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Summary

The huge penetration of the personal communications systems in the market
is constantly presenting new challenges to the research, aimed at satisfying
people's needs and requirements for e�ective communication systems. At
present, the cellular telephone network is perhaps the most evident example
of communication system that has had a great impact on the lives of ordinary
people and, at the same time, is the subject of interest of many researchers
both at academic and industrial level. For the future, one of the main chal-
lenges in telecommunications will be the provision of ubiquitous broadband
tetherless integrated services to mobile users. Such a pretentious goal cannot
be achieved without a continuous research facing such problems as service
quality, complete mobility support, and a�ordable complexity that are still
open problems.

However, present telecommunication problems are not only a matter of
implementation or development of new services, exploiting a totally assessed
doctrine. In order to respond to the mobility of the users personal com-
munication systems have to deal with the wireless communication channel
whereby mobility and non-stationarity of the propagation conditions require
a stochastic description of the channel parameters. While this fact can be
viewed as strong limitation to the development of a solid theory whose valid-
ity can be assesed in practice, on the other hand allows for an investigation
and study of novel communication schemes, sometimes encompassing basic
aspects of digital communications.

This thesis, is the result of a research work that has investigated one of
the basic building block of every communication systems, the modulation
scheme, and the design of the pulse shape carrying the digital information.
We have studied the design of multichannel communication scheme exploit-
ing the mathematical theory of wavelets. Such a theory, developed recently,
has had a great impact in many �elds of engineering and of other scienti�c
disciplines. In particular, wavelet theory has become very popular in the sig-
nal processing area; in fact it is a exible toolbox for signal analysis allowing
e�ective representation of signals for features extraction purposes.
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The main features that make wavelet waveforms suitable to be used as
shaping pulses for modulation are their substantial compact support both in
the time and frequency domains, and the fact that they are ISI-free pulses
over frequency at channels. The study presented in this thesis is focused on
application of wavelet theory to design high-eÆciency multichannel communi-
cation schemes and to the performance evaluation over linear and non-linear
channels. We present a general method to design wavelet based multichannel
communication schemes that we denoted Wavelet Orthogonal Frequency Di-
vision Multiplexing (WOFDM). We show that such schemes, having a larger
spectral eÆciency for a small number of channels, are a valid alternative to
the classical OFDM. Potential advantage of wavelet modulation are shown
presenting other applications examined in this thesis: a joint use of WOFDM
and Trellis Coded Modulation to shape the power spectrum in order to match
a frequency selective channel and minimize distortion, and application to
spread spectrum modulation.

Particular attention has been devoted to the timing recovery problem in
multichannel communication schemes, exploiting the timing information of
the di�erent subchannels to improve the error variance in estimation of the
sampling instant leading to a reduction of the adjacent channels interference.
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Chapter 1

Wavelets theory

1.1 Introduction

Among all the disciplines of the engineering science, telecommunications has
had a great impulse in the past few years, leading to a phenomenon some-
times called the \telecommunication revolution", because of the great impact
it has had in the ordinary lives of common people. In fact, everyday life has
been deeply changed by the di�usion of personal communication systems,
modifying people's habits, and creating a need for \communications". The-
oretical results achieved many years ago are being implemented exploiting
a mature electronic technology that allows for the realization of personal
communications systems capable of giving voice, video and multimedia con-
nections between users. At the same time these devices are becoming always
more user friendly, lighter, more cost-e�ective, less power consuming, and
smaller.

The huge penetration of the developed systems in the market is con-
stantly presenting new challenges in the research front, to satisfy people's
needs and requirements for e�ective communication systems. At present,
cellular telephone networks are among the most evident examples used by
many people everyday and that is the subject of interest of many researchers
both at academic and industrial level. For the future, one of the main chal-
lenges in telecommunications will be the provision of ubiquitous broadband
tetherless integrated services to mobile users. Such a pretentious goal can-
not be achieved without continuous research facing such problems as service
quality, complete mobility support, a�ordable complexity, and other open
problems.

However, present telecommunication problems are not only a matter of
implementation or development of new services, exploiting a totally assessed
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1.2{ Structure of the thesis

doctrine. In order to respond to the mobility of the users, Personal com-
munication systems, have to deal with the wireless communication channel
whereby the mobility and non-stationarity of the propagation conditions re-
quire a stochastic description of the channel parameters. The stochastic
nature of the channel makes it diÆcult to �nd an optimal de�nition of all
the parameters de�ning a telecommunication system both at the transmitter
and the receiver side. While this fact can be viewed as strong limitation to
the development of a solid theory, on the other hand allow for an investi-
gation and study of novel communication schemes, sometimes encompassing
basic aspects of digital communications.

This thesis, is the result of a research work that has investigated one of
the basic building blocks of every communication systems, the modulation
scheme, and the design of the pulse shape carrying the digital information.
The pulse shape design for multichannel communication schemes has been
studied. Multichannel modulation has gained interest because it is robust
to non-linear channel distortions and is suitable for transmission of pieces
of information with di�erent signalling rates, a feature that is extremely
important in modern communications systems where voice, video, and data
have to share the same mo-demodulator system.

In particular we have tried to tie together one of the most signi�cant
mathematical theories of the recent times, at least for the impact that it had
on the engineering science, with the design of digital communication systems.
Such a theory is known as the theory of wavelets, (because it involves short
oscillating waveforms), and it is a complete framework with both digital and
continuous aspects that are particularly suitable to be applied to classical
telecommunications problems. The study presented in this thesis has always
had the perspective of the possible application to modern personal commu-
nication systems, so that the e�ectiveness of the results has always involved
typical propagation scenarios, interesting for the applications. Theoretical
and simulation results have been obtained, for the largest part, on satellite
non-linear channel or for the wireless fading channel.

1.2 Structure of the thesis

Wavelet theory is complex and sometime cumbersome, so it is not possible to
provide an exhaustive presentation of all the theoretical results and properties
within this thesis; the remainder of the chapter deals with some theoretical
basic aspects limiting the presentation to the results that will be used in the
following chapters and that have a direct application to the telecommunica-
tion system design. Chapter 2 will explain how such a theory is useful and

3



1 { Wavelets theory

can be exploited in the telecommunications �eld. Some results useful in the
following chapters are presented. In particular, a technique suitable to the
design of high eÆciency wavelet based communications schemes, is presented
along with a novel wavelet waveform for communications. Chapter 3 is es-
sentially based on performance evaluation of wavelet waveforms over linear
and non-linear channels, presenting theoretical and simulation results. Two
di�erent applications of wavelet based design of multichannel systems for
power spectrum shaping and spread spectrum communications are presented
in chapter 4. Finally, chapter 5 deals with the timing signal recovery in
wavelet based multichannnel systems.

1.3 Wavelet theory

The theory of wavelets stands at the intersection of the frontiers of mathe-
matics, scienti�c computing, and signal processing. Its goal is to provide a
coherent set of concepts, methods and algorithms that are suitable to many
applications in di�erent scienti�c �elds. Due to this fact, the mathematical
theory is very rich and sometimes cumbersome because of the many aspects
involved. Moreover, being developed in di�erent scienti�c �elds, di�erent ap-
proaches to the theoretical description are possible. Meyer in [32] enumerates
at least seven sources of the wavelet theory, some of them developed back
in the years around 1930 and that only few years ago have been collected
together with new results under a common scienti�c perspective to generate
the wavelet theory as we know it nowadays.

It is alien to the objective of these thesis to provide a complete expla-
nation of the overall wavelet theory, but in this chapter we will recall only
the basics of the wavelet transform, of the orthonormal wavelets theory and
the properties that will be useful for the devised application of wavelets to
digital modulation. Moreover we will essentially follow a \signal processing
approach" connecting the wavelets to the digital �lter theory of multiresolu-
tion analysis.

Many books and articles cover the subject of wavelets in depth [25, 27, 29],
and we refer the interested reader to such references for the details of the
material presented here.

4



1.4{ The wavelet transform

1.4 The wavelet transform

The easiest way to introduce wavelets is as kernels of a signal transform
de�ned as

CWTf(a;b) =
1p
a

Z
R
 �
 
t� b

a

!
f(t)dt; (1.1)

where a 2 R+ and b 2 R. Moreover the function  must satisfy the admis-
sibility condition: Z +1

�1
 (t)dt = 0: (1.2)

The transform (1.1) measures the similarity between the function f(t)
and shifts and scaled versions of an elementary function,

 a;b(t) =
1p
a
=  

 
t� b

a

!

denoted as wavelet function. The set of functions obtained considering all
the possible values of the parameters a and b is an overcomplete basis. The
features of the representation of signals onto such a redundant basis are ex-
ploited for signal processing purposes Time-scale representation has become
very popular for the analysis of nonstationary signals or for signal with self-
similarity properties. Further details on the CWT can be found in [29].

Special choices for  (t) and the discretization of the parameters

a = aj0; b = kaj0b0

lead to a reduction of the redundancy of the set of basis functions. In par-
ticular, choosing

a = 2; b = 1

the orthonormal bases or wavelet series can be obtained, as Daubechies
demonstrated in [33]; such a choice for the parameters yields to a dyadic
set of orthonormal functions. In the following section we will focus primarily
on these sets of orthonormal functions.

1.5 Orthonormal wavelets and Multiresolu-

tion Analysis

In a dyadic [25] multiresolution analysis, the scaling function  (t) satis�es
the scaling equation

�(t) = 21=2
X
n2Z

h[n]�(2t� n); (1.3)
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1 { Wavelets theory

where Z is the set of integers. Similarly, the wavelet can be expressed as

 (t) = 21=2
X
n2Z

g[n]�(2t� n): (1.4)

The sequence h[n] is called the scaling vector, while the sequence g[n] is
denoted as the wavelet vector. The scaling function and wavelet are shift-
orthogonal and span orthogonal subspaces of the L2(R) space.

A ladder of subspaces of L2(R) can be constructed using the dilated
versions of the scaling function and wavelet as shift-orthogonal basis. In
particular, the subspace Vi is spanned by

f2i=2�(2it� n) 8n 2 Zg;
while the orthogonal complement of Vi in Vi+1, the subspace Wi, is spanned
by

f2i=2 (2it� n) 8n 2 Zg:
From the orthogonality properties of the subspaces spanned by the scaling

function and wavelet, the scaling and wavelet vectors must be individually
shift-orthogonal and orthogonal to each other, with period two:

X
n2Z

h[2m + n]h[2l + n] = Æm;l;

X
n2Z

g[2m+ n]g[2l + n] = Æm;l;

X
n2Z

h[2m+ n]g[2l + n] = 0 8 m;l;

where Æ is the Kronecker delta function. If we denote the Z-transforms of
the sequences h[n] and g[n] by H(z) and G(z), respectively, and we add
two additional normalization conditions

P
n h[n] =

p
2, and

P
n g[n] = 0,

the orthogonality and normalization conditions require that the �lters H(z)
and G(z) be a Quadrature Mirror Filter (QMF) pair [28], and that they be
power complementary. If these �lters are paraunitary (or lossless) [28], all
the desired conditions are met.

It is interesting to observe the subspaces spanned by scaling functions and
wavelets in the Fourier transformed domain. In the frequency domain the
space spanned by the scaling function is a lowpass channel,while the space
spanned by the wavelet is a bandpass channel. In what follows we shall use
the terms subspace and frequency channel interchangeably.

Consider the subspace Vi de�ned above. In the dyadic decomposition
case this channel is split into two subchannels Vi�1 and Wi�1 each having
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1.5{ Orthonormal wavelets and Multiresolution Analysis

roughly half the bandwidth of space Vi (in practice there is an overlap be-
tween the band of frequencies occupied by Vi�1 and Wi�1). Wi can be also
split into two subchannels. The sequences relating the basis in the new sub-
spaces to the basis spanning the mother spaces are precisely the scaling and
wavelet vectors. This splitting procedure can be iterated further. The use of
the two-channel split provides a binary decomposition of the subspaces. An
M -ary decomposition is possible using the multiplicity-M paraunitary �lter
bank impulse responses [28] as coeÆcient systems in the scaling equations.
The set of scaling functions and wavelets generated are called M-band scal-
ing functions and wavelets. Further decomposition yields M-band wavelet
packets.

The general recursion formulas that may be used to generate the wavelet
packets are [91]:

�2n(t) =
X
k

h[k]�n(2t� k); �2n+1(t) =
X
k

g[k]�n(2t� k);

where n = 0;1;2;::: and the basic scaling and wavelet functions are, re-
spectively, �(t) = �0(t) and  (t) = �1(t). The following notation is used:

n = closL2(R)f�n(t� k)jk 2 Zg, n = 0;1;2;::: de�ne the subspaces of L2(R)
at resolution one (closL2(R) means closure in L2(R)). Similarly, �k
n =
closL2(R)f2k=2�n(2kt � l)jl 2 Zg denote the subspaces at resolution 2k. It
can be shown that given the binary expansion of n =

P+1
j=1 �j2

j�1;�j 2 0;1,

the Fourier transform of �n(t) is Mn(f) =
Q+1
k=1 P�k(e

j!=2k), where P0(z) =
0:5

P
k h[k]z

�k and P1(z) = 0:5
P
k g[k]z

�k are the Z-transforms of the scaling
and wavelet vectors.

The splitting of the subspace Wi; 8i 2 Z embedded in the multiresolu-
tion analysis can be seen as generation in the frequency domain of sets of
orthogonal subchannels, as depicted in �gure 1.1.
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Figure 1.1. Representation in the Fourier transformed domain of the

subspaces Vi and Wi of a multiresolution analysis
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Chapter 2

Use of wavelet waveforms for

modulation

2.1 Introduction

In this chapter, after a presentation of the state of the art concerning the use
of wavelets for modulation purposes, a connection between wavelet theory
and the principles of digital communications will be presented. Sections will
be devoted to the introoduction of general techniques to generate wavelet
based multichannel modulation schemes and to increase the number of sig-
nalling dimensions at the modulator. Finally a novel wavelet designed to be
suitable for digital modulation applications will be discussed.

2.2 State of the Art

Perhaps the �rst evidence that wavelets could be used for modulation ap-
peared in connection with the use of Transmultiplexers [45]. Indeed, the
structure of a Transmultiplexer is that of a modulator-demodulator bank.
Subsequently, Wornell and Oppenheim [46] proposed the use of self-similar
signals for fractal modulation. Such signals are essentially non-smooth wavelets.
Following this work, Tzannes and Tzannes [47] proposed the use of discrete
wavelet sequences for channel coding. The use of wavelets for modulation
and coding has appeared in several works. Looking at the di�erent proposals
we can distinguish some di�erent classes of application of wavelet to digi-
tal modulation. The use of wavelet based waveforms as shaping pulses for
multicarrier modulation was proposed because of the link between wavelet
orthogonality properties and the �rst Nyquist criterion [1, 49, 48]. We men-
tion in particular the works of Jones [50] and Lindsey [51, 52, 53, 54]; other
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studies can be found in [80, 55, 57]. CioÆ and others discussed implementa-
tion of digital mo-demodulators through wavelet �lterbanks in [100, 92]. As
far as the design of wavelet based shaping pulses is concerned results can be
found in [9, 56, 84].

Particular interest has been devoted to the application of wavelets to
spread spectrum communications and CDMA systems [2, 51, 58, 59, 60, 83].
Common denominator of such works is the exploitation of the �lterbank
structure of the modulator to implement the spreading of the information
signal over the available bandwidth. Performance results for transmission
over wireless channels are presented in [61, 62]. Recently an application of
wavelet waveforms to optical communications has also been proposed [63].

2.3 Connection to Nyquist I Criterion,

WOFDM and Spectral Shaping

It is possible to link the orthonormal wavelets to the Nyquist I criterion for
ISI removal [1]. In particular, let Q(f);C(f); and U(f) denote the shaping
pulse, the channel, and the receiver �lter transfer functions respectively. Let
us de�ne S(f) = Q(f)C(f)R(f). The Nyquist I criterion for ISI elimination
requires that the overall system impulse response s(t) = F�1[S(f)] sampled
at integer multiples of the symbol period � be zero except at t = m� [22]
(we are assuming that there is a delay of m� seconds). For a linear phase
channel with a at transfer function, the optimum receiver is a matched
�lter R(f) = Q�(f)e�j2�fm�. Hence, in the frequency domain the Nyquist
condition reduces to

1X
k=�1

jQ(f � k=�)j2 = �: (2.1)

In the digital domain with sampling interval �=M , the condition (2.1) can
be expressed as

M�1X
k=0

jQ(ej2�(f�k=M))j2 = C0 (2.2)

for some integerM and constant C0. If we interpret each term Q(ej2�(f�k=M))
as a �lter in a �lter bank, we conclude that the discrete �lter satisfying the
ISI free condition is power complementary. The M -channel analysis �lter
banks whose polyphase component matrix are paraunitary [28], obey such
a property. More precisely, if Hk(z) denotes the k-th analysis �lter in a
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paraunitary �lter bank, then

M�1X
k=0

jHk(e
j2�f)j2 = C0: (2.3)

In such a case the synthesis �lters can be written as Fk(z) = C1z
�L ~Hk(z),

where ~H(z) = H�(z�1) (i.e., the synthesis �lter is a matched �lter to the
analysis �lter). Note that the basic distinction between the ISI free condition
(2.2) in the discrete case and that in the general �lter bank case (2.3) is that
in the former, the �lter banks are obtained via modulation from a single
prototype �lter, while this is not necessarily the case in the latter.

The connection between the discrete �lters and wavelets comes about
because the discrete �lter impulse response values can be used as coeÆcient
systems in equations (1.5) and (1.5). Such wavelets are the spectral factors
[28] of the system transfer functions satisfying the Nyquist I criterion.

2.4 The splitting procedure

We recall that a set ofM shift orthogonal sequences fsk[n]gM�1
k=0 with periods

fIkgM�1
k=0 satisfy the orthogonality conditions:X

n2Z

sk[Ikm+ n]sk[Ikl + n] = Æm;l;k = 0;::;M � 1

X
n2Z

sk[Ikm + n]sk0[Ik0l + n] = 0 if k 6= k0; 8m;l;

where, Æm;l is the Kronecker delta function which is zero except for m = l
where it assumes a value of one. The splitting sequences are the impulse
responses of a Perfect Reconstruction (PR) �lter bank [28]. Given a set
fsk[n]gM�1

k=0 and a shift orthogonal function q(t) with shift orthogonality pe-
riod L� where L is a positive integer,M shift orthogonal functions qk(t);k =
0; : : : ;M � 1 can be obtained by forming the linear combinations of shifted
versions of q(t)

qk(t) =
X
n

sk[n]q(t� nL�) k = 0; : : : ;M � 1 : (2.4)

The resulting functions qk(t) have shift orthogonality periods IkL�, and are
orthogonal to each other with periods min(Ik;Ih)L�, such that

hqk(t);qh(t� nIhLT )i = hqk(t� nIkL�);qh(t)i = 0 if k 6= h ;

for each n, where h:;:i is the scalar product in L2(R). Equation (2.4) can
be interpreted as the �ltering of the analog waveform q(t) with M tapped
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delay line �lters with coeÆcients fsk[n]gM�1
k=0 and transfer functions Sk(f) =P

n sk[n]e
�j2�fn�. This operation corresponds to the subdivision of the origi-

nal space (channel) spanned by translates of q(t) intoM orthogonal subspaces
(subchannels) spanned by translates of fqk(t)gM�1

k=0 . The spectral character-
istics of the various subchannels from a communication point of view depend
on the choice of the splitting sequences fsk[n]gM�1

k=0 .
Since the orthogonality periods Ik of the various splitting sequences may

be di�erent and we can iterate on the splitting operation, a very exible
tiling of the time-frequency plane can be obtained [29]. Indeed the desired
�ltering operations enjoy the computational eÆciency of �lter banks [28].

For modulation purposes, the synthesis �lter bank whose inputs are the
possibly complex data symbols, followed by the shaping �lter, is implemented
at the transmitter, while the analysis �lter bank follows the sampled matched
�lter at the receiver. The shaping �lter itself is a root-Nyquist �lter. The
continuous time shaping �lter at the transmitter receives as input the discrete
sequence generated by the synthesis �lter bank and having a period equal
to the shift-orthogonality period of the shaping pulse. The cascade of the
continuous time shaping �lter at the transmitter, with the corresponding
matched �lter at the receiver, has a pulse response that is full-Nyquist with
periodic zero crossings that allows detection of the input sequence without
intersymbol interference at the receiver. Thus, the transmitter shaping �lter
converts the input sequence to a time waveform, and the receiving �lter and
sampler recovers this input sequence.

As an example, Fig. 2.1 illustrates a general transmitter-receiver struc-
ture based on the 2-ary synthesis-analysis tree of depth-2 whereby various
subspaces are represented by distinct frequency channels. The synthesis �l-
ter bank would be used at the transmitter to form the discrete sequence
that modulates the continuous time root-Nyquist pulse q(t) which is shift-
orthogonal with shift period �. The analysis �lter bank would follow the
sampled matched �lter at the receiver. Note that di�erent levels of the tree
may use di�erent QMF pairs [92]. Even within a given level di�erent QMF
�lter pairs may be used, although this is not common in practice. Note that
in general instead of a binary synthesis we may perform an M-ary synthesis.
The analysis �lter bank is matched to the synthesis �lter bank.

In Fig. 2.3 we show the transition from an all digital synthesis �lter bank
to an analog interface representing the continuous time shaping pulse q(t).
This is done for the purposes of associating Fig. 2.3 with the splitting proce-
dure which may be considered to be the unifying thread in the generation of
multidimensional signals presented in this chapter. Obviously, an all digital
implementation can be obtained by replacing the analog interface of the syn-
thesis �lter bank, by the FIR �lter whose coeÆcients are the samples of the
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2 { Use of wavelet waveforms for modulation

Figure 2.1. The synthesis and analysis �lter banks used at the transmitter
and receiver respectively for the WOFDM

root-Nyquist pulse q(t). The resulting digital output can then be converted
to an analog waveform suitable for transmission over the channel. Similarly,
the analog interface of the analysis �lter bank can be replaced by a FIR �lter
whose inputs are the samples of the down converted received signal, leading
to a purely digital receiver.

2.4.1 The overlap space

Consider a low pass channel spanned by integer translates of an orthonor-
mal scaling function. The fact that the frequency channel spanned by the
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corresponding wavelet overlaps this lowpass space yet is orthogonal to it,
motivates us to consider deriving a basis for the space whose frequency oc-
cupancy lies in this overlap region (henceforth called the overlap space) in
terms of the basis spanned by the wavelet. Doing so would provide us with
additional basis to use for modulation at no cost in bandwidth.

The space Wn spanned by the mother wavelet is in general bandpass and
overlaps the space Vn in frequency. Let this overlap occur in the frequency
interval (f1;f2). We can improve the spectral eÆciency of our modulation
scheme by performing a partition of the space Wn with the aim of deriving a
subspace of Wn with concentration in the frequency interval (f1;f2) [1]. We
should in practice derive a basis for this subspace in terms of the basis in
Wn. This is possible using the wavelet packets. The crucial point is that
the overlap space is spanned by shift orthogonal basis that are automatically
orthogonal to the basis in Vn. These added basis can be used to carry addi-
tional information within the same bandwidth spanned by subspace Vn. In
the following sections we will show that the use of the overlap space as shap-
ing pulse is a mean to increase the dimensionality of the modulation scheme,
and we will provide performance of such modulations schemes over satellite
non-linear channels.

2.4.2 Wavelet Orthogonal Frequency Division
Multiplexing

Application of wavelets to orthogonal frequency division multiplexing is quite
natural in light of the discussion on multiplicity-Mwavelets and wavelet pack-
ets (indeed, WOFDM [2] may be considered a generalization of the standard
OFDM [64]). Di�erent information could be frequency multiplexed on over-
lapping adjacent frequency channels using multiplicity-M wavelets and/or
wavelet packets as envelope functions [2]. Note that by de�nition this mod-
ulation scheme requires clock synchronization among all the channels. Such
an approach would be useful in radio relay link and broadcast applications.
This multiplexing scheme enjoys the eÆciency of the wavelet decompositions
in general, since the maximal decimation property of the �lter banks is re-
tained (the literature on this subject is vast, we refer the interested reader
to [28]).

The use of multiple frequency subchannels in WOFDM allows a natural
and simple scheme of embedding unequal error protection in the modulation
process. In particular, for a �xed total available power, we can o�er di�erent
degrees of protection to the transmitted data by controlling the SNR of
the di�erent subchannels. Given the enormous exibility of the frequency
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channelization in WOFDM, it is evident that we can precisely control the
di�erent fractions of the total data rate that are to receive di�erent degrees
of protection.

Spectral shaping (with or without TCM coding) and line coding are other
natural applications of wavelet modulation [3]. Consider a narrowband sys-
tem whereby the channel is modeled as a linear �lter with AWGN. The
channel transfer function imposes restrictions on the form of the shaping
pulse to be used for modulation. Clearly, we can form a piece-wise constant
approximation of the channel transfer function C(f) with whatever degree of
accuracy desired. In this way, the available bandwidth for modulation is par-
titioned into many not necessarily equal sized non-overlapping cells, where
within each cell the channel transfer function has constant gain and delay.
Consider forming wavelet packets tailored to this piece-wise constant ap-
proximation of C(f), such that in the i-th cell we have a wavelet packet with
bandwidth equal to the cell bandwidth. Assuming that the tail of the spec-
trum of each wavelet packet so generated only inuences the adjacent cells
signi�cantly, and that the group delay is almost constant among neighboring
cells, the e�ect of the channel on the wavelet packets is a simple multiplica-
tion by a complex constant, which based on our assumption should not cause
excessive cross talk between the information carried by the wavelet packets
in adjacent cells. Given this formulation, it should be evident that the ef-
fective spectral shape of the transmitted signal can be modi�ed in whatever
way desired. The important thing to note is that each wavelet packet spans
a subspace of the space of functions with spectral occupancy in the available
transmission bandwidth. This form of modulation is indeed a special case of
WOFDM introduced above, and its counterpart in connection with source
coding, is subband coding. Once again it is evident that we can easily o�er
unequal error protection to the data when needed.

2.5 Multidimensional signaling using wavelets

It is a well known fact that the number of dimensions (orthogonal wave-
forms) available in a given rectangular region of the time-frequency plane is
proportional to the area of the region in this plane. Using heuristic argu-
ments one can conclude that in a T sec interval and B Hz of bandwidth we
can generate at most 2BT dimensions. Throughout the rest of this chap-
ter, by basis functions we mean orthogonal waveforms spanning a function
space. Slepian, Pollak, and Landau in [69, 70, 71, 72] demonstrated that this
heuristic argument is indeed valid for the best basis functions, namely, the
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prolate spheroidal wave functions. Even though one is tempted to general-
ize this notion to non-rectangular regions of the time-frequency plane, this
generalization is by no means trivial [25].

Throughout the rest of the section we use the following terminology and
de�nitions:

1. the pulse duration is denoted by T , and bandwidth by B. Since, in
this section we are primarily interested in root-Nyquist pulses, we are
more interested in the shift-orthogonality period �. Note that normally
T=� >> 1 for shift-orthogonal pulses (for time division multiplexing,
normally T = �);

2. dimensional rate for a root-Nyquist pulse that is shift-orthogonal with
shift period � is de�ned to be 1=�. If complex modulation is used,
this dimensional rate is de�ned to be 2=�;

3. dimensional rate and symbol rate mean the same thing. When dealing
with subspaces of a function space it is more natural to use dimensional
rate. These subspaces essentially correspond to frequency subchannels,
in which case, it is more natural to talk about symbol rate;

4. if each symbol carries M -bits, the data rate is M=� bits per second;

5. when sampling analog waveforms, the sampling rate in samples per
second used for simulation is assumed to be signi�cantly above the
Nyquist sampling rate of 2B

By di�erent distribution of dimensions we mean the following; take a
rectangular region of the Time-Frequency (TF) plane say 0 � t � NT and
0 � f � LB for some large integers N and L, and populate this region by a
set of TF tiles (examples are shown in Fig. 2.8). Each tile in the TF plane
corresponds to a signaling dimension. The width of each tile is generally some
multiple of the basic shift period �, and its height equals the bandwidth of
the subchannel associated with that tile. Consider placing a dot at the center
of each tile in the TF plane. Next, project the dots along the time axis. The
resulting distribution of the dots on the time axis, is what we refer to as the
distribution of dimensions in time. In the context of the material presented in
this section, a given distribution of dimensions in time corresponds to a given
channelization of the available frequency band into a set of not necessarily
equal bandwidth frequency subchannels.

In the usual de�nition of the TF tile (see for instance [29] pp.72-73),
the width of the tile along the time axis It, and that along the frequency
axis Iw, are chosen such that a certain percentage of the total signal energy
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(e.g., 90%) is contained in It and Iw respectively. For shift-orthogonal basis
functions, the pulses stretch over the time axis and localization based on It
leads to overlapping tiles. However, focusing on the shift period directly, we
eliminate this possibility and that is why we have adopted it here.

Given the connection between bandwidth B and the shift parameter �
for root-Nyquist pulses of duration T (i.e., 2B� > 1), we focus on a closely
related issue of distribution of dimensions in time. Note that the quantity
(2B��1) is the excess bandwidth often presented in percentage and assumed
to be less than 100%. To motivate the concept, suppose we have B Hz of
bandwidth available for modulation. The maximum number of dimensions
we could generate per unit time (i.e., the symbol rate) using this bandwidth
is 2B. A question of interest is how are these dimensions distributed in
time? Classically we have had two options: 1) if � = T , the best basis
functions to use are prolate spheroidal wave functions [72], although such
basis functions are not used in practice and often a simple rectangular window
is used instead; and 2) if � << T , it is natural to use a root-Nyquist pulse
such as the square root raised-cosine shaping pulse. The case � > T is of no
practical interest.

One of our goals here is to present systematic methods based on the theory
of wavelets and �lter banks to generate other distributions of dimensions in
time. Our approach will be primarily based on root-Nyquist pulses yielding
the desired distributions [8].

Recently, several authors have addressed the problem of pulse shape
design for multidimensional signaling over a bandlimited AWGN channel
[89, 90]. Since the symbol rate in time cannot be above the Nyquist limit,
their work could best be described as redistribution of dimensions in time us-
ing shift-orthogonal envelope functions. In [90], Saha and Birdsall described
a four-dimensional signal basis, called Q2PSK, whereby the four orthogo-
nal signals x(t)cos2�fct, y(t)cos2�fct, x(t)sin2�fct and y(t)sin2�fct, with
0 � t � T , x(t) = cos(�t=T ), and y(t) = sin(�t=T ) are used to transmit
a four-dimensional vector (a1;a2;a3;a4). The baseband shaping pulses x(t)
and y(t) co-exist in the same bandwidth and are orthogonal. This work was
later extended in [89] by setting up an optimization problem whose solution
yields two root-Nyquist pulses satisfying three constraints: (1) the shaping
pulses individually satisfy the �rst Nyquist criterion; (2) the shaping pulses
and their shifts span orthogonal channels; (3) the fraction of out-of-band
power is minimized. Once again this setup is seen to be another attempt
at redistribution of dimensions in time with the objective function of max-
imizing spectral eÆciencies. The procedure outlined here generalizes these
results and provides much richer and broader families of shift-orthogonal ba-
sis functions with high spectral eÆciencies, in addition to providing a very
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large number of possible distribution of dimensions in time.
The basic ingredients needed in our work are:

1. shift-orthogonal functions. These include scaling functions (baseband),
wavelets (passband), or in general any other root-Nyquist pulse;

2. multiplicity-M discrete shift-orthogonal sequences;

3. scaling and wavelet vectors to be used for the partitioning of the space
spanned by the scaling function and wavelet, for the formation of the
wavelet packets;

4. a variety of lowpass and bandpass �lters.

To provide examples of the proposed techniques we use the Daubechies
compactly supported wavelets, and the square root raised-cosine shaping
pulse with roll-o� greater than 1/3 (the square root raised-cosine pulse with
roll-o� less than 1/3 is in fact a Meyer scaling function).

2.5.1 Generation of arbitrary distributions of dimen-
sions in time

In general, the multidimensional signal spaces presented in this section are
eÆciently implemented using �lter banks.

Root-Nyquist pulses spanning orthogonal frequency channels that de�ne
the multidimensional signal space are obtained via a splitting procedure out-
lined below and exempli�ed by wavelet packets of the previous section. In
general, they are obtained using an analysis �lter bank via splitting the spec-
trum of a root-Nyquist pulse at the root of the tree.

In the methods presented here, the spectrum of the multidimensional
signals generated can have two split sidebands. Note that it is not possible
to send QAM signals over narrowband �lters that overlap unless the bands
are split. This may be undesirable in certain applications where the channel
may e�ect the split sidebands of a given signal di�erently. If this is the case,
to remedy the problem, Single SideBand (SSB) or Vestigial SideBand (VSB)
transmission may be employed. Clearly, regardless of whether quadrature
modulation, or SSB transmission is employed, the spectral eÆciency of the
modulation is una�ected.

In general the spectrum of the scaling function and wavelet overlap in the
frequency domain. The space of functions whose spectrum lies in this region
(henceforth referred to as the overlap space) is spanned by a wavelet packet.
Strictly speaking, wavelet packets result from the iterated use of scaling and
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wavelet vectors as splitting sequences. In the rest of the section, with a slight
abuse of notation we use the word wavelet packet even when the same QMF
�lter-pairs are not used as splitting sequences at every level of the tree. As
an example, we show this overlap space qualitatively in Fig. 2.2 as the cross
hatched region at the �rst level of the tree. Later we shall obtain the basis of
the overlap space for general shaping pulses that may not satisfy the dyadic
scaling equation.

To achieve high spectral eÆciencies, especially in connection with the
use of wavelets for modulation, it is necessary to use the basis functions of
this wavelet packet. This is because it may be desirable to start with a
given scaling function with a certain excess bandwidth �, and use it with
an additional shaping pulse in a composite multicarrier modulation scheme
achieving a higher spectral eÆciency. Another motivation for the generation
of a basis for the overlap space is in connection with the design of optimal
pre-�lters eliminating pattern dependent jitter [7]. In particular, it can be
shown that such a �lter lies entirely in the overlap space.

In light of the above, in the methods presented below, our �rst step is
to generate this wavelet packet (or its equivalent). Such basis functions are
generated when wavelet packets are obtained, and they are often very useful
in applications. We may independently split these spaces into subchannels
and generate a very large number of possible distribution of dimensions in
time, should it be necessary to do so.

2.5.2 Multidimensional signaling using wavelets

On the basis of the concepts described in Section 2, we can partition the fre-
quency channel spanned by a scaling function q(t) according to the following
procedure.

Method 1:

Step 1.1: The wavelet is �ltered in a �lter bank corresponding to a wavelet
packet tree to generate a wavelet packet with a frequency occupancy
in the region of overlap between the spectra of the scaling function and
wavelet [1, 2];

Step 1.2: The space spanned by the scaling function can be split into or-
thogonal frequency channels using a set of splitting sequences. The
overlap space due to the overlap of the spectra of the scaling function
and wavelet separated in Step 1.1 above, can be similarly and indepen-
dently partitioned
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Figure 2.2. Two level binary (M = 2) wavelet packet decomposition
tree. The subspaces at di�erent levels of the tree are represented as dis-
tinct frequency channels. The �k
n denotes the closure in the L2(R) of
f2k=2�n(2

kt� l)jl 2 Zg which are subspaces of the L2(R) at resolution 2k.
Decomposition starts at temporal resolution 2i. The Vk and Wk denote
subspaces spanned by the scaling function and wavelet at temporal reso-
lution 2k. The symbols H # 2 and G # 2 represent analog TDL �ltering
using the scaling and wavelet vectors respectively, used as the splitting se-
quences, followed by decimation by two. In a fully digital implementation,
we may use FIR realization of the TDL �lters operating on samples of the

scaling function.

This orthogonal frequency channelization is extremely exible. An example
of the spectra of a scaling function q(t) and overlap function o(t) generated
with this method is shown in Fig. 2.4. In all of the examples presented in this
section we represent the continuous time functions using their samples with
a sampling rate signi�cantly above the Nyquist rate, and we obtain the FIR
realization of the continuous time signals. Hence, the simulation bandwidth
is large enough to obtain accurate estimates of the signal spectra. In the
example of Fig. 2.4, we used the Daubechies length 39 scaling function [25]
with its shift period � normalized to one. The number of samples per shift
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2 { Use of wavelet waveforms for modulation

period � is Ns = 8. The horizontal axis in Fig. 2.4 represents continuous
frequency in Hertz. The analog TDL analysis �lter bank generating q(t)
and o(t) is depicted in Fig. 2.5-(a), whereas a general digital �lter bank
implementation of the transmitter and receiver associated with method 1 is
depicted in Fig. 2.6-(a). The basis for the overlap space is shift-orthogonal
with shift period 4� = 4. Performing a four way split of the space spanned
by the scaling function using the Daubechies splitting sequences we obtain
�ve subchannels as depicted in Fig. 2.7 (in this example we did not split the
overlap space).

The splitting sequences h[n] and g[n] used in this example are length 40
Daubechies scaling and wavelet vectors. The resulting �ve subspaces (i.e.,
subchannels) are spanned by orthonormal basis with shift period four. When
used simultaneously to support quadrature modulation, they generate a 10
dimensional space every four time units. This is because there are a total of
�ve orthogonal subchannels over a shift period of 4� = 4 each supporting
quadrature modulation (yielding two dimensions per subchannel). Hence, in
four time units we generate 5 dimensions per quadrature component (i.e., the
symbol rate per quadrature component is 5/4). This symbol rate is within
11% of the Nyquist limit (relative to the 45 dB bandwidth). Not using the
basis of the overlap space amounts to a loss of 20% in the symbol rate. The
tilings of the time-frequency plane corresponding to the channelizations of
Fig. 2.4 and Fig. 2.7 are shown in Fig. 2.8. In Fig. 2.8, B is the 3 dB
bandwidth of the overall modulation scheme, the height of each tile corre-
sponds to the 3 dB bandwidth of each subchannel, while the width of the
tiles is a multiple of the elementary shift period �, which corresponds to
the shift-orthogonality periods of the shaping pulses associated with di�er-
ent subchannels. Note that while the width of the tiles are clearly de�ned in
terms of the shift-orthogonality period, the height of the tiles is dependent
on how the bandwidth is de�ned. We used the 3 dB bandwidth in Fig. 2.8
to show more clearly the distinction between the di�erent tilings that can be
obtained.

The generalization of the above procedure to other shift-orthogonal en-
velope functions is of interest and will be described in the next section.

2.5.3 Multidimensional signaling using a general Root-
Nyquist pulse

Let q(t) be a shift-orthogonal envelope function that is either even or odd
about the point L�, where L is a positive integer, and � is the shift-
orthogonality parameter (later we shall generalize the results to the case
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2.5{ Multidimensional signaling using wavelets

the shaping pulse may not have any temporal symmetry). Then the mini-
mum bandwidth of such a shaping pulse would be 1=2� and any spectral
components beyond this value leads to excess bandwidth. Let the bandwidth
of this envelope function be (1 + �)=(2�). For practical applications gener-
ally 0 < � < 1 and this is what we shall assume here. Then it is possible to
prove that w(t) =

p
2q(t)sin(2�t=�) (the sine modulation is crucial) spans

a bandpass space that is orthogonal to the lowpass space spanned by trans-
lates of q(t) by integer multiples of �. Furthermore, w(t) is shift-orthogonal
with shift parameter �. Note that for any nonzero � the spectra of the
functions q(t) and w(t) overlap. It is possible to obtain a function o(t) which
is shift-orthogonal with shift period � and orthogonal to q(t), by �ltering
w(t) with a �lter having the following characteristics: (1) impulse response
hN (t) with even symmetry in the time domain around t = K�, where K
is a positive integer; (2) transfer function HN(f) constant in the frequency
range �1+�

2�
� f � 1+�

2�
and Nyquist-symmetrical about 1=� (i.e., satisfying

the �rst Nyquist criterion with period �=2). In analogy with wavelets this
process may be viewed as one of generating a wavelet packet from the wavelet
itself.

To prove that o(t) and q(t) span orthogonal frequency channels, let us
recall that HN(f) must satisfy the condition

P
n jHN (f � 2n=�)j2 = K1,

where K1 is a constant.
We can write:

ho(t);q(t� n�)i =
Z +1

�1
O(f)Q�(f)ej2�n�fdf =

=
Z +1

�1
HN(f)W (f)Q�(f)ej2�n�fdf = (2.5)

=

p
2

2j

"Z 1+�
2�

1��
2�

HN(f)Q
�
f � 1

�

�
Q�(f)ej2�n�fdf �

�
Z � 1��

2�

� 1+�
2�

HN(f)Q
�
f +

1

�

�
Q�(f)ej2�n�fdf

#

=
p
2

"Z 1+�
2�

1��
2�

HN(f)Q
�
f � 1

�

�
Q(f) sin (2�(n�K)�f) df

#
= 0 ;(2.6)

where W (f) and O(f) are the Fourier transforms of w(t) and o(t), equality
(2.5) follows since Q(f) is assumed to have frequency support in (�(1 +
�)=(2�);(1 + �)=(2�)) and equality (2.6 ) follows because the function

HN(f)Q(f � 1=�)Q(f) sin (2�(n�K)�f)

is odd around f = 1=(2�). Because of the limited support of Q(f) we
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can write

T (f) =
X
n

����HN

�
f � n

�

�����2
����W

�
f � n

�

�����2 =
=

1

2

X
n

����HN

�
f � n

�

�����2
"����Q

�
f � n

�
� 1

�

�����
2

+
����Q
�
f � n

�
+

1

�

�����
2
#
:

(2.7)

To prove that o(t) satis�es the Nyquist criterion we have to prove that
equation (2.7) is equal to a constant K2. If this condition is satis�ed for
0 � f � 1=�, then it is satis�ed everywhere. Since Q(f) = 0 for jf j > 1=�,
we can write (for 0 � f � 1=�):

T (f) =
1

2

(����HN

�
f +

1

�

�����
2

jQ (f)j2 + jHN (f)j2
����Q
�
f � 1

�

�����
2

+

+
����HN

�
f � 1

�

�����
2

jQ (f)j2 +
����HN

�
f � 2

�

�����
2 ����Q

�
f � 1

�

�����
2
)
=

=
1

2
jQ (f)j2

(����HN

�
f +

1

�

�����
2

+
����HN

�
f � 1

�

�����
2
)
+

+
1

2

����Q
�
f � 1

�

�����
2
(
jHN (f)j2 +

����HN

�
f � 2

�

�����
2
)
=

=
K1

2

(
jQ (f)j2 +

����Q
�
f � 1

�

�����
2
)
=
K1�

2
for 0 � f � 1

�
:

The above equality follows since Q(f) and HN(f) individually satisfy the
Nyquist criterion with periods � and �=2, respectively (in particular, we
have

P
n jQ(f � n=�)j2 = � since q(t) is a unit-energy root-Nyquist pulse).

Hence o(t) satis�es the �rst Nyquist criterion and is shift-orthogonal with
shift parameter �.

The restriction to the case of temporally symmetric pulses is not necessary
for the previous orthogonality relations to hold valid. In particular, write
q(t + L�) = qev(t) + qod(t) where, qod(t) is the odd part of q(t + L�) and
qev(t) is the even part of q(t+L�). Form q(�t+L�) = qev(t)�qod(t) and let
q1(t) = qev(t�L�)� qod(t�L�). The functions qev(t�L�) and qod(t�L�)
individually satisfy the orthogonality relations above. It can be easily veri�ed
that the combination q1(t) = qev(t� L�)� qod(t� L�) also satis�es all the
orthogonality relations above. In particular, at the transmitter we can use
the shaping �lters Q1(f) and O(f) = HN(f)[Q(f � 1=�)�Q(f + 1=�)]=2j
for data transmission, while at the receiver we can use the matched �lters
Q�

1(f) and O
�(f) for data detection. In the rest of this subsection we focus
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2.5{ Multidimensional signaling using wavelets

on symmetric root-Nyquist pulses since these are among the most commonly
used shaping pulses in applications, with the understanding that we could
apply the methods to any root-Nyquist pulse with the modi�cation noted.

Given this setup, the frequency channel spanned by a symmetric base-
band root-Nyquist pulse q(t) can be partitioned according to the following
procedure.

Method 2:

Step 2.1: The function o(t) spanning the overlap space is generated by �l-
tering w(t) using a �lter with transfer function HN(f) satisfying the
following conditions: (1) HN(f) = jHN(f)je�j2�K�f where K is a posi-
tive integer; (2) jHN(f)j2 is Nyquist-symmetrical around f = 1=� and
is constant for �(1 + �)=(2�) � f � (1 + �)=(2�);

Step 2.2: This step is totally analogous to Step 1.2 of Method 1 presented
above. The spectrum of the shift-orthogonal functions q(t) and o(t) can
be individually channelized using multiplicity-M splitting sequences.

Among all the possible �lters, the one leading to the highest spectral eÆ-
ciency is the ideal lowpass �lter with cut-o� frequency 1=� (in e�ect, ideal
brick-wall �ltering creates a wavelet packet using a sinc(:) scaling function
as L2 �lter).

As an example, we used the FIR realization of a square root raised-
cosine shaping pulse with 100% roll-o� and generated the function o(t), whose
spectrum is shown in Fig 2.9. The shift period of the square root raised-cosine
pulse is normalized to � = 1, the number of samples per symbol period is
Ns = 10, and the overall length of the pulse was set to 40�. The FIR almost
ideal LowPass Filter (LPF) used to generate o(t) was obtained via frequency
sampling. The stopband attenuation was set to 60 dB, the transition band
to 0.01 Hz, and Kaiser windowing was used in the �lter design. The number
of taps in this FIR �lter is 365. The resulting Peak Distortion (PD) of o(t)
is 4.6% and the PD due to cross-talk between the two subchannels is 0.9%.
The PD of o(t) is de�ned as follows. Let ro(t) be the time autocorrelation
of o(t) shifted along the time axis so that it has its peak value at the origin,
then PD = f 100

ro(0)
((
P1
m=�1 jro(m�)j) � jro(0)j)g%, where � is the shift-

orthogonality period of o(t). The PD due to cross-talk is obtained as follows.
Let rq;o(t) be the time cross correlation of o(t) and q(t) shifted along the
time axis so that its center of symmetry is at origin. Then, the PD due to
cross-talk between the subchannel spanned by o(t) and that spanned by q(t)
is PD = f 100

ro(0)

P1
m=�1 jrq;o(m�)jg%.
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2 { Use of wavelet waveforms for modulation

The block diagram of the signal processing generating o(t) based on ana-
log TDL �ltering is depicted in Fig. 2.5-(b). In this �gure, we also show
the transition into an analog analysis �lter bank structure that may be used
to generate the multidimensional signal space. The function o(t) and the
square root raised-cosine shaping pulse used simultaneously for modulation
yield spectral eÆciencies near the Nyquist limit. In Fig. 2.6-(b), we show
a general digital �lter bank implementation of the transmitter and receiver
associated with method 2.

Notice that one drawback of Method 2 is that for very high spectral ef-
�ciency, a very steep �lter is required in Step 2.1. As an alternative, when
the value of � < 1, the function o(t) can be generated by �ltering the func-
tion w(t) with a TDL �lter with elementary delay �, having coeÆcients
that form a shift-orthogonal sequence with period P , followed by lowpass
�ltering of the resulting function, which we denote by ô(t). The resulting
shift-orthogonality period of ô(t) is P�. Let us write ô(t) as the sum of
two functions with disjoint frequency supports, ô(t) = o(t) + oh(t) , where
o(t) contains the low frequency components of ô(t) and oh(t) contains the
high frequency components of ô(t), such that: O(f) = 0 for jf j � 1

�
; and

Oh(f) = 0 for jf j < 1
�
or jf j � 2

�
(the equality to zero for jf j � 2

�
arises

because q(t) has a bandwidth less than 1=�, hence its sine modulated version
w(t) has a bandwidth less than 2=�. Since ô(t) is obtained via TDL �lter-
ing of w(t), it cannot have any frequency components above 2=�-Hz). As a

consequence of the above equations we have
���Ô(f)���2 = jO(f)j2+ jOh(f)j2. It

is possible to prove that o(t) and oh(t) individually satisfy the �rst Nyquist
criterion and can be used for modulation. To prove this, note that since
q(t) is real then jQ(f)j2 is an even function of frequency. Consider jW (f)j2
and note that jQ(f � 1=�)j2 is even around 1=� and jQ(f + 1=�)j2 is even
around �1=�. Let us normalize � to equal one for convenience. The squared
magnitude of the transfer function of the splitting sequence is periodic and
even around f = �1. Let the discrete �lter used to separate the overlap
space have transfer function A(ej2�f�). Then, recalling equation (2.4), we

have
���Ô(f)���2 = jW (f)j2

���A(ej2�f�)���2. By design ô(t) is shift-orthogonal with

shift period �0 = P� = P (a positive integer). Hence we can write:

hô(t);ô(t� nP )i =
Z +1

�1

���Ô(f)���2 cos(2�nPf)df = Æ0;n (2.8)

= 2
Z +1

0
jO(f)j2 cos(2�nPf)df + 2

Z +1

0
jOh(f)j2 cos(2�nPf)df (2.9)

= 2(�1)nP
�Z +0:5

�0:5
jO(f + 0:5)j2 cos(2�nPf)df +
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2.5{ Multidimensional signaling using wavelets

Z +0:5

�0:5
jOh(f + 1:5)j2 cos(2�nPf)df

�
(2.10)

where equation (2.9) follows since jÔ(f)j2 is even, equation (2.10) is ob-
tained via two di�erent shifts of the variable of integration of the two parts
of equation (2.9) and using the fact that the frequency support of jO(f)j2 and
jOh(f)j2 is limited as stated before. Now, we have the following: 1) jQ(f � 1)j2
is even around f = 1 and jQ(f + 1)j2 is even around f = �1; 2) jÔ(f)j2U(f)
where U(f) is the unit step function in frequency is even around f = 1 since
TDL has a periodic transfer function around f = 1. Hence,

jÔ(f + 1)j2U(f + 1) = [jO(f + 1)j2 + jOh(f + 1)j2]U(f + 1)

is even around f = 0 and

jÔ(�f + 1)j2U(�f + 1)U(�f) = jÔ(f + 1)j2U(f + 1)U(�f); (2.11)

3) since O(f) = 0 for jf j � 1=� = 1, jO(f + 1)j2U(f + 1)U(f) = 0 and

jÔ(f + 1)j2U(f + 1)U(f) = jOh(f + 1)j2U(f + 1)U(f) = jOh(f + 1)j2U(f):
(2.12)

Similarly, since Oh(f) = 0 for jf j < 1=� = 1 or jf j � 2=� = 2,

jOh(f + 1)j2U(f + 1)U(�f) = 0

jÔ(f + 1)j2U(f + 1)U(�f) = jO(f + 1)j2U(f + 1)U(�f): (2.13)

From equations (2.11)-(2.13) we conclude that

jOh(�f + 1)j2U(�f) = jO(f + 1)j2U(f + 1)U(�f):

Multiplying both sides of this last equality by U(f + 1) and replacing f by
(f � 0:5) leads to

jOh(�f +1:5)j2U(f +0:5)U(�f +0:5) = jO(f +0:5)j2U(f +0:5)U(�f +0:5)

which can be written as:

jO(f + 0:5)j2 = jOh(�f + 1:5)j2 for jf j � 0:5 : (2.14)

Since cos(2�nPf) is even around f = 0 we have that

Z +0:5

�0:5
jO(f + 0:5)j2 cos(2�nPf)df =

Z +0:5

�0:5
jOh(f + 1:5)j2 cos(2�nPf)df :

(2.15)
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2 { Use of wavelet waveforms for modulation

From equations (2.8), (2.10), (2.14), and (2.15), we conclude that o(t) and
oh(t) individually satisfy the �rst Nyquist criterion and can be used for mod-
ulation.

Since it is the spectrum of o(t) that overlaps that of q(t), we can �lter out
O(f) and obtain a shift-orthogonal basis for the overlap space. Note that
for values of � close to 1 the requirements on the �lter needed to separate
O(f) are less stringent than those of Method 2. This is because the sharp
�ltering of the overlap space is achieved by the TDL, and the low pass �lter
that is needed to separate O(f) from Ô(f) can have a much larger transition
bandwidth and hence many fewer coeÆcients in comparison to the �lter that
would be needed in method 2.

We can now summarize the steps required to perform this channelization.

Method 3:

Step 3.1: In this step the function ô(t) is generated by �ltering w(t) with
a TDL �lter whose coeÆcients form a shift-orthogonal sequence (an
example is given below). This is analogous to Step 1.1 of Method 1;

Step 3.2: The function o(t) containing the low frequency components of
ô(t), is separated from ô(t) by means of a non ideal lowpass �lter with
group delay K� for some integer K (by non ideal, we mean a lowpass
�lter that has a nonzero transition bandwidth);

Step 3.3 This step is identical to the Step 1.2 of Method 1.

As an example of the application of this procedure, consider the square
root raised-cosine shaping pulse (denoted by q(t)) with 35% roll-o�. The
shift period is normalized to one. For the FIR realization of this pulse, the
number of samples per symbol is Ns = 10 and the pulse length is set to 40�.
The overlap space occupies the frequency interval 0.325 Hz to 0.675 Hz.
The splitting sequence used to generate ô(t) is obtained at the second level
of the tree structure generating the Daubechies discrete wavelets [25]. We
used the Daubechies length 40 sequences (this is the sequence length at the
�rst level of the tree). In particular, let h[n]; n = 0;1;:::;39 denote the
scaling sequence and g[n]; n = 0;1;:::;39 denote the corresponding wavelet
sequence; then, the splitting sequence used to generate the overlap space is
c[n] =

P39
k=0 g[n� 2k]h[k].

Fig. 2.10 shows all the various frequency channels (i.e., subspaces) de�ned
previously collected in one place. From this �gure, it is evident that a portion
of the high frequency component of the spectrum of w(t) is also �ltered in the
process; hence, we used a lowpass �lter to separate O(f) (i.e., the component
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2.5{ Multidimensional signaling using wavelets

of the spectrum in the overlap space). This LPF was realized via frequency
sampling and Kaiser windowing and has a stopband attenuation of 50 dB,
and transition bandwidth of 0.06 Hz. The number of taps of this FIR �lter
is 51. The signal processing block diagram based on analog TDL �ltering for
this example is depicted in Fig. 2.5-(c). In Fig. 2.6-(c), we show a general
digital �lter bank implementation of the transmitter and receiver associated
with method 3.

The overlap space has a symbol rate of 2/4 using quadrature modulation
(i.e., two dimensions every four time units). We performed a four-way split of
the spectrum of q(t) using the Daubechies splitting sequences obtained at the
second level of the tree structure generating the discrete wavelet packets. The
resulting spectrum is depicted in Fig. 2.11. The symbol rate of each one of the
four subspaces is 2/4 using quadrature modulation. When used with the basis
of the overlap space we generate a 10-dimensional space every four time units.
The subspaces of Fig. 2.11 generated in the tree structure of Fig. 2.5-(c) are
denoted, in order of increasing center frequency, as channels C0;C1;C3 and C2.
The subchannels at the �rst level of the tree of Fig. 2.5-(c) are denoted as B0

(lowpass) and B1 (bandpass). The symbol rate of each of these subchannels
is 2/2 using quadrature modulation. This multidimensional scheme is used
in an example below.

2.5.4 Example of application

To test the performance of the proposed schemes on real channels, we consider
transmission of a multidimensional signal over a stationary fading channel
with nulls in the transmission band. The channel is modeled as a linear
�lter with transfer function depicted in Fig. 2.12 whose output is corrupted
by additive white Gaussian noise. The transfer function of Fig. 2.12 has
been obtained as a possible realization of a multipath channel in an urban
environment with 20 reections and at bit-rate of 500 Kbit/s [78].

We used a temporally symmetric square root raised-cosine pulse with 35%
roll-o� and utilized the following transmission schemes in our simulations (in
all the schemes we use the QPSK modulation format): (A) the square root
raised-cosine shaping pulse q(t) whose spectrum is shown in Fig. 2.10 (de-
noted as channel A) is used at a rate of 1 symbol per second; (B) the two
shift-orthogonal waveforms spanning the subchannels B0 and B1 of Fig. 2.5-
(c) are used at a rate of 1 symbol per 2 seconds per subchannel; and (C) the
four shift-orthogonal waveforms whose spectra are shown in Fig. 2.11, span-
ning the subchannels C0;C1;C3 and C2 of Fig. 2.5-(c) are used at a rate of 1
symbol per 4 seconds per subchannel.

The value of Eb=N0 required to obtain a bit error probability of 10�5
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2 { Use of wavelet waveforms for modulation

at the receiver has been measured via simulation and the following results
were obtained: 17.7 dB for subchannel A; 11.6 dB for subchannel B0 and
more than 30 dB for subchannel B1 (i.e., the channel has introduced an
irreducible error rate for subchannel B1); 12.3, 15.8, 12.5 dB for subchannels
C0;C1;C3 respectively, and more than 30 dB for subchannel C2 (i.e., the
channel has introduced an irreducible error rate for subchannel C2). Note
that for scheme (B), there is a gain of 6.1 dB on one of the subchannels while
there is a signi�cant loss on the other subchannel in comparison to scheme
(A). In scheme (C) on the other hand, three of the subchannels show gains
of 5.4 dB, 1.9 dB, and 5.2 dB in comparison to scheme (A), while there is a
signi�cant loss on the fourth subchannel.
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2.5{ Multidimensional signaling using wavelets

Figure 2.3. Two level binary (M = 2) synthesis and analysis �lter bank
tree. The synthesis bank would be used at the transmitter, the analysis
bank at the receiver. The inputs to the synthesis �lter bank are all digital.
The dashed boxes contain the analog interfaces of the digital �lter banks.
The data rates at various nodes of the tree are speci�ed in symbols per
second (sym/sec). The shaping pulse q(t) is shift-orthogonal with period �.
The Gray code labeling of the subchannels Sij ensures that the subchannels

are in order of increasing center frequencies.

31



2 { Use of wavelet waveforms for modulation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

FREQUENCY (Hz)

M
A

G
N

IT
U

D
E

 O
F

 F
R

E
Q

U
E

N
C

Y
 R

E
S

P
O

N
S

E
 IN

 d
B

Figure 2.4. Magnitude (in dB) of the Fourier transform of the Daubechies
scaling function of length 39 q(t) (solid line), the wavelet (dotted line), and
the \overlap space function" o(t) (dash-dot line) generated with Method 1.
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2.5{ Multidimensional signaling using wavelets

Figure 2.5. Block diagrams of signal processing associated with di�er-
ent splitting techniques, (a) for Method 1, (b) for Method 2, and (c) for
Method 3. Hk(e

nj!�) and Gk(e
nj!�) are transfer functions of analog TDL

�lter-pairs with elementary tap delay of n�. In the examples of the sec-
tion, the TDL �lter-pairs used are the same and independent of the level of
the tree. In (a), we show the subspaces that would result at various levels
of the wavelet packet decomposition tree if the scaling and wavelet vectors
were used as splitting sequences at every level. In part (a), the subspaces
spanned by shifts of q(t) and o(t) may be split further, but this is not shown
in the �gure. Similarly in part (c), the subspace spanned by shifts of o(t)
may be split further. The delays needed to obtain causal �lters are not

shown in the �gures.
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`

Figure 2.6. One level analysis and synthesis �lter bank trees associated
with di�erent splitting techniques, (a) for method 1, (b) for method 2, and
(c) for method 3. The synthesis bank would be used at the transmitter,
the analysis bank at the receiver. The dashed boxes in the analysis and
synthesis trees contain the analog interfaces of the digital �lter banks. The
signal processing for generation of the shaping pulse o(t) for all three meth-
ods are also depicted in the �gure. The di�erent methods are essentially

distinguished based on how o(t) is generated.
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Figure 2.7. Magnitudes of the frequency responses (in dB) of the four
subspaces obtained from the split of the spectrum of the Daubechies scaling
function of Fig. 2.4, and the overlap space. The subspaces are spanned by
shift-orthogonal basis with dimensional rate (or symbol rate) 2/4 using

quadrature modulation, using method 1.
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Figure 2.8. Tiling of the time-frequency plane corresponding to the chan-
nelizations of Fig. 2.4 and Fig. 2.7.
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Figure 2.9. Magnitudes of the frequency responses (in dB) of the square
root raised-cosine shaping pulse q(t) with 100% roll-o� (solid line), the
function w(t) (dash line), and the overlap function o(t) (dash-dot line),

using method 2.
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Figure 2.10. Magnitudes of the frequency responses (in dB) of the square
root raised-cosine shaping pulse q(t) (solid line) with 35% roll-o�, the func-
tion w(t) (dashed line), the output ô(t) of the TDL �lter using the splitting
sequence c[n] (dotted line), and output of the lowpass �lter used to separate

the overlap space o(t) (dash-dot line), using method 3.
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Figure 2.11. Magnitudes of the frequency responses (in dB) of the four
subchannels generated from the split of the spectrum of the square root
raised-cosine shaping pulse with 35% roll-o�, and the overlap space. The
�ve subspaces are, in order of increasing center frequency, the channels
C0;C1;C3 and C2 of section 2.5.4, and the overlap subchannel, using

method 3.
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2.5{ Multidimensional signaling using wavelets

Figure 2.12. Magnitude (in dB) and group delay of the channel transfer
function considered in Section 2.5.4.
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2 { Use of wavelet waveforms for modulation

2.6 A novel wavelet for modulation:

the Modi�ed Gaussian

In this section we present a wavelet with very low sidelobes whose spectral
occupancy in the frequency domain is controlled by a parameter that can
assume any positive real value. The associated scaling function is derived
from the Gaussian waveform. Due to its good spectral characteristics, this
function is well suited as an elementary shaping pulse for digital modulation.

An undesirable feature commonly observed in wavelets found in the lit-
erature in connection with their use as elementary shaping pulses for modu-
lation is that their spectral occupancy is not parametrically de�ned, and can
vary from one wavelet family to another. Hence, when selecting a suitable
wavelet shaping pulse in a communication system, it is necessary to examine
a particular family of wavelets to determine its suitability given the available
bandwidth. It would be desirable to have a parametrically de�ned wavelet,
having a feature like the square-root raised-cosine shaping pulse, whose spec-
tral occupancy and excess bandwidth are controlled (although to a limited
extent) by the roll-o� parameter.

In fact, the square-root raised-cosine pulse satis�es the Dyadic scaling
equation and is therefore a scaling function, but only for values of the roll-o�
parameter less than 1=3. To the best of our knowledge, there are no paramet-
rically de�ned wavelets with good spectral characteristics with a parameter
whose value can vary over the entire positive real axes.

2.6.1 The Modi�ed Gaussian

The wavelet presented here is obtained by applying the orthogonalization
trick [25] to a Gaussian waveform. It is known that this trick preserves some
properties of the original function and, if successful, allows the creation of a
new family of wavelets in the multiresolution analysis toolbox.

The use of the Gaussian waveform as a starting point in the application
of the orthogonalization trick is motivated by the fact that this function has
excellent Time-Bandwidth product near the uncertainty bound [72], in addi-
tion to being parametrically de�ned with the parameter being the variance
of the pulse.

Note that the original Gaussian waveform is not shift-orthogonal and its
use as an elementary pulse in a coherent modulation scheme causes inter-
symbol interference even on a channel with at spectrum.

In what follows, we describe the construction of the modi�ed Gaussian
wavelet using the procedure presented in [25]:
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1. choose a function s(t) with good decay characteristics in both the time
and frequency domains satisfying the two relations

s(t) =
X
n2Z

cns(2t� n�)

0 < � � X
l2Z

�����S
 
f +

l

�

!�����
2

� � <1

and having a nonzero integral. We chose the Gaussian waveform

s(t) =
1

2��
p
�
e�

t2

4�2�2

where � denotes the eventual shift orthogonality period of the or-
thonormal pulse to be derived, and 4�2�2 is the pulse variance in time.
It can be veri�ed that this pulse satis�es all the required properties;

2. if necessary, perform the orthogonalization trick

�(f) = S(f)

2
4X
l2Z

�����S
 
f +

l

�

!�����
2
3
5
�1=2

:

on the Gaussian waveform, which is not shift orthogonal. The Fourier
transform of s(t) is

S(f) = e��
2�2(2�f)2 :

Applying the orthogonalization trick to S(f) we obtain the function

�(f) =
e��

2�2(2�f)2qP
l2Z e�8�

2�2�2(f+l=�)2
(2.16)

whose inverse Fourier transform �(t) can play the role of a scaling
function in the Dyadic multiresolution analysis;

3. determine the corresponding wavelet  (t) according the following pro-
cedure:

a) �nd M1(f) = M0(f)W2=�(f) =
�(f)
�(f=2)

W2=�(f) where the window

function W2=�(f) is 1 in the interval �1=� � f < 1=� and zero
outside. M0(f) itself is periodic and the above expression gives
the value of the function in its principal period;
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Figure 2.13. Excess bandwidth of �(t) vs. �� for A = �20;�30;�40 dB.

b) the Fourier transform of the wavelet is given by

	(f) = �(f=2)
X
n2Z

M�
1 (f + (2n+ 1)=�)

where M�(:) denotes complex conjugate of M .

From equation (2.16) it should be evident that the spectral occupancy of
the scaling function and the associated wavelet is dependent on the param-
eter ��, which can assume any positive real value and directly controls the
spectral characteristics of the shaping pulses. We de�ne the excess bandwidth
 of �(t) as the value that satis�es the relation

20 log
�����
�

1

2�
+

1

2�

����� = A dB :

A plot of  versus the parameter �� for A = �20;� 30;� 40 dB is reported
in �gure 2.13.

The good decay of the derived scaling function in both the time and
frequency domains suggest that this waveform is an excellent candidate as a
shaping pulse for modulation purposes. In practical applications, the shaping
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Figure 2.14. Magnitude of the Fourier transform of �(t) with �� = 0:447
and the square-root raised-cosine with roll-o� � = 0:29 and the same excess
bandwidth  = 0:30 measured at a level of -40 dB (� = 1). Both waveforms

implemented as FIR �lters with 256 taps.

pulse must be sampled to provide a FIR implementation. The good time
domain decay characteristic of �(t) allows us to approximate the shaping
pulse with a FIR �lter with relatively small number of taps, and the good
decay of the magnitude of �(f) in the frequency domain guarantees that
practical realizations of �(t) provide very low sidelobes. Figure 2.14 depicts
the magnitude of the Fourier transform of �(t) with �� = 0:447 ( = 0:57
for A = �40 dB) and the square-root raised-cosine waveform with the same
excess bandwidth. Both waveforms have unit energy and are implemented
as FIR �lters with 256 taps. Figure 2.15 depicts the scaling function �(t)
with �� = 0:447 and the corresponding wavelet  (t).
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Figure 2.15. The scaling function �(t) with �� = 0:447 and the corre-
sponding wavelet  (t).
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Chapter 3

Comparative study of wavelet

waveforms over linear and

non-linear channels

3.1 Introduction

At this point it is interesting to compare the performance of di�erent wavelet
families with classic waveforms like square-root raised cosine with roll-o� �
[22] on di�erent channels, including non-linear channels and channels a�ected
by multipath propagation. It should be recalled, however, that the square-
root raised cosine with roll-o� � � 1=3 is a Meyer scaling function [25] itself
with �(x) 2 C1, where C1 is the class of once di�erentiable continuous func-
tions of compact support. We also recall that the roll-o� � is the theoretical
excess bandwidth, and is generally di�erent from the actual excess bandwidth
 which depends on the actual �lter implementation and the selected X�dB
bandwidth.

3.2 Wavelet Waveforms over Linear Channels

3.2.1 Single Pulse Modulation

Wavelet families provide a set of shift-orthogonal pulses that can be used as
elementary waveforms for modulation. As seen in the previous sections, the
shift orthogonality implies the satisfaction of the Nyquist I criterion, so that
on AWGN channel no ISI is present. This is true for the transmission of a
single pulse (e.g. the scaling function).

Aside from spectral eÆciency, another goal of multiple waveform design
for modulation is sensitivity to timing errors. As far as the symbol timing
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synchronization performance of scaling functions is concerned, the normal-
ized timing jitter of Meyer scaling function and square-root raised cosine
with roll-o� � = 0:29 and the same excess bandwidth of  = 0:3 at a level
of -40 dB is shown in Fig. 3.1. The results are obtained by simulating a
Maximum Likelihood symbol timing recovery [65] scheme with oversampling
factor of 32. A gain of roughly a factor 3 of the Meyer scaling function
with respect to the square-root raised cosine can be observed for SNR values
greater than 10.

It can also be observed that the use of scaling functions as waveforms for
modulation allows the implementation of jitter-free timing synchronization
schemes [5], exploiting the information contained in the orthogonal space,
spanned by the associated wavelet waveform.

3.2.2 Double Pulse Modulation

In connection with the procedure outlined in section 2.3 for improving the
spectral eÆciency, let us consider two possible scenarios employing double
pulse modulation.

Case-study 1

Consider the Daubechies scaling function and wavelet of length 39 (i.e.,
with N = 20) and � = 1. It can be veri�ed that the overlap space with
orthogonality period of wavelet and scaling function set to � = 1, occupies
the frequency band (0.3 Hz, 0.7 Hz) [1]. We would like to generate an or-
thogonal basis for this overlap space by �ltering the continuous wavelet  (t)
with a proper orthonormal sequence. We consider using the sequences h[n]
and g[n] that were used to generate the scaling function and wavelet as the
coeÆcient system for generating the desired basis. A possible basis for this
subspace is given by

b(t) =
X
n

X
k

h[n]g[k] (t� 2n� k): (3.1)

with Fourier transform

B(f) = H(ej4�f)G(ej2�f) (f)

where H(ej2m�f) =
P
n h[n]e

�j2nm�f . The basis for the overlap space derived
above are orthonormal with shift period of four. Hence, together with the
scaling function we can generate 1.25 dimensions per unit time. The com-
posite magnitude response has a -40 dB bandwidth of 0.68 Hz and excess
bandwidth equal to 0:087.
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�

Case-study 2

For the second case-study of this section we use the Meyer wavelet with
Fourier transform

	(f) = ej�f [�(f + 1) + �(f � 1)]�(f=2); (3.2)

where, �(f) is the Fourier transform of the Meyer scaling function �(t) and
we have chosen �(x) = 0:5[1 + cos(�(x � 1))] for 0 � x � 1, for the con-
struction of this scaling function [25], i.e. the �(x) 2 C1 case. Following
our normalization (i.e., � = 1), the Meyer scaling function when used as a
shaping pulse by itself generates one dimension per unit time using a band-
width of 0.666 Hz. The excess bandwidth of this scheme is therefore 0.33.
The spectra of the Meyer scaling function and wavelet overlap in the fre-
quency range 1=3 � jf j � 2=3, thus de�ning the overlap space. The highpass
optimized multiplicity-3 Perfect Reconstruction �lter in [67] can be used to
produce the �ltering e�ect desired to generate the basis of the overlap space.
The impulse response s2[n] of this �lter is shift orthogonal with shift period
3.

The basis function for the overlap space and the corresponding spectrum
of this shaping pulse are depicted in Fig. 3.2. The basis for the overlap
space in this case can be used at a rate of 1/3. The composite modulation
rate when using the Meyer scaling function and the basis for the overlap
space is therefore 4/3. The -40 dB bandwidth of this modulation scheme
is 0.752 Hz and therefore the composite modulation scheme has an excess
bandwidth equal to 0.128. The �lter bank implementation of the transmitter
and matched-�lter receiver for the described modulation scheme is depicted
in Fig. 3.3, where (a) is the scaling function channel and (b) is the overlap
space channel.

�

3.2.3 Multiple Pulse Modulation

Thanks to the orthogonality of the pulses at di�erent scales and between
scaling function and wavelet, it is also possible to generate wavelet-based sig-
nals spanning orthogonal subchannels of the frequency domain. On AWGN
channel the orthogonal signals can be recovered using a bank of matched
�lters, which can also be implemented as decimated �lter bank, as shown in
Case-study 7 in what follows.
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Figure 3.1. Normalized timing jitter of Meyer scaling function and square-
root raised cosine with roll-o� � = 0:29 and the same excess bandwidth
 = 0:3. Both waveforms are generated using 256-taps FIR �lters. The

asymptotic lowerbound is also shown for comparison.

As far as the multichannel symbol timing synchronization is concerned, it
is possible to show [4] that the splitting sequences used to split the spectrum
of a shaping pulse to generate orthogonal frequency subchannels do not e�ect
on the variance of the timing jitter in the tracking mode (at least, in a �rst
order approximation). This variance is totally determined by the original
shaping pulse whose spectrum is split and is critically dependent on its excess
bandwidth.

3.3 Wavelet Waveforms over Non-Linear

Channels

In this section we will present simulation results for wavelet based shaping
pulses over satellite and multipath fading channels. In the case of satel-
lite channel, we consider a scenario whereby the satellite acts purely as a
transponder. The system scheme is depicted in Fig.3.4; we assume that the
SNR on the uplink is high, so that the uplink noise may be insigni�cant and
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Figure 3.2. Spectra of the Meyer scaling function, wavelet, and basis for
the overlap space of Case-study 2 (� = 1).

therefore omitted from further consideration. Hence, the only noise present
in the system is the downlink noise. The frequency division multiplexed sig-
nals arriving at the satellite are ampli�ed by a Traveling Wave Tube (TWT)
ampli�er whose back-o� parameter should be optimized in order to achieve
the highest possible SNR at the receiving station. The AM/AM and the
AM/PM characteristics of the considered TWT are reported in Fig.3.5. Due
to the complexity of the model, analytical performance evaluation of such a
system is practically impossible. Hence, we evaluate the performance of the
system using simulation.

Unless stated otherwise, the simulation results presented in the follow-
ing have been obtained by assuming ideal clock and carrier recovery. The
statistics of ISI and InterChannel Interference (ICI) have been derived by
Montecarlo simulation, and the bit error probabilities obtained by averaging
those statistics. All the �lters used were simulated by 256-taps FIR �lters
with an oversampling factor of 8. The measure used to compare the per-
formances is the required energy per bit versus noise power spectral density
at saturation (Eb=N0)sat to have an error probability of P (e) = 10�5 versus
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Figure 3.4. Block Diagram of a satellite communication channel.

the input back-o� of the non-linear ampli�er. Minimization of the factor
(Eb=N0)sat corresponds to the minimization of the cost function:

10 log10

"�
Eb
N0

�
sat

#
= 10 log10

��
Eb
N0

��
+ 10 log10

��
Pout sat
Pout

��
; (3.3)

where the terms in the right hand side of equation (3.3) are respectively the
actual (Eb=N0) required to obtain Pb(e) = 10�5 and the output backo� of
the non-linear ampli�er. From a power eÆciency point of view it is desirable
to operate the TWT in saturation. However, this can cause severe signal
distortion requiring a larger Eb=N0 to o�set the e�ect, given that Pb(e) is
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Figure 3.5. The normalized AM/AM and the AM/PM charachteristics of
the Travelling Wave Tube.

�xed. Hence, the joint minimization of the two terms is required because
while minimization of the �rst term means to decrease the signal distortion
�xing the working point on the linear part of the ampli�er AM/AM charac-
teristic, it is also required to eÆciently exploit the ampli�er itself minimizing
the output power loss relative to the saturation point.

3.3.1 Single Pulse Modulation

In this section, we will be concerned with the transmission of a single pulse,
the scaling function, on a satellite channel. We compared the performances of
Daubechies with N = 20, Battle-Lemari�e with di�erent values of the degree
N and Meyer scaling functions [25]. In particular, the Meyer scaling function
with function �(x) 2 C1 [25] has been considered. We also analyzed the new
scaling function, the Modi�ed Gaussian, that introduced in chapter 3. Its
spectral eÆciency is tuned by a parameter � and it has good characteristics
in the frequency domain (essentially low sidelobes). The magnitude of the
Fourier transform of the Modi�ed Gaussian scaling function with symbol
period � = 1 is depicted in Fig. 2.14, where it is compared to a square-root
raised cosine with the same excess bandwidth  = 0:30 (measured at a -40
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dB level).
In Table 3.1, the losses of some scaling functions belonging to di�erent

wavelet families with respect to the square-root raised cosine with the same
excess bandwidth  measured at -40 dB are reported. As it can be observed,
no scaling function by itself manages to outperform the square-root raised
cosine on a non-linear channel, but the Modi�ed Gaussian waveform scaling
function shows very similar performances. Since the square-root raised co-
sine with roll-o� � � 1=3 is a particular case of Meyer scaling function, some
of the comparisons of Table 3.1 can be considered a comparison between
di�erent types of scaling functions. While the use of orthogonal scaling func-
tions corresponds to a pair of matched transmit-receive �lters, the use of a
biorthogonal waveform allows the presence of non-matched transmit-receive
�lters still preserving the zero ISI property of the demodulated signals. One
may wonder if a well chosen pair of transmit and receive �lters could lead to
better performances on a non-linear channel with respect to the orthogonal
systems, since on this channel the optimum receiver �lter is not a matched
�lter. To answer this question we examined biorthogonal spline scaling func-
tions and obtained a loss of 0.97 dB with respect of the square-root raised
cosine with the same spectral eÆciency. If we deal with a more complex

Scaling function loss vs. raised cosine  �

Daubechies N=20 2.2 dB 0.37 0.37
Battle-Lemari�e N=6 0.89 dB 0.31 0.31
Battle-Lemari�e N=8 0.97 dB 0.26 0.25
Meyer 0.27 dB 0.30 0.29
Mod. Gaussian �� = 1 0 dB 0.072 0.070
biorthogonal spline 0.97 dB 0.5 0.5

Table 3.1. Comparison of scaling functions vs. square-root raised cosine
with the same excess bandwidth  on non-linear channel. Square-root
raised-cosine has roll-o� � and is implemented using a 256-taps FIR �lter.

transmission scenario in which a useful channel su�ers from interference due
to neighboring channels, we can appreciate some advantages of wavelet based
waveforms. In particular, we can verify if the substantial lack of sidelobes
of the Modi�ed Gaussian scaling function [9] can reduce the ICI due to the
enlargement of the spectra after the non-linear ampli�er.
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Case-study 3

We considered a Frequency Division Multiplexed (FDM) system in which
the available bandwidth has to be shared by many users, and a reduced guard
band is desirable to increase the capacity of the overall system. We considered
a Modi�ed Gaussian waveform with �� = 0:447, which corresponds to an
excess bandwidth  = 0:57 measured at -40 dB. The separation between
center frequencies of the channels is 0:575=Tb, where Tb is the bit duration
and QPSK modulation scheme is employed, with � = 2Tb. The power
spectra of the useful channel with the two interfering channels considered in
this case study are depicted in Fig. 3.6 for � = 1, where � is the symbol
period. The actual gain in the signal-to-noise ratio necessary to achieve an
error probability of 10�5 is roughly 4 dB as can be seen from Fig. 3.7 with
respect to the square-root raised cosine with roll-o� � = 0:57, having the
same spectral occupancy and implemented with the same number of taps.
The Modi�ed Gaussian waveform allows a larger overlap between adjacent
channels with reduced cross-talk after the non-linear ampli�er. Using the
Modi�ed Gaussian waveform more channels can be allocated, increasing the
overall capacity of a system in which the total available bandwidth is �xed
to guarantee the compatibility with the preexistent systems.

A di�erent result can be obtained if, instead of comparing waveforms with
the same excess bandwidth, we separately optimize the spectral occupancy
of each signal in terms of required signal power for a given error probability,
given the available channel bandwidth. The result of this procedure is shown
in Fig. 3.8, where the curves for the square-root raised cosine with roll-
o� � = 0:5 and for the Modi�ed Gaussian waveform with �� = 0:35 are
depicted, with frequency separation between channels of 0:65=Tb. It can be
observed that both the square-root raised cosine and the Modi�ed Gaussian
achieve practically the same performances, with di�erent excess bandwidth
values.

�

3.3.2 Double pulse modulation

In this section we present the Eb=N0 performance of double pulse modulation
over single and multiple access non-linear channels. The proposed schemes
present very high spectral eÆciencies, and -33 dB bandwidth measures have
been used for these particular cases.
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Figure 3.6. Spectra of 3-channel FDM system with separation between
channel center frequencies of 0:575=Tb and � = 1, employing the Modi�ed
Gaussian shaping pulse with �� = 0:447 and  = 0:57 measured at -40 dB

(Case-study 3).

Case-study 4

As �rst case-study of double pulse modulation over non-linear satellite
channel we present the comparison between the following schemes:

1. a QPSK scheme with bit duration Tb, using a square-root raised cosine
shaping pulse with roll-o� � = 0:07;

2. a composite scheme obtained as the superposition of two orthogonal
subchannels employing QPSK constellations. The �rst subchannel op-
erates at full rate (two bits every � = 3Tb seconds) and uses as shaping
pulse an order-8 Battle-Lemari�e scaling function, while the second sub-
channel operates at half rate (two bits every 2� seconds) and uses as
shaping pulse the corresponding waveform spanning the overlap space.

The basis for the overlap space has been obtained by �ltering the order-
8 Battle-Lemari�e wavelet with an order-8 Battle-Lemari�e wavelet vec-
tor.
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Figure 3.7. The required (Eb=N0)sat versus the input back-o� of the non-
linear power ampli�er for the Modi�ed Gaussian waveform scaling func-
tion (�� = 0:447) and the square-root raised cosine (� = 0:57) with the
same spectral eÆciency in a FDM system with separation 0:575=Tb between

center frequencies (Case-study 3).

These two schemes have the same -33 dB bandwidth requirement, and their
excess bandwidth is 0:072. Simulations show a loss of roughly 1.5 dB of the
composite scheme with respect to the single pulse scheme.

�
The motivation for simultaneous use of the scaling function and overlap

function subchannels in FDM systems with non-linearity is that it allows
for a natural separation of the available spectrum into two parts. The �rst,
is the scaling function subchannel which is less e�ected by ICI due to its
smaller bandwidth; the second, is the overlap function subchannel which is
more e�ected by ICI. Further subdivision of the part of the spectrum that
is less e�ected by ICI is not necessarily desirable since such a subdivision
would elongate the pulses in the time domain causing more distortions and
cross-talk at the output of the non-linear ampli�er.
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Figure 3.8. The required (Eb=N0)sat versus the input back-o� of the non-
linear power ampli�er for the Modi�ed Gaussian waveform scaling func-
tion (�� = 0:35,  = 1:054 at -40 dB) and the square-root raised cosine
(� = 0:5,  = 0:5 at -40 dB). Both pulses are optimized to achieve the
best performances in the FDM system with a separation between center

frequencies of 0:65=Tb (Case-study 3).

Case-study 5

For our second double pulse case-study, in order to compare the perfor-
mance of the wavelet-based shaping pulses with the standard techniques, we
considered the following schemes:

1. a QPSK scheme with bit duration Tb, using a square-root raised cosine
shaping pulse with roll-o� � = 0:072;

2. a composite scheme obtained as the superposition of two orthogonal
subchannels employing QPSK constellations. The �rst subchannel op-
erates at full rate (two bits every � = 3Tb seconds) and uses as shaping
pulse an order-6 Battle-Lemari�e scaling function, while the second one
operates at half rate (two bits every 2� seconds) and uses as shaping
pulse the corresponding waveform spanning the overlap space. The
basis for the overlap space has been obtained by �ltering the order-6
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Figure 3.9. Power spectral density of the overlap space (b) and the scaling
function subchannel (a), that compose the useful channel of Case-study 5

(the center channel), and the interfering side channels (c).

Battle-Lemari�e wavelet with an order-6 Battle-Lemari�e wavelet vector.

These two schemes have the same -33 dB bandwidth requirement, and their
excess bandwidth is 0:088.

The power spectra of the two subchannels that generate the composite
scheme are shown in Fig. 3.9 for � = 1. The two subchannels overlap in fre-
quency, but their orthogonality is assured by the time-correlation properties
of the scaling function and wavelet.

The individual FDM channels have a separation between center frequen-
cies of 0:51=Tb. In our simulations, we consider the useful channel plus two
side interfering channels as shown in Fig. 3.9. In this environment, di�erent
channels may experience di�erent propagation conditions. In order to ex-
amine a particularly critical condition, we assumed that the useful channel
is attenuated by 10 dB relative to the interfering side channels. Fig. 3.10
shows the signal-to-noise ratio at saturation (Eb=N0)sat needed to achieve a
bit error probability of 10�5, versus the input back-o� of the ampli�er. It
can be observed that in this very critical condition, the wavelet-based shap-
ing pulses outperform the square-root raised cosine by roughly 1.7 dB. The
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Figure 3.10. (Eb=N0)sat in dB versus input back-o� of the non-linear
power ampli�er for the channels considered in Case-study 5: composite
channel, using the scaling function and overlap space function (S.F. +
O.S.), and the channel based on the square-root raised cosine function

(R.C.).

performance loss of the scheme employing the square-root raised cosine is
mainly due to the sidelobes of the transfer function that are high because of
the very small roll-o�. It should also be noted that the performance of the
wavelet-based waveforms are less encouraging on less critical channels.

�

Case-study 6

For our third double pulse case-study, we considered the following schemes:

1. a QPSK scheme with bit duration Tb, using a square-root raised cosine
shaping pulse with roll-o� � = 0:069;

2. a composite scheme obtained as the superposition of two orthogonal
subchannels employing QPSK constellations. The �rst subchannel op-
erates at full rate (two bits every � = 2:5Tb seconds) and uses as
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Figure 3.11. (Eb=N0)sat in dB versus input back-o� of the non-linear
power ampli�er for the channels considered in Case-study 6: composite
channel, using the scaling function and overlap space function (S.F. +
O.S.), and the channel based on the square-root raised cosine function

(R.C.).

shaping pulse the order-20 Daubechies scaling function of Case-study 2,
while the second one operates at one fourth the rate (two bits every 4�
seconds) and uses as shaping pulse the corresponding waveform span-
ning the overlap space. The basis for the overlap space is expressed in
equation (3.1).

These two schemes have the same -33 dB bandwidth requirement, and their
excess bandwidth is 0.065. The individual FDM channels have a separation
between center frequencies of 0:5125=Tb and, as in the previous example, the
useful channel experiences an attenuation of 10 dB with respect to the two
interfering side channels.

Fig. 3.11 shows the signal-to-noise ratio at saturation (Eb=N0)sat needed
to achieve a bit error probability of 10�5 versus the input back-o� of the
ampli�er. From Fig. 3.11 it can be observed that the wavelet based scheme
gains roughly 0.6 dB in comparison to the scheme employing a square-root
raised cosine shaping pulse. It can be veri�ed via simulation that for a given
input back-o�, the scaling function subchannel o�ers a lower bit error rate
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in comparison to the overlap space subchannel. This behavior is mainly due
to the fact that the overlap space subchannel is more e�ected by ICI.

�
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Figure 3.12. -40 dB bandwidth occupation of the M -channel rectangular
pulse OFDM scheme and M -channel WOFDM schemes based on the fol-
lowing scaling functions: Daubechies (N = 20), Battle-Lemari�e (N = 6
and N = 8) and Meyer, Modi�ed Gaussian, and biorthogonal spline. The

-20 dB bandwidth of OFDM is also shown for comparison.

3.3.3 Multiple Pulse Modulation

Use of splitting sequences to obtain a new channel subdivision with the de-
sired spectral features can be generalized to more than two channels. The
resulting system can be considered a particular case of MultiCarrier Modu-
lation (MCM) that we denoted WOFDM [2].

It is well known that multicarrier systems have good properties on dis-
persive channels which exhibits great variations in gain across their available
bandwidth. In an ideal multicarrier system the e�ect of the fading channel
on each carrier can be accurately modeled as a di�erent attenuation and
phase shift a�ecting each subchannel, thus allowing an easy equalization of
the various subchannels. In MCM systems it is also possible to optimize
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Figure 3.13. Power spectral densities of the 8-channel OFDM (a) and
WOFDM (b), with � = 227:56�s (Case-study 7).

the allocation of the data stream on the various channels. The most famous
multicarrier system is the OFDM [64], which uses a set of orthogonal tones,
and has been adopted as standard for the HDTV.

Use of di�erent shaping pulses for multicarrier modulation on particular
channels has been investigated in [68, 64].

The literature on the OFDM always considers a large number of carriers,
because the spectral eÆciency of the system increases with the number of
channels. WOFDM can be considered an alternative to OFDM for a small
number of channels, with a bandwidth occupation that is much smaller than
OFDM. To give an idea of this phenomenon, we reported in Fig. 3.12 the
-40 dB bandwidth occupation of the standard rectangular pulse used in the
OFDM scheme together with various WOFDM schemes as a function of the
number of channels M . A normalized symbol time � = 1 is considered. As
it can be observed from Fig. 3.12, because of the high side lobes of the sinc(:)
function, the OFDM scheme has high bandwidth occupation for low values
of M , while its bandwidth decreases as M increases. The bandwidth occu-
pation of WOFDM does not depend on M , since it is always the bandwidth
of the original scaling function. The OFDM scheme becomes spectrally more
eÆcient than WOFDM for values of M ranging between 100 and 400, de-
pending on the type of scaling function. The -20 dB bandwidth of OFDM is
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also shown for comparison.

Another diÆculty that arises in using WOFDM with a large number of
subchannels is due to the fact that it is diÆcult to �nd good splitting se-
quences for large values of M . Furthermore, for a large number of channels
the lengths of the implulse responses increase also, leading to longer trans-
mission �lters and increasing the cross-talk between channels due to the non-
linearity of the transmission media. The implementation complexity may be
reduced with a decimated �lter bank structure of the transmit and receive
�lters.

The choice of the splitting sequences is a delicate topic. Di�erent shift-
orthogonal sequences used on the same scaling function can lead to divisions
of the bandwidth in which some channels have high sidelobes and are not
suitable for transmission, or are not spectrally eÆcient. These e�ects are
essentially due to the periodic nature of the discrete Fourier transform of
the splitting sequences. The iterative splitting of the spectrum can produce
catastrophic results if the residual sidelobes resulting from the previous split-
ting step, are ampli�ed again by the splitting sequences at the current step.

However, an appropriate choice of the scaling function and of the split-
ting sequences can lead to eÆcient channelizations for a small number of
channels. The total spectral occupancy depends on the original scaling func-
tion. Thanks to the availability of a very large number of possible wavelet
functions, it is possible to choose a basic waveform whose spectral occu-
pancy is lower than that of the OFDM system with the same number of
subchannels. As an example, in Fig. 3.13 the total spectrum of a classical
OFDM system with 8 tones (a) and the spectrum of a WOFDM using order-
8 Battle-Lemari�e wavelet packets with 8 subchannels (b) are reported in the
case � = 227:56�s.

Case-study 7

To demonstrate the e�ective advantage of the WOFDM, we chose the
order-8 Battle-Lemari�e wavelet packets, to obtain a system with 8 subchan-
nels. This family of wavelet waveforms do not have compact support in the
time domain, but their fast decay (exponential) allows an implementation
with FIR digital �lters with good approximation (i.e., the ISI and ICI due
to the loss of orthogonality is negligible). The good time-frequency prod-
uct of this family allows them to have good decay in the frequency domain
with low sidelobes. These features imply that essentially each subchannel
overlaps only with the two adjacent subchannels. Hence, the possibility of
interchannel interference due to the non-linearity of the transmission channel
is greatly reduced.
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In Fig. 3.15 the synthesis and analysis �lter banks used at the transmitter
and receiver respectively, for the WOFDM scheme are depicted. The dashed
boxes contain the analog interfaces of the digital �lter banks, and the data
rates at di�erent nodes of the tree are speci�ed in symbols per second. The
order-8 Battle-Lemari�e scaling function �(t) is shift orthogonal with period
�, and the sequences h[n] and g[n] represent the order-8 Battle-Lemari�e
scaling and wavelet vectors used as splitting sequences for each binary de-
composition of the subspaces. The entry points of the data associated with
the 8 subchannels that generate the overall signal spectrum are also shown.
In Fig. 3.14 the results of the comparison of the OFDM and of the WOFDM
schemes of Fig. 3.13 on the non-linear channel are reported. The OFDM
scheme has an excess bandwidth of 1.26, while the WOFDM scheme has an
excess bandwidth of 0.115 measured at -20 dB. Both schemes have a symbol
period of � = 227:56�s. The large saving in bandwidth requirement of the
WOFDM scheme (which renders the technique suited for FDM applications)
is counterbalanced by a loss of roughly 2.2 dB on the non-linear channel.

We also considered the transmission of a QPSK modulated signal on each
frequency subchannel over a multipath fading channel in an urban environ-
ment. We assumed the presence of a direct path between the transmitter and
the receiver; 4 groups of reected rays are considered and each of them is
composed of echoes whose delay �i is exponentially distributed between 0 and
7 �s. The phase shifts are uniformly distributed between (0;2�). No coding
or equalization is implemented. Table 3.2 reports the signal-to-noise ratio
Eb=N0 necessary to achieve a bit error probability P (e) = 10�5 versus the
variation Ag of the relative gain between the reected rays and the direct ray
for the OFDM and WOFDM schemes of Fig. 3.13, with � = 227:56�s, and
for an 8 channels WOFDM scheme with � = 112�s and the same bandwidth
measured at -20 dB as the OFDM scheme. The Eb=N0 is the mean value of
the required Eb=N0 for the 8 subchannels. The WOFDM system (C), with
the same symbol period as the OFDM, shows a minimum gain of 1.8 dB, in
addition to the much smaller bandwidth requirement. The WOFDM scheme
(B), with a smaller symbol time and the same bandwidth occupation, shows
a minimum gain of 4.6 dB plus allowing a larger transmission bit rate which
again amounts to a larger bandwidth eÆciency of the scheme. In general,
the larger bandwidth eÆciency of WOFDM for small number of channels
allows, for a given �xed bandwidth occupation, the use of a smaller value
of the symbol duration �, and a larger margin with respect to the channel
coherence time.

�
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We should �nally point out that the performances of OFDM can be im-
proved using a guard interval in each symbol period, at a cost of reduced
data rate. This is not possible for the WOFDM system in which the pulse
extends over several symbol intervals.

Ag (dB) OFDM (A) WOFDM (B) WOFDM (C)

-40 13.1 7.6 9.8
-30 12.0 7.0 10.0
-20 11.8 7.2 10.0
-10 47.5 34.0 34.5

Table 3.2. Required Eb=N0 in dB for a P (e) = 10�5 vs. Ag, the rel-
ative gain between the reected ray and the direct ray, for the OFDM
and WOFDM schemes of Case-study 7. Schemes (A) and (C) have
� = 227:56�s, scheme (B) has � = 112�s. Schemes (A) and (B) have
the same bandwidth, scheme (A) has  = 1:26 and schemes (B) and (C)

have  = 0:115.
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Figure 3.14. (Eb=N0)sat in dB versus the input back-o� of the non-linear
power ampli�er for the WOFDM and OFDM schemes with � = 227:56�s

of Fig. 12 described in Case-study 7.
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Figure 3.15. The synthesis and analysis �lter banks used at the trans-
mitter and receiver respectively, for the WOFDM scheme of Case-study 7,

based on order-8 Battle-Lemari�e wavelet packets (T=�).
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Chapter 4

Other communication

applications

4.1 Introduction

In this chapter we present two particular applications of the wavelet based
modulation. In the �rst example WOFDM and Trellis coded modulation are
jointly used to shape the power spectrum of the overall transmitted signal in
order to match it to the channel transfer function; such a technique is used to
limit the distortion e�ect introduced on the received signal by deep frequency
fading in the channel transfer function. In the second devised applications we
exploit the �lter bank structures of the wavelet mo-demodulator to eÆciently
implement a spread spectrum modulation system.

4.2 Power spectrum shaping using WOFDM

and TCM codes

On linear �ltering channels with side information, the transmitter may shape
the power spectrum of the transmitted signal with the aim of increasing the
data rate through the channel. Several possibilities have surfaced in the lit-
erature that address this problem. In Tomlinson-Harashima (TH) precoding
[94], the channel symbols are precoded and transmitted across the known
Inter-Symbol Interference (ISI) channel. The receiver employs a whitened
matched �lter followed by further processing. TH precoding eliminates the
ISI due to the tail of the channel impulse response. Trellis precoding [95],
may be viewed as a generalization of trellis shaping to ISI channels. This
broad scheme encompasses TH precoding and can achieve spectral shaping
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and shaping of the multidimensional constellation.
Another approach is based on Multicarrier Modulation (MM), a special

case of which is the DFT-OFDM. In this approach the available spectrum
is channelized into a large number of overlapping orthogonal frequency sub-
channels. In MM, after the frequency channelization, a loading algorithm
can be used [98] to distribute the data rate and the available signal power in
the available subchannels.

In trellis precoding, the whitened matched �lter must exist and be causal
and stable. For channels with nulls in their transfer function this cannot be
assured. For such channels, instead of the zero forcing Decision Feedback
Equalizer (DFE), one must employ the minimum mean squared error DFE
which admits a limited amount of ISI at its output. In general, TH and trellis
precoding may be characterized as techniques whereby the number of avail-
able orthogonal channels used at the transmitter is one, and the number of
codes used is one as well. In contrast, the number of orthogonal subchannels
used in DFT-OFDM is very large (e.g., 1024), and in many applications the
number of codes used at the transmitter is one.

In this section, we propose a scheme that bridges the gap between these
two extremes [6]. We employ a set of orthogonal subchannels generated at
various nodes of a �lter bank tree [28], whereby the total number of the fre-
quency subchannels are much smaller than those used in DFT-OFDM, and
employ one TCM code per subchannel selected wisely so that they may all be
decoded in a single decoder. The main advantages of the proposed technique
are: (1) dynamically adjustable power spectrum, provided channel state in-
formation is available; (2) relative ease in handling channels with nulls in
their transfer function; (3) fast hardware and power eÆcient technique of
generating the orthogonal frequency subchannels; (4) low complexity over-
head at the receiver; and (5) ability to support unequal error protection of
the data.

To provide a unifying framework, we shall focus on Geometrically Uniform
TCM (GUTCM) codes, although the technique can be applied to general
TCM codes. We refer the interested reader to references in [6] for the details
on the GUTCM codes, their construction, and their canonical encoders. Ob-
serving the GUTCM encoder with k inputs and n outputs we have: (1) the
input binary k-tuple can be divided into two segments. The �rst ~k-bits deter-
mine the state transitions and activate the label code. The second (k�~k)-bits
address a particular element of a coset of the parallel transition subcode C0,
identi�ed by the label code. C0 itself is a block code; (2) the output is a
signal vector in a typically 2L-dimensional signal space. This space is often
obtained as a Cartesian product of L two-dimensional subspaces; the 2L-
dimensional vector is transmitted by sending L two-dimensional vectors in
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di�erent time slots. From this description, the dynamics of the code are cap-
tured by the labeled state transition diagram. The process of generating the
orthogonal frequency subchannels in MM can be viewed as one of splitting the
spectrum of a root-Nyquist pulse s(t), using a set of shift orthogonal splitting
sequences as presented in Chapter 3. The resulting subchannels overlap in
frequency, but maintain their orthogonality. It is instructive to think of the
di�erent subchannels as spanning di�erent subspaces of the available signal
space, and to think of a component GUTCM code as acting on a particular
subchannel assigned to it.

4.2.1 GUTCM Coding of the Subchannels

Once the available frequency band has been channelized, it is important
to choose which GUTCM code acts on a particular subchannel. All the
subsequent discussion is based on the complex baseband equivalent model of
the possibly narrowband communication system. The noise is assumed to be
additive Gaussian.

Suppose the available frequency band is subdivided into N subchannels
with symboling rates Rj = (Lj�)

�1 for j = 1;2;:::;N , where, Lj are posi-
tive integers. Let the GUTCM code acting on subchannel j be denoted by
TCM(j) and have the rate kj=mj bits/(two-dimensional symbols), where, we
assume mj two-dimensional symbols are ejected by encoder per state transi-
tion. Each such sequence of mj two-dimensional symbols represents a code-
word of C0 or one of its cosets. Let the average energy of the two-dimensional
constellation used by TCM(j) be Ej. Then the average power level of sub-

channel j is mjEj
mjLj�

= EjRj, and the total average transmission power is

P =
P
j EjRj. The useful bit rate of the j-th subchannel is Rbj = kj=mj

Lj�

bits/second, and the total bit rate is Rb =
P
j Rbj. Assume the channel

has a piecewise constant gain of Cj for subchannel j, and piecewise linear
phase leading to group delay dj of subchannel j. Adjusting for the group
delays at the receiver, assume the subchannels can be aligned so that they
remain orthogonal. Then the energy level of received signal for subchannel
j is E 0

j = C2
jEj (this is the e�ective energy level inuencing the Bit Error

Rate (BER)).

One objective of the system designer may be to maximize Rb subject to
a constraint on P , while simultaneously satisfying the BER requirements. In
the rest of the paper, we assume we are given a set of codes, with their respec-
tive rates and energy levels maximizing our objective function and satisfying
our constraints. Note that from a complexity point of view, it is desirable
to use the minimum number of subchannels while satisfying the spectrum
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shaping, minimum interference (due to spectral overlap of the subchannels
and linear �ltering e�ect of the channel), and data rate maximization re-
quirements, given our constraints.

4.2.2 Pipeline Mode Decoding of the Component Codes

Maximum Likelihood (ML) decoding of a GUTCM code can be performed
in two steps: (1) ML decoding of the parallel transition subcode and all of
its cosets; and (2) using the metrics generated in step 1 to decode the label
code. The main complexity of the decoder is associated with decoding of the
label code.
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Figure 4.1. Four channel splitting of the square-root raised cosine wave-
form with Daubechies �lters.

Decoding of the Label Codes:
Maximum likelihood decoding of the label code can be performed via usual
Viterbi decoding [101]. In state-parallel Viterbi decoder, a single trellis sec-
tion of the GUTCM code is mapped into hardware. The basic unit of a
Viterbi Decoder (VD) is the Add-Compare-Select (ACS) unit. In a VD for
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Figure 4.2. Power spectra of the shaped transmitted signal and of the
received signal

a rate
~k
n
convolutional code, each ACS unit receives 2

~k Accumulated path
Metrics (AM), adds distinct Branch Metrics (BM) to each AM, selects the
largest and presents the results of this selection in addition to the updated
AM to other ACS units if they need it. The distribution of the updated AMs
to the appropriate ACS units for the next decoding cycle can be done using
a switching matrix [101]. This way label codes having the same number of
states but di�erent dynamics can be decoded in one decoder (see the discus-
sion below on pipelining). From the outputs of the ACS units the decision
vector is obtained and stored in the memory unit, that will be scanned by
the trace-back unit in order to determine the decoded sequence.

Note that the orthogonal subchannels are synchronized relative to each
other. Let �0 = LCM(m1L1;:::;mNLN )� where, LCM denotes the Least
Common Multiple. Then the trellises of the component label codes align
every �0 seconds. In particular, every �0 seconds we have ij = �0=mjLj�
trellis sections for TCM(j), where ij is an integer. Throughout the rest of
the section, we assume that the label codes of di�erent GUTCM codes have
trellises with the same number of states. Since the decoder complexity is
dominated by the code with the largest state space, it does not make sense
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4.2{ Power spectrum shaping using WOFDM and TCM codes

to use GUTCM codes with di�erent number of states.
Given the trellis alignment noted above, we can simultaneously decode all

of the label codes. The reason why this is possible is that a Viterbi decoder
can simultaneously decode independently encoded data streams in a pipeline
mode with very little processing hardware overhead. In particular, take a
generic ACS unit operating on 2

~k inputs at a time. Let the propagation
delay of an ACS unit operating on 2

~k inputs be X(~k). Assuming the ACS
data path is divisible by whatever amount desired, consider pipelining the
ACS data path by N 0 =

PN
j=1 ij stages [101]. Let the delay of each pipelining

latch be �l. Using N 0-stage pipelining the net propagation delay from the
input to the output of the ACS units will be X(~k) + N 0�l. Such pipelined
ACS units can be used to sequentially operate on N 0 data streams, while the
switching matrix takes care of the updated AM routing. Obviously, an ACS
unit operating on 2k inputs, can operate onm � 2

~k inputs. The price paid for
this N -fold gain in processing power, is N 0 latches, and a reduced throughput
due to propagation delay of the latches. Note that the power consumption
of a decoder decoding the GUTCM codes acting on the subspaces of the
signal space in a pipeline mode, is no more than the power consumption of
a decoder for a single GUTCM code acting on the entire signal space. This
is because the overall symboling rate for both cases are the same.

The hardware overhead for pipeline mode decoding of N label codes are:
(1) N 0 pipelining latches inserted in the ACS hardware data path, and a
switching matrix for updated AM routing (this unit is unnecessary if all the
GUTCM codes have the same dynamics); (2) pipelining latches inserted in
the trace-back unit(s) data path(s) (the number is highly design dependent);
(3) multiplexers and demultiplexers for data ow regulation; and (4) N mem-
ory modules storing the decision vectors generated by the ACS units.
Decoding of the Parallel Transition Subcodes:
It can be demonstrated that owing to the algebraic structure of the GUTCM
codes, all the parallel transitions connecting the states of the trellis at a
given trellis section, can be simultaneously solved in a single hardware unit
we denote GPTSU (see references in [6, 12]). What is true about the trellis di-
agrams of the label codes of the component GUTCM codes and their eÆcient
decoding in one decoder, is certainly true about the trellis diagram associ-
ated with the parallel transition subcodes, their cosets, and their pipeline
decoding in one GPTSU. In particular, if C0 of di�erent GUTCM codes are
either identical, or are subcodes of each other, they can be eÆciently decoded
in one pipelined GPTSU unit. Note that the decoding trellis of C0 and its
cosets are often very short (these are essentially block codes). Hence, there
is no need for trace-back units to store decision vectors, and the hardware
overhead in pipelining the GPTSU is indeed minimal.
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Example: We use the extensive tables of GUTCM codes over non-binary
Abelian groups (Z4 and Z8) presented in [102]. We assume the channel has
a null around 0.328 Hz for a normalized � = 1. In this case, to place a
null in signal spectrum, it suÆces to consider two subchannels with unequal
symboling rates. For TCM(1) acting on the lowpass subchannel L1 = 2,
and for TCM(2), L2 = 4. For our example, TCM(1) has an e�ective rate of
3.5 bits/2� (Table LIII, entry � = 3, 2�16PSK, Partition I) and TCM(2) has
an e�ective rate of 2.00 bits/4� (Table LI, entry � = 3, 4�8PSK, Partition I).
Since the partition trees for the two codes are subsets of each other, the C0

of the two codes are subcodes as desired. For a symbol error probability of
10�5 on both subchannels, TCM(1) requires 16.3 dB of Signal-to-Noise Ratio
(SNR), while TCM(2) requires 10.2 dB of SNR, at the receiver. The ratio of
average received power between the two subchannels P1=P2 is 9.1 dB. Fig. 4.2
depicts the power spectrum of the transmitted signal, squared magnitude of
the channel transfer function, and the power spectrum of the received signal.

4.3 Permutation Spreading inWavelet OFDM

systems

Multicarrier modulation is an attractive technique for data transmission over
bandlimited channels, particularly useful for audio [96] or video [97] broad-
casting, with the potential of achieving the channel capacity via shaping
the power spectrum of the transmitted signal to compensate for the linear
�ltering e�ect of the channel. In DFT-OFDM systems, a special case of
Multicarrier Modulation (MM), the available spectrum is channelized into
a large number of orthogonal frequency subchannels with a sinc(:) trans-
fer function (due to the use of a rectangular shaping pulse). In MM, after
the di�erent subchannels have been de�ned, a loading algorithm can be used
[98] to distribute the data rate and the available signal power in the available
subchannels. This scheme has found widespread use in broadcast applica-
tions over frequency selective slowly fading mobile radio channels. In this
applications, if the channel transfer function varies slowly as a function of
frequency, there is no signi�cant cross-talk between adjacent subchannels due
to channel �ltering e�ect. A universal channel code for such applications can
be designed based on the criteria of maximizing the product distance of the
code [99].

Clearly, the splitting sequences used in MM, following the procedure de-
scribed in Chapter 3, have a signi�cant impact on the overall performance of
the MM. In connection with the use of such sequences for MM we can make
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the following comments:

1. in general, in order to minimize the spectral overlap among the adjacent
frequency channels, the length of the splitting sequences must be very
large. This has two negative side-e�ects:

� the peak signal power may be large;

� the elementary shaping pulses used for modulation spread in time.

Hence, such waveform cannot be eÆciently used for short frame and
burst mode data transmission;

2. general spreading sequences are multilevel sequences. From an imple-
mentation point of view, it would be desirable to have very simple
sequences, with an easy hardware implementation. Haar splitting se-
quences meet this requirement, with the disadvantage that they gener-
ate frequency subchannels with large sidelobes.

Regardless of the splitting sequences used for the generation of the frequency
subchannels, MM systems are sensitive to timing errors. This inherent prob-
lem is due to the fact that, in order to maximize spectral eÆciency, adjacent
shift orthogonal subchannels overlap in the frequency domain. The permuta-
tion spreading technique proposed in this paper is indeed aimed at reducing
the timing sensitivity problem.

More precisely, in this paper we propose the use of permutations for two
purposes:

� generation of splitting sequences for multiple access communications;

� spreading of the frequency channels in a MM system for the purposes
of achieving immunity to timing errors.

We provide an example of application of the concepts presented here to a
MM system based on Haar splitting sequences, to indicate some of the pos-
sible advantages that may be derived from such an approach, in particular
in connection with reducing the timing sensitivity and Adjacent Channel
Interference (ACI) of the resulting system.

4.3.1 Permutations and group theory

Consider an indexed set of elements x1x2x3::: which may be �nite, or semi
in�nite in length. The set of elements noted above is well ordered and may
be taken to represent the output of a discrete source that emits the symbol
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chann. 1 chann. 2 chann. 3 chann. 4
0.06250 0.06250 0.06250 0.06250
0.06250 0.06250 0.06250 0.06250
0.12500 0.12500 0.00000 0.00000
0.12500 0.12500 0.00000 0.00000
0.12500 0.00000 0.00000 -0.12500
0.12500 0.00000 0.00000 -0.12500
0.12500 -0.12500 0.00000 0.00000
0.12500 -0.12500 0.00000 0.00000
0.06250 -0.06250 -0.06250 0.06250
0.06250 -0.06250 -0.06250 0.06250

Table 4.1. Haar �lter coeÆcients used to generate the four MM channels.

(S=I)1 (S=I)2 (S=I)3 (S=I)4
no perm. 7 dB 2.8 dB -18.8 dB -7.1 dB
with perm. 26.5 dB 2.3 dB -11.3 dB 7.5 dB

Table 4.2. Signal-to Interference Ratios for the four MM channels.

xn at the discrete time slot n. Henceforth, the notation (xi)� = xj is used
to mean that permutation � carries xi to xj. A �nite cycle is a permutation
on a �nite set of letters y1y2::yn (note that while the index in the set x1x2:::
implies a discrete time slot, the index associated with the elements y1y2::yn
is simply a place holder and does not necessarily have anything to do with
time) such that (y1)� = y2;:::;(yn)� = y1. A semi-in�nite cycle on a set of
letters y1y2::: is similarly de�ned such that (yi)� = yi+1 8i = 1;2;:::. We write
(y1;y2;::;yn) for a �nite, and (y1;y2;:::) for a semi-in�nite cycle. Note that a
�nite cycle is invariant to cyclic shifts of its arguments so that for instance
the cycles (y1;y2;::;yn) and (y2;y3;::;yn;y1) are the same permutations.

Let us de�ne an interleaver to be a device that implements a given permu-
tation on a given input set of elements. We endow this device with a certain
amount of memory where at each memory location an element of the input
set can be stored. Given the sequential nature of data generated at the input
of the interleaver, we envision this device to be a box that sequentially and
at successive time slots receives an element of the input sequence x1x2:::, and
correspondingly generates an element of the output sequence z1z2::: where,
z1 is the �rst element that is produced at the output, z2 the second, and so
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on. Hence, the index of variable z implies an ordering in time, but it is not
the time slot when an element is released.

It is a basic result in Group theory [104] that any permutation � on a
set of elements S can be written as a product of disjoint cycles, and S may
be divided into disjoint subsets such that each cycle operates on a di�erent
subset. By disjoint we mean that no two cycles move a common element. 1

Any permutation can essentially be written in only one way in this form. As
an example, the permutation,

� =

 
1 2 3 4 5 6 7 8 9 10 11 12
1 5 9 12 2 6 10 3 7 11 4 8

!

can be easily written as the following product of cycles

� = (1)(2;5)(3;9;7;10;11;4;12;8)(6):

Note that for simplicity we have omitted writing the variable x and used
the index of the elements instead. Given this theorem, the study of realiza-
tions of a given permutation reduce to that of its constituent cycles.

A cycle of length two is called a transposition. It is easy to verify that
any �nite cycle can be written as a product of transpositions. For instance
we have

(y1;y2;:::yn) = (y1;y2)(y1;y3)::(y1;yn):

Note that a permutation on a single element is a trivial permutation. Hence,
in the expression for the cycle written as a product of transpositions we may
include as many trivial permutations as we wish. For semi-in�nite cycles we
can extend this result by allowing the index n in the expression of the cycle
as a product of transpositions to run away towards in�nity. Notice that the
representation of a cycle as a product of transpositions is not unique. This
is evident in light of the fact that a �nite cycle is invariant to cyclic shifts of
its elements. Another important point is that it is implicitly assumed that
the cycle is expressed as the shortest product of transpositions.

Having represented a cycle as a product of transpositions, we conclude
that transpositions represent the elementary constituents of any permutation.
Hence, we can envision our interleaver as a sliding window transposition box
[103]. Instead of the data stream shifting into the interleaver while the output
elements are ejected, we can assume that the input data stream is stationary,
and a window of �nite duration slides over it. At any given time slot, either
a pair of elements in the sliding window are transposed and an output is
generated, or an element is ejected without any transpositions performed (we

1this product is only a formal product when the set is in�nite in size.
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may represent such an event by a trivial permutation). With this set up, the
delay of the interleaver is only due to the fact that during the initialization, it
must store a certain number of elements of the input set in its local memory.

Figure 4.3. The modular hardware realization of the FSP.

4.3.2 Hardware realization of the Finite State Per-
muter (FSP)

Based on our discussions thus far, the FSP is seen to be essentially a shift
register with N memory locations whereby each memory cell is capable of
storing an element of the input set, and additional hardware that allows
the transposition of an element in the register with the output. A modular
and hardware eÆcient realization can be obtained using a series of binary
switches. An example of such a realization for a FSP of memory 4 is depicted
in Fig. 4.3. It is evident that by properly positioning the switches in the
structure it is possible to transpose any element stored in the register with
the output. This structure is modular in the sense that it is suÆcient to
duplicate the segment shown in the dashed box to generate larger and larger
FSPs. Note that the switches of Fig. 4.3 can be easily implemented using
MOSFET transmission gates.

4.3.3 Example of application to Haar based MM sys-
tem

The purpose of the example provided here is to show an application of per-
mutations for spectrum spreading in a simple MM system with the goal of
reducing the timing sensitivity of the overall modulation scheme. We con-
sidered a wavelet packet con�guration with 4 channels with Haar �lters of
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Figure 4.4. The Haar wavelet packet channels.
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Figure 4.5. The Haar wavelet packet spreaded channels.
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length 10. The magnitude of the Fourier transform of the �lters is depicted in
Fig. 4.4. The Haar splitting sequences used for the purposes of generating the
orthogonal frequency subchannels are tabulated in Table 4.1. The outputs
of the four transmission �lters are permuted with permutations belonging to
the same cyclic group, generated by the following elementary permutation:

� =

 
1 2 3 4 5 6 7 8 9 10
8 7 1 9 3 10 4 6 5 2

!

Permutation � is used to spread the spectrum of the �rst channel, �2 is used
for channel 2, �3 is used for channel 3, and �4 is used for channel 4. The
applied permutations spread the power of the four transmission channels over
all the available bandwidth. Note that not all the permutations are good,
because not all of them spread the spectrum enough to achieve a gain in the
Signal to Interference ratio (S/I) for all the channels, in comparison to the
original un-spreaded channels. The magnitude of the Fourier transform of
the transmission �lters after spreading is depicted in Fig. 4.5.

The results are reported in Table 4.2, where we tabulate the values of the
(S/I) ratios for all the four MM channels. The ratios in the �rst row of the
table are evaluated as the ratio of the power of the useful despreaded channel
to the total power of the other channels whose spectrum overlap the useful
one. In this sense, the ratios represent a lowerbound for the Signal to Noise
Ratio (SNR) achievable if the shift orthogonality between signals is lost due
to timing errors.

From Table 4.2 it is possible to observe how the use of the permutation
spreading and despreading in the four MM channels can signi�cantly improve
the signal to interference ratios. For the example provided here, three chan-
nels showed signi�cant improvements in the lowerbounds on the values of the
(S/I) ratios (one channel showed an improvement of 19 dB in the (S/I) ratio
lowerbound), while there was a loss of 0.5 dB in (S/I) ratio for channel 2.

The results obtained experimentally indicate that the proposed technique
has the potential to provide signi�cant improvements in the (S/I) ratios.
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Chapter 5

Symbol synchronization using

wavelets

5.1 Introduction

The timing sensitivity of the multichannel modulation schemes plays an im-
portant role in the design and application of such systems for digital commu-
nications. The timing sensitivity is particularly important in multichannel
modulation, since timing o�sets can cause large Adjacent Channel Inter-
ference (ACI) due to the spectral overlap among adjacent channels. Most
symbol synchronizers proposed in the literature for MM use pilot symbols
for timing recovery [64]. We focus on an approximate Decision Directed (DD)
Maximum Likelihood (ML) symbol synchronizer which derive the timing in-
formation from all the subchannels without the need for any pilot symbols.

We derive expressions for the jitter variance of the approximate DD ML
symbol synchronizer for multichannel modulation over a baseband channel
with arbitrary energy distribution in each subchannel, and for an arbitrary
channel transfer function. We analytically study the e�ect of the splitting
sequences used to generate the di�erent channels, on the timing jitter vari-
ance, and provide criteria for the selection of suitable splitting sequences.
We address the implementation issues of the approximate DD ML symbol
synchronizer and propose a structure that can be used to combine the tim-
ing information from di�erent subchannels. In e�ect, the timing information
from subchannels with increasing center frequency is seen to provide succes-
sive re�nements of the synchronizer S-curve leading to improved performance
for each subchannel considered by the symbol synchronizer. We provide
simulation results of the proposed scheme, validating its functionality and
con�rming the analytical results.
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5.2 ML Timing Estimator and its Jitter Vari-

ance For The Two Channel Modulation

Let s(t) be a Nyquist pulse with shift orthogonality period �=2 whose spec-
trum is split to generate two Nyquist pulses with shift period �. When using
scaling functions and wavelets for modulation s(t) = �(2t) where �(t) is the
scaling function with shift period �. Otherwise, s(t) can be any Nyquist
pulse such as the square root raised-cosine pulse. Let the two Nyquist pulses
obtained as a result of the split of the spectrum of s(t) be denoted by �(t)
and  (t) (this notation is used since if s(t) is indeed a contracted scaling
function, then the two Nyquist pulses obtained after the split of the spctrum
of s(t) would be the scaling function and wavelet respectively).

From the results of [4], if the composite rate of the two subchannels
used for modulation is below the Nyquist rate, there is a pre-�lter that pro-
duces zero crossings at the integer multiples of the correct timing instants.
At high SNR, the output of this �lter can be used to eliminate the pat-
tern dependent jitter. Let us suppose that the excess BW associated with
the simultaneous use of the two shaping pulses is low so that the suÆcient
statistic available at the output of the pre-�lter eliminating the pattern de-
pendent jitter has a negligible contribution to the estimation of the timing
parameter at the operating SNR. Then the suÆcient statistic for the esti-
mation of the timing parameter � is obtained from the projection of the
received signal on the basis �(t � k� � � ;) and  (t � k� � � ;), where � ;

is the locally generated timing estimate. The received signal in this case is
r(t) =

P
n[an�(t� n�� �) + bn (t� n�� �)] + n(t � �), where an and bn

are independent white and real sequences, and n(t) is a sample function of
the AWGN. Note that here for simplicity we are assuming that the carrier
recovery loop is operating perfectly and that the transmitted symbols are
real (i.e., DSB PAM modulation).

Projection of the received signal on the locally generated basis yields

hr(t);�(t� k�� � ;)i = Ck +N�
k = y�k

and

hr(t); (t� k�� � ;)i = Dk +N 
k = y k ;

where N�
k and N 

k are independent Gaussian random variables with zero
mean and variance No=2, and Ck and Dk are de�ned as

Ck =
X
n

anr��((n� k)� + (� � � ;)) + bnr �((n� k)� + (� � � ;))
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and

Dk =
X
n

anr� ((n� k)� + (� � � ;)) + bnr  ((n� k)� + (� � � ;));

with rx;y(�) = hx(t);y(t + �)i, where x(t) and y(t) are two arbitrary time
functions. The approximate decision directed ML estimate of � is obtained
from:

� � = argmax
� ;

K�1X
k=0

(y�k âk + y k b̂k); (5.1)

where K denotes the length of the observation interval in number of symbols,
and the receiver in the tracking mode is assumed to operate at low bit error
rate so that the detected symbols âk and b̂k equal the actual symbols ak and
bk respectively. To determine the variance of the timing jitter of the DD
ML estimator, we need to make some assumptions about the statistics of the
transmitted symbols. Hence, suppose we use BPSK signalling with E[a2n] =
Ea and E[b2n] = Eb where fang1n=�1 and fbng1n=�1 are two independent
equiprobable WSS sequences.

When the timing error is small, we can use the Taylor series expansion of
the derivative of the likelihood function �(� ;) about � = � ; [66] for evaluation
of the variance of the timing error. The parameter � can be solved for by
�nding the zero of @�=@� ; using only the �rst two terms in the Taylor series
expansion of this function. Using this method, and making the approxima-
tion that at moderate to high SNR levels @2�=@2� ;(�) ' E[@2�=@2� ;(�)]

:
= A

(here E[:] denotes expectation), the variance of the timing jitter in the track-
ing mode can be expressed as �2� = A�2E[(@�=@� ;(�))2]. Let us de�ne
E[(@�=@� ;(�))2]

:
= (F1 + F2). Then it can be shown that (details of the

derivation are presented in the appendix A):

F1 = �K(Ear
(2)
�� (0) + Ebr

(2)
  (0)); (5.2)

F2 = K
X
m

[2EaEb(r
(1)
� (m�))2 + (Ear

(1)
�� (m�))2 +

(Ebr
(1)
  (m�))2]�

K�1X
k=0

K�1X
l=0

[2EaEb(r
(1)
� (k�� l�))2

+(Ear
(1)
�� (k�� l�))2 + (Ebr

(1)
  (k�� l�))2]; (5.3)

where, r(1)x;y(�) denotes the �rst and r
(2)
x;y(�) the second derivative of rx;y(�)

with respect to � respectively. Let us de�ne

B =
X
m

[2EaEb(r
(1)
� (m�))2+(Ear

(1)
�� (m�))2+(Ebr

(1)
  (m�))2] = 2B1+B2+B3:

(5.4)
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Similarly, it can be shown that:

A = K(Ear
(2)
�� (0) + Ebr

(2)
  (0)): (5.5)

This way, the variance of the timing jitter naturally breaks up into two parts
�2� = �2� (noise)+�

2
� (PDJ) where PDJ stands for Pattern Dependent Jitter:

�2� (noise) =
F1

A2
=

No=2

�K(Ear
(2)
�� (0) + Ebr

(2)
  (0))

; (5.6)

�2� (PDJ) =
F2

A2
=

B +G

K(Ear
(2)
�� (0) + Ebr

(2)
  (0))

2
; (5.7)

where,

G = �
1

K

K�1X
k=0

K�1X
l=0

[2EaEb(r
(1)
� (k��l�))2+(Ear

(1)
�� (k��l�))2+(Ebr

(1)
  (k��l�))2]:

(5.8)

In the remainder of this section, we shall assume that Ea = Eb = 1 (i.e.,
equal energy distribution among the two subchannels). In the next section,
we shall generalize the results by considering the e�ect of the channel and
unequal energy distribution among di�erent subchannels.

Let the splitting sequences be denoted by (:::;h0;h1;:::)
0

(for example the
scaling vector), and (:::;g0;g1;:::)

0

(for example the wavelet vector). In the
time domain we have �(t) =

P
n hns(t � 0:5n�), and  (t) =

P
n gns(t �

0:5n�). In the transform domain we have �(f) = H(ejw�=2)S(f), 	(f) =
G(ejw�=2)S(f) where, S(f);�(f);	(f) are Fourier transforms of s(t);�(t); (t)
respectively, and H(ejw�=2);G(ejw�=2) are the Discrete Fourier Transforms
(DFT) of the lowpass and highpass splitting sequences respectively.

With this set up, it is now possible to obtain an equivalent expression
for the variance of the timing jitter in the transform domain. Consider the
equality:

r
(2)
�� (0)+ r

(2)
  (0) = �4�2

Z 1

�1
f 2(jH(ejw�=2)j2+ jG(ejw�=2)j2)jS(f)j2df: (5.9)

But, note that (jH(ejw�=2)j2+jG(ejw�=2)j2) = 2 since the discrete �lters with
transfer functions H(ejw�=2) and G(ejw�=2) are a QMF pair [25, 28]. Hence,
the above expression is independent of the choice of the splitting sequences
used to split the spectrum of s(t), and the variance of the timing jitter due
to noise is given by:

�2� (noise) =
No=2

8�2K
R1
�1 f 2jS(f)j2df : (5.10)
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Noting that 4�2
R1
�1 f 2jS(f)j2df = �r(2)ss (0), we have an equivalent alternate

expression:

�2� (noise) =
No=2

�2Kr(2)ss (0)
; (5.11)

where, r(2)ss (0) is the second derivative of the autocorrelation function of the
shaping pulse s(t) evaluated at zero.
The Inuence of Factor G:
Note that the analysis thus far indicates that in the case of equal energy
distribution among the subchannels, the only factor that is dependent on the
choice of the splitting sequences is the factor G appearing in the numerator
of the expression for the PDJ. Using a shift of index we can write:

G = �
(K�1)X

m=�(K�1)

(1� jmj
K

)[2(r
(1)
� (m�))2+(r

(1)
�� (m�))2+(r

(1)
  (m�))2]: (5.12)

Assuming that K is suÆciently large, the above sum contains most of the
signi�cant terms of the in�nite sum. Hence, for large K the expression for
the PDJ reduces to

�2� (PDJ) '
P(K�1)
m=�(K�1)

jmj
K
[2(r

(1)
� (m�))2 + (r

(1)
�� (m�))2 + (r

(1)
  (m�))2]

2K(r
(2)
ss (0))2

:

(5.13)
It is evident that for large K, the jitter variance is a strong function of the
derivative of the cross correlation between �(t) and  (t). The sharper is the
�ltering e�ect due to the splitting sequences, the smaller is the jitter variance
of the PDJ for large K.

5.3 Generalization to Multichannel Modula-

tion

In this section we shall generalize the results of the previous section in two
directions simultaneously. The �rst, is the natural generalization to multi-
channel case where the number of subchannels M > 2; the second is the
generalization to speci�c channels of practical interest.

5.3.1 Multichannel Modulation Over Baseband Tele-
phone Channels

Typical telephone channels (e.g., twisted wire pair) introduce severe ampli-
tude and phase distortion of the baseband signal used for data transmission.
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5.3{ Generalization to Multichannel Modulation

The use of multichannel modulation in such applications is natural and can
improve the e�ective data transmission rate signi�cantly. In a typical set
up, the channel spectrum is subdivided into a large number of equal band-
width subchannels such that the transfer function of each subchannel has
an almost constant amplitude and phase characteristic. Subsequently, the
available signal power is distributed among the subchannels such that the
overall data rate through the channel is maximized, subject to a �xed error
rate performance for all the subchannels. This unequal power distribution is
achieved by assigning a di�erent size QAM constellation with di�erent en-
ergy levels to each subchannel. Alternatively, for the same error performance
in each subchannel, the available spectrum may be divided into a set of un-
equal bandwidth subchannels, and a �xed constellation size (e.g., QPSK)
with di�erent energy levels may be used for each subchannel.

When splitting the spectrum of a Nyquist pulse to generate the shaping
pulses for multichannel modulation at baseband, it is no longer necessary to
use quadrature modulation since the spectrum of the subchannels overlap and
the excess bandwidth of the overall signalling scheme is due to the original
shaping pulse whose spectrum is split. In light of this, we shall make the
following assumptions for the analysis that follows:

1. the spectrum of the original shaping pulse is split into M orthogonal
subchannels;

2. BPSK modulation is used in each subchannel whereby the data se-
quences are equiprobable iid and independent for di�erent subchannels;

3. the binary sequence associated with l-th subchannel is denoted by
fal;ng1�1 with E[a2l;n] = El;

4. the e�ect of the transmission channel in a given subband is an ampli-
tude attenuation denoted by fglgMl=1 and a group delay f�lgMl=1 both of
which are assumed to be estimated accurately possibly via a training
sequence so that we may consider them to be known quantities at the
receiver (the di�erence in the group delay for adjacent subchannels is
assumed to be small enough that the subchannels essentially maintain
their relative orthogonality).

Under the above assumptions, the received signal is

r(t) =
MX
l=1

X
n

glal;n�l(t� n�� � � �l) + n(t� �)

where, �l(t) is the l-th Nyquist pulse obtained as a result of splitting the
spectrum of s(t) with shift orthogonality period �=M , and � is the timing
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parameter to be estimated. Note that here we have assumed that all the
subchannels have equal rates. Projection of r(t) on the locally generated
basis �i(t� k�� � 0 � �i) yields

yi;k =
MX
l=1

X
n

glal;nr�l�i((n� k)� + (� � � 0)) + ni;k;

where as usual, r�l�i(:) denotes the correlation between the noted functions,
and ni;k are iid Gaussian random variables N (0;No=2). Let us de�ne

Ci;k =
MX
l=1

X
n

glal;nr�l�i((n� k)� + (� � � 0)):

The suÆcient statistic for observation over K-symbols per subchannel (i.e.,

MK symbols in total) is the set of values fyi;kgi=M;k=(K�1)
i=1;k=0 . The approximate

decision directed ML estimate of � is obtained from

� � = argmax
� 0

MX
i=1

K�1X
k=0

yi;kgiâi;k; (5.14)

where âi;k is the k-th detected bit of the i-th subchannel. Assuming that
the receiver is operating at low bit error rates, we may use ai;k instead of
âi;k for analytical evaluation of the jitter variance. Note that we may absorb
the factor gi in ai;k by de�ning a0i;k = giai;k so that E[(a0i;k)

2] = g2iEi. If we
replace M = 2 in the above expression we obtain the expected result derived
in section 5.2. Consequently, the analysis of the jitter variance follows exactly
along the same lines as for the two channel modulation case presented in the
appendix A. To present the results we follow the outline of the appendix but
omit writing the intermediate derivations. Replacing yl;k = Cc + nl;k in the
likelihood function and collecting terms we have

� =
K�1X
k=0

MX
l=1

glal;kCl;k +
K�1X
k=0

MX
l=1

glnl;kal;k = �1 + �2:

Now, E[(@�=@�)2] = E[(@�1=@�)
2] + E[(@�2=@�)

2] since the cross prod-
uct term has zero expectation (see the appendix A) and E[@2�=@� 2] =
E[@2�1=@�

2] since E[@2�2=@�
2] = 0 (see the appendix A). It can be veri-

�ed that

E[(@�2=@�)
2] = �No

2
K

MX
l=1

g2l Elr
(2)
�l�l

(0) (5.15)

E[@2�1=@�
2] = K

MX
l=1

g2l Elr
(2)
�l�l

(0): (5.16)
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The derivation of E[(@�1=@�)
2] is straight forward but tedius. We omit the

details for brevity

E[(@�1=@�)
2] = K

MX
m=1

MX
i=1

g2mg
2
iEmEi

X
n

(r
(1)
�i�m

(n�))2 �
MX
m=1

g4m

K�1X
k=0

K�1X
l=0

(Emr
(1)
�m�m((k � l)�))2 �

MX
m=1

MX
n=1;n 6=m

g2mg
2
nEmEn

K�1X
k=0

K�1X
l=0

(r
(1)
�n�m((l � k)�))2:

(5.17)

Using the following equality

K�1X
k=0

K�1X
l=0

(r
(1)
�n�m((l � k)�))2 = K

(K�1)X
l=�(K�1)

(1� jlj
K
)(r

(1)
�n�m(l�))

2; (5.18)

the above expression simpli�es to

E

"�
@�1

@�

�2#
= K

MX
m=1

MX
i=1

g2mg
2
iEmEi[

X
jlj�K

(r
(1)
�i�m

(l�))2+
X

jlj�(K�1)

jlj

K
(r

(1)
�i�m

(l�))2]:

(5.19)

Putting the pieces together we have

�2� (noise) = � No=2

K
PM
l=1 g

2
l Elr

(2)
�l�l

(0)
(5.20)

�2� (PDJ) =
E[(@�1=@�)

2]

(K
PM
l=1 g

2
lElr

(2)
�l�l

(0))2
(5.21)

Clearly the energy distribution and the channel gain in each subband has
a major impact on the variance of the timing jitter and indeed the jitter
variance may be optimized with respect to the energy distribution in the
subchannels. As noted above, many times the energy distribution within
the subbands is adjusted by the desire to maximize the data throughput
of the overall scheme, and not based on considerations of the e�ect of this
distribution on the timing jitter. However, a joint iterative optimization is
indeed plausible whereby the energy distribution in the subbands is adjusted
for throughput maximization but taking into account the deteriorating e�ect
of the timing jitter.

For a given energy distribution in the subbands, there is yet another
degree of freedom in system design and that is the choice of the splitting
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sequences. Let us consider the e�ect of the splitting sequences under several
cases of practical interest.
Case I: Low SNR and Large K
In this case the timing jitter variance due to noise dominates the component
of the jitter variance due to PDJ. Consider expressing the denominator of
equation (5.20) in the transform domain. The Fourier transform of r

(2)
�l�l

(�)

denoted F [r(2)�l�l(�)] is F [r
(2)
�l�l

(�)] = �4�2f 2j�l(f)j2, where �l(f) denotes the
Fourier transform of �l(t). Hence, we may write

MX
l=1

g2l Elr
(2)
�l�l

(0) = �
MX
l=1

g2l El

Z 1

�1
4�2f 2j�l(f)j2df

= �
Z 1

�1
f4�2f 2

MX
l=1

g2l Elj�l(f)j2gdf: (5.22)

Recalling that the individual shaping pulses �l(t) are obtained via splitting
the spectrum of an elementary shaping pulse s(t) we may write

j�l(f)j2 = jHl(e
j2�f�=M)j2jS(f)j2

where Hl(e
j2�f�=M) is the DFT of the splitting sequence associated with the

l-th subchannel. Hence, we may write

MX
l=1

g2lElr
(2)
�l�l

(0) = �
Z 1

�1
f4�2f 2

MX
l=1

g2lEljHl(e
j2�f�=M)j2gjS(f)j2df: (5.23)

This equation captures the inuence of the splitting sequences on the timing
jitter variance. In particular, we would like to maximize the absolute value
of the integral expression in equation (5.23) via an appropriate choice of the
splitting sequences. Generally speaking short splitting sequences generate
subchannels with larger bandwidths and reduced spectral height (since the
signal energy is kept constant), in comparison to long splitting sequences that
generate subchannels with smaller bandwidths and larger spectral heights.
Naturally as the spectrum of the subchannels widen, there is more spec-
tral overlap among adjacent subchannels. Interestingly enough, the integral
expression in equation (5.23) suggests that in certain cases short splitting
sequences leading to wider bandwidth subchannels may be preferred from
a timing point of view. Note that short splitting sequences lead to wider
subchannels and hence more ACI due to timing o�sets. However, when the
SNR is low and observation interval is large, the noise has the dominating
e�ect on the jitter variance.
Case II: High SNR and Small K
In this case, the jitter variance due to noise is assumed to be negligible. The
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5.3{ Generalization to Multichannel Modulation

impact of the splitting sequences on the denominator of expression of the
jitter variance due to PDJ in equation (5.21) is already studied in case I and
expressed in equation (5.23). Consider equation (5.19)and note that we have
the upper bound8<

:
X
jlj�K

(r
(1)
�i�m

(l�))2 +
X

jlj�(K�1)

jlj

K
(r

(1)
�i�m

(l�))2

9=
; <

X
l

(r
(1)
�i�m

(l�))2: (5.24)

This upper bound should be tight for smallK. To get more insights about the
impact of the splitting sequences on the jitter variance, consider expressingP
l(r

(1)
�i�m

(l�))2 in the transform domain

X
l

(r
(1)
�i�m

(l�))2 = 4�2
Z 1

�1

Z 1

�1
f��i(f)�

�
i (�)�

�
m(f)�m(�)

 X
l

ej2�(f��)l�
!
dfd�

(5.25)

=
4�2

�

X
l

Z 1

�1
f(f �

l

�
)�i(f)�

�
i

�
f �

l

�

�
��m(f)�m

�
f �

l

�

�
df;

(5.26)

where, we have used the distributional equality

X
l

ej2�(f��)l� =
1

�

X
l

Æ

 
f � � � l

�

!

in equation (5.25) to get equation (5.26). Replacing this upper bound in
equation (5.19) we get

E[

�
@�1

@�

�2
] < K

4�2

�

MX
m=1

MX
i=1

g2mg
2
iEmEi �

X
l

�Z 1

�1
f

�
f �

l

�

�
�i(f)�

�
i

�
f �

l

�

�
��m(f)�m

�
f �

l

�

�
df

�

= K
4�2

�

Z 1

�1
f2
(
MX
i=1

g2iEijHi(e
j2�f�=M )j2g2jS(f)j4df

)
+

K
4�2

�

X
l 6=0

(Z 1

�1
f(f �

l

�
)j

MX
i=1

g2iEi�i(f)�
�
i (f �

l

�
)j2df

)
:

(5.27)

Generally speaking, the �rst half of equation (5.27), constitutes the most sig-
ni�cant part of the upper bound on E[(@�1=@�)

2]. When uniform bandwidth
�lterbanks are used for the split of the spectrum of s(t), the center frequency
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of the subchannel �l(f) is
l
�
. Note that the second half of equation (5.27)

reduces to zero, if the subchannels �l(f) for di�erent l do not overlap in the
frequency domain. Using the most signi�cant part of equation (5.27) in the
expression of the jitter variance, we may write

�2� '
R1
�1 f 2fPM

i=1 g
2
iEijHi(e

j2�f�=M)j2g2jS(f)j4df
K�fR1�1 f 2

PM
i=1 g

2
iEijHi(ej2�f�=M)j2jS(f)j2dfg2

: (5.28)

The impact of the splitting sequences on the variance of the timing jitter is
essentially captured in equation (5.28). Note that now, it may be desirable
to have splitting sequences that generate subchannels with sharp transitions
and small amount of overlap in the frequency domain.
Case III: Intermediate Values of SNR and K
Looking at the two extreme cases considered above, it is evident that for
intermediate values of SNR and K, the splitting sequences can be optimized
to minimize the total expression for the jitter variance. We can make the
following general observations:

1. the most signi�cant subchannels in so far as the timing is concerned,
are those for which the product g2l El is large. It is important that
the splitting sequences for these subchannels be properly chosen to
maximize the denominator term in the expressions of the jitter variance
given above;

2. in a suboptimal (but reduced complexity) design, we may consider
using the timing information from a subset of the subchannels. Once
again, the derivations above provide guidelines for how to select the
subchannels from which the timing information should be derived.

5.3.2 Multichannel SSB Transmission at RF

The multichannel modulation schemes employing a set of modulated ele-
mentary shaping pulses obtained via the splitting procedure presented in
section 1, have two split sidebands around the carrier frequency f0. This may
be undesirable in application since the split sidebands of a given subchannel
may experience di�erent attenuations and phase shifts due to the linear �l-
tering e�ect of the channel. However, the use of single sideband transmission
eliminates this problem. In this subsection we shall assume as in the previous
subsection, that the spectrum of a baseband Nyquist pulse is subdivided into
a set of M possibly unequal width subchannels, and SSB-BPSK modulation
with di�erent energy levels for each subchannel is employed for data trans-
mission. The receiver is assumed to operate coherently, and the e�ect of the
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channel in each subband is essentially an attenuation and group delay. We
use the same notation and de�nitions as above.

The received signal prior to mixing with the carrier at frequency f0 is
z(t) = zp(t)� zq(t) with

zp(t) =

"
MX
l=1

X
n

glal;n�l(t� n�� � � �l) + np(t� �)

#
cos(!0t)

and

zq(t) =

"
MX
l=1

X
n

glal;n�̂l(t� n�� � � �l) + nq(t� �)

#
sin(!0t)

where �̂l(:) is the Hilbert transform of �l(:) and np(:) and nq(:) are the in-
phase and quadrature components of the narrowband additive Gaussian noise
with spectral density No=2 over a band of frequencies assumed to be signif-
icantly larger than the overall signal bandwidth. np(:) and nq(:) are inde-
pendent baseband Gaussian processes with spectral density level No. After
carrier mixing we have the in-phase and quadrature components of the signal

rp(t) = 0:5

"
MX
l=1

X
n

glal;n�l(t� n�� � � �l) + np(t� �)

#
+ rph(t)

and

rq(t) = 0:5

"
MX
l=1

X
n

glal;n�̂l(t� n�� � � �l) + nq(t� �)

#
+ rqh(t);

where rph(t) and rqh(t) are high frequency terms which would be eliminated
after matched �ltering. The quadrature component rq(t) is passed through
a Hilbert transformer and the resulting output is coherently combined with
rp(t) to yield

r(t) =
MX
l=1

X
n

glal;n�l(t� n�� � � �l) + 0:5(np(t� �)� n̂q(t� �)) + rh(t)

where n̂q(:) is the Hilbert transform of nq(:) and rh(t) is the high frequency
term of r(t) that would be eliminated by the matched �lter. The resulting
baseband noise component n1(t��) = 0:5(np(t��)� n̂q(t��)) is a baseband
Gaussian noise process with spectral density No=2 over a band of frequencies
assumed to be signi�cantly larger than the signal bandwidth. From this
point on the derivation of the jitter variance is identical to the baseband case
considered above and identical results are obtained.
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5.3.3 Multichannel Diversity Transmission Over a Slow-
Fading Channel

Frequency diversity is a natural mean of combating the detrimental e�ects
of fading. In such applications, the same data is transmitted over several
orthogonal frequency subchannels, whereby each subchannel may introduce
a random attenuation and a phase shift due to fading. Here, we consider the
case where QPSK modulation is used in a multichannel modulation scheme,
whereby the transmitted energy is the same in all theM subchannels and all
the subchannels carry the same data, in order to achieve frequency diversity.
We consider a coherent receiver and assume that we have perfect carrier
recovery.

The in-phase component of the received signal after carrier mixing is

rp(t) =
MX
l=1

X
n

gl;pan;p�l(t� n�� �) + np(t� �)

and the quadrature component is

rq(t) =
MX
l=1

X
n

gl;qan;q�l(t� n�� �) + nq(t� �)

where (gl;p+ jgl;q) is the complex channel coeÆcient associated with the l-th
subchannel, (an;p + jan;q) are the transmitted QPSK symbols, �l(t) is the
shaping pulse of the l-th subchannel and np(:) and nq(:) are components
of a narrowband Gaussian noise process with power spectral density equal
to N0=2 on the signal bandwidth. We assume that fan;pg1�1 and fan;qg1�1
are two iid equiprobable BPSK sequences associated with the in-phase and
quadrature components with E[a2n;p] = E[a2n;q] = Ea.

The approximate DD ML symbol timing estimator, whose structure is
shown in Fig. 5.1 in the case M = 2, yields � � = argmax� 0 �, i.e.

� � = argmax
� 0

K�1X
k=0

MX
i=1

(gi;pâk;pyi;k;p + gi;qâk;qyi;k;q)

where, yi;k;p = Ci;k;p+ni;k;p, Ci;k;p =
PM
l=1

P
n gl;pan;pr�l�i((n�k)�+(��� 0)),

ni;k;p is the projection of np(:) on the k-th shift of the i-th shaping pulse as-
sociated with subchannel i, r�l�i(:) is the cross-correlation between �l(t) and
�i(t) and âk;p are the detected bits associated with the in-phase component
of the received signal. The de�nitions for the quadrature components are
totally analogous. As usual, assuming that the receiver is operating at low
bit error rates, we shall use ak;p and ak;q in the above expression for the
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derivation of the jitter variance. The derivation of the timing jitter variance
is lengthy, but the procedure is conceptually straightforward. In the interest
of brevity, we shall simply outline the procedure and present the main results
without showing all the derivations.

Upon replacing yi;k;p = Ci;k;p + ni;k;p and yi;k;q = Ci;k;q + ni;k;q in the
expression for �, the log-likelihood function breaks up into four parts

� = (�1;p + �2;p) + (�1;q + �2;q)

where

�1;p =
K�1X
k=0

MX
i=1

gi;pak;pCi;k;p;

�2;p =
K�1X
k=0

MX
i=1

gi;pak;pni;k;p;

and the expressions for �1;q and �2;q are analogous to �1;p and �2;p, respec-
tively. Clearly,
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: (5.29)

It can be shown that
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= 0 (5.30)
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Hence,
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Evaluation of the components of the jitter variance above yields
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@�1;p
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@�1;q
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�
=

= K2E2
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MX
i=1

MX
l=1
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(0) (5.36)
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�1

�
(1)
i (t)�

(1)
j (t)dt: (5.38)

The expressions for E(@�1;q=@�)
2 and E(@�2;q=@�)

2 are identical to equa-
tions (5.37) and (5.38) with subscript p replaced by q. Note that expressingR1
�1 �

(1)
i (t)�

(1)
j (t)dt in the transform domain, it is easy to verify that this

integral equals �r(2)�i�j (0). Similarly, it can be shown that
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= KEa
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(0): (5.39)

Consider now equation (5.36), which can be written as

(KEa)
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(1)
�l�i

(0)
MX
i=n

MX
m=1

gn;qgm;qr
(1)
�m�n

(0) (5.40)

and take one of the expressions in the above product, say the �rst term. For
i = l we have r

(1)
�i�i

(0) = 0 since the autocorrelation peaks at origin. Consider
the o� diagonal terms in the double summation and combine symmetric terms
to generate expressions of the type Xl;i = giglr

(1)
�l�i

(0) + glgir
(1)
�i�l

(0). Noting

that r
(1)
�l�i

(�) = �r(1)�i�l(��) we conclude that Xl;i reduces to zero. Hence, the
overall expression in equation (5.36) equals zero. For the same reason, the
�rst part of equation (5.37) is also zero.
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Putting the pieces together we have

�2� (noise) = �
No

KEa

MX
i=1

MX
l=1

(gi;pgl;p + gi;qgl;q)r
(2)
�l�i

(0)

(5.41)

�2� (PDJ) =
E(@�1;p=@�)

2 +E(@�1;q=@�)
2"

KEa

MX
i=1

MX
l=1

(gi;pgl;p + gi;qgl;q)r
(2)
�l�i

(0)

#2 : (5.42)

To proceed further, consider a component of the second part of equation (5.37)
which can be written as

K�1X
k=0

K�1X
m=0;m6=k

r
(1)
�l�i

((m� k)�)r
(1)
�u�j

((k �m)�) =

K
(K�1)X

n=�(K�1);n6=0

 
1� jnj

K

!
r
(1)
�l�i

(n�)r
(1)
�u�j

(�n�): (5.43)

If the shaping pulses f�lgMl=1 are either all even or all odd, then r(1)�u�j (�n�) =
�r(1)�u�j(n�) and equation (5.37) reduces to

E(@�1;p=@�)
2 = KE2

a

MX
i=1

MX
l=1

g2i;pg
2
l;p

2
4 X
jnj�K

(r
(1)
�l�i

(n�))2 +
X

jnj�(K�1)

jnj
K

(r
(1)
�l�i

(n�))2

3
5 : (5.44)

The equation for E(@�1;q=@�)
2 is identical to equation (5.44) with p replaced

by q. Let us now consider the e�ect of the splitting sequences on the timing
jitter variance under several di�erent conditions.
Case I: Low SNR and Large K
In this case the component of the jitter variance due to noise dominates
that of the Pattern Dependent Jitter (PDJ). The impact of the splitting se-
quences is essentially captured in the denominator of equation (5.41). Since
a priori the channel attenuation coeÆcients are unknown ad time varying,
the natural line of pursuit is to assume that they are all equal. We shall
make this assumption and for simplicity we shall set these coeÆcients to
be equal to one. With this set up, the denominator of equation (5.41) re-

duces to �2KEaPM
i=1

PM
l=1 r

(2)
�l�i

(0). Consider expressing this quantity in the
transform domain

�
MX
i=1

MX
l=1

r
(2)
�l�i

(0) =
MX
i=1

MX
l=1

Z 1

�1
(2�f)2�l(f)�

�
i (f)df

97



5 { Symbol synchronization using wavelets
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Figure 5.1. The proposed approximate DD ML two channel symbol syn-
chronizer.

=
Z +1

�1
4�2f 2

"
MX
i=1

MX
l=1

�l(f)�
�
i (f)

#
df

=
Z 1

�1
(2�f)2

�����
MX
i=1

�i(f)

�����
2

df

=
Z 1

�1
(2�f)2

�����
MX
i=1

Hi(e
j2�f�=M)

�����
2

jS(f)j2df; (5.45)

where, the last equality arises since S(F ) is the Fourier transform of the
shaping pulse s(t) that is originally split, �i(f) = Hi(e

j2�f�=M)S(f) and
Hi(e

j2�f�=M) is the DFT of the splitting sequence for the i-th subchannel.
Equation (5.45) captures the e�ect of the splitting sequences on the variance
of the timing jitter. Note that the phase characteristic of the splitting se-
quences has impact on the jitter variance. Since the splitting sequences are
assumed to be generated using QMF �lterbanks, we have that

�����
MX
i=1

Hi(e
j2�f�=M)

�����
2

�
MX
i=1

jHi(e
j2�f�=M)j2 =M: (5.46)

The inequality of equation (5.46) becomes an equality if indeed the indi-
vidual transfer functions Hi(e

j2�f�=M ) for di�erent i have disjoint frequency
supports so that at any given frequency, only one term in the summation
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5.3{ Generalization to Multichannel Modulation

PM
i=1Hi(e

j2�f�=M) is nonzero. The bound in equation (5.46) allows us to
write

�2� �
No

�2KEaMr
(2)
ss (0)

: (5.47)

0.1
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Figure 5.2. Normalized timing variance due to noise: average over 500
fading channels (-) and over at frequency channel (- -) as a function of

the Battle-Lemari�e �lters order.

Equation (5.47) shows that the jitter variance due to noise in this mul-
tichannel modulation is always higher than the case when a single shaping
pulse is used. Note however that the present result is obtained assuming
that the channel gain coeÆcients are all equal. In practice, this is never the
case, and indeed the reason multichannel modulation was used in the present
example, was to combat the detrimental e�ects of fading. Fig. 5.2 shows the
average over �ve hundred fading channels of the normalized variance of the
timing jitter due to noise as a function of the Battle-Lemari�e �lter order N
for eight subchannels generated splitting a square root raised cosine pulse
with 30 % excess BW. The bound for the at channel, which is independent
on the splitting sequences, is also shown for comparison. We can observe
that, for the most part, the jitter variance due to noise is weakly dependent
on N and, as in the case of the baseband channel of section5.3.1 , is primarily
a function of the original shaping pulse whose spectrum is split.
Case II: Large SNR and Small K
In this case the component of the jitter variance due to noise is assumed to be
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5 { Symbol synchronization using wavelets

negligible. Note that equation (5.44) is identical to the expression that can
be found in the case of transmission over a baseband channel [13]. Using the
same procedure applied in case of multichannel modulation over a baseband
channel, we have the following upper bound which should be tight for small
K

E[(@�1;p=@�)
2] +E[(@�1;q=@�)

2] <

8KE2
a�

2

�

Z 1

�1
f2
"
MX
i=1

jHi(e
j2�f�=M )j2

#2
jS(f)j4df+

8KE2
a�

2

�

X
l 6=0

2
4Z 1

�1
f

�
f �

l

�

� �����
MX
i=1

�i(f)�
�
i

�
f �

l

�

������
2

df

3
5 : (5.48)

In the above expression, generally the most signi�cant term is the �rst
half of equation (5.48), since the adjacent subchannels do not have signi�cant
overlap in the frequency domain. Recalling that

PM
i=1 jHi(e

j2�f�=M)j2 = M ,
the �rst half of equation (5.48) is in fact independent of the splitting se-
quences. Hence, we have the following approximate expression for �2� (PDJ)

�2� (PDJ) '
M2

R1
�1

f2jS(f)j4df

8�2K�

2
4Z 1

�1

f2

�����
MX
i=1

Hi(e
j2�f�=M )

�����
2

jS(f)j2df

3
5
2 : (5.49)

Equation (5.49) captures the impact of the splitting sequences on the timing
jitter variance. The bound that can be obtained for the at channel and
the average of the of the PDJ variance over �ve hundred fading channels are
shown in Fig. 5.3 as a function of the Battle-Lemari�e �lter order N . The PDJ
variance depends on the choice of the splitting sequences and this dependence
is stronger than in the case of transmission over baseband channel [13]. In
fact, as noted before, in this case the phase characteristic of the splitting
sequences is also important. It is also possible to observe that, as in the case
of the baseband channel, less selective splitting sequences associated with
small values of N produce the best results.
Case III: Intermediate Values of SNR and K
For intermediate values of SNR and K, the second half of equation (5.48)
(note that this term could have a negative contribution) and the denominator
term appearing in the expression for both �2� (noise) and �

2
� (PDJ), are the

only terms impacted by the choice of the splitting sequences. Clearly, the
splitting sequences can be optimized considering their e�ect on the overall
jitter variance.
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Figure 5.3. Normalized timing PDJ variance: average over 500 fading
channels (-) and over at frequency channel (- -) as a function of the Battle-

Lemari�e �lters order.

5.4 Implementation issues

The actual implementation of the approximate DD ML two-channel synchro-
nizer is reported in Figure 5.1. The scheme can be considered an extension
to multichannel modulation of the one presented in [42], and can be general-
ized for a generic number of channels M . In the following we will give some
considerations about the actual functionality of the proposed scheme.

5.4.1 Tracking phase analysis

In this section we analyze the timing synchronizer behavior in tracking mode,
when the information extracted form each branch is combined to recover the
clock signal.

As an example, we will consider in the following a two channel scheme in
which the signal spanning the low-pass channel is denoted as �1(t) = s(t),
while the signal spanning the high-pass channel is denoted as �2(t) = w(t).

The transmitted signal has the form

x(t) =
+1X

n=�1

�s;ns(t� n�) + �w;nw(t� n�)
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5 { Symbol synchronization using wavelets

where f�s;ng+1n=�1 and f�w;ng+1n=�1 are i.i.d symbols sequences and � is the
signaling period. Considering the upper branch of the scheme and denoting
as r1(t) the signal obtained after the matched �lter, we have:

r1(t) =
+1X

n=�1

�s;nrss(t) + �w;nrsw(t)

while on the lower branch we have:

r2(t) =
+1X

n=�1

�s;nrws(t) + �w;nrww(t):

Assuming that the correct symbol is decided, and denoting as y(t) the signal
at the input of the Moving Average Filter (MAF), we have

y(l�) = �2
sr

(1)
ss (l�) + �s�wr

(1)
sw (l�)+

�2
wr

(1)
ww(l�) + �s�wr

(1)
ws(l�) (5.50)

It has to be noted that the terms depending on the cross-correlations in
equation (5.50) are undesired terms; in case of misalignment of the recon-
structed clock with respect to the correct sampling instant, only the deriva-
tive of the auto-correlations, r(1)ss (t) and r

(1)
ww(t), give the correct information

needed to move the clock towards the correct sampling instant. Hence, con-
ditions have to be found to assure the cancellation of the undesired terms.
A suÆcient condition is

r(1)sw (t) = �r(1)ws (t): (5.51)

In the transform domain equation (5.51) becomes:

j2�fS(f)W (�f) = �j2�W (f)S(�f) (5.52)

Writing the Fourier transforms as

S(f) = jS(f)jej's(f)

and
W (f) = jW (f)jej'w(f);

and remembering that for a real signal the phase is an odd function, it is
possible to show that equation (5.51) is satis�ed if the following condition on
's(f) and 'w(f) holds:

's(f)� 'w(f) = k� +
�

2
k = 0;1;2; : : : (5.53)
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If s(t) is an even function and w(t) is an odd function with respect to the
same symmetry point, condition (5.53) is automatically satis�ed. In our
example we have selected s(t) and w(t) equal to the Battle-Lemari�e scaling
function and wavelet, respectively, which satisfy condition (5.53). When
M > 2 shaping pulses f�i(t)gMi=1 are used, condition (5.51) can be properly
generalized, requiring all the shaping pulses to be either even or odd around
the same symmetry point.

-300
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-100
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100
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300

5 10 15 20 25 30
time

S Curve

scaling channel
wavelet channel

scaling+wavelet channel
total channel

Figure 5.4. S-curves for the two-channel synchronizer of Fig 5.1 using
Battle-Lemari�e waveforms.

5.4.2 Acquisition phase analysis

The essence of equation (5.28) is that, in case of high SNR and on AWGN
channel, if we are able to recover the timing information from each sub-
channel, we can achieve the same performance obtainable using the original
shaping pulse q(t) spanning the overall bandwidth [13]. In Figure 5.4 the
S-curves of the synchronizer of Figure 5.1 for a Battle-Lemari�e based trans-
mission system are reported. The curves are obtained considering the signal
only on the low-pass (upper) branch, and on the high-pass (lower) branch
respectively, assuming that both s(t) and w(t) are transmitted. The S-curve
obtainable in case of transmission of the single pulse q(t) is also reported. It
has to be reminded that the shift-orthogonality period of q(t) is �=2. Fur-
thermore we are assuming the same overall transmitted power and that the
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Figure 5.5. The non-normalized jitter variance of the proposed symbol
synchronizer obtained via simulation. The solid line is obtained using ch.-1
timing information only, the upper dashed line is obtained using ch.-1 and
ch.-2 simultaneously for timing estimation, and the lower dashed line is
obtained using the Battle-Lemari�e scaling function at twice the rate (i.e.,
spanning the original frequency channel prior to splitting). In all the cases,

the loop BW is kept constant and equal to BL = 0:05.

closed-loop equivalent bandwidth is the same in both cases.
As it is well known, the synchronization information lies on the high

frequencies of the signal spectrum. In fact, it can be easily observed that
the slope in the linear zone of the S-curve of the high-pass channel branch is
much higher than the one for the low-pass channel, and stronger is also its
contribution to the overall S-curve characteristic. Unfortunately this curve
presents false lock points (i.e. zero crossings with the right slope that can
make the system lock on incorrect sampling instants). This is never true for
the low-pass channel branch that provides a S-curve with a unique lock point.
The following strategy can be used to avoid locks in stable false points.

1. For a number of symbols intervals larger than the system transient, only
the low-pass channel employing the pulse s(t) is transmitted, and only
the low-pass channel branch is used to reconstruct the recovered clock
signal. During this phase we are using the low-pass channel S-curve,
which has no false lock points

2. The high-pass channel employing the pulse w(t) is then added at the
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transmitter and at the same time also the corresponding high-pass
channel branch of the synchronizer is activated. Since the sampling
instant is already close to the correct zero-crossing point of the over-
all S-curve, the timing information provided by the second (high-pass)
channel will increase the synchronizer sensitivity without generating
false locks.

3. If M > 2 other channels spanning higher frequency intervals are added
one by one following the same strategy.

The increased complexity of the synchronizer training phase is justi�ed
by the relevant gain that can be obtained on the sensitivity of the overall
S-curve. In fact, the major impact of the added high-pass channel can be
easily observed comparing the slopes of the S-curves in the linear zone. From
Figure 5.4 we can observe how the use of multichannel timing synchronization
schemes allows us to achieve the same slope of the overall S-curve as in the
case of a single channel synchronizer based on the original shaping pulse q(t).

As seen before, an example of the symbol synchronizer for a two chan-
nel modulation scheme employing the Battle-Lemari�e wavelet and scaling
functions to span the orthogonal subchannels is depicted in Figure 5.1. The
simulation results showing the jitter variances for this scheme are reported
in Figure 5.5, demonstrating the signi�cant gains achievable from combin-
ing the timing information from both subchannels in order to achieve timing
estimation.
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Chapter 6

Conclusions

In this thesis we have tied together several results in the areas of modulation
theory, perfect reconstruction �lter bank theory, and the theory of wavelets,
to show that wavelets and discrete orthonormal sequences, provide a general
framework for the design of multichannel communication systems. Suitability
of such systems for modulation has been shown through the investigation of
several examples of practical signi�cance.

The connection provided here between the envelope functions for band-
width eÆcient modulation and discrete �lter banks and wavelets, opens the
door to a whole range of possibilities in the area of modulation theory in a
formal context of the �lter bank and wavelet theories.

The most important results achieved can be summarized as follows:

High eÆciency multichannel system design

The splitting procedure exploiting properties of digital �lterbanks is a exi-
ble toolbox to design multichannel communication systems (WOFDM). We
showed in chapter 3 that it is possible to devise double channel communica-
tion schemes with high spectral eÆciency close to the theoretical bound. As
far as multichannel modulation schemes are concerned, the important theo-
retical result achieved is that wavelet based systems can be more eÆcient that
classical OFDM if there is no need for a splitting of the available bandwidth
in a large number of subchannel. Joint use of WOFDM and trellis coded
modulation lends to a powerful technique for shaping the power spectrum in
order to match the channel transfer function and limiting distortions of the
received signal induced by the channel.

Performance over non-linear channel

While over linear channels, wavelets behave like any other Nyquist pulse,
we have shown that over non-linear channels, some gain can be achieved
using wavelet shaping pulses for digital modulation, expecially in critical
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transmission condtions. A novel wavelet, properly designed to be suitable
for modulation, namely, the Modi�ed Gaussian, has competitive performance
with respect to the square-root raised cosine pulse over non-linear satellite
channels. Over multipath fading channel in addition to the gain embedded in
the use of multichannel schemes, the digital nature of the modulator allows
for an eÆcient implementation of a spread spectrum system.

Pattern dependent timing jitter

In multichannel schemes designed via the splitting procedure, we have theo-
retically demonstrated that the jitter variance of the ML symbol synchronizer
for a multichannel (multicarrier) modulation scheme to a �rst order approx-
imation is independent of how the available spectrum is channelized into
orthogonal subchannels. The extension of the results to arbitrary channel-
ization of the available spectrum based on a binary decomposition follows by
induction on the decomposition tree associated with such constructions. We
have validated this results through simulations. In addition, we have provided
a complete performance analysis over fading channels and we have proposed
a scheme for the implementation of a multichannel maximum likelihood syn-
chronizer that exploits information of all the subchannels for reconstruction
the timing signal.

Great interest has arisen towards wavelet for modulation, and nowadays
pulse shaping and multichannel modulation are frequently among the in-
teresting applications of wavelets. The work presented, gives an original
contribution in the �eld of digital modulation, collecting many results from
the mathematical theory of wavelets and digital signal processing. While ev-
ersince theri inception, the theory of wavelets has been considered a powerful
tool for signal analysis, our vision has been one of viewing this theory as a
powerful tool for signal sinthesis. As demonstrated in this thesis, the reversal
of the role of this theory in signal processing which is the crux of contribu-
tion of this thesis, can have many bene�ts in design of digital communication
systems.
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Appendix A

Derivation of the variance of

the timing jitter

In this appendix we shall provide the derivation of the variance of the tim-
ing jitter for the two channel modulation case. The ideal data feedback,
approximate decision directed ML symbol synchronizer generates the timing
estimate

� � = argmax
� 0

K�1X
k=0

(y�kak + y k bk) = argmax
� 0

�(�); (A.1)

where, K is the observation interval in number of symbols. The timing jitter
variance is given by

�2� = A�2E[(
@�

@�
j�=� 0)2]; (A.2)

where, A = E[@2�=@� 2j�=� 0]. Making the substitution

y�k = Ck + n�k

and
y k = Dk + n k

where

Ck =
X
n

[anr��((n� k)� + (� � � 0)) + bnr �((n� k)� + (� � � 0))]

and

Dk =
X
n

[anr� ((n� k)� + (� � � 0)) + bnr  ((n� k)� + (� � � 0))]

and collecting terms we get

� =
K�1X
k=0

(akCk + bkDk) +
K�1X
k=0

(n�kak + n k bk) = �1 + �2: (A.3)
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In the rest of the derivations we my at times omit writing repeatedly that
the noted partial derivatives should be evaluated at � = � 0. Clearly,

E[(@�=@�)2] = E[(@�1=@�)
2] + E[(@�2=@�)

2] + 2E[(@�1=@�)(@�2=@�)]

where the expectation is over both the data symbols and noise. Since the
noise process is zero mean it can be easily veri�ed that

E[(@�1=@�)(@�2=@�)] = 0:

The term (@�1=@�)
2 is completely independent of the noise and leads to

�2� (PDJ), whileE[(@�2=@�)
2] leads to �2� (noise). Hence, we have �

2
� (noise) =

A�2E[(@�2=@� j�=� 0)2] and �2� (PDJ) = A�2E[(@�1=@� j�=� 0)2].
Evaluation of E[(@�2=@�)

2]:
Below when possible, we shall change the order of expectation and evaluattion
of the argument at a �xed point � = � 0 in order to simplify the analysis.
Note that the expectations below are with respect to both noise and the
data sequences.
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=
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l

@�
)g:

(A.4)

Since the data sequences are iid equiprobable, binary and independent of
noise, the above expression simpli�es to

E[(@�2=@�)
2] =

K�1X
k=0

0
@E[a2k]E

2
4
 
@n�k
@�

!2
3
5+ E[b2k]E

2
4
 
@n k
@�

!2
3
5
1
A : (A.5)

Let E[a2k] = Ea and E[b
2
k] = Eb and note that

E

2
4
 
@n

�
k

@�

!2
3
5 =

Z Z 1

�1

E[n(t)n(u)]�(1)(t� k�+ (� � � 0))�(1)(u� k�+ (� � � 0))dtdu

=
No

2

Z 1

�1

(�(1)(t))2dt

= �
No

2
r
(2)
�� (0): (A.6)

Similarly it can be shown that

E[(
@n k
@�

)2] = �No

2
r
(2)
  (0): (A.7)
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Hence, we have

E[(@�2=@�)
2] = �No

2
K
�
Ear

(2)
�� (0) + Ebr

(2)
  (0)

�
: (A.8)

Evaluation of E[@2�=@� 2]:
Now consider, E[@2�=@� 2] = E[@2�1=@�

2] + E[@2�2=@�
2] and note that

E[@2�2=@�
2] =

K�1X
k=0

�
E[ak]E[@

2n�k=@�
2] + E[bk]E[@

2n k =@�
2]
�
= 0; (A.9)

since both the data sequence and noise are zero mean. Consider the evalua-
tion of

E[@2�1=@�
2] =

K�1X
k=0

�
E[ak@

2Ck=@�
2] + E[bk@

2Dk=@�
2]
�
: (A.10)

We can write

E[ak@
2Ck=@�

2j�=� 0] =
K�1X
k=0

X
l

E[akal]r
(2)
�� ((l � k)�) + E[akbl]r

(2)
 �((l � k)�)

=
K�1X
k=0

EaÆk;lr
(2)
�� ((l � k)�)

= EaKr
(2)
�� (0); (A.11)

where, Æk;l is the Kronecker delta function. Similarly, E[bk@
2Dk=@�

2j�=� 0] =
EbKr

(2)
  (0). Hence, we have

E[@2�=@� 2] = K(Ear
(2)
�� (0) + Ebr

(2)
  (0)) = A: (A.12)

Evaluation of E[(@�1=@�)
2]:

E

��
@�1

@�

�2�
= Ef

K�1X
k=0

K�1X
l=0

[akal
@Ck

@�

@Cl

@�
+ akbl

@Ck

@�

@Dk

@�
+ bkal

@Dk

@�

@Cl

@�
+ bkbl

@Dk

@�

@Dl

@�
]g

= P1 + P2 + P3 + P4; (A.13)

where, P1;P2;P3; and P4 are di�erent parts of the above expectation. Consider
evaluation of P1

P1 = E

K�1X
k=0

K�1X
l=0

akal
@Ck

@�

@Cl

@�
j�=� 0
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= E
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��
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 �
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��
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 �
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(A.14)

Using the equalities
[akalambn] = 0;

E[akalbman] = 0;

E[akalbmbn] = E[akal]E[bmbn] = EaÆk;lEbÆm;n

we get

P1 =
K�1X
k=0

X
m

K�1X
l=0

X
n

E[akalaman]r
(1)
�� ((m�k)�)r
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m

r
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(A.15)

Now, consider the equality

P1a =
K�1X
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X
m

K�1X
l=0

X
n

E[akalaman]r
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�� ((m� k)�)r(1)�� ((n� l)�) =

K�1X
k=0

X
m
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�� ((m� k)�)r
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(1)
�� ((n� l)�)]: (A.16)

For BPSK signalling a2l = Ea and note that r
(1)
�� (0) = 0 since the assumed

center of symmetry of the autocorrelation is at origin. Hence, we can write

P1a =
K�1X
k=0

X
m

K�1X
l=0

X
n 6=l

E[akamalan]r
(1)
�� ((m� k)�)r
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�� ((n� l)�):

(A.17)

Iterating on the above simpli�cation we have

P1a =
K�1X
k=0

X
m

K�1X
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(A.18)

P1a = E2
aK

X
m

(r
(1)
�� (m�))2 + P1b: (A.19)
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A { Derivation of the variance of the timing jitter

Iterating once more we have

P1b =
K�1X
k=0

X
m

K�1X
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a
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K�1X
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r
(1)
�� ((l � k)�)r

(1)
�� ((k � l)�) + P1c: (A.21)

Since n 6= k;n 6= l;n 6= m, E[akalaman] = E[an]E[akalam] = 0 and P1c = 0.

Putting the pieces together and noting that r
(1)
�� (��) = �r(1)�� (�) we have

P1 = K
X
m

[(Ear
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(A.22)
In a totally analogous fashion we obtain
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To �nd P2 and P3 we use the equalities

E[akblaman] = E[akblbmbn] = 0;

E[akblambn] = EaÆk;mEbÆl;n;

E[akblanbm] = EaÆk;nEbÆl;m;

r� (�) = r �(��);
r
(1)
� (��) = �r(1) �(�)

to obtain
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(1)
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P3 = �EaEb
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Collecting terms and simplyfying we obtain
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