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equal to b/c = 1. The forcing was operated through two rectangular independent slits extending along
the spanwise direction and positionable at (xslit/c)1 = 1.25% and (xslit/c)2 = 10% from the leading edge
by using exchangeable cover plates as shown in Fig. 1. The slits were realized to achieve a normal
injection with respect to the surface of the airfoil. In order to avoid a geometric modification of the
airfoil and especially to facilitate the formation of the synthetic jet [17], the slits were characterized by
sharp edges. Under each slit a plenum chamber was positioned inside the wing, covering the whole
span and extending up to x/c = 0.15 in the streamwise direction. This configuration was necessary to
obtain a good spanwise homogeneity of the synthetic jet. A preliminary study on the uniformity of the
synthetic jet showed, in fact, that a single slit configuration generates a synthetic jet which is stronger
on the opposite side with respect to the actuator connection. 

Connecting the actuators on both sides of the model improves the 2D characteristics of the synthetic
jet but an acceptable flatness of the spanwise velocity distribution in the central part of the slit was not
achieved. This goal was instead obtained dividing the global plenum chamber into two distinct
symmetrical plenum chambers. The slit width h was equal to 1 mm (h/c = 0.25%) and covered a
spanwise length equal to 196 mm on each part of the wing (± 49% of the span). An inclinometer for
the measurement of the pitch and the roll angles was mounted inside the wing profile in the center of
the model to measure the angle of attack and to ensure a zero roll angle at all times. The wing model
was equipped with 124 static pressure taps distributed along two streamwise sections on the upper and
lower surface at z/B = ±18.75%. Along the spanwise direction, at different distances from the leading
edge, four ((x/c)up = 0.25%, 3.75%, 19.75%, 38.75%) and two ((x/c)low = 19.75%, 38.75%) rows of
pressure taps were installed on the upper and lower surface respectively. 

Figure 1 shows the location of the pressure taps and the synthetic jet slit. The connection points
between the plenum chambers and the actuators are also indicated.Two mechanical crank-rod piston
systems taken from airplane model engines were used to construct a single actuator. On each side of
the wing model one actuator was mounted operating in-phase and in boxer configuration. In this way
vibrations were greatly reduced avoiding perturbations on the wing profile. In figure 2 the scheme of
such actuators is reported.

Each engine was characterized by a displacement equal to 20cc (bore 30.4 mm; stroke 27.5 mm).
On the top of each cylinder a Plexiglas cylinder-head with a steel elbow was mounted. A rubber tube
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Figure 1. Wing model reporting the location of synthetic jet actuators, slits and pressure taps.
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Figure 2. Synthetic jet actuator scheme.
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Figure 23. Lift variations in presence of virtual shaping.
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Figure 22. Drag variations in presence of virtual shaping.

4. CONCLUSIONS
An experimental study was carried out to investigate the effects produced by high power synthetic jet
forcing on the flow field over a NACA 0015 wing profile. Pressure measurements, wake surveys and
flow visualizations were performed for different forcing frequencies and flow conditions.

Flow visualizations showed the formation of a recirculation bubble created by the interaction
between the synthetic jet and the external flow. Such structure was capable of displacing the
streamlines, generating the virtual shaping phenomenon. The bubble size was much greater when the
injection slit was located in the neighborhood of the leading edge, at x/c = 1.25%, while it was
dramatically reduced when the injection location was moved downstream. Eventually, when strong
forcing was applied, the break-up of the recirculation bubble occurred, causing flow separation with a
dramatic increase in drag and only marginal effect on lift. Furthermore, flow visualizations evidenced
the unsteadiness of the recirculation bubble. 
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