"Philofluid" turbulent flow database

Original

Availability:
This version is available at: 11583/2500747 since:

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
PHILOFLUID DATABASE
(in completion)

Contents

1 2D Shearless mixing
 Direct numerical simulations of the interaction between two homogeneous and isotropic regions
 E_1/E_2: kinetic energy ratio
 ℓ_1/ℓ_2: integral scale ratio
 Re_λ: Taylor microscale Reynolds number
 Sc: Schmidt number (scalar transport)
 1.1 Grid 10243, $E_1/E_2 = 6,6 \ell_1/\ell_2 = 1$ 3
 1.2 Grid 10242, $E_1/E_2 = 12 \ell_1/\ell_2 = 1$ 3
 1.3 Grid 10242, $E_1/E_2 = 40 \ell_1/\ell_2 = 1$ 3
 1.4 Grid 10242, $E_1/E_2 = 300 \ell_1/\ell_2 = 1$ 4
 1.5 Grid 10242, $E_1/E_2 = 10^6 \ell_1/\ell_2 = 1$ 4
 1.6 Grid 10242, $E_1/E_2 = 6,6 \ell_1/\ell_2 = 1$, passive scalar $Sc = 1$ 4
 1.7 Grid 10242, $E_1/E_2 = 1 \ell_1/\ell_2 = 1$, passive scalar $Sc = 1$ 4
 1.8 Grid 10242, $E_1/E_2 = 1$ and $10^4 \ell_1/\ell_2 = 1$, lagrangian particles . 4

2 3D Shearless mixing
 Direct numerical simulations of the interaction between two homogeneous and isotropic regions
 E_1/E_2: kinetic energy ratio
 ℓ_1/ℓ_2: integral scale ratio
 Re_λ: Taylor microscale Reynolds number
 Sc: Schmidt number (scalar transport)
 2.1 Data $Re_\lambda = 45$, $E_1/E_2 = 6,6 \ell_1/\ell_2 = 1$ 3
 2.2 Data $Re_\lambda = 45$, $E_1/E_2 = 40 \ell_1/\ell_2 = 1$ 5
 2.3 Data $Re_\lambda = 45$, $E_1/E_2 = 40 \ell_1/\ell_2 = 0.6$ 5
 2.4 Data $Re_\lambda = 45$, $E_1/E_2 = 100 \ell_1/\ell_2 = 1$ 5
 2.5 Data $Re_\lambda = 45$, $E_1/E_2 = 300 \ell_1/\ell_2 = 1$ 5
 2.6 Data $Re_\lambda = 45$, $E_1/E_2 = 10^6 \ell_1/\ell_2 = 1$, domain 4π and 8π 6
 2.7 Data $Re_\lambda = 45$, $E_1/E_2 = 6,7 \ell_1/\ell_2 = 0.6$ 6
 2.8 Data $Re_\lambda = 45$, $E_1/E_2 = 6,7 \ell_1/\ell_2 = 1.5$ 6
 2.9 Data $Re_\lambda = 45$, $E_1/E_2 = 6,7 \ell_1/\ell_2 = 2.1$ 6
 2.10 Data $Re_\lambda = 71$, $E_1/E_2 = 6,7 \ell_1/\ell_2 = 1$ 7
 2.11 Data $Re_\lambda = 150$, $E_1/E_2 = 6,7 \ell_1/\ell_2 = 1$ 7
 2.12 Data $Re_\lambda = 150$, $E_1/E_2 = 1 \ell_1/\ell_2 = 1.5$ 7
 2.13 Data $Re_\lambda = 150$, $E_1/E_2 = 1 \ell_1/\ell_2 = 2.1$ 7
 2.14 Data $Re_\lambda = 150$, $E_1/E_2 = 1 \ell_1/\ell_2 = 2.8$ 7
 2.15 Data $Re_\lambda = 250$, $E_1/E_2 = 1 \ell_1/\ell_2 = 2.4$ 8
 2.16 Data $Re_\lambda = 150$, $E_1/E_2 = 6,7 \ell_1/\ell_2 = 1$, passive scalar $Sc = 1$. 8
 2.17 Data $Re_\lambda = 150$, $E_1/E_2 = 1 \ell_1/\ell_2 = 1$, passive scalar $Sc = 1$. 8

1
3 Shearless mixing in presence of stable stratification

Direct numerical simulations of the interaction between two homogeneous and isotropic regions in presence of a stable density stratification

\(E_1/E_2 \): kinetic energy ratio

\(\ell_1/\ell_2 \): integral scale ratio

\(Re_\lambda \): Taylor microscale Reynolds number

\(Fr \): Froude number

3.1 Data \(Re_\lambda = 45, E_1/E_2 = 6, 7 \ell_1/\ell_2 = 1, Fr = 1 \)

3.2 Data \(Re_\lambda = 45, E_1/E_2 = 6, 7 \ell_1/\ell_2 = 1, Fr = 5 \)

3.3 Data \(Re_\lambda = 45, E_1/E_2 = 6, 7 \ell_1/\ell_2 = 1, Fr = 10 \)

4 Hydrodynamic Stability of Shear Flows

4.1 Poiseuille Channel Flow (\(\phi \): angle of obliquity, \(k \): polar wavenumber)

4.2 Wake Flow (\(\phi \): angle of obliquity, \(x_0 \): longitudinal wake section, \(k \): polar wavenumber)

4.3 Blasius Boundary Layer Flow (\(\phi \): angle of obliquity, \(\beta \): pressure gradient, \(k \): polar wavenumber)

4.4 Cross-Flow Boundary Layer (\(\phi \): angle of obliquity, \(\beta \): pressure gradient, \(\theta \): cross-flow angle \(k \): polar wavenumber)

5 Cavity flow (cavity in a channel)

Direct numerical simulation of the flow above a cavity in a channel. \(Re \) is the bulk Reynolds number

5.1 \(Re = 150 \)

5.2 \(Re = 250 \)

5.3 \(Re = 2900 \)

6 Channel flow

Large-Eddy simulations of a channel flow with approximate boundary conditions and non explicit approximation of the non commutation terms.

Legend:

\(Re_\tau \): friction Reynolds number

b.c.: approximate boundary conditions type (A or B, see Ph.Fluids 2004)

\(y^+ \): position of the computational boundary in wall units

6.1 \(Re_\tau = 180, \) Les b.c.A, \(y^+ = 2 \) and \(y^+ = 5 \)

6.2 \(Re_\tau = 180, \) Les b.c.B, \(y^+ = 2 \) and \(y^+ = 5 \)

6.3 \(Re_\tau = 180, \) Les b.c.A, \(y^+ = 2 \) and \(y^+ = 5 \), noncommutation correction

6.4 \(Re_\tau = 180, \) Les b.c.B, \(y^+ = 2 \) and \(y^+ = 5 \), noncommutation correction

6.5 \(Re_\tau = 590, \) Les b.c.A, \(y^+ = 2 \) and \(y^+ = 5 \)

6.6 \(Re_\tau = 590, \) Les b.c.B, \(y^+ = 2 \) and \(y^+ = 5 \)

6.7 \(Re_\tau = 590, \) Les b.c.A, \(y^+ = 2 \) and \(y^+ = 5 \), noncommutation correction

6.8 \(Re_\tau = 590, \) Les b.c.B, \(y^+ = 2 \) and \(y^+ = 5 \), noncommutation correction
Filtered turbulent fields
Analysis of enstrophy and stretching in filtered homogeneous and isotropic turbulence

7.1 Original data (F. Toschi) 12
7.2 Filter class: “cross” .. 12
7.3 Filter class: “sphere” .. 12
7.4 Filter class: “filament” ... 13
7.5 Filter class: “sheet” ... 13

1 2D Shearless mixing

1.1 Grid 1024^3, $E_1/E_2 = 6, 6 \ell_1/\ell_2 = 1$

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → root disk
- PoliTO - DIMEAS, Computer “dns3”, disco 2

Address:
130.192.25.60/2D_Mixing/Data/EE66/
130.192.25.49/DATA_SHARED/2D_Mixing/1024/LAURIS/EE66/
Size: 4 Gb

1.2 Grid 1024^2, $E_1/E_2 = 12 \ell_1/\ell_2 = 1$

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → root disk

Address:
130.192.25.60/2D_Mixing/Data/EE12/
Size: 4 Gb

1.3 Grid 1024^2, $E_1/E_2 = 40 \ell_1/\ell_2 = 1$

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → root disk
- PoliTO - DIMEAS, Computer “dns3”, disco 2

Address:
130.192.25.60/2D_Mixing/Data/EE40/
130.192.25.49/DATA_SHARED/2D_Mixing/1024/LAURIS/EE40/
Size: 80 Gb
1.4 Grid 1024^2, $E_1/E_2 = 300 \, \ell_1/\ell_2 = 1$

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → root disk

Address:
130.192.25.60/2D_Mixing/Data/EE300/
Size: 80 Gb

1.5 Grid 1024^2, $E_1/E_2 = 10^6 \, \ell_1/\ell_2 = 1$

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → root disk

Address:
130.192.25.60/2D_Mixing/Data/EE10_6/
Size: 80 Gb

1.6 Grid 1024^2, $E_1/E_2 = 6, 6 \, \ell_1/\ell_2 = 1$, passive scalar $S_c = 1$

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie B → usb disk B1

Address:
130.192.25.166/Lacie (usb)/scalare_passivo/2Dscalar/PASS/SCHMIDT_1_EE66/
Size: 80 Gb

1.7 Grid 1024^2, $E_1/E_2 = 1 \, \ell_1/\ell_2 = 1$, passive scalar $S_c = 1$

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie B → usb disk B1

Address:
130.192.25.166/Lacie (usb)/scalare_passivo/PASS/SCHMIDT_1_EE0/
Size: 80 Gb

1.8 Grid 1024^2, $E_1/E_2 = 1$ and $10^4 \, \ell_1/\ell_2 = 1$, lagrangian particles

Physical collocation:
- PoliTO - DIMEAS, Computer “dns3”, disco 2

Address:
130.192.25.49/DATA_SHARED/2D_Mixing/1024/LAURIS/LAGRANGIAN/
Size: 80 Gb
2 3D Shearless mixing

2.1 Data \(Re_{\lambda} = 45, \, E_1/E_2 = 6.7 \, \ell_1/\ell_2 = 1 \)

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → usb disk A2
- CINECA, iCFD database
Address:
130.192.25.60/Disco2/Re45/E6_L1/
Size: 5 Gb

2.2 Data \(Re_{\lambda} = 45, \, E_1/E_2 = 40 \, \ell_1/\ell_2 = 1 \)

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → usb disk A2
- CINECA, iCFD database
Address:
130.192.25.60/Disco2/Re45/E6_L40/
Size: 5 Gb

2.3 Data \(Re_{\lambda} = 45, \, E_1/E_2 = 40 \, \ell_1/\ell_2 = 0.6 \)

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → usb disk A2
Address:
130.192.25.60/Disco2/Re45/E40_06/
Size: 5 Gb

2.4 Data \(Re_{\lambda} = 45, \, E_1/E_2 = 100 \, \ell_1/\ell_2 = 1 \)

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → usb disk A2
- CINECA, iCFD database
Address:
130.192.25.60/Disco2/Re45/E100_L1/
Size: 5 Gb

2.5 Data \(Re_{\lambda} = 45, \, E_1/E_2 = 300 \, \ell_1/\ell_2 = 1 \)

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → usb disk A2
- CINECA, iCFD database
Address:
130.192.25.60/Disco2/Re45/E300_L1/
Size: 5 Gb
2.6 Data \(Re_\lambda = 45, \, E_1/E_2 = 10^6 \, \ell_1/\ell_2 = 1 \), domain \(4\pi \) and \(8\pi \)

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A \(\rightarrow \) usb disk A2
- CINECA, iCFD database

Address:
130.192.25.60/Disco2/Re45/E10_6_L1/

Size: 10 Gb

2.7 Data \(Re_\lambda = 45, \, E_1/E_2 = 6.7 \, \ell_1/\ell_2 = 0.6 \)

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A \(\rightarrow \) usb disk A2
- PoliTO - DIMEAS, Computer “avdotia2”
- PoliTO - DIMEAS, CD “B128”

Address:
130.192.25.60/Disco2/Re45/E6_L06/
130.192.25.141/home/michele/cubo/B/
CD: B128

Size: 5 Gb

2.8 Data \(Re_\lambda = 45, \, E_1/E_2 = 6.7 \, \ell_1/\ell_2 = 1.5 \)

Physical collocation:
- PoliTO - DIMEAS, Computer “avdotia2”
- PoliTO - DIMEAS, CD “S128”

Address:
130.192.25.141/home/michele/cubo/S/
CD: S128

Size: 5 Gb

2.9 Data \(Re_\lambda = 45, \, E_1/E_2 = 6.7 \, \ell_1/\ell_2 = 2.1 \)

Physical collocation:
- PoliTO - DIMEAS, Computer “avdotia2”
- PoliTO - DIMEAS, CD “C128”

Address:
130.192.25.141/home/michele/cubo/C2/
CD: C128

Size: 5 Gb
2.10 Data $Re_\lambda = 71$, $E_1/E_2 = 6.7 \ell_1/\ell_2 = 1$

Physical collocation:
- PoliTO - DIMEAS, Computer “avdotia2”

Address:
130.192.25.141/home/disk4/cubo/prova256_omp_sp/omp170_340/
Size: 25 Gb

2.11 Data $Re_\lambda = 150$, $E_1/E_2 = 6.7 \ell_1/\ell_2 = 1$

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → usb disk A2
- CINECA, “cart” tape archive, user “miovieno”, dir. “scal150”

Address:
130.192.25.60/Disco2/Re150/E6_L1_R150/
Cineca: miovieno//cart//scal150/ file: s150_u*.tar
Size: 400 Gb

2.12 Data $Re_\lambda = 150$, $E_1/E_2 = 1 \ell_1/\ell_2 = 1.5$

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → usb disk A2

Address:
130.192.25.60/Disco2/Re150/E1_L15_R150/
Size: 350 Gb

2.13 Data $Re_\lambda = 150$, $E_1/E_2 = 1 \ell_1/\ell_2 = 2.1$

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → usb disk A2
- CINECA, “cart” tape archive, user “miovieno”, dir. “elle21/”.

Address:
130.192.25.60/Disco2/Re150/E1_L21_R150/
Cineca: miovieno//cart//elle21/
Size: 350 Gb

2.14 Data $Re_\lambda = 150$, $E_1/E_2 = 1 \ell_1/\ell_2 = 2.8$

Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A → usb disk A2
- CINECA, “cart” tape archive, user “miovieno”, dir. “elle28/”.

Address:
130.192.25.60/Disco2/Re150/E1_L28_R150/
Cineca: miovieno//cart//elle28/
Size: 350 Gb
1300 time instans in 1.5 eddy turnover times for Lagrangian analysis:
Physical collocation:
- **CINECA**, SP6 scratch disk, user “igallana”.
Size: 6 Tb

2.15 Data \(Re_\lambda = 250, \ E_1/E_2 = 1 \ \ell_1/\ell_2 = 2.4 \)

Physical collocation:
- **Polito - DIMEAS**, Network disk system Lacie A → usb disks A2 and A1
- **CINECA**, “cart” tape archive, user “miovieno”, dir. “m250”.
Address:
130.192.25.60/Disco2/Re250/L24/
130.192.25.60/Disco1/Mescolamenti_3D/Re250/
Cineca: miovieno//cart//m250/
Size: 500 Gb

2.16 Data \(Re_\lambda = 150, \ E_1/E_2 = 6, 7 \ \ell_1/\ell_2 = 1 \), passive scalar \(Sc = 1 \)

Physical collocation:
- **CINECA**, “cart” tape archive, user “miovieno”, dir. “scal150”
- **Polito - DIMEAS**, Network disk system Lacie B → usb disk B1
Address:
Cineca: miovieno//cart//scal150/
130.192.25.166/Lacie (usb)/scalare_passivo/3Dscalar/
Size: 130 Gb

2.17 Data \(Re_\lambda = 150, \ E_1/E_2 = 1 \ \ell_1/\ell_2 = 1 \), passive scalar \(Sc = 1 \)

Physical collocation:
- **CINECA**, “cart” tape archive, user “miovieno”, dir. “scalunif”
Address:
Cineca: miovieno//cart//scalunif/
Size: 500 Gb (velocity fields included)
3 Shearless mixing in presence of stable stratification

3.1 Data $Re_\lambda = 45$, $E_1/E_2 = 6, 7 \ell_1/\ell_2 = 1$, $Fr = 1$

Physical collocation:
- PoliTO - Labinf, user “snft4”

Address:
cclix7.polito.it flussi_stratificati/re45/Fr1
Size: 60 Gb

3.2 Data $Re_\lambda = 45$, $E_1/E_2 = 6, 7 \ell_1/\ell_2 = 1$, $Fr = 5$

Physical collocation:
- PoliTO - Labinf, user “snft4”

Address:
cclix7.polito.it flussi_stratificati/re45/Fr5
Size: 60 Gb

3.3 Data $Re_\lambda = 45$, $E_1/E_2 = 6, 7 \ell_1/\ell_2 = 1$, $Fr = 10$

Physical collocation:
- PoliTO - Labinf, user “snft4”

Address:
cclix7.polito.it flussi_stratificati/re45/Fr10
Size: 60 Gb

4 Hydrodynamic Stability of Shear Flows

Address: 130.192.25.166/Lacie(usb)#2 and 130.192.25.166/disco_madre

Physical Collocation: PoliTO - DIMEAS, Network disk system Lacie B

Total size: 4 Tb (included data at PoliTO - Labinf, currently under reorganizazion)

4.1 Poiseuille Channel Flow (ϕ: angle of obliquity, k: polar wavenumber)

- $Re = 500$, $\phi = 0, \pi/4, \pi/2$, symmetric and antisymmetric initial conditions, $k \in [0.05, 1000]$.
- $Re = 10000$, $\phi = 0, \pi/4, \pi/2$, symmetric and antisymmetric initial conditions, $k \in [0.05, 1000]$.
4.2 Wake Flow (ϕ: angle of obliquity, x_0: longitudinal wake section, k: polar wavenumber)

- $Re = 30$, $x_0 = 10, 50$, $\phi = 0, \pi/4, \pi/2$, symmetric and antisymmetric initial conditions, $k \in [0.1, 500]$.
- $Re = 50$, $x_0 = 10$, $\phi = 0, \pi/4, \pi/2$, symmetric and antisymmetric initial conditions, $k \in [0.1, 500]$.
- $Re = 100$, $x_0 = 10, 50$, $\phi = 0, \pi/4, \pi/2$, symmetric and antisymmetric initial conditions, $k \in [0.1, 500]$.

4.3 Blasius Boundary Layer Flow (ϕ: angle of obliquity, β: pressure gradient, k: polar wavenumber)

- $Re_\delta^* = 100$, $\phi = 0, \pi/4, \pi/2$, $k \in [0.02, 2]$.
- $Re_\delta^* = 5000$, $\phi = 0, \pi/4, \pi/2$, $k \in [0.02, 2]$.

4.4 Cross-Flow Boundary Layer (ϕ: angle of obliquity, β: pressure gradient, θ: cross-flow angle k: polar wavenumber)

- $Re_\delta^* = 100$, $\beta = 1, -0.1988$, $\phi = 0, \pi/4, \pi/2$, $\theta = \pi/6, \pi/4, \pi/3$, $k \in [0.02, 2]$.
- $Re_\delta^* = 5000$, $\beta = 1, -0.1988$, $\phi = 0, \pi/4, \pi/2$, $\theta = \pi/6, \pi/4, \pi/3$, $k \in [0.02, 2]$.

5 Cavity flow (cavity in a channel)

5.1 $Re = 150$

Physical collocation:
- PoliTO - DIMEAS, Computer “dns2”

Address:
130.192.25.86/home/michele/cavita2011/laminar/re_150_prb/

5.2 $Re = 250$

Physical collocation:
- PoliTO - DIMEAS, Computer “dns2”

Address:
130.192.25.86/home/michele/cavita2011/laminar/re_250_prb/
5.3 \(Re = 2900 \)
Physical collocation:
- PoliTO - DIMEAS, Computer “dns2”

Address:
130.192.25.86/home/michele/cavita2011/laminar/turbulent/
Size: 40 Gb

6 Channel flow
Total size: 10 Gb

6.1 \(Re_\tau = 180, \) Les b.c.A, \(y^+=2 \) and \(y^+=5 \)
Physical collocation:
- PoliTO - DIMEAS, CD “Les A - Re180 - uvw y+=2, no comm.”
- PoliTO - DIMEAS, CD “Les A - Re180 - uvw y+=5, no comm.”

6.2 \(Re_\tau = 180, \) Les b.c.B, \(y^+=2 \) and \(y^+=5 \)
Physical collocation:
- PoliTO - DIMEAS, CD “Les B - Re180 - uvw y+=2, no comm.”
- PoliTO - DIMEAS, CD “Les B - Re180 - uvw y+=5, no comm.”

6.3 \(Re_\tau = 180, \) Les b.c.A, \(y^+=2 \) and \(y^+=5, \) noncommutation correction
Physical collocation:
- PoliTO - DIMEAS, CD “Les A - Re180 - uvw y+=2, comm.”
- PoliTO - DIMEAS, CD “Les A - Re180 - uvw y+=5, comm.”

6.4 \(Re_\tau = 180, \) Les b.c.B, \(y^+=2 \) and \(y^+=5, \) noncommutation correction
Physical collocation:
- PoliTO - DIMEAS, CD “Les B - Re180 - uvw y+=2, comm.”
- PoliTO - DIMEAS, CD “Les B - Re180 - uvw y+=5, comm.”

6.5 \(Re_\tau = 590, \) Les b.c.A, \(y^+=2 \) and \(y^+=5 \)
Physical collocation:
- PoliTO - DIMEAS, CD “Les A - Re590 - uvw y+=2, no comm.”
- PoliTO - DIMEAS, CD “Les A - Re590 - uvw y+=5, no comm.”
6.6 \(Re_\tau = 590, \) Les b.c.B, \(y^+ = 2 \) and \(y^+ = 5 \)
Physical collocation:
- PoliTO - DIMEAS, CD “Les B - Re590 - uvw \(y^+=2 \), no comm.”
- PoliTO - DIMEAS, CD “Les B - Re590 - uvw \(y^+=5 \), no comm.”

6.7 \(Re_\tau = 590, \) Les b.c.A, \(y^+ = 2 \) and \(y^+ = 5 \), noncommutation correction
Physical collocation:
- PoliTO - DIMEAS, CD “Les A - Re590 - uvw \(y^+=2 \), comm.”
- PoliTO - DIMEAS, CD “Les A - Re590 - uvw \(y^+=5 \), comm.”

6.8 \(Re_\tau = 590, \) Les b.c.B, \(y^+ = 2 \) and \(y^+ = 5 \), noncommutation correction
Physical collocation:
- PoliTO - DIMEAS, CD “Les B - Re590 - uvw \(y^+=2 \), comm.”
- PoliTO - DIMEAS, CD “Les B - Re590 - uvw \(y^+=5 \), comm.”

7 Filtered turbulent fields
Total size: 1.3 Tb

7.1 Original data (F.Toschi)
Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A \(\rightarrow \) usb disk A1

Address:
130.192.25.60/Disco1/Fabrizio/Toschi/

7.2 Filter class: “cross”
Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A \(\rightarrow \) usb disk A1

Address:
130.192.25.60/Disco1/Fabrizio/croce/

7.3 Filter class: “sphere”
Physical collocation:
- PoliTO - DIMEAS, Network disk system Lacie A \(\rightarrow \) usb disk A1

Address:
130.192.25.60/Disco1/Fabrizio/sfera/
7.4 Filter class: “filament”

Physical collocation:
- Polito - DIMEAS, Network disk system Lacie A → usb disk A1

Address:
130.192.25.60/Disco1/Fabrizio/filamento/

7.5 Filter class: “sheet”

Physical collocation:
- Polito - DIMEAS, Network disk system Lacie A → usb disk A1

Address:
130.192.25.60/Disco1/Fabrizio/sheet/