0.714 14.251 0.492 1.090 0.729 
7 3.5 Rect 12.089 1.669 1.964 1.727 12.682 1.076 1.584 1.236 
7 3.5 Px 10.610 3.148 3.316 3.183 10.821 2.937 3.173 3.002 
7 3.5 Py 9.313 4.445 4.555 4.455 9.798 3.960 4.124 4.007 
7 3.5 UJ 12.089 1.669 1.955 1.721 12.351 1.407 1.737 1.520 
7 7 Rect 9.469 4.289 4.405 4.309 9.722 4.037 4.258 4.111 
7 7 Px 8.133 5.625 5.737 5.654 8.905 4.853 5.006 4.931 
7 7 Py 8.653 5.105 5.220 5.117 9.097 4.662 4.937 4.710 
7 7 UJ 9.469 4.289 4.404 4.302 9.722 4.037 4.258 4.083 

14 0.35 Rect 13.184 0.574 1.135 0.636 14.082 0.324 1.011 0.583 
14 0.35 Px 12.609 1.149 1.506 1.174 12.841 0.917 1.335 0.975 
14 0.35 Py 11.426 2.332 2.560 2.348 12.159 1.599 1.885 1.692 
14 0.35 UJ 13.478 0.281 1.008 0.399 14.354 0.595 1.124 0.765 
14 0.7 Rect 12.501 1.258 1.584 1.273 13.298 0.460 1.095 0.586 
14 0.7 Px 11.744 2.014 2.232 2.024 12.078 1.681 1.958 1.711 
14 0.7 Py 11.005 2.753 2.970 2.798 11.899 1.860 2.125 2.023 
14 0.7 UJ 13.083 0.676 1.206 0.745 14.341 0.583 1.150 0.854 
14 3.5 Rect 11.694 2.064 2.313 2.105 12.298 1.461 1.950 1.606 
14 3.5 Px 10.289 3.469 3.662 3.524 10.690 3.068 3.336 3.147 
14 3.5 Py 9.148 4.611 4.731 4.624 9.762 3.996 4.195 4.061 
14 3.5 UJ 11.694 2.064 2.297 2.091 12.124 1.635 1.941 1.749 
14 7 Rect 9.469 4.289 4.410 4.308 9.762 3.997 4.238 4.053 
14 7 Px 7.156 6.602 6.709 6.620 7.447 6.312 6.458 6.359 
14 7 Py 8.200 5.559 5.704 5.582 8.346 5.413 5.628 5.517 
14 7 UJ 9.469 4.289 4.408 4.306 9.722 4.037 4.258 4.101 
14 14 Rect 8.680 5.078 5.305 5.160 9.624 4.134 4.653 4.375 
14 14 Px 6.265 7.493 7.638 7.544 6.929 6.830 6.987 6.925 
14 14 Py 7.466 6.292 6.399 6.336 7.602 6.156 6.384 6.247 
14 14 UJ 8.680 5.078 5.371 5.156 9.624 4.134 4.653 4.328 

Table D.3 - Method and measurement uncertainty for verification operators based on the use 

of a real (simulated) measuring instrument. 



160 

 

Annex E - 100 replications 

SAMPLING 
 True FLTt  [µm]  Estimated FLTt  [µm] 

MZ LS MZ LS 

D [mm] d [mm] Grid  points [n°] FLTt FLTt FLTt  uIm FLTt  uIm 

0.35 0.35 Rect 17575 11.015 11.489 14.055 0.297 14.534 0.357 
0.35 0.35 Px 17575 11.015 11.489 14.055 0.297 14.534 0.357 
0.35 0.35 Py 17575 11.015 11.489 14.055 0.297 14.534 0.357 
0.35 0.35 UJ 17575 11.015 11.489 14.055 0.297 14.534 0.357 
0.7 0.35 Rect 13323 11.015 11.489 13.974 0.305 14.487 0.391 
0.7 0.35 Px 8915 11.015 11.401 13.859 0.285 14.237 0.372 
0.7 0.35 Py 8949 11.015 11.578 13.873 0.267 14.412 0.424 
0.7 0.35 UJ 17575 11.015 11.489 14.061 0.315 14.529 0.381 
0.7 0.7 Rect 4540 11.015 11.490 13.564 0.300 14.076 0.451 
0.7 0.7 Px 4459 11.015 11.490 13.572 0.287 14.096 0.445 
0.7 0.7 Py 4473 11.015 11.490 13.624 0.316 14.021 0.327 
0.7 0.7 UJ 4540 11.015 11.490 13.495 0.302 14.053 0.470 
3.5 0.35 Rect 3529 11.009 11.602 13.451 0.305 13.883 0.390 
3.5 0.35 Px 1870 10.924 11.215 13.204 0.342 13.614 0.461 
3.5 0.35 Py 1856 10.475 10.869 12.869 0.324 13.275 0.461 
3.5 0.35 UJ 5089 11.013 11.566 13.651 0.301 14.158 0.407 
3.5 0.7 Rect 1693 11.009 11.597 13.087 0.329 13.678 0.477 
3.5 0.7 Px 933 10.923 11.309 12.833 0.383 13.361 0.481 
3.5 0.7 Py 927 10.475 10.786 12.580 0.367 13.014 0.490 
3.5 0.7 UJ 2405 11.013 11.552 13.260 0.303 13.831 0.541 
3.5 3.5 Rect 196 10.388 10.607 11.678 0.411 12.154 0.518 
3.5 3.5 Px 180 10.388 10.607 11.698 0.407 12.135 0.602 
3.5 3.5 Py 183 10.388 10.607 11.680 0.471 12.197 0.545 
3.5 3.5 UJ 196 10.388 10.607 11.675 0.465 12.145 0.582 
7 0.35 Rect 1897 11.009 12.202 13.329 0.323 14.221 0.486 
7 0.35 Px 1035 10.924 11.145 12.875 0.341 13.363 0.437 
7 0.35 Py 917 9.301 9.746 11.497 0.339 12.089 0.455 
7 0.35 UJ 2714 11.009 11.897 13.385 0.335 14.134 0.463 
7 0.7 Rect 935 11.009 12.171 12.917 0.354 13.963 0.515 
7 0.7 Px 517 10.923 11.232 12.644 0.400 13.177 0.547 
7 0.7 Py 458 9.301 9.695 11.178 0.397 11.763 0.452 
7 0.7 UJ 1334 11.009 11.845 13.039 0.282 13.786 0.474 
7 3.5 Rect 150 10.371 10.953 11.545 0.456 12.287 0.636 
7 3.5 Px 100 10.371 10.504 11.438 0.442 11.900 0.566 
7 3.5 Py 90 9.226 9.664 10.255 0.474 10.886 0.607 
7 3.5 UJ 196 10.388 10.607 11.631 0.377 12.220 0.602 
7 7 Rect 54 9.226 9.415 9.947 0.493 10.570 0.604 
7 7 Px 46 9.226 9.415 10.041 0.565 10.483 0.573 
7 7 Py 48 9.226 9.415 9.933 0.507 10.549 0.589 
7 7 UJ 54 9.226 9.415 9.983 0.503 10.430 0.619 

14 0.35 Rect 1184 10.925 12.251 13.138 0.373 14.105 0.514 
14 0.35 Px 631 10.799 11.016 12.698 0.380 13.077 0.457 
14 0.35 Py 572 8.923 9.342 10.989 0.369 11.556 0.488 
14 0.35 UJ 1576 10.925 12.002 13.272 0.303 14.124 0.480 
14 0.7 Rect 590 10.924 12.246 12.746 0.442 13.724 0.662 
14 0.7 Px 315 10.797 11.098 12.360 0.435 12.805 0.567 
14 0.7 Py 286 8.923 9.302 10.702 0.348 11.237 0.516 
14 0.7 UJ 786 10.924 11.974 12.892 0.369 13.724 0.535 
14 3.5 Rect 106 10.363 11.216 11.409 0.426 12.079 0.664 
14 3.5 Px 61 10.240 10.333 11.063 0.533 11.587 0.655 
14 3.5 Py 56 8.831 9.291 9.782 0.531 10.291 0.635 
14 3.5 UJ 136 10.388 10.967 11.622 0.461 12.181 0.518 
14 7 Rect 46 9.226 9.386 9.940 0.479 10.456 0.554 
14 7 Px 28 9.119 9.181 9.729 0.516 10.255 0.645 
14 7 Py 29 8.831 9.037 9.511 0.598 9.876 0.703 
14 7 UJ 54 9.226 9.415 9.964 0.507 10.573 0.634 
14 14 Rect 18 8.709 8.904 9.113 0.556 9.746 0.661 
14 14 Px 14 8.709 8.904 9.106 0.482 9.633 0.620 
14 14 Py 15 8.709 8.904 9.272 0.585 9.726 0.630 
14 14 UJ 18 8.709 8.904 9.190 0.585 9.726 0.689 

Table E.1 - Implementation uncertainty estimated over 100 measurement replications. 


