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1. Introduction

Broadband trailing-edge boundary-layer (TE-BL) noise is one of
the most challenging issues for the aeroacoustic research, as it oc-
curs in many technical situations, like airframe noise, or turboma-
chinery noise. TE-BL noise is due to the scattering of the acoustic 
disturbances induced by the boundary-layer turbulent structures 
over the trailing-edge geometry, changing the source from a quad-
rupolar structure to a more efficient dipolar character [1].

Broadband TE-BL noise prediction techniques based on Large 
Eddy Simulation (LES) for the evaluation of the noise sources, and 
on the acoustic analogy for the computation of the acoustic radia-
tion, are accurate and reliable. However their high computational 
cost prevents them to be applied as an aeroacoustic design and 
optimization tool. LES computations of realistic configurations with 
accurate space–time correlations are out of the range for industrial 
applications, when several configurations have to be studied. In 
order to introduce the broadband noise prediction in the industrial 
design, a less computationally intensive procedure should be devel-
oped. An interesting alternative approach has been recently pro-
posed by Casalino et al. [2] for low-speed fan noise predictions. It 
consists in applying a Ffowcs Williams and Hawkings acoustic anal-
ogy to the wall pressure field computed with the unsteady incom-
pressible Reynolds Averaged Navier–Stokes (RANS) equations, with 
superimposed a stochastic reconstruction of broadband fluctua-
tions. It is an interesting methodology for rotating configurations. 
In the case of an isolated airfoil with low-speed flow, statistically 
stationary in time, a further simplification is possible [3]: compute
the mean flow field with the steady incompressible RANS and use a
stochastic method to synthesize a random turbulent field, repre-
senting the key features of the sound sources of acoustic propaga-
tion model.

Steady-state RANS simulations are a standard tool for aerody-
namic design, as they are computationally efficient, but they only 
provide the turbulence statistics. Nevertheless the far-field spec-
trum of an acoustic variable depends only on the two-point space–
time correlations of the sound sources. On this basis, many 
techniques for the definition of the sound sources from RANS cal-
culations have been developed based on stochastic reconstruction 
of the turbulence fluctuations. Kraichnan [4] proposed the first sto-
chastic method based on a decomposition in random Fourier 
modes. Further developing this approach, Béchara et al. [5] pro-
posed the Stochastic Noise Generation and Radiation (SNGR) tech-
nique and applied it to the case of noise generation in free turbulent 
flows. Bailly et al. [6] extended the method to predict the noise 
radiation from subsonic and supersonic jets. Billson et al. [7] 
introduced the idea of applying a digital time-filter and a 
convection operator in the SNGR technique, in order to prevent the 
shear layer decorrelation and to account for the convection of the 
noise sources. In recent years, other authors [8,9] applied the SNGR 
technique to trailing-edge noise predictions. Another impor-tant 
class of stochastic procedures is based on the reconstruct of the 
turbulence fluctuations applying a digital space-filter to a ran-dom 
field. These methods have been first introduced by Careta et al. [10] 
and Klein et al. [11]. Ewert extended this approach in the Random 
Particle Mesh (RPM) method [12], introducing a Lagrangian particle 
approach for the convection of the turbulent fluctuations, a stream 
function formulation for the space-filtered quantities in order to 
enforce the solenoidality of the turbulent
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velocity field, and the solution of a Langevin equation for the time-
decorrelation. The RPM method has been successfully applied to 
slat noise [12], trailing-edge noise [13], combustion noise [14] and 
cabin noise [15] problems. A similar technique has been devel-oped 
by Dieste and Gabard [16] for fan interaction noise.

In this paper we describe a fast and reliable method, termed 
Eulerian Solenoidal Digital Filter (ESDF), for the reconstruction of 
the turbulent noise sources from the turbulence statistics (turbu-
lent kinetic energy and dissipation), obtained with RANS calcula-
tions for low Mach number flows. Like the RPM method, the ESDF 
belongs to the class of the digital filter-based stochastic turbulence 
methods. The main objective of the present work is to modify the 
classical RPM method [12] introducing a stream-function formula-
tion and adopting an Eulerian approach to solve a scalar transport 
equation for the reconstructed stream-function. The ESDF method 
guarantees that velocity fluctuations satisfy the solenoidal prop-
erty. This additional constraint is very important for a correct noise 
source identification. The Eulerian approach enables an easy exten-
sion of the present method to complex three-dimensional configu-
rations. The time correlation is enforced applying the Billson’s time 
digital filter [7]. The acoustic propagation model is composed by a 
near-field propagation model, based on the Acoustic Perturbation 
Equations [12], to account for the non-uniformities in the mean 
flow, and a far-field propagation model based on the Ffwocs 
Williams and Hawking acoustic analogy. To assess the 
uncertainties connected with the basic assumptions in the 
stochastic model, a detailed analysis of the choices of the constant 
values is made.
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2. Eulerian Solenoidal Digital Filter method

2.1. Stochastic source modeling

Broadband noise sources are function of fluctuating turbulent
velocities, therefore the knowledge of the latter is required for
their identification. On the other hand, RANS calculations do not
explicitly provide the turbulent fluctuations but only space–time
statistical values, like turbulent kinetic energy k and turbulent dis-
sipation frequency xRans. Unsteady-RANS models do not fill this
gap, as they only provide some more information concerning large
scale tonal noise. Therefore a stochastic reconstruction strategy
must be introduced to estimate the fluctuations starting from the
statistical values obtained with RANS calculations.

Being C(x, t) a turbulent fluctuating quantity, and Rðx; r; sÞ ¼
Cðx; tÞCðxþ r; t þ sÞ its two-point space–time correlation func-
tion, a combination of a Gaussian correlation in space with an
exponential correlation in time represents a simple correlation
model:

Rðx; r; sÞ ¼ eR exp � s
ss
� pðr � ucsÞ2

4l2
s

" #
; ð1Þ

where ls and ss are the turbulent integral length and time scale
respectively, and eR is related to the r.m.s. value of the turbulent
quantity for vanishing time and space separation. The convection
speed uc accounts for the Taylor hypothesis for the turbulent struc-
tures. In general, for non-homogeneous turbulence, ls, ss and eR are
functions of position x.
UðxÞ ¼ 0;
UðxÞUðxþ rÞ ¼ dðrÞ;

The aim of the stochastic reconstruction is to generate a fluctu-
ating quantity C(x, t) capable of reproducing the correlation de-
scribed in Eq. (1). One possibility is to apply a digital filter to a 
white noise field, as originally proposed by Klein et al. [11]. Given a 
white noise field UðxÞ, with statistical properties:(

ð2Þ

where d is the Dirac delta function, a multidimensional space digital
filter function can be defined as:

WðxÞ ¼
Z

SA

eAðx0ÞK0 jx� x0j; lsðx0Þð ÞUðx0Þdx0; ð3Þ

where SA is a restricted source region, K0 an appropriate filter kernel 
and eAðx0Þ a local filter amplitude. It is important to remark that all 
the parameters in Eq. (3) are varying in space. The filter kernel is 
normalized in order to have Wðx; tÞWðx þ r; t þ sÞ ¼  1 when Ae ¼ 1. 
Klein et al. [11] adopted this procedure to obtain space-filtered 
velocity fields, applying Eq. (3) to each individual velocity compo-
nent with different sets of white noise fields. A similar technique 
was devised by Mesbah [17] to generate source terms for aeroacou-
stic calculations. If the velocity field is directly evaluated by apply-
ing Eq. (3), no hypothesis is made on the solenoidal property of the 
reconstructed velocity. At low and moderate Mach numbers, the 
turbulent field can be considered as incompressible, therefore the 
fluctuating velocities are divergence free. If this constrain is not re-
spected, important spurious noise sources may be introduced in the 
aeroacoustic solution. To enforce the solenoidal property of the gen-
erated field, a stream function of the velocity field can be recon-
structed instead of the velocity itself. For a two-dimensional field, 
given the stream function defined in Eq. (3), the corresponding 
velocity field is

ðuturbÞxðxÞ ¼
@WðxÞ
@y ;

ðuturbÞyðxÞ ¼ �
@WðxÞ
@x :

(
ð4Þ

Following Careta et al. [10], it can be shown that all the proper-
ties of an isotropic and homogeneous turbulent velocity field in two 
dimensions (i.e. with constant parameters in Eq. (3)) can be 
reproduced by a fluctuating stream-function having an appropriate 
correlation. For the case of homogeneous and isotropic turbulence, 
the velocity correlation function

Rijðr; sÞ ¼ ½uturbÞðx; tÞ�i½uturbðxþ r; t þ sÞ�j; ð5Þ

can be written in terms of longitudinal f(r) and lateral g(r) correla-
tion functions. In the case of time separation s = 0, it reads:

Rijðr;0Þ ¼ ½f ðrÞ � gðrÞ�ninj þ gðrÞdij; ð6Þ

where ni is the unit versor. Since the field is solenoidal, the correla-
tion functions f(r) and g(r) must satisfy an additional constrain
which in two dimensions writes:

gðrÞ ¼ f ðrÞ þ r
@f ðrÞ
@r

: ð7Þ

f ðrÞ ¼ � 1
r
@CðrÞ
@r ;

gðrÞ ¼ � 1
r
@2CðrÞ
@r2 :

It follows that if we define the scalar correlation function 
CðrÞ ¼ WðxÞWðx þ rÞ; f ðrÞ and g(r) can be expressed as follows, be-
cause of Eq. (7),(

ð8Þ

Normalizing the correlation Rij in Eq. (1) with 2l2
s =p, for s = 0,

from Eqs. (6) and (8) it is possible to express the longitudinal cor-
relation function f(r) as
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f ðrÞ ¼ e
�p

4
r2

l2s ; ð9Þ

and the corresponding integral length scale is

l ¼
Z 1

0
f ðrÞdr ¼

Z 1

0
e
�p

4
r2

l2s dr ¼ ls; ð10Þ

which is coincident with the mean turbulent integral length scale as
expected.

To obtain a fluctuating stream function with normalized longi-
tudinal correlation function expressed by relation (9), it is possible
to note that the normalized function

C0ðrÞ ¼ WðxÞWðxþ rÞ
WðxÞWðxÞ

; ð11Þ

satisfying the condition C0(0) = 1, can be related to the filter kernel 
throughout Eq. (3),

C0ðrÞ ¼
Z Z

SA

K0ðnÞK0ðr � nÞdn ¼ K0 � K0; ð12Þ

with unitary amplitude eA. Hence, it is possible to show that a
Gaussian correlation function

C0ðrÞ ¼ e
�p

4
r2

l2s ð13Þ

is obtained applying a Gaussian shaped filter kernel

K0ðrÞ ¼ e
�p

2
r2

l2s : ð14Þ

A similar analysis can be carried out for three-dimensional tur-
bulent fields, if the scalar stream-function is replaced by a
solenoidal vector-potential by means of the Helmholtz theorem.

2.2. Eulerian Solenoidal Digital Filter

Using the filter relation (3), with the Gaussian filter kernel ex-
pressed in Eq. (14), it is possible to obtain a space-correlated 
solenoidal turbulent fluctuating velocity field. The separability 
property of the Gaussian kernel can be used to reduce the compu-
tational cost of the filter operation. The filter kernel in Eq. (3) is 
obtained as product of three one-dimensional kernels

K0ðxÞ ¼ K0ðxÞK0ðyÞK0ðzÞ: ð15Þ

Evaluating the filter as a sequence of one-dimensional filters 
gives a speedup of a factor 10 with respect to a straightforward 
implementation in two-dimensional calculationsA. After the appli-
cation of the space filter, the stream function W(x) is correlated in 
space, but it is uncorrelated in time, like white noise. To obtain an 
exponential time correlation as required by the model correla-tion 
(Eq. (1)), following Billson [7,18] a digital time filter must be 
applied to W(x):

Wm
f ðxÞ ¼ aWm�1

f ðxÞ þ bWmðxÞ; ð16Þ

with

a ¼ e�
Dt
s ;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p

;

(
ð17Þ

m

where Dt is the time-step, the m index represents the m-th realiza-
tion of the turbulent field and (�)f stands for time-filtered. The 
expression for b is a consequence of the constraint of keeping the 
r.m.s. of Wf equal to the r.m.s of Wm. The convection property is 
introduced in the noise source model solving a scalar transport 
equation for the Wf

m�1ðxÞ field of the time filter (Eq. (16)):

@Wm�1
f ðxÞ
@t

þ U0ðxÞ � rWm�1
f ðxÞ ¼ 0; ð18Þ
where U0(x) is the mean flow velocity, obtained from the RANS 
solution. In the original formulation of Billson, the convection oper-
ator is applied to the fluctuating velocities. In this way the diver-
gence-free property is not guaranteed in presence of non-uniform 
mean flow. Applying the convection operator to the reconstructed 
stream function, the lack of solenoidality is overcome. The recon-
structed turbulent velocity fluctuations are evaluated from Eq. (4). 
The free parameters in the ESDF model are evaluated from the mean 
statistical results of the RANS simulation. The filter kernel ampli-
tude eAðxÞ can be evaluated inserting relation (3), in conjunction 
with the stream function definition (4), in the definition of the tur-
bulent kinetic energy for a two-dimensional flow field, and 
enforcing the statistical properties (2):

k ¼ 1
2
ðuturbÞ2x ðxÞ þ ðuturbÞ2yðxÞ
� �

¼ 1
2

Z Z
SA

eA2 @K0

@x

2

þ @K0

@y

2!
dx0:

ð19Þ

Considering AeðxÞ to be slowly varying on a distance O(ls), it is 
possible to take it out of the integral in Eq. (19), and using expres-
sion (14) for the filter kernel, it follows:

eAðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2
p

kðxÞ
r

: ð20Þ

The turbulent length and time scales can be derived from the
statistical field provided by the RANS calculation, as follows:

ls ¼max ls;min;
Cl
Cl

ffiffi
k
p

xRans

� �
;

ss ¼ 1
ClxRans

;

8<: ð21Þ

where � is the turbulent dissipation. As suggested by Bailly and Juvé 
[19], the values of the parameters Cl and Cl adopted for the compu-
tations of the noise sources are Cl = 0.09 and Cl = 0.54. Setting the 
value of the length-scale is equivalent to definying the smallest 
scales in the source region and therefore it is strictly related to the 
definition of the computational grid on which the stochastic 
reconstruction is made. The limiter in Eq. (21) has been introduced 
by Ewert [13] in order to prevent the appearance of unresolved 
length scales on the coarser acoustic mesh. When the turbulent 
length scale is limited, the filter amplitude in Eq. (20) must be 
slightly reduced in order to remove the amount of energy in the tur-
bulent spectrum related to the filtered high frequencies.
3. Computational method

3.1. Mean flow field computation

The mean flow simulations are performed with 
OpenFOAM�[20], an open source collection of C++ libraries, solving 
the stea-dy-state incompressible RANS, with the Menter k–x SST 
turbu-lence model [21]. The equations are discretized adopting a 
collocated Finite Volume method. Depending on the test case, the 
SIMPLE and PISO algorithms have been used in order to avoid pres-
sure-related oscillations. A 2nd order Gamma scheme [22] has been 
employed, in conjunction with an Algebraic Multi-Grid linear 
system solver. In conjunction with the PISO algorithm, a 2nd order 
implicit backward scheme has been used for time integration. Both 
multi-block structured and unstructured meshes have been em-
ployed for the calculations. All the meshes were generated with the 
open source software Gmsh [23].

Several computations have been performed on different grids,
with increased mesh resolution, in order to guarantee a converged
solution in space. Because the main objective of the paper is the
study of the noise source reconstruction model, the reported mean
flow field computations are relative to the finer converged grid only.
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3.2. Numerical implementation of the ESDF method

The coupling of the stochastic model, described in Section 2.2,
with the aeroacoustic simulation, is a 3-step procedure:

1. The RANS solution is mapped onto a mesh localized in the
active source region.

2. Noise sources are evaluated using the velocity fluctuations
reconstructed with the ESDF model.

3. The noise sources are mapped onto the acoustic mesh.

The mapping onto the acoustic mesh is a key step in the proce-
dure. Under-resolution of the source region in the acoustic simula-
tion can generate spurious noise. Moreover, another source of 
spurious noise can be deemed to the abrupt truncation of the ac-
tive source region along the mean flow direction [24,25]. To over-
come these problems, the acoustic mesh has been refined in the 
active source region, and a Hann windowing of the data has been 
applied in the direction parallel to the mean flow at the inlet and 
outlet of each source patch.

No Lagrangian intermediate mesh has been used in the proce-
dure, with benefits on the computational accuracy and efficiency,
because no extra-mapping is needed. The source generation proce-
dure is a stand-alone preprocessing for the acoustic calculation.
The ESDF model has been implemented in C++, in the OpenFOAM�

framework.

3.3. Three-dimensional far-field noise intensity estimation from
two-dimensional data

To compare the two-dimensional simulations with experimen-
tal acoustic results, a scaling technique has been adopted to take 
into account the differences in the far-field decay of the acoustic 
pressure between two-dimensional and three-dimensional waves. 
This method is based on two assumptions: the geometry has to be 
equal in the spanwise direction, and the turbulent sources in the 
spanwise direction are statistically homogeneous. This procedure 
was originally adopted to reduce the computational effort of Large 
Eddy simulations for aeroacoustics, as it gives the possibility to ob-
tain the correct far-field spectrum of long-span cylindrical bodies 
resolving only a small spanwise extension [26]. Following Ewert et 
al. [13], the correction applies only to the far-field acoustic pres-
sure power spectral density Gpp, and reads:

Gppj3D ¼
xlzðxÞS
2pc1R

Gppj2D; ð22Þ

where lz is the spanwise coherence length scale, x the angular fre-
quency, S the span of the body, R the distance from the trailing-edge, 
and c1 the far-field speed of sound. The term lz can be esti-mated 
from measurements, or modeled using semi-empirical tech-niques. 
A well known model for the spanwise coherence length, proposed 
by Corcos [27], i s

lz ¼
bUc

x
; ð23Þ

where b is an empirical constant, and Uc is the convection speed of
the turbulent structures in the boundary layer, usually evaluated as
a fraction of the external velocity Ue:

Uc ¼ ð0:7� 0:9ÞUe: ð24Þ

Such a modelization of the convection speed is widely accepted 
in boundary layer turbulence studies when the Taylor hypothesis of 
frozen turbulence is valid. It may be questionable if a unique value 
in the range (0.7 � 0.9)Ue could be selected for the all airfoil cases. 
Nonetheless, Rozemberg [28] showed that a 30% variation of
the convection velocity Uc may produce a 1.4dB shift in the far-field 
spectra evaluated with the extended-Amiet analytical model pro-
posed by Roger and Moreau [29].

The constant b, as it is related to the geometry of the body, in 
principle should be specified for each case. However, the large 
number of measurements of this constant provided by the litera-
ture gives an appropriate database to apply the Corcos law to dif-
ferent cases. Moreover, Gruber and Joseph [30] observed a weak 
dependence of the value of b from the mean-flow velocity and inci-
dence. Typical values of b, measured for various types of airfoils at 
different incidences and velocities, are in the range 1.4 � 1.8.

3.4. Noise radiation

The acoustic propagation in a medium with non-uniform mean 
flow, neglecting entropy fluctuations and fluid viscosity, is gov-
erned by the Acoustic Perturbation Equations (APE) [12], which 
read, in Cartesian coordinates and quasi-linear form,

@q
@t
þ A0

@q
@x
þ B0

@q
@y
þ C 0q ¼ S; ð25Þ

where q = q(x,t) = [q0,u0, v0,w0,p0]T is the acoustic perturbation vector
and S = S(x,t) is the turbulent source term. A0,B0 and C0 are the Jaco-
bian matrices of the fluxes.

Considering a harmonic mode, with angular frequency x:

q ¼ Reðq̂ðx;xÞeixtÞ;
S ¼ ReðŜðx;xÞeixtÞ;

(
ð26Þ

it is possible to transform the APE (Eq. (25)) into the frequency 
domain:

A
@q̂
@x
þ B

@q̂
@y
þ Cq̂ ¼ Ŝ: ð27Þ

The continuity equation in the APE is decoupled, hence it is pos-
sible to solve only the momentum and energy equations, and eval-
uate the density fluctuations, assuming homoentropic propagation,
from the isentropic relation q0 ¼ p0=c0

2. Density fluctuations are 
computed only in the far-field, where the homoentropic assump-
tion holds, as input data for the Ffowcs Williams and Hawkings 
integral formulation. The source term S is a function of the turbu-
lent velocity fluctuations. In the case of vortical fluctuations, apply-
ing the Lamb vector formulation [13], the linearized source term 
can be expressed in the form

Sðx; tÞ ¼

0
X0ðuturbÞy þXturbv0

�X0ðuturbÞx �Xturbu0

0

0BBB@
1CCCA; ð28Þ

where X0 and Xturb are the mean and turbulent vorticity fields
respectively,

X0 ¼ r� U0;

Xturb ¼ r� ðuturbÞf :

(
ð29Þ

The Fourier transform of the source term is evaluated numeri-
cally with a Fast Fourier Transform algorithm with appropriate 
filters (Tukey windowing, Band-Pass filter). The APE (27) are dis-
cretized using a Galerkin Finite Element method [31] and Perfectly 
Matched Layer (PML) [32] non-reflecting boundary conditions are 
imposed along the far-field boundaries.

The Ffowcs Williams and Hawkings integral formulation [33] is 
applied to evaluate the far-field propagation. The near-field acous-
tic variables, solution of the APE, are extracted on a permeable 
integration path located in the uniform flow region and are propa-
gated to the far field.
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4. Results

4.1. ESDF validation

The capability of the ESDF method to reconstruct a turbulent 
velocity field with given first and second order statistics, is verified 
in the case of two-dimensional homogeneous and isotropic turbu-
lence in a square, with known exact analytical space and time 
corre-lation functions. The two-dimensional turbulence is 
generated in a square with side 0.006 m long on a uniform 
Cartesian mesh of 1 � 10�4 m grid size. The reference conditions in 
the square are U0(x) = 0 m/s, k = 1 m 2/s2 and xRans = 1000 1/s. To 
compare with the analytical results, the length and time scales have 
been chosen a priori. Setting a turbulent length-scale ls = 1  � 10�2 

m and a time-scale ss = 1.111 � 10�2 s, both the parameters Cl and 
Cl in Eq.(21) have been set, for this specific test case, equal to 0.09. 
The asso-ciated constant filter amplitude is AeðxÞ ¼  0:798 m=s. For 
each source cell, the truncation value K0

min in Eq. (3) is 1 � 10�3. 
This value has been found to be a good compromise between 
accuracy of the recon-struction and computational efficiency. In 
Fig. 1a the vector plot of the reconstructed velocity fluctuations 
uturb, is shown. The time his-tory of the reconstructed turbulent 
kinetic energy in the probe point x = (0, 0) m is shown in Fig. 1b. 
After a transient, the target value given by the mean field k is 
recovered, confirming that the ESFD method reproduces the target 
energy content in the turbulent veloc-ity field. The normalized 
space correlations Ruu and Rvv for an hori-zontal probe line are 
compared in Fig. 2a with the analytical correlations given in Eq. (6). 
A good agreement is obtained for both correlations. The time 
autocorrelation, corresponding to the time filter (Eq. (16)), is a 
decaying exponential as specified by the model correlation (1). The 
numerical and analytical normalized autocorre-lations are 
compared in Fig. 2b.

In order to verify the convection property of the generated field,
a second test has been carried out on the same computational
domain, with the same turbulent length and time-scales, and with
a convection velocity U0(x) = 2 m/s. Periodic boundary conditions
have been adopted in the convection operator for the inlet and out-
let boundaries. A convective time-scale is defined as follows:

sc ¼
ls

Uc
; ð30Þ

representing the time needed by an eddy convected by the mean 
flow to cover one turbulent length scale. In this case sc = 5  � 10�3 s, 
and the ratio between the latter and the turbulent time scale is 0.5. 
In Fig. 3, the normalized cross-correlation of the fluctuating
Fig. 1. Two-dimensional homogeneous and isotropic turbulence in a square: (a) turb
stream-function has been compared with the analytical relation
(1). Seven probes with an even spacing of ls/2 are selected to eval-
uate the cross-correlation, using the central probe as reference
point. Numerical and analytical results are in good agreement.
The cross correlation evaluated in probe locations that are upstream
to the central one exhibit a monotonic decay, whereas a peak that is
shifting to higher separation times is evident in the cross-correla-
tions in the downstream probes. This behavior confirms that the
ESDF procedure is able to correctly model the convection of turbu-
lent structures.

4.2. NACA 0012 airfoil noise prediction

The noise generation by the turbulent flow field around a NACA 
0012 airfoil at zero incidence and its radiation are investigated. The 
airfoil has a sharp trailing edge, in order to avoid tonal noise gen-
eration due to the vortex shedding. The airfoil chord is c = 0.3048 m, 
and the span is S = 0.4572 m. Four different mean-field velocity 
values have been investigated, to study the influence of Reynolds 
number and Mach number on the acoustic field. The reference 
conditions, presented in Table 1 have been taken from the 
experimental work of Brooks et al. [34].

4.2.1. Mean flow field
The mean flow calculations are made using a C-Type mesh with 

125,000 cells, shown in Fig. 4. The grid clustering along the walls is 
such that the first interior cell is placed at y+ of O(1) for the all cal-
culations, to accurately capture the turbulent kinetic energy peak. 
In Fig. 5a and b the iso-contours of mean velocity components Ux 

and Uy normalized with respect to the speed of sound, are plotted 
for test case 3. Similar results are obtained for the other cases. Fig. 
6a shows the turbulent kinetic energy profiles along the wall 
normal at a station in correspondence of the trailing edge for the 
four cases. As expected, the peak of turbulent kinetic energy is 
more intense for higher Reynolds number values leading to stron-
ger noise sources, being the amplitude of the Gaussian filter func-
tion of the turbulent kinetic energy (Eq. (20)). In Fig. 6b the profile 
of the specific dissipation xRans at the same station is plotted in 
logarithmic scale. An increase in the boundary layer of the xRans at 
higher values of the Reynolds number is evident, leading to smaller 
values of the turbulent length-scale (Eq. (21)). This behav-ior is 
shown in Fig. 7a where the boundary layer profile of the tur-bulent 
length-scale is presented. The length scale is evaluated with Eq. 
(21), where the length-scale limiter is switched off in order to 
compute the profile up to the wall.
ulent velocity fluctuation vector plot, (b) turbulent kinetic energy time history.



Fig. 3. Two-dimensional homogeneous and isotropic convected turbulence in a
square: normalized cross-correlation function.

Table 1
Naca 0012, reference flow conditions.

Test case c0 (m/s) U0 (m/s) Re (–) M (–)

1 343 31.7 6.63 � 105 0.09
2 343 39.6 8.28 � 105 0.11
3 343 55.5 1.16 � 106 0.16
4 343 71.3 1.49 � 106 0.21

Fig. 4. CFD mesh, zoom in the airfoil region.
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The boundary-layer thickness in the proximity of the trailing-
edge in function of the Reynolds number has been compared with 
the experimental results of Brooks et al. [34]. The results are nor-
malized with respect to the chord. Two sets of experimental data 
have been considered: the no tripped results (NT), and the heavily 
tripped results (HT). The former dataset is characterized by natural 
transition to turbulence, while in the latter transition is fixed at x/c 
= 0.2. In Fig. 7b, the boundary layer thickness d is defined as
the wall-distance where the total pressure becomes the 99.9% of 
the external value. The numerical results are in close agreement 
with the NT experimental data. In Fig. 8a and b, the displacement 
thickness d⁄ and the momentum thickness h are compared with the 
experimental results. The d⁄ is in good agreement with the NT 
experimental data, while the h values are slightly higher than the 
results of the same dataset. Brooks [34] reported that the tripping 
procedure produces a thicker boundary layer, and the present re-
sults confirm that the untripped boundary layer is thinner. The 
skin-friction coefficient, defined as

Cf ¼
sw

1
2 q0U2

0

; ð31Þ

is plotted against the airfoil x-coordinate x/c in Fig. 9, for the four 
test conditions. The numerical results exhibit a fully turbulent 
behavior for the two higher Reynolds numbers, while for the lower 
Reynolds numbers the turbulent transition is achieved at about x/c = 
0.07. The results of the two higher Re test cases are consistent with 
the HT experimental dataset, displaying a fully turbulent flow. But 
also in the two lower Reynolds cases transition is predicted well



Fig. 6. Boundary-layer profiles: (a) turbulent kinetic energy (m2/s2), (b) specific dissipation (1/s).

(b)(a)
Fig. 7. (a) Boundary-layer profile of turbulent length-scale (m), (b) normalized boundary-layer thickness (–).

Fig. 5. Non-dimensional mean flow velocity iso-contours: (a) x-component , (b) y-component, test case 3, Re = 6.63 � 105.

7

before the tripping location in the HT experiments. The fully turbu-
lent flow as well as the early transition are due to the turbulence
modeling. The k–x SST model is lacking any information on transi-
tional mechanisms. As a consequence, the numerical model predicts
a flow field which is more consistent to the tripped experiments.
The higher experimental boundary-layer thickness is mainly a col-
lateral effect in the HT experiments for the presence of the tripping
devices. Because the turbulent kinetic energy is strongly affecting 
the noise-source intensity [13], the acoustic results have been com-
pared with the HT experimental results, under the assumption that 
the RANS solutions, even if they exhibit a thinner boundary layer, 
typical of an untripped flow field, have turbulent kinetic energy and 
specific dissipation values more consistent with the HT experiments.



(a) (b)
Fig. 8. (a) Normalized boundary-layer displacement thickness (–), (b) normalized boundary-layer momentum thickness (–).

Fig. 9. Skin friction coefficient Cf (–).
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4.2.2. Noise sources reconstruction
The noise source reconstruction is carried out on two symmet-

ric patches placed on both sides of the airfoil, close to the trailing 
edge. The upper and lower boundaries of the patches are stream-
lines extracted as a postprocessing of the mean-flow solution. Each 
patch is discretized with a structured mesh of 400 � 40 rectangular 
elements. The turbulent length-scale limiter in Eq. (21) is set to 
0.004 m, hence the smallest length-scale is resolved with at least 10 
elements. A simulation time of 0.15 s has been adopted. The 
components S2 and S3 of the noise sources, defined in Eq. (28), are 
plotted in Fig. 10a and b at a given time for the test case 3 case. The 
S3 component is one order of magnitude more intense than S2 as 
expected. The source terms decay moving away from the wall, 
consistently with the non-homogeneous k field. Similar results are 
obtained for the other test cases.
Fig. 10. Linearized Lamb vector snap
4.2.3. Near-field acoustic results
The acoustic mesh, an hybrid triangular-quadrangular mesh 

with about 300,000 nodes, is plotted in Fig. 11. The acoustic domain 
extends from �c to 2c in x-direction, and from �c to c in y-direction 
and is surrounded by PML regions of thickness 0.1 m. Being the big-
gest cell size 5.2 � 10�3 m, the grid resolution is sufficient to com-
pute frequencies up to 8500 Hz with at least 10 elements per 
wavelength for all tests. The grid is refined in the source region 
with a characteristic dimension of the smallest cell of 2 � 10�4 m, 
resolv-ing the smallest turbulence-induced wavelength with at 
least 18 elements. The source time history has been subdivided in 
segments 5.12 � 10�2 s long, with a time interval of 5 � 10�5 s and a 
maxi-mum overlap of 2.56 � 10�3 s. Each segment is transformed 
in the frequency domain using 1024 samples, with a base 
frequency of 19.531 Hz. In order to obtain a smoother spectrum, 
the transformed sources have been averaged over the five 
segments. A band-pass fil-ter has been applied to select frequencies 
between 200 Hz and 8500 Hz. Higher frequencies are not resolved 
by the mesh, and for the lower ones the time sampling is 
insufficient.

The near-field sound pressure level (SPL) at different Mach 
numbers are shown in Fig. 12a–d. The SPL values increase with the 
Mach number. The acoustic field displays a dipolar directivity, with 
the silence cone in front of the leading edge, due to the finite-ness 
of the airfoil. The main lobes are deflected in forward direc-tion, as 
result of the convective amplification. The normalized directivities 
for the four cases are shown in Fig. 13a at a radius r = 0.15 m. The 
numerical results are compared with the Ffowcs Williams and Hall 
analytical solution for a semi-infinite flat plate [35].

Dn;FHðhÞ ¼ sin
h
2

� �
: ð32Þ
shot: (a) S2 (m/s2), (b) S3 (m/s2).



Fig. 11. Acoustic near-field mesh.
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The computed directivities are normalized such that their value
at 90� is equal to Dn, FH(90�). The numerical predictions are in good
agreement with the analytical results in the trailing edge region.
Some discrepancies are present in the forward zone, mainly due
to the airfoil thickness and leading edge diffraction effects, which
are not taken into account by the analytical solution.
4.2.4. Far-field acoustic results
Normalized far-field directivities computed at r = 1.22 m, are 

presented in Fig. 13b. The typical leading edge diffraction effects 
and the Doppler shift are evident. The far-field directivities for four 
different wave numbers kc are presented in Fig. 14a–f. It can be no-
ticed that while for the lowest frequency the pattern is almost 
dipolar, for the higher frequencies extra lobes appear in the direc-
tivity patterns. The numerical results at M = 0.16 are compared in 
Fig. 15a–d with the analytical prediction obtained with the
Fig. 12. Near-field SPL (dB): (a) M = 0.09, (b
trailing-edge noise model proposed by Roger and Moreau [29] for a 
finite-chord unloaded flat plate. The numerical results correctly 
predict the number and the angular location of the directivity lobes 
at each wave number. Differences with the analytical model are 
evident in the backward direction, mainly due to the zero thickness 
hypothesis of the analytical model.

The 1/3 octave power spectral densities (PSD) of the acoustic 
pressure in a probe point at r = 1.22 m and h = 9 0 � are shown 
in Fig. 16 and compared with the experimental results of 
Brooks et al. [34]. The parameters for the two-dimensional to 
three-dimensional correction are b = 1.68 and Uc = 0.8U1, as 
suggested by experimental studies [36]. The agreement with the 
experimen-tal data in the frequency range between 1000 Hz to 
6000 Hz is good. For high frequencies the decaying slope of the 
acoustic spec-trum is well captured and the difference between 
numerical re-sults and experiments is less than 3 dB. Largest 
discrepancies are present at the lower frequencies, due to a too 
short time sampling of the sources, leading to a poor averaging of 
the low frequencies.

In Fig. 17, the overall SPL (OASPL) values in function of the Mach 
number in the same probe location of the spectra are plotted. The 
numerical results are fitted by the following power law:

OASPLFitðMÞ ¼ 10 log½ðM c0Þ5:4� � 9:743; ð33Þ

with a maximum deviation of less than 0.8 dB. The resulting expo-
nent of 5.4 is in good agreement with the theoretical value of 5, pre-
dicted by the Ffowcs Williams and Hall theory for the trailing-edge 
radiation of a semi-infinite flat plate. The prediction is in agreement 
with the value 5.6 given by Ewert et al. [13].

4.2.5. Computational requirements of the noise prediction procedures
All the calculations were performed on a Linux cluster, composed

by 2 nodes, each node consisting in a two-way Quad-Core Xeon with
26 Gb of RAM. The CFD and the near-field propagation codes are par-
allelized with the MPI protocol, while the analytical noise routine,
) M = 0.11, (c) test case 3, (d) M = 0.21.
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Fig. 13. (a) Near-field directivity (r = 0.15 m), (b) far-field directivity (r = 1.22 m).
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Fig. 14. Normalized far-field directivities (r = 1.22 m): (a) kc ’ 2, (b) kc ’ 5, (c) kc ’ 10, (d) kc ’ 20.
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the noise-source reconstruction routines and the far-field propaga-
tion routine are scalar. Despite this, the analytical routine and the
far-field propagation code run in few minutes for each computa-
tions, and as the noise-source fields are divided in independent re-
gions, each patch can be computed simultaneously, reducing the
total computational time for a single case. About four hours of com-
putational time are necessary for computing a noise-source region
with a grid of 16,000 cells and a simulation time of 0.15 s. The near-
field noise computation with a grid of about 300,000 nodes takes 
about 12 h to evaluate 1024 frequencies. The APE equations are 
solved in the frequency domain, and the linear system is solved 
with a direct solver using the MUMPS (MUltifrontal Massively 
Parallel Solver) package [37]. One of the limiting factor for these 
cal-culations is the RAM requirements: for the above calculations 

12 Gb



1

0.5

0

0.5

1

1 0.5 0 0.5 1

D
n 

[]

Numerical  results, M = 0.16
Analytical results, M = 0.16

(a)

1

0.5

0

0.5

1

1 0.5 0 0.5 1

D
n 

[]

Numerical  results, M = 0.16
Analytical results, M = 0.16

(b)

1

0.5

0

0.5

1

1 0.5 0 0.5 1

D
n 

[]

Numerical  results, M = 0.16
Analytical results, M = 0.16

(c)

1

0.5

0

0.5

1

1 0.5 0 0.5 1

D
n 

[]

Numerical  results, M = 0.16
Analytical results, M = 0.16

(d)
Fig. 15. Normalized far-field directivities (r = 1.22 m, M = 0.16), numerical results compared with the analytical predictions (Roger and Moreau model): (a) kc ’ 2, (b) kc ’ 5,
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of RAM are required. A complete calculation, consisting in the CFD
calculation, the reconstruction of the noise sources, and a near and
far-field calculations, takes about 18 h on the whole.
5. Conclusions

The method termed ESDF, a RANS-based stochastic source mod-
eling for the numerical prediction of broadband trailing-edge
noise, has been presented. It generates a solenoidal fluctuating
turbulent velocity field, reproducing the turbulence statistics
provided by the RANS simulations. The ESDF method has been
validated with a homogeneous and isotropic turbulence in a
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two-dimensional square. The numerical results were in good
agreement with the analytical predictions.

Then the ESDF method has been applied to a low Mach number
trailing-edge noise problem. The stochastic source model has been
coupled with a frequency-domain Galerkin Finite Element solver of
the Acoustic Perturbation Equations for the near-field region.
Far-field directivities and spectra have been evaluated with the
Ffowcs Williams and Hawkings integral formulation. The predicted
noise levels for a NACA 0012 airfoil, at zero incidence and at differ-
ent Mach and Reynolds numbers, have been compared with exper-
imental and analytical results. A good agreement in the frequency
range of 1000–6000 Hz has been obtained. Though improvements
are needed in order to extend the generation procedure for dealing
with three-dimensional computations and anisotropic turbulence
statistics, the proposed method has been proved to be a fast and
reliable tool for aeroacoustic design and optimization.
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