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Applying Textural Features to the Classification of HEp-2 Cell Patterns in IIF
images
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Abstract The analysis of anti-nuclear antibodies in HEp-2 cells by indirect immunofluorescence (IIF) is fundamental
for the diagnosis of important immune pathologies; in particular, classifying the staining pattern of the cell is critical
for the differential diagnosis of several types of diseases. Current tests based on human evaluation are time-consuming
and suffer from very high variability, which impacts on the reliability of the results. As a solution to this problem, in
this work we propose a technique that performs automated classification of the staining pattern. Our method combines
textural feature extraction and a two-step feature selection scheme to select a limited number of image attributes thatare
best suited to the classification purpose and then recognizes the staining pattern by means of a Support Vector Machine
module. Experiments on IIF images showed that our method is able to identify staining patterns with average accuracy
of about 87%.

1

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06460882
http://porto.polito.it


1 Introduction

The screening for anti-nuclear antibodies (ANAs) by indirect immunofluorescence (IIF) is a standard method in the
current diagnostic approach to systemic rheumatic diseases as well as to a number of important immune pathologies such
as Multiple Sclerosis and Diabetes [1]. The test is typically done on cultured cells of the HEp-2 cell line, with the help of
a fluorescence microscope: the specialist observes the IIF slide at the microscope (see Fig.1 for an example), and makes
a diagnosis based on the perceived intensity of the fluorescence signal and on the type of the staining pattern.

Specific staining patterns reveal the presence of differenttypes of autoimmune diseases. Therefore, their correct de-
scription is fundamental for the differential diagnosis ofthe pathologies. Examples of six main staining patterns described
by literature (homogeneous, fine speckled, coarse speckled, nucleolar, cytoplasmic or centromere) are reported in Fig. 1.

Unfortunately, the visual analysis of HEp-2 staining pattern is extremely dependent on the subjectivity of the specialist,
which limits the reproducibility and reliability of the obtained results: studies report very high inter- and intra-laboratory
variability (up-to 10%), that can be even higher in case of non-specialized structures [1]. Moreover, visual analysis of large
volumes of image data is a tedious and time-consuming operation that requires the time and efforts of highly specialized
and trained operators, translating into higher costs for the health system.

The automated classification of the staining pattern based on standardized and quantifiable features of the images,
extracted with image processing techniques, may help to solve the issues of repeatability and reliability. Moreover,
computer-aided systems are able to analyse large quantities of image data in a fast way, requiring null or minimal inter-
action from the human operators. With this growing awareness, in the last few years there was an increasing demand for
automating the whole IIF process and several tools have beenproposed that deal with each step of the test [2, 3, 4, 5].
Nevertheless, the accurate classification of the staining patterns still remains a challenge. Several classification schemes
have been proposed: among the others, learning vector quantization (LVQ) [3], decision tree induction algorithms [4] and
multi-expert systems [5]. Direct comparison of the results presented by different works is not possible, since they are
obtained on different datasets. However, it is worth notingthat textural features are generally acknowledged for being the
most appropriate for staining pattern classification.

In this work, we present a technique that classifies the cellsinto one of the six staining patterns addressed by literature.
After preprocessing the images, our technique extracts a number of features that describe the textural patterns of the
cell; these features are based on statistical measurementsof the grey-level distributions as well as on frequency-domain
transformations. A two-steps feature selection procedureselects an optimal subset of features that are best suited tothe
classification purpose. These features are fed into a classification module based on Support Vector Machines.

2 Dataset

For this study we used the dataset provided for the participation to the ”Contest on HEp-2 Cells Classification”, hosted by
the 21th International Conference on Pattern Recognition (ICPR2012). This dataset includes 14 HEp-2 images acquired
by means of a fluorescence microscope (40-fold magnification) coupled with a 50W mercury vapor lamp and a a digital
camera (SLIM system by Das srl). The camera had a CCD with square pixel of 6.45µm. The images, stored in BMP
format, have a resolution of 1388x1038 pixels and a color depth of 24 bits, respectively (see Fig.1). The HEp-2 images
contained a total of 721 cells. Each cell has been manually segmented and annotated by specialists with both the fluo-
rescence intensity (either positive or intermediate) and the staining pattern. This information was used as ground truth to
train and test our classifier. A full characterization of thedataset is reported in Table1.

Figure 1: HEp-2 IIF image and examples of staining patterns:(1) homogeneous, (2) fine speckled, (3) coarse speckled,
(4) nucleolar, (5) cytoplasmic, (6) centromere.
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Table 1: HEp-2 cell dataset.

Pattern # of samples intermediate positive
Homogeneous 150 47 103

Nucleolar 102 46 56
Coarse speckled 109 41 68
Fine speckled 94 48 46
Centromere 208 119 89
Cytoplasmic 58 24 34

tot. 721 325 396

3 Outline of the classification process

3.1 Preprocessing

As the staining pattern information is monochromatic, available color images were first converted to grey-scale. Then
all the images underwent contrast and size normalization inorder to make the texture information independent from
variations of staining intensity and cell size. Contrast normalization was obtained by linearly remapping the intensity
values so that 1% of data is saturated at low and high intensities. As for size normalization, all images were re-sampled
to a common dimension of 64x64 pixels.

3.2 Texture Feature Extraction

Different staining patterns can be characterized by a limited set of attributes describing the spatial relationships between
pixels values and the main image variations occurring in each cell type: this information is generally obtained by meansof
textural analysis techniques. These techniques can be grouped into two major categories: (i) statistical methods describing
the distribution of grey-levels in the image; and (ii) frequency-domain measurements of image variations. In our work
both the techniques were exploited in order to extract a large number of textural features able to fully characterize the
staining pattern of HEp-2 cells.

GLCM features GLCM is a well established technique that extracts texture information about an image from the
spatial relationship between intensity values at specifiedoffsets. More specifically, textural features are computedfrom
a set of grey-tone spacial dependence matrices reporting the distribution of co-occurring values between neighbouring
pixels according to different angles and distances [6].

In our work, we grouped intensity values in 16 levels and thenwe extracted 4 GLCMs for a fixed unitarian neigh-
bourhood distance and a varying angleθ = 0o,45o,90o,135o. For each of the resulting GLCMs we computed 22 statistical
measures (e.g. autocorrelation, correlation, cluster prominence, cluster shade, dissimilarity, energy, entropy, homogene-
ity, maximum probability, variance, etc.) whose full list and characterization can be found in [6]. We finally obtained a
total number of 44 features, represented by the mean and the range value over the 4 GLCMs for each of the 22 statistical
measures.

DCT features Besides statistical methods, frequency-domain transformations are largely used to extract relevant
textural information for image compression and classification [7].

In our work, we computed the two-dimentional Discrete Cosine Transform (DCT) of the normalized images and then
extracted 328 DCT coefficients, which represent different patterns of image variation and directional information of the
texture [7]. They include the DC coefficient (top left corner of the DCT matrix), the coefficients describing the vertical
and horizontal AC patterns (first row and first column of the DCT matrix) and few other coefficients describing different
patterns of texture variation. Fig.2 shows a 64x64 mask where the black dots represent the selected elements.

Figure 2: Mask of DCT coefficients.

Combining GLCM and DCT sets, a total of 372 features were usedto characterize each sample image.
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3.3 Classification

For classification we used Support Vector Machines (SVMs). This is a powerful machine learning method successfully
used in many applications, for classification, regression,or other tasks [8]. The classification is based on the implicit
mapping of data to a higher dimensional space via a kernel function and on the identification of the maximum-margin
hyperplane that separates the given training instances in this high-dimensional space (see [8] for details). Ten-fold cross-
validation technique and a grid search were used to optimizethe parameters of the SVM radial basis kernel, as suggested
in [8].

3.4 Feature Selection

In order to improve the accuracy of the staining pattern classifier, we applied a two-step feature selection (FS) process.
The first step is based on minimum-Redundancy-Maximum-Relevance (mRMR) algorithm. This is a well established
technique whose better performance over the conventional top-ranking method has been widely demonstrated [9]. The
mRMR algorithm sorts, for a given datasets, the more relevant features for characterizing the classification variable by
assigning a score to each element of the features vector of a sample. The scoring process aims at selecting a subset of
features pointing at the contemporaneous minimization of their mutual similarity and maximization of their correlation
with the classification variable.

As mRMR requires categorical and not continuous features variables, we applied features discretization to the input
data. In particular, we used CAIM (class-attribute interdependence maximization) algorithm [10], which is best suited to
work with supervised data, as it maximises the class-attribute interdependence generating a minimal number of discrete
intervals.

However, mRMR algorithm provides only a candidate feature set, which is not necessarily optimal [9]. Therefore, in
order to find a compact features set, we applied as second FS step a Sequential Forward Selection (SFS) scheme. In this
approach, the subset of optimal features is constructed iteratively. Starting from an initial empty set, at each iteration the
feature providing the greatest classification accuracy improvement is added, until no more improvements are obtained.

In our work, the size of the candidate features set selected by mRMR was arbitrarily chosen as 50. The final dimension
of the optimal feature set after SFS was found to be 12.

4 Results

The classification results obtained in our experiments havebeen summarized in Table2, and organized by staining pattern
class. For each of them, we show the accuracy obtained with: (i) the initial 372 elements feature set, (ii) elements
candidate set selected by mRMR, (iii) elements candidate set selected by SFS and (iv) the final 12 elements feature vector
obtained with combination of mRMR + SFS. In the last table row, the total accuracies in the four cases are shown.

Table 2: Classification results: accuracy rate.

Fluorescence no F.S. mRMR SFS mRMR +
Pattern SFS

Homogeneous 78.66% 84.00% 83.33% 86.00%
Nucleolar 89.22% 93.14% 93.14% 93.14%

Coarse speckled 92.66% 95.41% 94.49% 98.17%
Fine speckled 45.75% 61.70% 69.15% 71.28%
Centromere 84.13% 88.46% 91.35% 87.02%
Cytoplasmic 58.62% 86.21% 81.03% 82.76%

tot. 77.95% 85.58% 86.69% 86.96%

Two main considerations stem from this table:
(i) the average accuracy obtained by the proposed techniquein classifying the six different fluorescence patterns was

86.96%, with a maximum per-class accuracy of 98.17% for cells with coarse speckled pattern and a minimum of 71.28%

for fine speckled cells. This last result could be expected, since fine speckled texture was extremely irregular.
(ii) as expected, FS significantly improves (+9.01%) the average accuracy of the classifier, proving the implicit feature

selection ability claimed by SVM to be very weak. The first step of feature selection based on mRMR improves the
per-class accuracy of all the patterns. The application of SFS after mRMR improves the average accuracy but slightly
decreases the classification accuracy of two staining patterns (centromere and cytoplasmic). Conversely, the fine speckle
pattern, the one with the lowest per-class accuracy, had thebest improvement thanks to SFS (+9.58%). A non-uniform
behaviour of different staining patterns can be expected, as SFS aims at optimizing the average classification accuracy
and not the accuracy of the single classes. The combination mRMR+SFS obtains generally better results than SFS alone
for all the classes except centromere (although average classification accuracy of the two strategies is comparable).

4



Our results suggest that the proposed algorithm is a good solution for the automated classification of immunofluores-
cence cell patterns. As a matter of facts, the accuracy rate is comparable to the one obtained by the specialists, whose
inter-laboratory variability is generally assessed around 10% or even higher [1]. Besides that, differently from human op-
erators our technique provides fully-repeatable results that are based on objective and quantitative features of the images.

5 Conclusion

In this paper we proposed an approach for the automatic classification of staining patterns in HEp-2 cell IIF images,
which is critical for the diagnosis of immune diseases. First, texture descriptors based on GLCM and DCT coefficients
are exploited to extract a 372-size characteristic vector for each image. Then, a two-step feature selection algorithm, first
selecting a reduced candidate feature set with mRMR and thenextracting an optimal subset of them with SFS, has been
applied to improve the classification accuracies obtained with SVM.

The approach provides an average classification accuracy ofabout 87%, therefore our results are comparable with
those of human specialists. Conversely, they are completely repeatable since our automated technique does not depend on
the subjectivity of the operator.

Future work will focus on the improvement of the classifier’sperformance in discriminating irregular staining patterns,
with special regards to the fine speckled class. We believe that a classification scheme taking into better account the inter-
class variabilities (e.g. Subclass Discriminant Analysis[11]), will serve to this purpose. Moreover, we plan to combine
our pattern classification algorithm with automatic cells segmentation, and apply our method to computer-aided diagnosis
(CAD) of autoimmune diseases.
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